amd5536udc.c 85 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429
  1. /*
  2. * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
  3. *
  4. * Copyright (C) 2005-2007 AMD (http://www.amd.com)
  5. * Author: Thomas Dahlmann
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. */
  12. /*
  13. * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
  14. * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
  15. * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
  16. *
  17. * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
  18. * be used as host port) and UOC bits PAD_EN and APU are set (should be done
  19. * by BIOS init).
  20. *
  21. * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
  22. * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
  23. * can be used with gadget ether.
  24. */
  25. /* debug control */
  26. /* #define UDC_VERBOSE */
  27. /* Driver strings */
  28. #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
  29. #define UDC_DRIVER_VERSION_STRING "01.00.0206"
  30. /* system */
  31. #include <linux/module.h>
  32. #include <linux/pci.h>
  33. #include <linux/kernel.h>
  34. #include <linux/delay.h>
  35. #include <linux/ioport.h>
  36. #include <linux/sched.h>
  37. #include <linux/slab.h>
  38. #include <linux/errno.h>
  39. #include <linux/timer.h>
  40. #include <linux/list.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/ioctl.h>
  43. #include <linux/fs.h>
  44. #include <linux/dmapool.h>
  45. #include <linux/moduleparam.h>
  46. #include <linux/device.h>
  47. #include <linux/io.h>
  48. #include <linux/irq.h>
  49. #include <linux/prefetch.h>
  50. #include <asm/byteorder.h>
  51. #include <asm/unaligned.h>
  52. /* gadget stack */
  53. #include <linux/usb/ch9.h>
  54. #include <linux/usb/gadget.h>
  55. /* udc specific */
  56. #include "amd5536udc.h"
  57. static void udc_tasklet_disconnect(unsigned long);
  58. static void empty_req_queue(struct udc_ep *);
  59. static int udc_probe(struct udc *dev);
  60. static void udc_basic_init(struct udc *dev);
  61. static void udc_setup_endpoints(struct udc *dev);
  62. static void udc_soft_reset(struct udc *dev);
  63. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
  64. static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
  65. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
  66. static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
  67. unsigned long buf_len, gfp_t gfp_flags);
  68. static int udc_remote_wakeup(struct udc *dev);
  69. static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
  70. static void udc_pci_remove(struct pci_dev *pdev);
  71. /* description */
  72. static const char mod_desc[] = UDC_MOD_DESCRIPTION;
  73. static const char name[] = "amd5536udc";
  74. /* structure to hold endpoint function pointers */
  75. static const struct usb_ep_ops udc_ep_ops;
  76. /* received setup data */
  77. static union udc_setup_data setup_data;
  78. /* pointer to device object */
  79. static struct udc *udc;
  80. /* irq spin lock for soft reset */
  81. static DEFINE_SPINLOCK(udc_irq_spinlock);
  82. /* stall spin lock */
  83. static DEFINE_SPINLOCK(udc_stall_spinlock);
  84. /*
  85. * slave mode: pending bytes in rx fifo after nyet,
  86. * used if EPIN irq came but no req was available
  87. */
  88. static unsigned int udc_rxfifo_pending;
  89. /* count soft resets after suspend to avoid loop */
  90. static int soft_reset_occured;
  91. static int soft_reset_after_usbreset_occured;
  92. /* timer */
  93. static struct timer_list udc_timer;
  94. static int stop_timer;
  95. /* set_rde -- Is used to control enabling of RX DMA. Problem is
  96. * that UDC has only one bit (RDE) to enable/disable RX DMA for
  97. * all OUT endpoints. So we have to handle race conditions like
  98. * when OUT data reaches the fifo but no request was queued yet.
  99. * This cannot be solved by letting the RX DMA disabled until a
  100. * request gets queued because there may be other OUT packets
  101. * in the FIFO (important for not blocking control traffic).
  102. * The value of set_rde controls the correspondig timer.
  103. *
  104. * set_rde -1 == not used, means it is alloed to be set to 0 or 1
  105. * set_rde 0 == do not touch RDE, do no start the RDE timer
  106. * set_rde 1 == timer function will look whether FIFO has data
  107. * set_rde 2 == set by timer function to enable RX DMA on next call
  108. */
  109. static int set_rde = -1;
  110. static DECLARE_COMPLETION(on_exit);
  111. static struct timer_list udc_pollstall_timer;
  112. static int stop_pollstall_timer;
  113. static DECLARE_COMPLETION(on_pollstall_exit);
  114. /* tasklet for usb disconnect */
  115. static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
  116. (unsigned long) &udc);
  117. /* endpoint names used for print */
  118. static const char ep0_string[] = "ep0in";
  119. static const struct {
  120. const char *name;
  121. const struct usb_ep_caps caps;
  122. } ep_info[] = {
  123. #define EP_INFO(_name, _caps) \
  124. { \
  125. .name = _name, \
  126. .caps = _caps, \
  127. }
  128. EP_INFO(ep0_string,
  129. USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_IN)),
  130. EP_INFO("ep1in-int",
  131. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  132. EP_INFO("ep2in-bulk",
  133. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  134. EP_INFO("ep3in-bulk",
  135. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  136. EP_INFO("ep4in-bulk",
  137. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  138. EP_INFO("ep5in-bulk",
  139. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  140. EP_INFO("ep6in-bulk",
  141. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  142. EP_INFO("ep7in-bulk",
  143. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  144. EP_INFO("ep8in-bulk",
  145. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  146. EP_INFO("ep9in-bulk",
  147. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  148. EP_INFO("ep10in-bulk",
  149. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  150. EP_INFO("ep11in-bulk",
  151. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  152. EP_INFO("ep12in-bulk",
  153. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  154. EP_INFO("ep13in-bulk",
  155. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  156. EP_INFO("ep14in-bulk",
  157. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  158. EP_INFO("ep15in-bulk",
  159. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  160. EP_INFO("ep0out",
  161. USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_OUT)),
  162. EP_INFO("ep1out-bulk",
  163. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  164. EP_INFO("ep2out-bulk",
  165. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  166. EP_INFO("ep3out-bulk",
  167. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  168. EP_INFO("ep4out-bulk",
  169. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  170. EP_INFO("ep5out-bulk",
  171. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  172. EP_INFO("ep6out-bulk",
  173. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  174. EP_INFO("ep7out-bulk",
  175. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  176. EP_INFO("ep8out-bulk",
  177. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  178. EP_INFO("ep9out-bulk",
  179. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  180. EP_INFO("ep10out-bulk",
  181. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  182. EP_INFO("ep11out-bulk",
  183. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  184. EP_INFO("ep12out-bulk",
  185. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  186. EP_INFO("ep13out-bulk",
  187. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  188. EP_INFO("ep14out-bulk",
  189. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  190. EP_INFO("ep15out-bulk",
  191. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  192. #undef EP_INFO
  193. };
  194. /* DMA usage flag */
  195. static bool use_dma = 1;
  196. /* packet per buffer dma */
  197. static bool use_dma_ppb = 1;
  198. /* with per descr. update */
  199. static bool use_dma_ppb_du;
  200. /* buffer fill mode */
  201. static int use_dma_bufferfill_mode;
  202. /* full speed only mode */
  203. static bool use_fullspeed;
  204. /* tx buffer size for high speed */
  205. static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
  206. /* module parameters */
  207. module_param(use_dma, bool, S_IRUGO);
  208. MODULE_PARM_DESC(use_dma, "true for DMA");
  209. module_param(use_dma_ppb, bool, S_IRUGO);
  210. MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
  211. module_param(use_dma_ppb_du, bool, S_IRUGO);
  212. MODULE_PARM_DESC(use_dma_ppb_du,
  213. "true for DMA in packet per buffer mode with descriptor update");
  214. module_param(use_fullspeed, bool, S_IRUGO);
  215. MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
  216. /*---------------------------------------------------------------------------*/
  217. /* Prints UDC device registers and endpoint irq registers */
  218. static void print_regs(struct udc *dev)
  219. {
  220. DBG(dev, "------- Device registers -------\n");
  221. DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
  222. DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
  223. DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
  224. DBG(dev, "\n");
  225. DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
  226. DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
  227. DBG(dev, "\n");
  228. DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
  229. DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
  230. DBG(dev, "\n");
  231. DBG(dev, "USE DMA = %d\n", use_dma);
  232. if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
  233. DBG(dev, "DMA mode = PPBNDU (packet per buffer "
  234. "WITHOUT desc. update)\n");
  235. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
  236. } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
  237. DBG(dev, "DMA mode = PPBDU (packet per buffer "
  238. "WITH desc. update)\n");
  239. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
  240. }
  241. if (use_dma && use_dma_bufferfill_mode) {
  242. DBG(dev, "DMA mode = BF (buffer fill mode)\n");
  243. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
  244. }
  245. if (!use_dma)
  246. dev_info(&dev->pdev->dev, "FIFO mode\n");
  247. DBG(dev, "-------------------------------------------------------\n");
  248. }
  249. /* Masks unused interrupts */
  250. static int udc_mask_unused_interrupts(struct udc *dev)
  251. {
  252. u32 tmp;
  253. /* mask all dev interrupts */
  254. tmp = AMD_BIT(UDC_DEVINT_SVC) |
  255. AMD_BIT(UDC_DEVINT_ENUM) |
  256. AMD_BIT(UDC_DEVINT_US) |
  257. AMD_BIT(UDC_DEVINT_UR) |
  258. AMD_BIT(UDC_DEVINT_ES) |
  259. AMD_BIT(UDC_DEVINT_SI) |
  260. AMD_BIT(UDC_DEVINT_SOF)|
  261. AMD_BIT(UDC_DEVINT_SC);
  262. writel(tmp, &dev->regs->irqmsk);
  263. /* mask all ep interrupts */
  264. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
  265. return 0;
  266. }
  267. /* Enables endpoint 0 interrupts */
  268. static int udc_enable_ep0_interrupts(struct udc *dev)
  269. {
  270. u32 tmp;
  271. DBG(dev, "udc_enable_ep0_interrupts()\n");
  272. /* read irq mask */
  273. tmp = readl(&dev->regs->ep_irqmsk);
  274. /* enable ep0 irq's */
  275. tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
  276. & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
  277. writel(tmp, &dev->regs->ep_irqmsk);
  278. return 0;
  279. }
  280. /* Enables device interrupts for SET_INTF and SET_CONFIG */
  281. static int udc_enable_dev_setup_interrupts(struct udc *dev)
  282. {
  283. u32 tmp;
  284. DBG(dev, "enable device interrupts for setup data\n");
  285. /* read irq mask */
  286. tmp = readl(&dev->regs->irqmsk);
  287. /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
  288. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
  289. & AMD_UNMASK_BIT(UDC_DEVINT_SC)
  290. & AMD_UNMASK_BIT(UDC_DEVINT_UR)
  291. & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
  292. & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
  293. writel(tmp, &dev->regs->irqmsk);
  294. return 0;
  295. }
  296. /* Calculates fifo start of endpoint based on preceding endpoints */
  297. static int udc_set_txfifo_addr(struct udc_ep *ep)
  298. {
  299. struct udc *dev;
  300. u32 tmp;
  301. int i;
  302. if (!ep || !(ep->in))
  303. return -EINVAL;
  304. dev = ep->dev;
  305. ep->txfifo = dev->txfifo;
  306. /* traverse ep's */
  307. for (i = 0; i < ep->num; i++) {
  308. if (dev->ep[i].regs) {
  309. /* read fifo size */
  310. tmp = readl(&dev->ep[i].regs->bufin_framenum);
  311. tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
  312. ep->txfifo += tmp;
  313. }
  314. }
  315. return 0;
  316. }
  317. /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
  318. static u32 cnak_pending;
  319. static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
  320. {
  321. if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
  322. DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
  323. cnak_pending |= 1 << (num);
  324. ep->naking = 1;
  325. } else
  326. cnak_pending = cnak_pending & (~(1 << (num)));
  327. }
  328. /* Enables endpoint, is called by gadget driver */
  329. static int
  330. udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
  331. {
  332. struct udc_ep *ep;
  333. struct udc *dev;
  334. u32 tmp;
  335. unsigned long iflags;
  336. u8 udc_csr_epix;
  337. unsigned maxpacket;
  338. if (!usbep
