spi-dw.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623
  1. /*
  2. * Designware SPI core controller driver (refer pxa2xx_spi.c)
  3. *
  4. * Copyright (c) 2009, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. */
  15. #include <linux/dma-mapping.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/module.h>
  18. #include <linux/highmem.h>
  19. #include <linux/delay.h>
  20. #include <linux/slab.h>
  21. #include <linux/spi/spi.h>
  22. #include <linux/gpio.h>
  23. #include "spi-dw.h"
  24. #ifdef CONFIG_DEBUG_FS
  25. #include <linux/debugfs.h>
  26. #endif
  27. /* Slave spi_dev related */
  28. struct chip_data {
  29. u16 cr0;
  30. u8 cs; /* chip select pin */
  31. u8 n_bytes; /* current is a 1/2/4 byte op */
  32. u8 tmode; /* TR/TO/RO/EEPROM */
  33. u8 type; /* SPI/SSP/MicroWire */
  34. u8 poll_mode; /* 1 means use poll mode */
  35. u32 dma_width;
  36. u32 rx_threshold;
  37. u32 tx_threshold;
  38. u8 enable_dma;
  39. u8 bits_per_word;
  40. u16 clk_div; /* baud rate divider */
  41. u32 speed_hz; /* baud rate */
  42. void (*cs_control)(u32 command);
  43. };
  44. #ifdef CONFIG_DEBUG_FS
  45. #define SPI_REGS_BUFSIZE 1024
  46. static ssize_t dw_spi_show_regs(struct file *file, char __user *user_buf,
  47. size_t count, loff_t *ppos)
  48. {
  49. struct dw_spi *dws = file->private_data;
  50. char *buf;
  51. u32 len = 0;
  52. ssize_t ret;
  53. buf = kzalloc(SPI_REGS_BUFSIZE, GFP_KERNEL);
  54. if (!buf)
  55. return 0;
  56. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  57. "%s registers:\n", dev_name(&dws->master->dev));
  58. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  59. "=================================\n");
  60. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  61. "CTRL0: \t\t0x%08x\n", dw_readl(dws, DW_SPI_CTRL0));
  62. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  63. "CTRL1: \t\t0x%08x\n", dw_readl(dws, DW_SPI_CTRL1));
  64. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  65. "SSIENR: \t0x%08x\n", dw_readl(dws, DW_SPI_SSIENR));
  66. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  67. "SER: \t\t0x%08x\n", dw_readl(dws, DW_SPI_SER));
  68. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  69. "BAUDR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_BAUDR));
  70. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  71. "TXFTLR: \t0x%08x\n", dw_readl(dws, DW_SPI_TXFLTR));
  72. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  73. "RXFTLR: \t0x%08x\n", dw_readl(dws, DW_SPI_RXFLTR));
  74. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  75. "TXFLR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_TXFLR));
  76. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  77. "RXFLR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_RXFLR));
  78. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  79. "SR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_SR));
  80. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  81. "IMR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_IMR));
  82. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  83. "ISR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_ISR));
  84. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  85. "DMACR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_DMACR));
  86. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  87. "DMATDLR: \t0x%08x\n", dw_readl(dws, DW_SPI_DMATDLR));
  88. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  89. "DMARDLR: \t0x%08x\n", dw_readl(dws, DW_SPI_DMARDLR));
  90. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  91. "=================================\n");
  92. ret = simple_read_from_buffer(user_buf, count, ppos, buf, len);
  93. kfree(buf);
  94. return ret;
  95. }
  96. static const struct file_operations dw_spi_regs_ops = {
  97. .owner = THIS_MODULE,
  98. .open = simple_open,
  99. .read = dw_spi_show_regs,
  100. .llseek = default_llseek,
  101. };
  102. static int dw_spi_debugfs_init(struct dw_spi *dws)
  103. {
  104. dws->debugfs = debugfs_create_dir("dw_spi", NULL);
  105. if (!dws->debugfs)
  106. return -ENOMEM;
  107. debugfs_create_file("registers", S_IFREG | S_IRUGO,
  108. dws->debugfs, (void *)dws, &dw_spi_regs_ops);
  109. return 0;
  110. }
  111. static void dw_spi_debugfs_remove(struct dw_spi *dws)
  112. {
  113. debugfs_remove_recursive(dws->debugfs);
  114. }
  115. #else
  116. static inline int dw_spi_debugfs_init(struct dw_spi *dws)
  117. {
  118. return 0;
  119. }
  120. static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
  121. {
  122. }
  123. #endif /* CONFIG_DEBUG_FS */
  124. static void dw_spi_set_cs(struct spi_device *spi, bool enable)
  125. {
  126. struct dw_spi *dws = spi_master_get_devdata(spi->master);
  127. struct chip_data *chip = spi_get_ctldata(spi);
  128. /* Chip select logic is inverted from spi_set_cs() */
  129. if (chip && chip->cs_control)
  130. chip->cs_control(!enable);
  131. if (!enable)
  132. dw_writel(dws, DW_SPI_SER, BIT(spi->chip_select));
  133. }
  134. /* Return the max entries we can fill into tx fifo */
  135. static inline u32 tx_max(struct dw_spi *dws)
  136. {
  137. u32 tx_left, tx_room, rxtx_gap;
  138. tx_left = (dws->tx_end - dws->tx) / dws->n_bytes;
  139. tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
  140. /*
  141. * Another concern is about the tx/rx mismatch, we
  142. * though to use (dws->fifo_len - rxflr - txflr) as
  143. * one maximum value for tx, but it doesn't cover the
  144. * data which is out of tx/rx fifo and inside the
  145. * shift registers. So a control from sw point of
  146. * view is taken.