  339. || usbep->name == ep0_string
  340. || !desc
  341. || desc->bDescriptorType != USB_DT_ENDPOINT)
  342. return -EINVAL;
  343. ep = container_of(usbep, struct udc_ep, ep);
  344. dev = ep->dev;
  345. DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
  346. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  347. return -ESHUTDOWN;
  348. spin_lock_irqsave(&dev->lock, iflags);
  349. ep->ep.desc = desc;
  350. ep->halted = 0;
  351. /* set traffic type */
  352. tmp = readl(&dev->ep[ep->num].regs->ctl);
  353. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
  354. writel(tmp, &dev->ep[ep->num].regs->ctl);
  355. /* set max packet size */
  356. maxpacket = usb_endpoint_maxp(desc);
  357. tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
  358. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
  359. ep->ep.maxpacket = maxpacket;
  360. writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
  361. /* IN ep */
  362. if (ep->in) {
  363. /* ep ix in UDC CSR register space */
  364. udc_csr_epix = ep->num;
  365. /* set buffer size (tx fifo entries) */
  366. tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
  367. /* double buffering: fifo size = 2 x max packet size */
  368. tmp = AMD_ADDBITS(
  369. tmp,
  370. maxpacket * UDC_EPIN_BUFF_SIZE_MULT
  371. / UDC_DWORD_BYTES,
  372. UDC_EPIN_BUFF_SIZE);
  373. writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
  374. /* calc. tx fifo base addr */
  375. udc_set_txfifo_addr(ep);
  376. /* flush fifo */
  377. tmp = readl(&ep->regs->ctl);
  378. tmp |= AMD_BIT(UDC_EPCTL_F);
  379. writel(tmp, &ep->regs->ctl);
  380. /* OUT ep */
  381. } else {
  382. /* ep ix in UDC CSR register space */
  383. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  384. /* set max packet size UDC CSR */
  385. tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  386. tmp = AMD_ADDBITS(tmp, maxpacket,
  387. UDC_CSR_NE_MAX_PKT);
  388. writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  389. if (use_dma && !ep->in) {
  390. /* alloc and init BNA dummy request */
  391. ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
  392. ep->bna_occurred = 0;
  393. }
  394. if (ep->num != UDC_EP0OUT_IX)
  395. dev->data_ep_enabled = 1;
  396. }
  397. /* set ep values */
  398. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  399. /* max packet */
  400. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
  401. /* ep number */
  402. tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
  403. /* ep direction */
  404. tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
  405. /* ep type */
  406. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
  407. /* ep config */
  408. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
  409. /* ep interface */
  410. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
  411. /* ep alt */
  412. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
  413. /* write reg */
  414. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  415. /* enable ep irq */
  416. tmp = readl(&dev->regs->ep_irqmsk);
  417. tmp &= AMD_UNMASK_BIT(ep->num);
  418. writel(tmp, &dev->regs->ep_irqmsk);
  419. /*
  420. * clear NAK by writing CNAK
  421. * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
  422. */
  423. if (!use_dma || ep->in) {
  424. tmp = readl(&ep->regs->ctl);
  425. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  426. writel(tmp, &ep->regs->ctl);
  427. ep->naking = 0;
  428. UDC_QUEUE_CNAK(ep, ep->num);
  429. }
  430. tmp = desc->bEndpointAddress;
  431. DBG(dev, "%s enabled\n", usbep->name);
  432. spin_unlock_irqrestore(&dev->lock, iflags);
  433. return 0;
  434. }
  435. /* Resets endpoint */
  436. static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
  437. {
  438. u32 tmp;
  439. VDBG(ep->dev, "ep-%d reset\n", ep->num);
  440. ep->ep.desc = NULL;
  441. ep->ep.ops = &udc_ep_ops;
  442. INIT_LIST_HEAD(&ep->queue);
  443. usb_ep_set_maxpacket_limit(&ep->ep,(u16) ~0);
  444. /* set NAK */
  445. tmp = readl(&ep->regs->ctl);
  446. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  447. writel(tmp, &ep->regs->ctl);
  448. ep->naking = 1;
  449. /* disable interrupt */
  450. tmp = readl(&regs->ep_irqmsk);
  451. tmp |= AMD_BIT(ep->num);
  452. writel(tmp, &regs->ep_irqmsk);
  453. if (ep->in) {
  454. /* unset P and IN bit of potential former DMA */
  455. tmp = readl(&ep->regs->ctl);
  456. tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
  457. writel(tmp, &ep->regs->ctl);
  458. tmp = readl(&ep->regs->sts);
  459. tmp |= AMD_BIT(UDC_EPSTS_IN);
  460. writel(tmp, &ep->regs->sts);
  461. /* flush the fifo */
  462. tmp = readl(&ep->regs->ctl);
  463. tmp |= AMD_BIT(UDC_EPCTL_F);
  464. writel(tmp, &ep->regs->ctl);
  465. }
  466. /* reset desc pointer */
  467. writel(0, &ep->regs->desptr);
  468. }
  469. /* Disables endpoint, is called by gadget driver */
  470. static int udc_ep_disable(struct usb_ep *usbep)
  471. {
  472. struct udc_ep *ep = NULL;
  473. unsigned long iflags;
  474. if (!usbep)
  475. return -EINVAL;
  476. ep = container_of(usbep, struct udc_ep, ep);
  477. if (usbep->name == ep0_string || !ep->ep.desc)
  478. return -EINVAL;
  479. DBG(ep->dev, "Disable ep-%d\n", ep->num);
  480. spin_lock_irqsave(&ep->dev->lock, iflags);
  481. udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
  482. empty_req_queue(ep);
  483. ep_init(ep->dev->regs, ep);
  484. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  485. return 0;
  486. }
  487. /* Allocates request packet, called by gadget driver */
  488. static struct usb_request *
  489. udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
  490. {
  491. struct udc_request *req;
  492. struct udc_data_dma *dma_desc;
  493. struct udc_ep *ep;
  494. if (!usbep)
  495. return NULL;
  496. ep = container_of(usbep, struct udc_ep, ep);
  497. VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
  498. req = kzalloc(sizeof(struct udc_request), gfp);
  499. if (!req)
  500. return NULL;
  501. req->req.dma = DMA_DONT_USE;
  502. INIT_LIST_HEAD(&req->queue);
  503. if (ep->dma) {
  504. /* ep0 in requests are allocated from data pool here */
  505. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  506. &req->td_phys);
  507. if (!dma_desc) {
  508. kfree(req);
  509. return NULL;
  510. }
  511. VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
  512. "td_phys = %lx\n",
  513. req, dma_desc,
  514. (unsigned long)req->td_phys);
  515. /* prevent from using desc. - set HOST BUSY */
  516. dma_desc->status = AMD_ADDBITS(dma_desc->status,
  517. UDC_DMA_STP_STS_BS_HOST_BUSY,
  518. UDC_DMA_STP_STS_BS);
  519. dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
  520. req->td_data = dma_desc;
  521. req->td_data_last = NULL;
  522. req->chain_len = 1;
  523. }
  524. return &req->req;
  525. }
  526. /* Frees request packet, called by gadget driver */
  527. static void
  528. udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
  529. {
  530. struct udc_ep *ep;
  531. struct udc_request *req;
  532. if (!usbep || !usbreq)
  533. return;
  534. ep = container_of(usbep, struct udc_ep, ep);
  535. req = container_of(usbreq, struct udc_request, req);
  536. VDBG(ep->dev, "free_req req=%p\n", req);
  537. BUG_ON(!list_empty(&req->queue));
  538. if (req->td_data) {
  539. VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
  540. /* free dma chain if created */
  541. if (req->chain_len > 1)
  542. udc_free_dma_chain(ep->dev, req);
  543. pci_pool_free(ep->dev->data_requests, req->td_data,
  544. req->td_phys);
  545. }
  546. kfree(req);
  547. }
  548. /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
  549. static void udc_init_bna_dummy(struct udc_request *req)
  550. {
  551. if (req) {
  552. /* set last bit */
  553. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  554. /* set next pointer to itself */
  555. req->td_data->next = req->td_phys;
  556. /* set HOST BUSY */
  557. req->td_data->status
  558. = AMD_ADDBITS(req->td_data->status,
  559. UDC_DMA_STP_STS_BS_DMA_DONE,
  560. UDC_DMA_STP_STS_BS);
  561. #ifdef UDC_VERBOSE
  562. pr_debug("bna desc = %p, sts = %08x\n",
  563. req->td_data, req->td_data->status);
  564. #endif
  565. }
  566. }
  567. /* Allocate BNA dummy descriptor */
  568. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
  569. {
  570. struct udc_request *req = NULL;
  571. struct usb_request *_req = NULL;
  572. /* alloc the dummy request */
  573. _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
  574. if (_req) {
  575. req = container_of(_req, struct udc_request, req);
  576. ep->bna_dummy_req = req;
  577. udc_init_bna_dummy(req);
  578. }
  579. return req;
  580. }
  581. /* Write data to TX fifo for IN packets */
  582. static void
  583. udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
  584. {
  585. u8 *req_buf;
  586. u32 *buf;
  587. int i, j;
  588. unsigned bytes = 0;
  589. unsigned remaining = 0;
  590. if (!req || !ep)
  591. return;
  592. req_buf = req->buf + req->actual;
  593. prefetch(req_buf);
  594. remaining = req->length - req->actual;
  595. buf = (u32 *) req_buf;
  596. bytes = ep->ep.maxpacket;
  597. if (bytes > remaining)
  598. bytes = remaining;
  599. /* dwords first */
  600. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
  601. writel(*(buf + i), ep->txfifo);
  602. /* remaining bytes must be written by byte access */
  603. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  604. writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
  605. ep->txfifo);
  606. }
  607. /* dummy write confirm */
  608. writel(0, &ep->regs->confirm);
  609. }
  610. /* Read dwords from RX fifo for OUT transfers */
  611. static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
  612. {
  613. int i;
  614. VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
  615. for (i = 0; i < dwords; i++)
  616. *(buf + i) = readl(dev->rxfifo);
  617. return 0;
  618. }
  619. /* Read bytes from RX fifo for OUT transfers */
  620. static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
  621. {
  622. int i, j;
  623. u32 tmp;
  624. VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
  625. /* dwords first */
  626. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
  627. *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
  628. /* remaining bytes must be read by byte access */
  629. if (bytes % UDC_DWORD_BYTES) {
  630. tmp = readl(dev->rxfifo);
  631. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  632. *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
  633. tmp = tmp >> UDC_BITS_PER_BYTE;
  634. }
  635. }
  636. return 0;
  637. }
  638. /* Read data from RX fifo for OUT transfers */
  639. static int
  640. udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
  641. {
  642. u8 *buf;
  643. unsigned buf_space;
  644. unsigned bytes = 0;
  645. unsigned finished = 0;
  646. /* received number bytes */
  647. bytes = readl(&ep->regs->sts);
  648. bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
  649. buf_space = req->req.length - req->req.actual;
  650. buf = req->req.buf + req->req.actual;
  651. if (bytes > buf_space) {
  652. if ((buf_space % ep->ep.maxpacket) != 0) {
  653. DBG(ep->dev,
  654. "%s: rx %d bytes, rx-buf space = %d bytesn\n",
  655. ep->ep.name, bytes, buf_space);
  656. req->req.status = -EOVERFLOW;
  657. }
  658. bytes = buf_space;
  659. }
  660. req->req.actual += bytes;
  661. /* last packet ? */
  662. if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
  663. || ((req->req.actual == req->req.length) && !req->req.zero))
  664. finished = 1;
  665. /* read rx fifo bytes */
  666. VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
  667. udc_rxfifo_read_bytes(ep->dev, buf, bytes);
  668. return finished;
  669. }
  670. /* create/re-init a DMA descriptor or a DMA descriptor chain */
  671. static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
  672. {
  673. int retval = 0;
  674. u32 tmp;
  675. VDBG(ep->dev, "prep_dma\n");
  676. VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
  677. ep->num, req->td_data);
  678. /* set buffer pointer */
  679. req->td_data->bufptr = req->req.dma;
  680. /* set last bit */
  681. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  682. /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
  683. if (use_dma_ppb) {
  684. retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  685. if (retval != 0) {
  686. if (retval == -ENOMEM)
  687. DBG(ep->dev, "Out of DMA memory\n");
  688. return retval;
  689. }
  690. if (ep->in) {
  691. if (req->req.length == ep->ep.maxpacket) {
  692. /* write tx bytes */
  693. req->td_data->status =
  694. AMD_ADDBITS(req->td_data->status,
  695. ep->ep.maxpacket,
  696. UDC_DMA_IN_STS_TXBYTES);
  697. }
  698. }
  699. }
  700. if (ep->in) {
  701. VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
  702. "maxpacket=%d ep%d\n",
  703. use_dma_ppb, req->req.length,
  704. ep->ep.maxpacket, ep->num);
  705. /*
  706. * if bytes < max packet then tx bytes must
  707. * be written in packet per buffer mode
  708. */
  709. if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
  710. || ep->num == UDC_EP0OUT_IX
  711. || ep->num == UDC_EP0IN_IX) {
  712. /* write tx bytes */
  713. req->td_data->status =
  714. AMD_ADDBITS(req->td_data->status,
  715. req->req.length,
  716. UDC_DMA_IN_STS_TXBYTES);
  717. /* reset frame num */
  718. req->td_data->status =
  719. AMD_ADDBITS(req->td_data->status,
  720. 0,
  721. UDC_DMA_IN_STS_FRAMENUM);
  722. }
  723. /* set HOST BUSY */
  724. req->td_data->status =
  725. AMD_ADDBITS(req->td_data->status,
  726. UDC_DMA_STP_STS_BS_HOST_BUSY,
  727. UDC_DMA_STP_STS_BS);
  728. } else {
  729. VDBG(ep->dev, "OUT set host ready\n");
  730. /* set HOST READY */
  731. req->td_data->status =
  732. AMD_ADDBITS(req->td_data->status,
  733. UDC_DMA_STP_STS_BS_HOST_READY,
  734. UDC_DMA_STP_STS_BS);
  735. /* clear NAK by writing CNAK */
  736. if (ep->naking) {
  737. tmp = readl(&ep->regs->ctl);
  738. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  739. writel(tmp, &ep->regs->ctl);
  740. ep->naking = 0;
  741. UDC_QUEUE_CNAK(ep, ep->num);
  742. }
  743. }
  744. return retval;
  745. }
  746. /* Completes request packet ... caller MUST hold lock */
  747. static void
  748. complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
  749. __releases(ep->dev->lock)
  750. __acquires(ep->dev->lock)
  751. {
  752. struct udc *dev;
  753. unsigned halted;
  754. VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
  755. dev = ep->dev;
  756. /* unmap DMA */
  757. if (ep->dma)
  758. usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
  759. halted = ep->halted;
  760. ep->halted = 1;
  761. /* set new status if pending */
  762. if (req->req.status == -EINPROGRESS)
  763. req->req.status = sts;
  764. /* remove from ep queue */
  765. list_del_init(&req->queue);
  766. VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
  767. &req->req, req->req.length, ep->ep.name, sts);
  768. spin_unlock(&dev->lock);
  769. usb_gadget_giveback_request(&ep->ep, &req->req);
  770. spin_lock(&dev->lock);
  771. ep->halted = halted;
  772. }
  773. /* frees pci pool descriptors of a DMA chain */
  774. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
  775. {
  776. int ret_val = 0;
  777. struct udc_data_dma *td;
  778. struct udc_data_dma *td_last = NULL;
  779. unsigned int i;
  780. DBG(dev, "free chain req = %p\n", req);
  781. /* do not free first desc., will be done by free for request */
  782. td_last = req->td_data;
  783. td = phys_to_virt(td_last->next);
  784. for (i = 1; i < req->chain_len; i++) {
  785. pci_pool_free(dev->data_requests, td,
  786. (dma_addr_t) td_last->next);
  787. td_last = td;
  788. td = phys_to_virt(td_last->next);
  789. }
  790. return ret_val;
  791. }
  792. /* Iterates to the end of a DMA chain and returns last descriptor */
  793. static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
  794. {
  795. struct udc_data_dma *td;
  796. td = req->td_data;
  797. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
  798. td = phys_to_virt(td->next);
  799. return td;
  800. }
  801. /* Iterates to the end of a DMA chain and counts bytes received */
  802. static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
  803. {
  804. struct udc_data_dma *td;
  805. u32 count;
  806. td = req->td_data;
  807. /* received number bytes */
  808. count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
  809. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  810. td = phys_to_virt(td->next);
  811. /* received number bytes */
  812. if (td) {
  813. count += AMD_GETBITS(td->status,
  814. UDC_DMA_OUT_STS_RXBYTES);
  815. }
  816. }
  817. return count;
  818. }
  819. /* Creates or re-inits a DMA chain */
  820. static int udc_create_dma_chain(
  821. struct udc_ep *ep,
  822. struct udc_request *req,
  823. unsigned long buf_len, gfp_t gfp_flags
  824. )
  825. {
  826. unsigned long bytes = req->req.length;
  827. unsigned int i;
  828. dma_addr_t dma_addr;
  829. struct udc_data_dma *td = NULL;
  830. struct udc_data_dma *last = NULL;
  831. unsigned long txbytes;
  832. unsigned create_new_chain = 0;
  833. unsigned len;
  834. VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
  835. bytes, buf_len);
  836. dma_addr = DMA_DONT_USE;
  837. /* unset L bit in first desc for OUT */
  838. if (!ep->in)
  839. req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
  840. /* alloc only new desc's if not already available */
  841. len = req->req.length / ep->ep.maxpacket;
  842. if (req->req.length % ep->ep.maxpacket)
  843. len++;
  844. if (len > req->chain_len) {
  845. /* shorter chain already allocated before */
  846. if (req->chain_len > 1)
  847. udc_free_dma_chain(ep->dev, req);
  848. req->chain_len = len;
  849. create_new_chain = 1;
  850. }
  851. td = req->td_data;
  852. /* gen. required number of descriptors and buffers */
  853. for (i = buf_len; i < bytes; i += buf_len) {
  854. /* create or determine next desc. */
  855. if (create_new_chain) {
  856. td = pci_pool_alloc(ep->dev->data_requests,
  857. gfp_flags, &dma_addr);
  858. if (!td)
  859. return -ENOMEM;
  860. td->status = 0;
  861. } else if (i == buf_len) {
  862. /* first td */
  863. td = (struct udc_data_dma *) phys_to_virt(
  864. req->td_data->next);
  865. td->status = 0;
  866. } else {
  867. td = (struct udc_data_dma *) phys_to_virt(last->next);
  868. td->status = 0;
  869. }
  870. if (td)
  871. td->bufptr = req->req.dma + i; /* assign buffer */
  872. else
  873. break;
  874. /* short packet ? */
  875. if ((bytes - i) >= buf_len) {
  876. txbytes = buf_len;
  877. } else {
  878. /* short packet */
  879. txbytes = bytes - i;
  880. }
  881. /* link td and assign tx bytes */
  882. if (i == buf_len) {
  883. if (create_new_chain)
  884. req->td_data->next = dma_addr;
  885. /*
  886. else
  887. req->td_data->next = virt_to_phys(td);
  888. */
  889. /* write tx bytes */
  890. if (ep->in) {
  891. /* first desc */
  892. req->td_data->status =
  893. AMD_ADDBITS(req->td_data->status,
  894. ep->ep.maxpacket,
  895. UDC_DMA_IN_STS_TXBYTES);
  896. /* second desc */
  897. td->status = AMD_ADDBITS(td->status,
  898. txbytes,
  899. UDC_DMA_IN_STS_TXBYTES);
  900. }
  901. } else {
  902. if (create_new_chain)
  903. last->next = dma_addr;
  904. /*
  905. else
  906. last->next = virt_to_phys(td);
  907. */
  908. if (ep->in) {
  909. /* write tx bytes */
  910. td->status = AMD_ADDBITS(td->status,
  911. txbytes,
  912. UDC_DMA_IN_STS_TXBYTES);
  913. }
  914. }
  915. last = td;
  916. }
  917. /* set last bit */
  918. if (td) {
  919. td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  920. /* last desc. points to itself */
  921. req->td_data_last = td;
  922. }
  923. return 0;
  924. }
  925. /* Enabling RX DMA */
  926. static void udc_set_rde(struct udc *dev)
  927. {
  928. u32 tmp;
  929. VDBG(dev, "udc_set_rde()\n");
  930. /* stop RDE timer */
  931. if (timer_pending(&udc_timer)) {
  932. set_rde = 0;
  933. mod_timer(&udc_timer, jiffies - 1);
  934. }
  935. /* set RDE */
  936. tmp = readl(&dev->regs->ctl);
  937. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  938. writel(tmp, &dev->regs->ctl);
  939. }
  940. /* Queues a request packet, called by gadget driver */
  941. static int
  942. udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
  943. {
  944. int retval = 0;
  945. u8 open_rxfifo = 0;
  946. unsigned long iflags;
  947. struct udc_ep *ep;
  948. struct udc_request *req;
  949. struct udc *dev;
  950. u32 tmp;
  951. /* check the inputs */
  952. req = container_of(usbreq, struct udc_request, req);
  953. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
  954. || !list_empty(&req->queue))
  955. return -EINVAL;
  956. ep = container_of(usbep, struct udc_ep, ep);
  957. if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  958. return -EINVAL;
  959. VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
  960. dev = ep->dev;
  961. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  962. return -ESHUTDOWN;
  963. /* map dma (usually done before) */
  964. if (ep->dma) {
  965. VDBG(dev, "DMA map req %p\n", req);
  966. retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
  967. if (retval)
  968. return retval;
  969. }
  970. VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
  971. usbep->name, usbreq, usbreq->length,
  972. req->td_data, usbreq->buf);
  973. spin_lock_irqsave(&dev->lock, iflags);
  974. usbreq->actual = 0;
  975. usbreq->status = -EINPROGRESS;
  976. req->dma_done = 0;
  977. /* on empty queue just do first transfer */
  978. if (list_empty(&ep->queue)) {
  979. /* zlp */
  980. if (usbreq->length == 0) {
  981. /* IN zlp's are handled by hardware */
  982. complete_req(ep, req, 0);
  983. VDBG(dev, "%s: zlp\n", ep->ep.name);
  984. /*
  985. * if set_config or set_intf is waiting for ack by zlp
  986. * then set CSR_DONE
  987. */
  988. if (dev->set_cfg_not_acked) {
  989. tmp = readl(&dev->regs->ctl);
  990. tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
  991. writel(tmp, &dev->regs->ctl);
  992. dev->set_cfg_not_acked = 0;
  993. }
  994. /* setup command is ACK'ed now by zlp */
  995. if (dev->waiting_zlp_ack_ep0in) {
  996. /* clear NAK by writing CNAK in EP0_IN */
  997. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  998. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  999. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1000. dev->ep[UDC_EP0IN_IX].naking = 0;
  1001. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
  1002. UDC_EP0IN_IX);
  1003. dev->waiting_zlp_ack_ep0in = 0;
  1004. }
  1005. goto finished;
  1006. }
  1007. if (ep->dma) {
  1008. retval = prep_dma(ep, req, GFP_ATOMIC);
  1009. if (retval != 0)
  1010. goto finished;
  1011. /* write desc pointer to enable DMA */
  1012. if (ep->in) {
  1013. /* set HOST READY */
  1014. req->td_data->status =
  1015. AMD_ADDBITS(req->td_data->status,
  1016. UDC_DMA_IN_STS_BS_HOST_READY,
  1017. UDC_DMA_IN_STS_BS);
  1018. }
  1019. /* disabled rx dma while descriptor update */
  1020. if (!ep->in) {
  1021. /* stop RDE timer */
  1022. if (timer_pending(&udc_timer)) {
  1023. set_rde = 0;
  1024. mod_timer(&udc_timer, jiffies - 1);
  1025. }
  1026. /* clear RDE */
  1027. tmp = readl(&dev->regs->ctl);
  1028. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1029. writel(tmp, &dev->regs->ctl);
  1030. open_rxfifo = 1;
  1031. /*
  1032. * if BNA occurred then let BNA dummy desc.
  1033. * point to current desc.
  1034. */
  1035. if (ep->bna_occurred) {
  1036. VDBG(dev, "copy to BNA dummy desc.\n");
  1037. memcpy(ep->bna_dummy_req->td_data,
  1038. req->td_data,
  1039. sizeof(struct udc_data_dma));
  1040. }
  1041. }
  1042. /* write desc pointer */
  1043. writel(req->td_phys, &ep->regs->desptr);
  1044. /* clear NAK by writing CNAK */
  1045. if (ep->naking) {
  1046. tmp = readl(&ep->regs->ctl);
  1047. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1048. writel(tmp, &ep->regs->ctl);
  1049. ep->naking = 0;
  1050. UDC_QUEUE_CNAK(ep, ep->num);
  1051. }
  1052. if (ep->in) {
  1053. /* enable ep irq */
  1054. tmp = readl(&dev->regs->ep_irqmsk);
  1055. tmp &= AMD_UNMASK_BIT(ep->num);
  1056. writel(tmp, &dev->regs->ep_irqmsk);
  1057. }
  1058. } else if (ep->in) {
  1059. /* enable ep irq */
  1060. tmp = readl(&dev->regs->ep_irqmsk);
  1061. tmp &= AMD_UNMASK_BIT(ep->num);
  1062. writel(tmp, &dev->regs->ep_irqmsk);
  1063. }
  1064. } else if (ep->dma) {
  1065. /*
  1066. * prep_dma not used for OUT ep's, this is not possible
  1067. * for PPB modes, because of chain creation reasons
  1068. */
  1069. if (ep->in) {
  1070. retval = prep_dma(ep, req, GFP_ATOMIC);
  1071. if (retval != 0)
  1072. goto finished;
  1073. }
  1074. }
  1075. VDBG(dev, "list_add\n");
  1076. /* add request to ep queue */
  1077. if (req) {
  1078. list_add_tail(&req->queue, &ep->queue);
  1079. /* open rxfifo if out data queued */
  1080. if (open_rxfifo) {
  1081. /* enable DMA */
  1082. req->dma_going = 1;
  1083. udc_set_rde(dev);
  1084. if (ep->num != UDC_EP0OUT_IX)
  1085. dev->data_ep_queued = 1;
  1086. }
  1087. /* stop OUT naking */
  1088. if (!ep->in) {
  1089. if (!use_dma && udc_rxfifo_pending) {
  1090. DBG(dev, "udc_queue(): pending bytes in "
  1091. "rxfifo after nyet\n");
  1092. /*
  1093. * read pending bytes afer nyet:
  1094. * referring to isr
  1095. */
  1096. if (udc_rxfifo_read(ep, req)) {
  1097. /* finish */
  1098. complete_req(ep, req, 0);
  1099. }
  1100. udc_rxfifo_pending = 0;
  1101. }
  1102. }
  1103. }
  1104. finished:
  1105. spin_unlock_irqrestore(&dev->lock, iflags);
  1106. return retval;
  1107. }
  1108. /* Empty request queue of an endpoint; caller holds spinlock */
  1109. static void empty_req_queue(struct udc_ep *ep)
  1110. {
  1111. struct udc_request *req;
  1112. ep->halted = 1;
  1113. while (!list_empty(&ep->queue)) {
  1114. req = list_entry(ep->queue.next,
  1115. struct udc_request,
  1116. queue);
  1117. complete_req(ep, req, -ESHUTDOWN);
  1118. }
  1119. }
  1120. /* Dequeues a request packet, called by gadget driver */
  1121. static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
  1122. {
  1123. struct udc_ep *ep;
  1124. struct udc_request *req;
  1125. unsigned halted;
  1126. unsigned long iflags;
  1127. ep = container_of(usbep, struct udc_ep, ep);
  1128. if (!usbep || !usbreq || (!ep->ep.desc && (ep->num != 0
  1129. && ep->num != UDC_EP0OUT_IX)))
  1130. return -EINVAL;
  1131. req = container_of(usbreq, struct udc_request, req);
  1132. spin_lock_irqsave(&ep->dev->lock, iflags);
  1133. halted = ep->halted;
  1134. ep->halted = 1;
  1135. /* request in processing or next one */
  1136. if (ep->queue.next == &req->queue) {
  1137. if (ep->dma && req->dma_going) {
  1138. if (ep->in)
  1139. ep->cancel_transfer = 1;
  1140. else {
  1141. u32 tmp;
  1142. u32 dma_sts;
  1143. /* stop potential receive DMA */
  1144. tmp = readl(&udc->regs->ctl);
  1145. writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
  1146. &udc->regs->ctl);
  1147. /*
  1148. * Cancel transfer later in ISR
  1149. * if descriptor was touched.
  1150. */
  1151. dma_sts = AMD_GETBITS(req->td_data->status,
  1152. UDC_DMA_OUT_STS_BS);
  1153. if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
  1154. ep->cancel_transfer = 1;
  1155. else {
  1156. udc_init_bna_dummy(ep->req);
  1157. writel(ep->bna_dummy_req->td_phys,
  1158. &ep->regs->desptr);
  1159. }
  1160. writel(tmp, &udc->regs->ctl);
  1161. }
  1162. }
  1163. }
  1164. complete_req(ep, req, -ECONNRESET);
  1165. ep->halted = halted;
  1166. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1167. return 0;
  1168. }
  1169. /* Halt or clear halt of endpoint */
  1170. static int
  1171. udc_set_halt(struct usb_ep *usbep, int halt)
  1172. {
  1173. struct udc_ep *ep;
  1174. u32 tmp;
  1175. unsigned long iflags;
  1176. int retval = 0;
  1177. if (!usbep)
  1178. return -EINVAL;
  1179. pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
  1180. ep = container_of(usbep, struct udc_ep, ep);
  1181. if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  1182. return -EINVAL;
  1183. if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
  1184. return -ESHUTDOWN;
  1185. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1186. /* halt or clear halt */
  1187. if (halt) {
  1188. if (ep->num == 0)
  1189. ep->dev->stall_ep0in = 1;
  1190. else {
  1191. /*
  1192. * set STALL
  1193. * rxfifo empty not taken into acount
  1194. */
  1195. tmp = readl(&ep->regs->ctl);
  1196. tmp |= AMD_BIT(UDC_EPCTL_S);
  1197. writel(tmp, &ep->regs->ctl);
  1198. ep->halted = 1;
  1199. /* setup poll timer */
  1200. if (!timer_pending(&udc_pollstall_timer)) {
  1201. udc_pollstall_timer.expires = jiffies +
  1202. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1203. / (1000 * 1000);
  1204. if (!stop_pollstall_timer) {
  1205. DBG(ep->dev, "start polltimer\n");
  1206. add_timer(&udc_pollstall_timer);
  1207. }
  1208. }
  1209. }
  1210. } else {
  1211. /* ep is halted by set_halt() before */
  1212. if (ep->halted) {
  1213. tmp = readl(&ep->regs->ctl);
  1214. /* clear stall bit */
  1215. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  1216. /* clear NAK by writing CNAK */
  1217. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1218. writel(tmp, &ep->regs->ctl);
  1219. ep->halted = 0;
  1220. UDC_QUEUE_CNAK(ep, ep->num);
  1221. }
  1222. }
  1223. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1224. return retval;
  1225. }
  1226. /* gadget interface */
  1227. static const struct usb_ep_ops udc_ep_ops = {
  1228. .enable = udc_ep_enable,
  1229. .disable = udc_ep_disable,
  1230. .alloc_request = udc_alloc_request,
  1231. .free_request = udc_free_request,
  1232. .queue = udc_queue,
  1233. .dequeue = udc_dequeue,
  1234. .set_halt = udc_set_halt,
  1235. /* fifo ops not implemented */
  1236. };
  1237. /*-------------------------------------------------------------------------*/
  1238. /* Get frame counter (not implemented) */
  1239. static int udc_get_frame(struct usb_gadget *gadget)
  1240. {
  1241. return -EOPNOTSUPP;
  1242. }
  1243. /* Remote wakeup gadget interface */
  1244. static int udc_wakeup(struct usb_gadget *gadget)
  1245. {
  1246. struct udc *dev;
  1247. if (!gadget)
  1248. return -EINVAL;
  1249. dev = container_of(gadget, struct udc, gadget);
  1250. udc_remote_wakeup(dev);
  1251. return 0;
  1252. }
  1253. static int amd5536_udc_start(struct usb_gadget *g,
  1254. struct usb_gadget_driver *driver);
  1255. static int amd5536_udc_stop(struct usb_gadget *g);
  1256. static const struct usb_gadget_ops udc_ops = {
  1257. .wakeup = udc_wakeup,
  1258. .get_frame = udc_get_frame,
  1259. .udc_start = amd5536_udc_start,
  1260. .udc_stop = amd5536_udc_stop,
  1261. };
  1262. /* Setups endpoint parameters, adds endpoints to linked list */
  1263. static void make_ep_lists(struct udc *dev)
  1264. {
  1265. /* make gadget ep lists */
  1266. INIT_LIST_HEAD(&dev->gadget.ep_list);
  1267. list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
  1268. &dev->gadget.ep_list);
  1269. list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
  1270. &dev->gadget.ep_list);
  1271. list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
  1272. &dev->gadget.ep_list);
  1273. /* fifo config */
  1274. dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
  1275. if (dev->gadget.speed == USB_SPEED_FULL)
  1276. dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
  1277. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1278. dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
  1279. dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
  1280. }
  1281. /* init registers at driver load time */
  1282. static int startup_registers(struct udc *dev)
  1283. {
  1284. u32 tmp;
  1285. /* init controller by soft reset */
  1286. udc_soft_reset(dev);
  1287. /* mask not needed interrupts */
  1288. udc_mask_unused_interrupts(dev);
  1289. /* put into initial config */
  1290. udc_basic_init(dev);
  1291. /* link up all endpoints */
  1292. udc_setup_endpoints(dev);
  1293. /* program speed */
  1294. tmp = readl(&dev->regs->cfg);
  1295. if (use_fullspeed)
  1296. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1297. else
  1298. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
  1299. writel(tmp, &dev->regs->cfg);
  1300. return 0;
  1301. }
  1302. /* Inits UDC context */
  1303. static void udc_basic_init(struct udc *dev)
  1304. {
  1305. u32 tmp;
  1306. DBG(dev, "udc_basic_init()\n");
  1307. dev->gadget.speed = USB_SPEED_UNKNOWN;
  1308. /* stop RDE timer */
  1309. if (timer_pending(&udc_timer)) {
  1310. set_rde = 0;
  1311. mod_timer(&udc_timer, jiffies - 1);
  1312. }
  1313. /* stop poll stall timer */
  1314. if (timer_pending(&udc_pollstall_timer))
  1315. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1316. /* disable DMA */
  1317. tmp = readl(&dev->regs->ctl);
  1318. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1319. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
  1320. writel(tmp, &dev->regs->ctl);
  1321. /* enable dynamic CSR programming */
  1322. tmp = readl(&dev->regs->cfg);
  1323. tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
  1324. /* set self powered */
  1325. tmp |= AMD_BIT(UDC_DEVCFG_SP);
  1326. /* set remote wakeupable */
  1327. tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
  1328. writel(tmp, &dev->regs->cfg);
  1329. make_ep_lists(dev);
  1330. dev->data_ep_enabled = 0;
  1331. dev->data_ep_queued = 0;
  1332. }
  1333. /* Sets initial endpoint parameters */
  1334. static void udc_setup_endpoints(struct udc *dev)
  1335. {
  1336. struct udc_ep *ep;
  1337. u32 tmp;
  1338. u32 reg;
  1339. DBG(dev, "udc_setup_endpoints()\n");
  1340. /* read enum speed */
  1341. tmp = readl(&dev->regs->sts);
  1342. tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
  1343. if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
  1344. dev->gadget.speed = USB_SPEED_HIGH;
  1345. else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
  1346. dev->gadget.speed = USB_SPEED_FULL;
  1347. /* set basic ep parameters */
  1348. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1349. ep = &dev->ep[tmp];
  1350. ep->dev = dev;
  1351. ep->ep.name = ep_info[tmp].name;
  1352. ep->ep.caps = ep_info[tmp].caps;
  1353. ep->num = tmp;
  1354. /* txfifo size is calculated at enable time */
  1355. ep->txfifo = dev->txfifo;
  1356. /* fifo size */
  1357. if (tmp < UDC_EPIN_NUM) {
  1358. ep->fifo_depth = UDC_TXFIFO_SIZE;
  1359. ep->in = 1;
  1360. } else {
  1361. ep->fifo_depth = UDC_RXFIFO_SIZE;
  1362. ep->in = 0;
  1363. }
  1364. ep->regs = &dev->ep_regs[tmp];
  1365. /*
  1366. * ep will be reset only if ep was not enabled before to avoid
  1367. * disabling ep interrupts when ENUM interrupt occurs but ep is
  1368. * not enabled by gadget driver
  1369. */
  1370. if (!ep->ep.desc)
  1371. ep_init(dev->regs, ep);
  1372. if (use_dma) {
  1373. /*
  1374. * ep->dma is not really used, just to indicate that
  1375. * DMA is active: remove this
  1376. * dma regs = dev control regs
  1377. */
  1378. ep->dma = &dev->regs->ctl;
  1379. /* nak OUT endpoints until enable - not for ep0 */
  1380. if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
  1381. && tmp > UDC_EPIN_NUM) {
  1382. /* set NAK */
  1383. reg = readl(&dev->ep[tmp].regs->ctl);
  1384. reg |= AMD_BIT(UDC_EPCTL_SNAK);
  1385. writel(reg, &dev->ep[tmp].regs->ctl);
  1386. dev->ep[tmp].naking = 1;
  1387. }
  1388. }
  1389. }
  1390. /* EP0 max packet */
  1391. if (dev->gadget.speed == USB_SPEED_FULL) {
  1392. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
  1393. UDC_FS_EP0IN_MAX_PKT_SIZE);
  1394. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
  1395. UDC_FS_EP0OUT_MAX_PKT_SIZE);
  1396. } else if (dev->gadget.speed == USB_SPEED_HIGH) {
  1397. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
  1398. UDC_EP0IN_MAX_PKT_SIZE);
  1399. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
  1400. UDC_EP0OUT_MAX_PKT_SIZE);
  1401. }
  1402. /*
  1403. * with suspend bug workaround, ep0 params for gadget driver
  1404. * are set at gadget driver bind() call
  1405. */
  1406. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  1407. dev->ep[UDC_EP0IN_IX].halted = 0;
  1408. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  1409. /* init cfg/alt/int */
  1410. dev->cur_config = 0;
  1411. dev->cur_intf = 0;
  1412. dev->cur_alt = 0;
  1413. }
  1414. /* Bringup after Connect event, initial bringup to be ready for ep0 events */
  1415. static void usb_connect(struct udc *dev)
  1416. {
  1417. dev_info(&dev->pdev->dev, "USB Connect\n");
  1418. dev->connected = 1;
  1419. /* put into initial config */
  1420. udc_basic_init(dev);
  1421. /* enable device setup interrupts */
  1422. udc_enable_dev_setup_interrupts(dev);
  1423. }
  1424. /*
  1425. * Calls gadget with disconnect event and resets the UDC and makes
  1426. * initial bringup to be ready for ep0 events
  1427. */
  1428. static void usb_disconnect(struct udc *dev)
  1429. {
  1430. dev_info(&dev->pdev->dev, "USB Disconnect\n");
  1431. dev->connected = 0;
  1432. /* mask interrupts */
  1433. udc_mask_unused_interrupts(dev);
  1434. /* REVISIT there doesn't seem to be a point to having this
  1435. * talk to a tasklet ... do it directly, we already hold
  1436. * the spinlock needed to process the disconnect.
  1437. */
  1438. tasklet_schedule(&disconnect_tasklet);
  1439. }
  1440. /* Tasklet for disconnect to be outside of interrupt context */
  1441. static void udc_tasklet_disconnect(unsigned long par)
  1442. {
  1443. struct udc *dev = (struct udc *)(*((struct udc **) par));
  1444. u32 tmp;
  1445. DBG(dev, "Tasklet disconnect\n");
  1446. spin_lock_irq(&dev->lock);
  1447. if (dev->driver) {
  1448. spin_unlock(&dev->lock);
  1449. dev->driver->disconnect(&dev->gadget);
  1450. spin_lock(&dev->lock);
  1451. /* empty queues */
  1452. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1453. empty_req_queue(&dev->ep[tmp]);
  1454. }
  1455. /* disable ep0 */
  1456. ep_init(dev->regs,
  1457. &dev->ep[UDC_EP0IN_IX]);
  1458. if (!soft_reset_occured) {
  1459. /* init controller by soft reset */
  1460. udc_soft_reset(dev);
  1461. soft_reset_occured++;
  1462. }
  1463. /* re-enable dev interrupts */
  1464. udc_enable_dev_setup_interrupts(dev);
  1465. /* back to full speed ? */
  1466. if (use_fullspeed) {
  1467. tmp = readl(&dev->regs->cfg);
  1468. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1469. writel(tmp, &dev->regs->cfg);
  1470. }
  1471. spin_unlock_irq(&dev->lock);
  1472. }
  1473. /* Reset the UDC core */
  1474. static void udc_soft_reset(struct udc *dev)
  1475. {
  1476. unsigned long flags;
  1477. DBG(dev, "Soft reset\n");
  1478. /*
  1479. * reset possible waiting interrupts, because int.
  1480. * status is lost after soft reset,
  1481. * ep int. status reset
  1482. */
  1483. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
  1484. /* device int. status reset */
  1485. writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
  1486. spin_lock_irqsave(&udc_irq_spinlock, flags);
  1487. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  1488. readl(&dev->regs->cfg);
  1489. spin_unlock_irqrestore(&udc_irq_spinlock, flags);
  1490. }
  1491. /* RDE timer callback to set RDE bit */
  1492. static void udc_timer_function(unsigned long v)
  1493. {
  1494. u32 tmp;
  1495. spin_lock_irq(&udc_irq_spinlock);
  1496. if (set_rde > 0) {
  1497. /*
  1498. * open the fifo if fifo was filled on last timer call
  1499. * conditionally
  1500. */
  1501. if (set_rde > 1) {
  1502. /* set RDE to receive setup data */
  1503. tmp = readl(&udc->regs->ctl);
  1504. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  1505. writel(tmp, &udc->regs->ctl);
  1506. set_rde = -1;
  1507. } else if (readl(&udc->regs->sts)
  1508. & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1509. /*
  1510. * if fifo empty setup polling, do not just
  1511. * open the fifo
  1512. */
  1513. udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
  1514. if (!stop_timer)
  1515. add_timer(&udc_timer);
  1516. } else {
  1517. /*
  1518. * fifo contains data now, setup timer for opening
  1519. * the fifo when timer expires to be able to receive
  1520. * setup packets, when data packets gets queued by
  1521. * gadget layer then timer will forced to expire with
  1522. * set_rde=0 (RDE is set in udc_queue())
  1523. */
  1524. set_rde++;
  1525. /* debug: lhadmot_timer_start = 221070 */
  1526. udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
  1527. if (!stop_timer)
  1528. add_timer(&udc_timer);
  1529. }
  1530. } else
  1531. set_rde = -1; /* RDE was set by udc_queue() */
  1532. spin_unlock_irq(&udc_irq_spinlock);
  1533. if (stop_timer)
  1534. complete(&on_exit);
  1535. }
  1536. /* Handle halt state, used in stall poll timer */
  1537. static void udc_handle_halt_state(struct udc_ep *ep)
  1538. {
  1539. u32 tmp;
  1540. /* set stall as long not halted */
  1541. if (ep->halted == 1) {
  1542. tmp = readl(&ep->regs->ctl);
  1543. /* STALL cleared ? */
  1544. if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
  1545. /*
  1546. * FIXME: MSC spec requires that stall remains
  1547. * even on receivng of CLEAR_FEATURE HALT. So
  1548. * we would set STALL again here to be compliant.
  1549. * But with current mass storage drivers this does
  1550. * not work (would produce endless host retries).
  1551. * So we clear halt on CLEAR_FEATURE.
  1552. *
  1553. DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
  1554. tmp |= AMD_BIT(UDC_EPCTL_S);
  1555. writel(tmp, &ep->regs->ctl);*/
  1556. /* clear NAK by writing CNAK */
  1557. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1558. writel(tmp, &ep->regs->ctl);
  1559. ep->halted = 0;
  1560. UDC_QUEUE_CNAK(ep, ep->num);
  1561. }
  1562. }
  1563. }
  1564. /* Stall timer callback to poll S bit and set it again after */
  1565. static void udc_pollstall_timer_function(unsigned long v)
  1566. {
  1567. struct udc_ep *ep;
  1568. int halted = 0;
  1569. spin_lock_irq(&udc_stall_spinlock);
  1570. /*
  1571. * only one IN and OUT endpoints are handled
  1572. * IN poll stall
  1573. */
  1574. ep = &udc->ep[UDC_EPIN_IX];
  1575. udc_handle_halt_state(ep);
  1576. if (ep->halted)
  1577. halted = 1;
  1578. /* OUT poll stall */
  1579. ep = &udc->ep[UDC_EPOUT_IX];
  1580. udc_handle_halt_state(ep);
  1581. if (ep->halted)
  1582. halted = 1;
  1583. /* setup timer again when still halted */
  1584. if (!stop_pollstall_timer && halted) {
  1585. udc_pollstall_timer.expires = jiffies +
  1586. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1587. / (1000 * 1000);
  1588. add_timer(&udc_pollstall_timer);
  1589. }
  1590. spin_unlock_irq(&udc_stall_spinlock);
  1591. if (stop_pollstall_timer)
  1592. complete(&on_pollstall_exit);
  1593. }
  1594. /* Inits endpoint 0 so that SETUP packets are processed */
  1595. static void activate_control_endpoints(struct udc *dev)
  1596. {
  1597. u32 tmp;
  1598. DBG(dev, "activate_control_endpoints\n");
  1599. /* flush fifo */
  1600. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1601. tmp |= AMD_BIT(UDC_EPCTL_F);
  1602. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1603. /* set ep0 directions */
  1604. dev->ep[UDC_EP0IN_IX].in = 1;
  1605. dev->ep[UDC_EP0OUT_IX].in = 0;
  1606. /* set buffer size (tx fifo entries) of EP0_IN */
  1607. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1608. if (dev->gadget.speed == USB_SPEED_FULL)
  1609. tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
  1610. UDC_EPIN_BUFF_SIZE);
  1611. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1612. tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
  1613. UDC_EPIN_BUFF_SIZE);
  1614. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1615. /* set max packet size of EP0_IN */
  1616. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1617. if (dev->gadget.speed == USB_SPEED_FULL)
  1618. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
  1619. UDC_EP_MAX_PKT_SIZE);
  1620. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1621. tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
  1622. UDC_EP_MAX_PKT_SIZE);
  1623. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1624. /* set max packet size of EP0_OUT */
  1625. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1626. if (dev->gadget.speed == USB_SPEED_FULL)
  1627. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1628. UDC_EP_MAX_PKT_SIZE);
  1629. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1630. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1631. UDC_EP_MAX_PKT_SIZE);
  1632. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1633. /* set max packet size of EP0 in UDC CSR */
  1634. tmp = readl(&dev->csr->ne[0]);
  1635. if (dev->gadget.speed == USB_SPEED_FULL)
  1636. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1637. UDC_CSR_NE_MAX_PKT);
  1638. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1639. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1640. UDC_CSR_NE_MAX_PKT);
  1641. writel(tmp, &dev->csr->ne[0]);
  1642. if (use_dma) {
  1643. dev->ep[UDC_EP0OUT_IX].td->status |=
  1644. AMD_BIT(UDC_DMA_OUT_STS_L);
  1645. /* write dma desc address */
  1646. writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
  1647. &dev->ep[UDC_EP0OUT_IX].regs->subptr);
  1648. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  1649. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  1650. /* stop RDE timer */
  1651. if (timer_pending(&udc_timer)) {
  1652. set_rde = 0;
  1653. mod_timer(&udc_timer, jiffies - 1);
  1654. }
  1655. /* stop pollstall timer */
  1656. if (timer_pending(&udc_pollstall_timer))
  1657. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1658. /* enable DMA */
  1659. tmp = readl(&dev->regs->ctl);
  1660. tmp |= AMD_BIT(UDC_DEVCTL_MODE)
  1661. | AMD_BIT(UDC_DEVCTL_RDE)
  1662. | AMD_BIT(UDC_DEVCTL_TDE);
  1663. if (use_dma_bufferfill_mode)
  1664. tmp |= AMD_BIT(UDC_DEVCTL_BF);
  1665. else if (use_dma_ppb_du)
  1666. tmp |= AMD_BIT(UDC_DEVCTL_DU);
  1667. writel(tmp, &dev->regs->ctl);
  1668. }
  1669. /* clear NAK by writing CNAK for EP0IN */
  1670. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1671. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1672. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1673. dev->ep[UDC_EP0IN_IX].naking = 0;
  1674. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  1675. /* clear NAK by writing CNAK for EP0OUT */
  1676. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1677. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1678. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1679. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1680. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  1681. }
  1682. /* Make endpoint 0 ready for control traffic */
  1683. static int setup_ep0(struct udc *dev)
  1684. {
  1685. activate_control_endpoints(dev);
  1686. /* enable ep0 interrupts */
  1687. udc_enable_ep0_interrupts(dev);
  1688. /* enable device setup interrupts */
  1689. udc_enable_dev_setup_interrupts(dev);
  1690. return 0;
  1691. }
  1692. /* Called by gadget driver to register itself */
  1693. static int amd5536_udc_start(struct usb_gadget *g,
  1694. struct usb_gadget_driver *driver)
  1695. {
  1696. struct udc *dev = to_amd5536_udc(g);
  1697. u32 tmp;
  1698. driver->driver.bus = NULL;
  1699. dev->driver = driver;
  1700. /* Some gadget drivers use both ep0 directions.
  1701. * NOTE: to gadget driver, ep0 is just one endpoint...
  1702. */
  1703. dev->ep[UDC_EP0OUT_IX].ep.driver_data =
  1704. dev->ep[UDC_EP0IN_IX].ep.driver_data;
  1705. /* get ready for ep0 traffic */
  1706. setup_ep0(dev);
  1707. /* clear SD */
  1708. tmp = readl(&dev->regs->ctl);
  1709. tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
  1710. writel(tmp, &dev->regs->ctl);
  1711. usb_connect(dev);
  1712. return 0;
  1713. }
  1714. /* shutdown requests and disconnect from gadget */
  1715. static void
  1716. shutdown(struct udc *dev, struct usb_gadget_driver *driver)
  1717. __releases(dev->lock)
  1718. __acquires(dev->lock)
  1719. {
  1720. int tmp;
  1721. /* empty queues and init hardware */
  1722. udc_basic_init(dev);
  1723. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1724. empty_req_queue(&dev->ep[tmp]);
  1725. udc_setup_endpoints(dev);
  1726. }
  1727. /* Called by gadget driver to unregister itself */
  1728. static int amd5536_udc_stop(struct usb_gadget *g)
  1729. {
  1730. struct udc *dev = to_amd5536_udc(g);
  1731. unsigned long flags;
  1732. u32 tmp;
  1733. spin_lock_irqsave(&dev->lock, flags);
  1734. udc_mask_unused_interrupts(dev);
  1735. shutdown(dev, NULL);
  1736. spin_unlock_irqrestore(&dev->lock, flags);
  1737. dev->driver = NULL;
  1738. /* set SD */
  1739. tmp = readl(&dev->regs->ctl);
  1740. tmp |= AMD_BIT(UDC_DEVCTL_SD);
  1741. writel(tmp, &dev->regs->ctl);
  1742. return 0;
  1743. }
  1744. /* Clear pending NAK bits */
  1745. static void udc_process_cnak_queue(struct udc *dev)
  1746. {
  1747. u32 tmp;
  1748. u32 reg;
  1749. /* check epin's */
  1750. DBG(dev, "CNAK pending queue processing\n");
  1751. for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
  1752. if (cnak_pending & (1 << tmp)) {
  1753. DBG(dev, "CNAK pending for ep%d\n", tmp);
  1754. /* clear NAK by writing CNAK */
  1755. reg = readl(&dev->ep[tmp].regs->ctl);
  1756. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1757. writel(reg, &dev->ep[tmp].regs->ctl);
  1758. dev->ep[tmp].naking = 0;
  1759. UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
  1760. }
  1761. }
  1762. /* ... and ep0out */
  1763. if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
  1764. DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
  1765. /* clear NAK by writing CNAK */
  1766. reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1767. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1768. writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1769. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1770. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
  1771. dev->ep[UDC_EP0OUT_IX].num);
  1772. }
  1773. }
  1774. /* Enabling RX DMA after setup packet */
  1775. static void udc_ep0_set_rde(struct udc *dev)
  1776. {
  1777. if (use_dma) {
  1778. /*
  1779. * only enable RXDMA when no data endpoint enabled
  1780. * or data is queued
  1781. */
  1782. if (!dev->data_ep_enabled || dev->data_ep_queued) {
  1783. udc_set_rde(dev);
  1784. } else {
  1785. /*
  1786. * setup timer for enabling RDE (to not enable
  1787. * RXFIFO DMA for data endpoints to early)
  1788. */
  1789. if (set_rde != 0 && !timer_pending(&udc_timer)) {
  1790. udc_timer.expires =
  1791. jiffies + HZ/UDC_RDE_TIMER_DIV;
  1792. set_rde = 1;
  1793. if (!stop_timer)
  1794. add_timer(&udc_timer);
  1795. }
  1796. }
  1797. }
  1798. }
  1799. /* Interrupt handler for data OUT traffic */
  1800. static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
  1801. {
  1802. irqreturn_t ret_val = IRQ_NONE;
  1803. u32 tmp;
  1804. struct udc_ep *ep;
  1805. struct udc_request *req;
  1806. unsigned int count;
  1807. struct udc_data_dma *td = NULL;
  1808. unsigned dma_done;
  1809. VDBG(dev, "ep%d irq\n", ep_ix);
  1810. ep = &dev->ep[ep_ix];
  1811. tmp = readl(&ep->regs->sts);
  1812. if (use_dma) {
  1813. /* BNA event ? */
  1814. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  1815. DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
  1816. ep->num, readl(&ep->regs->desptr));
  1817. /* clear BNA */
  1818. writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
  1819. if (!ep->cancel_transfer)
  1820. ep->bna_occurred = 1;
  1821. else
  1822. ep->cancel_transfer = 0;
  1823. ret_val = IRQ_HANDLED;
  1824. goto finished;
  1825. }
  1826. }
  1827. /* HE event ? */
  1828. if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
  1829. dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
  1830. /* clear HE */
  1831. writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1832. ret_val = IRQ_HANDLED;
  1833. goto finished;
  1834. }
  1835. if (!list_empty(&ep->queue)) {
  1836. /* next request */
  1837. req = list_entry(ep->queue.next,
  1838. struct udc_request, queue);
  1839. } else {
  1840. req = NULL;
  1841. udc_rxfifo_pending = 1;
  1842. }
  1843. VDBG(dev, "req = %p\n", req);
  1844. /* fifo mode */
  1845. if (!use_dma) {
  1846. /* read fifo */
  1847. if (req && udc_rxfifo_read(ep, req)) {
  1848. ret_val = IRQ_HANDLED;
  1849. /* finish */
  1850. complete_req(ep, req, 0);
  1851. /* next request */
  1852. if (!list_empty(&ep->queue) && !ep->halted) {
  1853. req = list_entry(ep->queue.next,
  1854. struct udc_request, queue);
  1855. } else
  1856. req = NULL;
  1857. }
  1858. /* DMA */
  1859. } else if (!ep->cancel_transfer && req != NULL) {
  1860. ret_val = IRQ_HANDLED;
  1861. /* check for DMA done */
  1862. if (!use_dma_ppb) {
  1863. dma_done = AMD_GETBITS(req->td_data->status,
  1864. UDC_DMA_OUT_STS_BS);
  1865. /* packet per buffer mode - rx bytes */
  1866. } else {
  1867. /*
  1868. * if BNA occurred then recover desc. from
  1869. * BNA dummy desc.
  1870. */
  1871. if (ep->bna_occurred) {
  1872. VDBG(dev, "Recover desc. from BNA dummy\n");
  1873. memcpy(req->td_data, ep->bna_dummy_req->td_data,
  1874. sizeof(struct udc_data_dma));
  1875. ep->bna_occurred = 0;
  1876. udc_init_bna_dummy(ep->req);
  1877. }
  1878. td = udc_get_last_dma_desc(req);
  1879. dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
  1880. }
  1881. if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
  1882. /* buffer fill mode - rx bytes */
  1883. if (!use_dma_ppb) {
  1884. /* received number bytes */
  1885. count = AMD_GETBITS(req->td_data->status,
  1886. UDC_DMA_OUT_STS_RXBYTES);
  1887. VDBG(dev, "rx bytes=%u\n", count);
  1888. /* packet per buffer mode - rx bytes */
  1889. } else {
  1890. VDBG(dev, "req->td_data=%p\n", req->td_data);
  1891. VDBG(dev, "last desc = %p\n", td);
  1892. /* received number bytes */
  1893. if (use_dma_ppb_du) {
  1894. /* every desc. counts bytes */
  1895. count = udc_get_ppbdu_rxbytes(req);
  1896. } else {
  1897. /* last desc. counts bytes */
  1898. count = AMD_GETBITS(td->status,
  1899. UDC_DMA_OUT_STS_RXBYTES);
  1900. if (!count && req->req.length
  1901. == UDC_DMA_MAXPACKET) {
  1902. /*
  1903. * on 64k packets the RXBYTES
  1904. * field is zero
  1905. */
  1906. count = UDC_DMA_MAXPACKET;
  1907. }
  1908. }
  1909. VDBG(dev, "last desc rx bytes=%u\n", count);
  1910. }
  1911. tmp = req->req.length - req->req.actual;
  1912. if (count > tmp) {
  1913. if ((tmp % ep->ep.maxpacket) != 0) {
  1914. DBG(dev, "%s: rx %db, space=%db\n",
  1915. ep->ep.name, count, tmp);
  1916. req->req.status = -EOVERFLOW;
  1917. }
  1918. count = tmp;
  1919. }
  1920. req->req.actual += count;
  1921. req->dma_going = 0;
  1922. /* complete request */
  1923. complete_req(ep, req, 0);
  1924. /* next request */
  1925. if (!list_empty(&ep->queue) && !ep->halted) {
  1926. req = list_entry(ep->queue.next,
  1927. struct udc_request,
  1928. queue);
  1929. /*
  1930. * DMA may be already started by udc_queue()
  1931. * called by gadget drivers completion
  1932. * routine. This happens when queue
  1933. * holds one request only.
  1934. */
  1935. if (req->dma_going == 0) {
  1936. /* next dma */
  1937. if (prep_dma(ep, req, GFP_ATOMIC) != 0)
  1938. goto finished;
  1939. /* write desc pointer */
  1940. writel(req->td_phys,
  1941. &ep->regs->desptr);
  1942. req->dma_going = 1;
  1943. /* enable DMA */
  1944. udc_set_rde(dev);
  1945. }
  1946. } else {
  1947. /*
  1948. * implant BNA dummy descriptor to allow
  1949. * RXFIFO opening by RDE
  1950. */
  1951. if (ep->bna_dummy_req) {
  1952. /* write desc pointer */
  1953. writel(ep->bna_dummy_req->td_phys,
  1954. &ep->regs->desptr);
  1955. ep->bna_occurred = 0;
  1956. }
  1957. /*
  1958. * schedule timer for setting RDE if queue
  1959. * remains empty to allow ep0 packets pass
  1960. * through
  1961. */
  1962. if (set_rde != 0
  1963. && !timer_pending(&udc_timer)) {
  1964. udc_timer.expires =
  1965. jiffies
  1966. + HZ*UDC_RDE_TIMER_SECONDS;
  1967. set_rde = 1;
  1968. if (!stop_timer)
  1969. add_timer(&udc_timer);
  1970. }
  1971. if (ep->num != UDC_EP0OUT_IX)
  1972. dev->data_ep_queued = 0;
  1973. }
  1974. } else {
  1975. /*
  1976. * RX DMA must be reenabled for each desc in PPBDU mode
  1977. * and must be enabled for PPBNDU mode in case of BNA
  1978. */
  1979. udc_set_rde(dev);
  1980. }
  1981. } else if (ep->cancel_transfer) {
  1982. ret_val = IRQ_HANDLED;
  1983. ep->cancel_transfer = 0;
  1984. }
  1985. /* check pending CNAKS */
  1986. if (cnak_pending) {
  1987. /* CNAk processing when rxfifo empty only */
  1988. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  1989. udc_process_cnak_queue(dev);
  1990. }
  1991. /* clear OUT bits in ep status */
  1992. writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
  1993. finished:
  1994. return ret_val;
  1995. }
  1996. /* Interrupt handler for data IN traffic */
  1997. static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
  1998. {
  1999. irqreturn_t ret_val = IRQ_NONE;
  2000. u32 tmp;
  2001. u32 epsts;
  2002. struct udc_ep *ep;
  2003. struct udc_request *req;
  2004. struct udc_data_dma *td;
  2005. unsigned dma_done;
  2006. unsigned len;
  2007. ep = &dev->ep[ep_ix];
  2008. epsts = readl(&ep->regs->sts);
  2009. if (use_dma) {
  2010. /* BNA ? */
  2011. if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
  2012. dev_err(&dev->pdev->dev,
  2013. "BNA ep%din occurred - DESPTR = %08lx\n",
  2014. ep->num,
  2015. (unsigned long) readl(&ep->regs->desptr));
  2016. /* clear BNA */
  2017. writel(epsts, &ep->regs->sts);
  2018. ret_val = IRQ_HANDLED;
  2019. goto finished;
  2020. }
  2021. }
  2022. /* HE event ? */
  2023. if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
  2024. dev_err(&dev->pdev->dev,
  2025. "HE ep%dn occurred - DESPTR = %08lx\n",
  2026. ep->num, (unsigned long) readl(&ep->regs->desptr));
  2027. /* clear HE */
  2028. writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  2029. ret_val = IRQ_HANDLED;
  2030. goto finished;
  2031. }
  2032. /* DMA completion */
  2033. if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
  2034. VDBG(dev, "TDC set- completion\n");
  2035. ret_val = IRQ_HANDLED;
  2036. if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
  2037. req = list_entry(ep->queue.next,
  2038. struct udc_request, queue);
  2039. /*
  2040. * length bytes transferred
  2041. * check dma done of last desc. in PPBDU mode
  2042. */
  2043. if (use_dma_ppb_du) {
  2044. td = udc_get_last_dma_desc(req);
  2045. if (td) {
  2046. dma_done =
  2047. AMD_GETBITS(td->status,
  2048. UDC_DMA_IN_STS_BS);
  2049. /* don't care DMA done */
  2050. req->req.actual = req->req.length;
  2051. }
  2052. } else {
  2053. /* assume all bytes transferred */
  2054. req->req.actual = req->req.length;
  2055. }
  2056. if (req->req.actual == req->req.length) {
  2057. /* complete req */
  2058. complete_req(ep, req, 0);
  2059. req->dma_going = 0;
  2060. /* further request available ? */
  2061. if (list_empty(&ep->queue)) {
  2062. /* disable interrupt */
  2063. tmp = readl(&dev->regs->ep_irqmsk);
  2064. tmp |= AMD_BIT(ep->num);
  2065. writel(tmp, &dev->regs->ep_irqmsk);
  2066. }
  2067. }
  2068. }
  2069. ep->cancel_transfer = 0;
  2070. }
  2071. /*
  2072. * status reg has IN bit set and TDC not set (if TDC was handled,
  2073. * IN must not be handled (UDC defect) ?
  2074. */
  2075. if ((epsts & AMD_BIT(UDC_EPSTS_IN))
  2076. && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
  2077. ret_val = IRQ_HANDLED;
  2078. if (!list_empty(&ep->queue)) {
  2079. /* next request */
  2080. req = list_entry(ep->queue.next,
  2081. struct udc_request, queue);
  2082. /* FIFO mode */
  2083. if (!use_dma) {
  2084. /* write fifo */
  2085. udc_txfifo_write(ep, &req->req);
  2086. len = req->req.length - req->req.actual;
  2087. if (len > ep->ep.maxpacket)
  2088. len = ep->ep.maxpacket;
  2089. req->req.actual += len;
  2090. if (req->req.actual == req->req.length
  2091. || (len != ep->ep.maxpacket)) {
  2092. /* complete req */
  2093. complete_req(ep, req, 0);
  2094. }
  2095. /* DMA */
  2096. } else if (req && !req->dma_going) {
  2097. VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
  2098. req, req->td_data);
  2099. if (req->td_data) {
  2100. req->dma_going = 1;
  2101. /*
  2102. * unset L bit of first desc.
  2103. * for chain
  2104. */
  2105. if (use_dma_ppb && req->req.length >
  2106. ep->ep.maxpacket) {
  2107. req->td_data->status &=
  2108. AMD_CLEAR_BIT(
  2109. UDC_DMA_IN_STS_L);
  2110. }
  2111. /* write desc pointer */
  2112. writel(req->td_phys, &ep->regs->desptr);
  2113. /* set HOST READY */
  2114. req->td_data->status =
  2115. AMD_ADDBITS(
  2116. req->td_data->status,
  2117. UDC_DMA_IN_STS_BS_HOST_READY,
  2118. UDC_DMA_IN_STS_BS);
  2119. /* set poll demand bit */
  2120. tmp = readl(&ep->regs->ctl);
  2121. tmp |= AMD_BIT(UDC_EPCTL_P);
  2122. writel(tmp, &ep->regs->ctl);
  2123. }
  2124. }
  2125. } else if (!use_dma && ep->in) {
  2126. /* disable interrupt */
  2127. tmp = readl(
  2128. &dev->regs->ep_irqmsk);
  2129. tmp |= AMD_BIT(ep->num);
  2130. writel(tmp,
  2131. &dev->regs->ep_irqmsk);
  2132. }
  2133. }
  2134. /* clear status bits */
  2135. writel(epsts, &ep->regs->sts);
  2136. finished:
  2137. return ret_val;
  2138. }
  2139. /* Interrupt handler for Control OUT traffic */
  2140. static irqreturn_t udc_control_out_isr(struct udc *dev)
  2141. __releases(dev->lock)
  2142. __acquires(dev->lock)
  2143. {
  2144. irqreturn_t ret_val = IRQ_NONE;
  2145. u32 tmp;
  2146. int setup_supported;
  2147. u32 count;
  2148. int set = 0;
  2149. struct udc_ep *ep;
  2150. struct udc_ep *ep_tmp;
  2151. ep = &dev->ep[UDC_EP0OUT_IX];
  2152. /* clear irq */
  2153. writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
  2154. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2155. /* check BNA and clear if set */
  2156. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  2157. VDBG(dev, "ep0: BNA set\n");
  2158. writel(AMD_BIT(UDC_EPSTS_BNA),
  2159. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2160. ep->bna_occurred = 1;
  2161. ret_val = IRQ_HANDLED;
  2162. goto finished;
  2163. }
  2164. /* type of data: SETUP or DATA 0 bytes */
  2165. tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
  2166. VDBG(dev, "data_typ = %x\n", tmp);
  2167. /* setup data */
  2168. if (tmp == UDC_EPSTS_OUT_SETUP) {
  2169. ret_val = IRQ_HANDLED;
  2170. ep->dev->stall_ep0in = 0;
  2171. dev->waiting_zlp_ack_ep0in = 0;
  2172. /* set NAK for EP0_IN */
  2173. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2174. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  2175. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2176. dev->ep[UDC_EP0IN_IX].naking = 1;
  2177. /* get setup data */
  2178. if (use_dma) {
  2179. /* clear OUT bits in ep status */
  2180. writel(UDC_EPSTS_OUT_CLEAR,
  2181. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2182. setup_data.data[0] =
  2183. dev->ep[UDC_EP0OUT_IX].td_stp->data12;
  2184. setup_data.data[1] =
  2185. dev->ep[UDC_EP0OUT_IX].td_stp->data34;
  2186. /* set HOST READY */
  2187. dev->ep[UDC_EP0OUT_IX].td_stp->status =
  2188. UDC_DMA_STP_STS_BS_HOST_READY;
  2189. } else {
  2190. /* read fifo */
  2191. udc_rxfifo_read_dwords(dev, setup_data.data, 2);
  2192. }
  2193. /* determine direction of control data */
  2194. if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
  2195. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  2196. /* enable RDE */
  2197. udc_ep0_set_rde(dev);
  2198. set = 0;
  2199. } else {
  2200. dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
  2201. /*
  2202. * implant BNA dummy descriptor to allow RXFIFO opening
  2203. * by RDE
  2204. */
  2205. if (ep->bna_dummy_req) {
  2206. /* write desc pointer */
  2207. writel(ep->bna_dummy_req->td_phys,
  2208. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2209. ep->bna_occurred = 0;
  2210. }
  2211. set = 1;
  2212. dev->ep[UDC_EP0OUT_IX].naking = 1;
  2213. /*
  2214. * setup timer for enabling RDE (to not enable
  2215. * RXFIFO DMA for data to early)
  2216. */
  2217. set_rde = 1;
  2218. if (!timer_pending(&udc_timer)) {
  2219. udc_timer.expires = jiffies +
  2220. HZ/UDC_RDE_TIMER_DIV;
  2221. if (!stop_timer)
  2222. add_timer(&udc_timer);
  2223. }
  2224. }
  2225. /*
  2226. * mass storage reset must be processed here because
  2227. * next packet may be a CLEAR_FEATURE HALT which would not
  2228. * clear the stall bit when no STALL handshake was received
  2229. * before (autostall can cause this)
  2230. */
  2231. if (setup_data.data[0] == UDC_MSCRES_DWORD0
  2232. && setup_data.data[1] == UDC_MSCRES_DWORD1) {
  2233. DBG(dev, "MSC Reset\n");
  2234. /*
  2235. * clear stall bits
  2236. * only one IN and OUT endpoints are handled
  2237. */
  2238. ep_tmp = &udc->ep[UDC_EPIN_IX];
  2239. udc_set_halt(&ep_tmp->ep, 0);
  2240. ep_tmp = &udc->ep[UDC_EPOUT_IX];
  2241. udc_set_halt(&ep_tmp->ep, 0);
  2242. }
  2243. /* call gadget with setup data received */
  2244. spin_unlock(&dev->lock);
  2245. setup_supported = dev->driver->setup(&dev->gadget,
  2246. &setup_data.request);
  2247. spin_lock(&dev->lock);
  2248. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2249. /* ep0 in returns data (not zlp) on IN phase */
  2250. if (setup_supported >= 0 && setup_supported <
  2251. UDC_EP0IN_MAXPACKET) {
  2252. /* clear NAK by writing CNAK in EP0_IN */
  2253. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2254. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2255. dev->ep[UDC_EP0IN_IX].naking = 0;
  2256. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  2257. /* if unsupported request then stall */
  2258. } else if (setup_supported < 0) {
  2259. tmp |= AMD_BIT(UDC_EPCTL_S);
  2260. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2261. } else
  2262. dev->waiting_zlp_ack_ep0in = 1;
  2263. /* clear NAK by writing CNAK in EP0_OUT */
  2264. if (!set) {
  2265. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2266. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2267. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2268. dev->ep[UDC_EP0OUT_IX].naking = 0;
  2269. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  2270. }
  2271. if (!use_dma) {
  2272. /* clear OUT bits in ep status */
  2273. writel(UDC_EPSTS_OUT_CLEAR,
  2274. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2275. }
  2276. /* data packet 0 bytes */
  2277. } else if (tmp == UDC_EPSTS_OUT_DATA) {
  2278. /* clear OUT bits in ep status */
  2279. writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2280. /* get setup data: only 0 packet */
  2281. if (use_dma) {
  2282. /* no req if 0 packet, just reactivate */
  2283. if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
  2284. VDBG(dev, "ZLP\n");
  2285. /* set HOST READY */
  2286. dev->ep[UDC_EP0OUT_IX].td->status =
  2287. AMD_ADDBITS(
  2288. dev->ep[UDC_EP0OUT_IX].td->status,
  2289. UDC_DMA_OUT_STS_BS_HOST_READY,
  2290. UDC_DMA_OUT_STS_BS);
  2291. /* enable RDE */
  2292. udc_ep0_set_rde(dev);
  2293. ret_val = IRQ_HANDLED;
  2294. } else {
  2295. /* control write */
  2296. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2297. /* re-program desc. pointer for possible ZLPs */
  2298. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  2299. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2300. /* enable RDE */
  2301. udc_ep0_set_rde(dev);
  2302. }
  2303. } else {
  2304. /* received number bytes */
  2305. count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2306. count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
  2307. /* out data for fifo mode not working */
  2308. count = 0;
  2309. /* 0 packet or real data ? */
  2310. if (count != 0) {
  2311. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2312. } else {
  2313. /* dummy read confirm */
  2314. readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
  2315. ret_val = IRQ_HANDLED;
  2316. }
  2317. }
  2318. }
  2319. /* check pending CNAKS */
  2320. if (cnak_pending) {
  2321. /* CNAk processing when rxfifo empty only */
  2322. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2323. udc_process_cnak_queue(dev);
  2324. }
  2325. finished:
  2326. return ret_val;
  2327. }
  2328. /* Interrupt handler for Control IN traffic */
  2329. static irqreturn_t udc_control_in_isr(struct udc *dev)
  2330. {
  2331. irqreturn_t ret_val = IRQ_NONE;
  2332. u32 tmp;
  2333. struct udc_ep *ep;
  2334. struct udc_request *req;
  2335. unsigned len;
  2336. ep = &dev->ep[UDC_EP0IN_IX];
  2337. /* clear irq */
  2338. writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
  2339. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
  2340. /* DMA completion */
  2341. if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
  2342. VDBG(dev, "isr: TDC clear\n");
  2343. ret_val = IRQ_HANDLED;
  2344. /* clear TDC bit */
  2345. writel(AMD_BIT(UDC_EPSTS_TDC),
  2346. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2347. /* status reg has IN bit set ? */
  2348. } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
  2349. ret_val = IRQ_HANDLED;
  2350. if (ep->dma) {
  2351. /* clear IN bit */
  2352. writel(AMD_BIT(UDC_EPSTS_IN),
  2353. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2354. }
  2355. if (dev->stall_ep0in) {
  2356. DBG(dev, "stall ep0in\n");
  2357. /* halt ep0in */
  2358. tmp = readl(&ep->regs->ctl);
  2359. tmp |= AMD_BIT(UDC_EPCTL_S);
  2360. writel(tmp, &ep->regs->ctl);
  2361. } else {
  2362. if (!list_empty(&ep->queue)) {
  2363. /* next request */
  2364. req = list_entry(ep->queue.next,
  2365. struct udc_request, queue);
  2366. if (ep->dma) {
  2367. /* write desc pointer */
  2368. writel(req->td_phys, &ep->regs->desptr);
  2369. /* set HOST READY */
  2370. req->td_data->status =
  2371. AMD_ADDBITS(
  2372. req->td_data->status,
  2373. UDC_DMA_STP_STS_BS_HOST_READY,
  2374. UDC_DMA_STP_STS_BS);
  2375. /* set poll demand bit */
  2376. tmp =
  2377. readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2378. tmp |= AMD_BIT(UDC_EPCTL_P);
  2379. writel(tmp,
  2380. &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2381. /* all bytes will be transferred */
  2382. req->req.actual = req->req.length;
  2383. /* complete req */
  2384. complete_req(ep, req, 0);
  2385. } else {
  2386. /* write fifo */
  2387. udc_txfifo_write(ep, &req->req);
  2388. /* lengh bytes transferred */
  2389. len = req->req.length - req->req.actual;
  2390. if (len > ep->ep.maxpacket)
  2391. len = ep->ep.maxpacket;
  2392. req->req.actual += len;
  2393. if (req->req.actual == req->req.length
  2394. || (len != ep->ep.maxpacket)) {
  2395. /* complete req */
  2396. complete_req(ep, req, 0);
  2397. }
  2398. }
  2399. }
  2400. }
  2401. ep->halted = 0;
  2402. dev->stall_ep0in = 0;
  2403. if (!ep->dma) {
  2404. /* clear IN bit */
  2405. writel(AMD_BIT(UDC_EPSTS_IN),
  2406. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2407. }
  2408. }
  2409. return ret_val;
  2410. }
  2411. /* Interrupt handler for global device events */
  2412. static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
  2413. __releases(dev->lock)
  2414. __acquires(dev->lock)
  2415. {
  2416. irqreturn_t ret_val = IRQ_NONE;
  2417. u32 tmp;
  2418. u32 cfg;
  2419. struct udc_ep *ep;
  2420. u16 i;
  2421. u8 udc_csr_epix;
  2422. /* SET_CONFIG irq ? */
  2423. if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
  2424. ret_val = IRQ_HANDLED;
  2425. /* read config value */
  2426. tmp = readl(&dev->regs->sts);
  2427. cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
  2428. DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
  2429. dev->cur_config = cfg;
  2430. dev->set_cfg_not_acked = 1;
  2431. /* make usb request for gadget driver */
  2432. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2433. setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
  2434. setup_data.request.wValue = cpu_to_le16(dev->cur_config);
  2435. /* programm the NE registers */
  2436. for (i = 0; i < UDC_EP_NUM; i++) {
  2437. ep = &dev->ep[i];
  2438. if (ep->in) {
  2439. /* ep ix in UDC CSR register space */
  2440. udc_csr_epix = ep->num;
  2441. /* OUT ep */
  2442. } else {
  2443. /* ep ix in UDC CSR register space */
  2444. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2445. }
  2446. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2447. /* ep cfg */
  2448. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
  2449. UDC_CSR_NE_CFG);
  2450. /* write reg */
  2451. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2452. /* clear stall bits */
  2453. ep->halted = 0;
  2454. tmp = readl(&ep->regs->ctl);
  2455. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2456. writel(tmp, &ep->regs->ctl);
  2457. }
  2458. /* call gadget zero with setup data received */
  2459. spin_unlock(&dev->lock);
  2460. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2461. spin_lock(&dev->lock);
  2462. } /* SET_INTERFACE ? */
  2463. if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
  2464. ret_val = IRQ_HANDLED;
  2465. dev->set_cfg_not_acked = 1;
  2466. /* read interface and alt setting values */
  2467. tmp = readl(&dev->regs->sts);
  2468. dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
  2469. dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
  2470. /* make usb request for gadget driver */
  2471. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2472. setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
  2473. setup_data.request.bRequestType = USB_RECIP_INTERFACE;
  2474. setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
  2475. setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
  2476. DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
  2477. dev->cur_alt, dev->cur_intf);
  2478. /* programm the NE registers */
  2479. for (i = 0; i < UDC_EP_NUM; i++) {
  2480. ep = &dev->ep[i];
  2481. if (ep->in) {
  2482. /* ep ix in UDC CSR register space */
  2483. udc_csr_epix = ep->num;
  2484. /* OUT ep */
  2485. } else {
  2486. /* ep ix in UDC CSR register space */
  2487. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2488. }
  2489. /* UDC CSR reg */
  2490. /* set ep values */
  2491. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2492. /* ep interface */
  2493. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
  2494. UDC_CSR_NE_INTF);
  2495. /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
  2496. /* ep alt */
  2497. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
  2498. UDC_CSR_NE_ALT);
  2499. /* write reg */
  2500. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2501. /* clear stall bits */
  2502. ep->halted = 0;
  2503. tmp = readl(&ep->regs->ctl);
  2504. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2505. writel(tmp, &ep->regs->ctl);
  2506. }
  2507. /* call gadget zero with setup data received */
  2508. spin_unlock(&dev->lock);
  2509. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2510. spin_lock(&dev->lock);
  2511. } /* USB reset */
  2512. if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
  2513. DBG(dev, "USB Reset interrupt\n");
  2514. ret_val = IRQ_HANDLED;
  2515. /* allow soft reset when suspend occurs */
  2516. soft_reset_occured = 0;
  2517. dev->waiting_zlp_ack_ep0in = 0;
  2518. dev->set_cfg_not_acked = 0;
  2519. /* mask not needed interrupts */
  2520. udc_mask_unused_interrupts(dev);
  2521. /* call gadget to resume and reset configs etc. */
  2522. spin_unlock(&dev->lock);
  2523. if (dev->sys_suspended && dev->driver->resume) {
  2524. dev->driver->resume(&dev->gadget);
  2525. dev->sys_suspended = 0;
  2526. }
  2527. usb_gadget_udc_reset(&dev->gadget, dev->driver);
  2528. spin_lock(&dev->lock);
  2529. /* disable ep0 to empty req queue */
  2530. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2531. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2532. /* soft reset when rxfifo not empty */
  2533. tmp = readl(&dev->regs->sts);
  2534. if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2535. && !soft_reset_after_usbreset_occured) {
  2536. udc_soft_reset(dev);
  2537. soft_reset_after_usbreset_occured++;
  2538. }
  2539. /*
  2540. * DMA reset to kill potential old DMA hw hang,
  2541. * POLL bit is already reset by ep_init() through
  2542. * disconnect()
  2543. */
  2544. DBG(dev, "DMA machine reset\n");
  2545. tmp = readl(&dev->regs->cfg);
  2546. writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
  2547. writel(tmp, &dev->regs->cfg);
  2548. /* put into initial config */
  2549. udc_basic_init(dev);
  2550. /* enable device setup interrupts */
  2551. udc_enable_dev_setup_interrupts(dev);
  2552. /* enable suspend interrupt */
  2553. tmp = readl(&dev->regs->irqmsk);
  2554. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
  2555. writel(tmp, &dev->regs->irqmsk);
  2556. } /* USB suspend */
  2557. if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
  2558. DBG(dev, "USB Suspend interrupt\n");
  2559. ret_val = IRQ_HANDLED;
  2560. if (dev->driver->suspend) {
  2561. spin_unlock(&dev->lock);
  2562. dev->sys_suspended = 1;
  2563. dev->driver->suspend(&dev->gadget);
  2564. spin_lock(&dev->lock);
  2565. }
  2566. } /* new speed ? */
  2567. if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
  2568. DBG(dev, "ENUM interrupt\n");
  2569. ret_val = IRQ_HANDLED;
  2570. soft_reset_after_usbreset_occured = 0;
  2571. /* disable ep0 to empty req queue */
  2572. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2573. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2574. /* link up all endpoints */
  2575. udc_setup_endpoints(dev);
  2576. dev_info(&dev->pdev->dev, "Connect: %s\n",
  2577. usb_speed_string(dev->gadget.speed));
  2578. /* init ep 0 */
  2579. activate_control_endpoints(dev);
  2580. /* enable ep0 interrupts */
  2581. udc_enable_ep0_interrupts(dev);
  2582. }
  2583. /* session valid change interrupt */
  2584. if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
  2585. DBG(dev, "USB SVC interrupt\n");
  2586. ret_val = IRQ_HANDLED;
  2587. /* check that session is not valid to detect disconnect */
  2588. tmp = readl(&dev->regs->sts);
  2589. if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
  2590. /* disable suspend interrupt */
  2591. tmp = readl(&dev->regs->irqmsk);
  2592. tmp |= AMD_BIT(UDC_DEVINT_US);
  2593. writel(tmp, &dev->regs->irqmsk);
  2594. DBG(dev, "USB Disconnect (session valid low)\n");
  2595. /* cleanup on disconnect */
  2596. usb_disconnect(udc);
  2597. }
  2598. }
  2599. return ret_val;
  2600. }
  2601. /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
  2602. static irqreturn_t udc_irq(int irq, void *pdev)
  2603. {
  2604. struct udc *dev = pdev;
  2605. u32 reg;
  2606. u16 i;
  2607. u32 ep_irq;
  2608. irqreturn_t ret_val = IRQ_NONE;
  2609. spin_lock(&dev->lock);
  2610. /* check for ep irq */
  2611. reg = readl(&dev->regs->ep_irqsts);
  2612. if (reg) {
  2613. if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
  2614. ret_val |= udc_control_out_isr(dev);
  2615. if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
  2616. ret_val |= udc_control_in_isr(dev);
  2617. /*
  2618. * data endpoint
  2619. * iterate ep's
  2620. */
  2621. for (i = 1; i < UDC_EP_NUM; i++) {
  2622. ep_irq = 1 << i;
  2623. if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
  2624. continue;
  2625. /* clear irq status */
  2626. writel(ep_irq, &dev->regs->ep_irqsts);
  2627. /* irq for out ep ? */
  2628. if (i > UDC_EPIN_NUM)
  2629. ret_val |= udc_data_out_isr(dev, i);
  2630. else
  2631. ret_val |= udc_data_in_isr(dev, i);
  2632. }
  2633. }
  2634. /* check for dev irq */
  2635. reg = readl(&dev->regs->irqsts);
  2636. if (reg) {
  2637. /* clear irq */
  2638. writel(reg, &dev->regs->irqsts);
  2639. ret_val |= udc_dev_isr(dev, reg);
  2640. }
  2641. spin_unlock(&dev->lock);
  2642. return ret_val;
  2643. }
  2644. /* Tears down device */
  2645. static void gadget_release(struct device *pdev)
  2646. {
  2647. struct amd5536udc *dev = dev_get_drvdata(pdev);
  2648. kfree(dev);
  2649. }
  2650. /* Cleanup on device remove */
  2651. static void udc_remove(struct udc *dev)
  2652. {
  2653. /* remove timer */
  2654. stop_timer++;
  2655. if (timer_pending(&udc_timer))
  2656. wait_for_completion(&on_exit);
  2657. if (udc_timer.data)
  2658. del_timer_sync(&udc_timer);
  2659. /* remove pollstall timer */
  2660. stop_pollstall_timer++;
  2661. if (timer_pending(&udc_pollstall_timer))
  2662. wait_for_completion(&on_pollstall_exit);
  2663. if (udc_pollstall_timer.data)
  2664. del_timer_sync(&udc_pollstall_timer);
  2665. udc = NULL;
  2666. }
  2667. /* Reset all pci context */
  2668. static void udc_pci_remove(struct pci_dev *pdev)
  2669. {
  2670. struct udc *dev;
  2671. dev = pci_get_drvdata(pdev);
  2672. usb_del_gadget_udc(&udc->gadget);
  2673. /* gadget driver must not be registered */
  2674. BUG_ON(dev->driver != NULL);
  2675. /* dma pool cleanup */
  2676. if (dev->data_requests)
  2677. pci_pool_destroy(dev->data_requests);
  2678. if (dev->stp_requests) {
  2679. /* cleanup DMA desc's for ep0in */
  2680. pci_pool_free(dev->stp_requests,
  2681. dev->ep[UDC_EP0OUT_IX].td_stp,
  2682. dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2683. pci_pool_free(dev->stp_requests,
  2684. dev->ep[UDC_EP0OUT_IX].td,
  2685. dev->ep[UDC_EP0OUT_IX].td_phys);
  2686. pci_pool_destroy(dev->stp_requests);
  2687. }
  2688. /* reset controller */
  2689. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  2690. if (dev->irq_registered)
  2691. free_irq(pdev->irq, dev);
  2692. if (dev->virt_addr)
  2693. iounmap(dev->virt_addr);
  2694. if (dev->mem_region)
  2695. release_mem_region(pci_resource_start(pdev, 0),
  2696. pci_resource_len(pdev, 0));
  2697. if (dev->active)
  2698. pci_disable_device(pdev);
  2699. udc_remove(dev);
  2700. }
  2701. /* create dma pools on init */
  2702. static int init_dma_pools(struct udc *dev)
  2703. {
  2704. struct udc_stp_dma *td_stp;
  2705. struct udc_data_dma *td_data;
  2706. int retval;
  2707. /* consistent DMA mode setting ? */
  2708. if (use_dma_ppb) {
  2709. use_dma_bufferfill_mode = 0;
  2710. } else {
  2711. use_dma_ppb_du = 0;
  2712. use_dma_bufferfill_mode = 1;
  2713. }
  2714. /* DMA setup */
  2715. dev->data_requests = dma_pool_create("data_requests", NULL,
  2716. sizeof(struct udc_data_dma), 0, 0);
  2717. if (!dev->data_requests) {
  2718. DBG(dev, "can't get request data pool\n");
  2719. retval = -ENOMEM;
  2720. goto finished;
  2721. }
  2722. /* EP0 in dma regs = dev control regs */
  2723. dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
  2724. /* dma desc for setup data */
  2725. dev->stp_requests = dma_pool_create("setup requests", NULL,
  2726. sizeof(struct udc_stp_dma), 0, 0);
  2727. if (!dev->stp_requests) {
  2728. DBG(dev, "can't get stp request pool\n");
  2729. retval = -ENOMEM;
  2730. goto finished;
  2731. }
  2732. /* setup */
  2733. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2734. &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2735. if (td_stp == NULL) {
  2736. retval = -ENOMEM;
  2737. goto finished;
  2738. }
  2739. dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
  2740. /* data: 0 packets !? */
  2741. td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2742. &dev->ep[UDC_EP0OUT_IX].td_phys);
  2743. if (td_data == NULL) {
  2744. retval = -ENOMEM;
  2745. goto finished;
  2746. }
  2747. dev->ep[UDC_EP0OUT_IX].td = td_data;
  2748. return 0;
  2749. finished:
  2750. return retval;
  2751. }
  2752. /* Called by pci bus driver to init pci context */
  2753. static int udc_pci_probe(
  2754. struct pci_dev *pdev,
  2755. const struct pci_device_id *id
  2756. )
  2757. {
  2758. struct udc *dev;
  2759. unsigned long resource;
  2760. unsigned long len;
  2761. int retval = 0;
  2762. /* one udc only */
  2763. if (udc) {
  2764. dev_dbg(&pdev->dev, "already probed\n");
  2765. return -EBUSY;
  2766. }
  2767. /* init */
  2768. dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
  2769. if (!dev)
  2770. return -ENOMEM;
  2771. /* pci setup */
  2772. if (pci_enable_device(pdev) < 0) {
  2773. retval = -ENODEV;
  2774. goto err_pcidev;
  2775. }
  2776. dev->active = 1;
  2777. /* PCI resource allocation */
  2778. resource = pci_resource_start(pdev, 0);
  2779. len = pci_resource_len(pdev, 0);
  2780. if (!request_mem_region(resource, len, name)) {
  2781. dev_dbg(&pdev->dev, "pci device used already\n");
  2782. retval = -EBUSY;
  2783. goto err_memreg;
  2784. }
  2785. dev->mem_region = 1;
  2786. dev->virt_addr = ioremap_nocache(resource, len);
  2787. if (dev->virt_addr == NULL) {
  2788. dev_dbg(&pdev->dev, "start address cannot be mapped\n");
  2789. retval = -EFAULT;
  2790. goto err_ioremap;
  2791. }
  2792. if (!pdev->irq) {
  2793. dev_err(&pdev->dev, "irq not set\n");
  2794. retval = -ENODEV;
  2795. goto err_irq;
  2796. }
  2797. spin_lock_init(&dev->lock);
  2798. /* udc csr registers base */
  2799. dev->csr = dev->virt_addr + UDC_CSR_ADDR;
  2800. /* dev registers base */
  2801. dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
  2802. /* ep registers base */
  2803. dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
  2804. /* fifo's base */
  2805. dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
  2806. dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
  2807. if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
  2808. dev_dbg(&pdev->dev, "request_irq(%d) fail\n", pdev->irq);
  2809. retval = -EBUSY;
  2810. goto err_irq;
  2811. }
  2812. dev->irq_registered = 1;
  2813. pci_set_drvdata(pdev, dev);
  2814. /* chip revision for Hs AMD5536 */
  2815. dev->chiprev = pdev->revision;
  2816. pci_set_master(pdev);
  2817. pci_try_set_mwi(pdev);
  2818. /* init dma pools */
  2819. if (use_dma) {
  2820. retval = init_dma_pools(dev);
  2821. if (retval != 0)
  2822. goto finished;
  2823. }
  2824. dev->phys_addr = resource;
  2825. dev->irq = pdev->irq;
  2826. dev->pdev = pdev;
  2827. /* general probing */
  2828. if (udc_probe(dev) == 0)
  2829. return 0;
  2830. finished:
  2831. udc_pci_remove(pdev);
  2832. return retval;
  2833. err_irq:
  2834. iounmap(dev->virt_addr);
  2835. err_ioremap:
  2836. release_mem_region(resource, len);
  2837. err_memreg:
  2838. pci_disable_device(pdev);
  2839. err_pcidev:
  2840. kfree(dev);
  2841. return retval;
  2842. }
  2843. /* general probe */
  2844. static int udc_probe(struct udc *dev)
  2845. {
  2846. char tmp[128];
  2847. u32 reg;
  2848. int retval;
  2849. /* mark timer as not initialized */
  2850. udc_timer.data = 0;
  2851. udc_pollstall_timer.data = 0;
  2852. /* device struct setup */
  2853. dev->gadget.ops = &udc_ops;
  2854. dev_set_name(&dev->gadget.dev, "gadget");
  2855. dev->gadget.name = name;
  2856. dev->gadget.max_speed = USB_SPEED_HIGH;
  2857. /* init registers, interrupts, ... */
  2858. startup_registers(dev);
  2859. dev_info(&dev->pdev->dev, "%s\n", mod_desc);
  2860. snprintf(tmp, sizeof tmp, "%d", dev->irq);
  2861. dev_info(&dev->pdev->dev,
  2862. "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
  2863. tmp, dev->phys_addr, dev->chiprev,
  2864. (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
  2865. strcpy(tmp, UDC_DRIVER_VERSION_STRING);
  2866. if (dev->chiprev == UDC_HSA0_REV) {
  2867. dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
  2868. retval = -ENODEV;
  2869. goto finished;
  2870. }
  2871. dev_info(&dev->pdev->dev,
  2872. "driver version: %s(for Geode5536 B1)\n", tmp);
  2873. udc = dev;
  2874. retval = usb_add_gadget_udc_release(&udc->pdev->dev, &dev->gadget,
  2875. gadget_release);
  2876. if (retval)
  2877. goto finished;
  2878. /* timer init */
  2879. init_timer(&udc_timer);
  2880. udc_timer.function = udc_timer_function;
  2881. udc_timer.data = 1;
  2882. /* timer pollstall init */
  2883. init_timer(&udc_pollstall_timer);
  2884. udc_pollstall_timer.function = udc_pollstall_timer_function;
  2885. udc_pollstall_timer.data = 1;
  2886. /* set SD */
  2887. reg = readl(&dev->regs->ctl);
  2888. reg |= AMD_BIT(UDC_DEVCTL_SD);
  2889. writel(reg, &dev->regs->ctl);
  2890. /* print dev register info */
  2891. print_regs(dev);
  2892. return 0;
  2893. finished:
  2894. return retval;
  2895. }
  2896. /* Initiates a remote wakeup */
  2897. static int udc_remote_wakeup(struct udc *dev)
  2898. {
  2899. unsigned long flags;
  2900. u32 tmp;
  2901. DBG(dev, "UDC initiates remote wakeup\n");
  2902. spin_lock_irqsave(&dev->lock, flags);
  2903. tmp = readl(&dev->regs->ctl);
  2904. tmp |= AMD_BIT(UDC_DEVCTL_RES);
  2905. writel(tmp, &dev->regs->ctl);
  2906. tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
  2907. writel(tmp, &dev->regs->ctl);
  2908. spin_unlock_irqrestore(&dev->lock, flags);
  2909. return 0;
  2910. }
  2911. /* PCI device parameters */
  2912. static const struct pci_device_id pci_id[] = {
  2913. {
  2914. PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
  2915. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2916. .class_mask = 0xffffffff,
  2917. },
  2918. {},
  2919. };
  2920. MODULE_DEVICE_TABLE(pci, pci_id);
  2921. /* PCI functions */
  2922. static struct pci_driver udc_pci_driver = {
  2923. .name = (char *) name,
  2924. .id_table = pci_id,
  2925. .probe = udc_pci_probe,
  2926. .remove = udc_pci_remove,
  2927. };
  2928. module_pci_driver(udc_pci_driver);
  2929. MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
  2930. MODULE_AUTHOR("Thomas Dahlmann");
  2931. MODULE_LICENSE("GPL");