  147. */
  148. rxtx_gap = ((dws->rx_end - dws->rx) - (dws->tx_end - dws->tx))
  149. / dws->n_bytes;
  150. return min3(tx_left, tx_room, (u32) (dws->fifo_len - rxtx_gap));
  151. }
  152. /* Return the max entries we should read out of rx fifo */
  153. static inline u32 rx_max(struct dw_spi *dws)
  154. {
  155. u32 rx_left = (dws->rx_end - dws->rx) / dws->n_bytes;
  156. return min_t(u32, rx_left, dw_readl(dws, DW_SPI_RXFLR));
  157. }
  158. static void dw_writer(struct dw_spi *dws)
  159. {
  160. u32 max = tx_max(dws);
  161. u16 txw = 0;
  162. while (max--) {
  163. /* Set the tx word if the transfer's original "tx" is not null */
  164. if (dws->tx_end - dws->len) {
  165. if (dws->n_bytes == 1)
  166. txw = *(u8 *)(dws->tx);
  167. else
  168. txw = *(u16 *)(dws->tx);
  169. }
  170. dw_write_io_reg(dws, DW_SPI_DR, txw);
  171. dws->tx += dws->n_bytes;
  172. }
  173. }
  174. static void dw_reader(struct dw_spi *dws)
  175. {
  176. u32 max = rx_max(dws);
  177. u16 rxw;
  178. while (max--) {
  179. rxw = dw_read_io_reg(dws, DW_SPI_DR);
  180. /* Care rx only if the transfer's original "rx" is not null */
  181. if (dws->rx_end - dws->len) {
  182. if (dws->n_bytes == 1)
  183. *(u8 *)(dws->rx) = rxw;
  184. else
  185. *(u16 *)(dws->rx) = rxw;
  186. }
  187. dws->rx += dws->n_bytes;
  188. }
  189. }
  190. static void int_error_stop(struct dw_spi *dws, const char *msg)
  191. {
  192. spi_reset_chip(dws);
  193. dev_err(&dws->master->dev, "%s\n", msg);
  194. dws->master->cur_msg->status = -EIO;
  195. spi_finalize_current_transfer(dws->master);
  196. }
  197. static irqreturn_t interrupt_transfer(struct dw_spi *dws)
  198. {
  199. u16 irq_status = dw_readl(dws, DW_SPI_ISR);
  200. /* Error handling */
  201. if (irq_status & (SPI_INT_TXOI | SPI_INT_RXOI | SPI_INT_RXUI)) {
  202. dw_readl(dws, DW_SPI_ICR);
  203. int_error_stop(dws, "interrupt_transfer: fifo overrun/underrun");
  204. return IRQ_HANDLED;
  205. }
  206. dw_reader(dws);
  207. if (dws->rx_end == dws->rx) {
  208. spi_mask_intr(dws, SPI_INT_TXEI);
  209. spi_finalize_current_transfer(dws->master);
  210. return IRQ_HANDLED;
  211. }
  212. if (irq_status & SPI_INT_TXEI) {
  213. spi_mask_intr(dws, SPI_INT_TXEI);
  214. dw_writer(dws);
  215. /* Enable TX irq always, it will be disabled when RX finished */
  216. spi_umask_intr(dws, SPI_INT_TXEI);
  217. }
  218. return IRQ_HANDLED;
  219. }
  220. static irqreturn_t dw_spi_irq(int irq, void *dev_id)
  221. {
  222. struct spi_master *master = dev_id;
  223. struct dw_spi *dws = spi_master_get_devdata(master);
  224. u16 irq_status = dw_readl(dws, DW_SPI_ISR) & 0x3f;
  225. if (!irq_status)
  226. return IRQ_NONE;
  227. if (!master->cur_msg) {
  228. spi_mask_intr(dws, SPI_INT_TXEI);
  229. return IRQ_HANDLED;
  230. }
  231. return dws->transfer_handler(dws);
  232. }
  233. /* Must be called inside pump_transfers() */
  234. static int poll_transfer(struct dw_spi *dws)
  235. {
  236. do {
  237. dw_writer(dws);
  238. dw_reader(dws);
  239. cpu_relax();
  240. } while (dws->rx_end > dws->rx);
  241. return 0;
  242. }
  243. static int dw_spi_transfer_one(struct spi_master *master,
  244. struct spi_device *spi, struct spi_transfer *transfer)
  245. {
  246. struct dw_spi *dws = spi_master_get_devdata(master);
  247. struct chip_data *chip = spi_get_ctldata(spi);
  248. u8 imask = 0;
  249. u16 txlevel = 0;
  250. u16 clk_div = 0;
  251. u32 speed = 0;
  252. u32 cr0 = 0;
  253. int ret;
  254. dws->dma_mapped = 0;
  255. dws->n_bytes = chip->n_bytes;
  256. dws->dma_width = chip->dma_width;
  257. dws->tx = (void *)transfer->tx_buf;
  258. dws->tx_end = dws->tx + transfer->len;
  259. dws->rx = transfer->rx_buf;
  260. dws->rx_end = dws->rx + transfer->len;
  261. dws->len = transfer->len;
  262. spi_enable_chip(dws, 0);
  263. cr0 = chip->cr0;
  264. /* Handle per transfer options for bpw and speed */
  265. if (transfer->speed_hz) {
  266. speed = chip->speed_hz;
  267. if ((transfer->speed_hz != speed) || !chip->clk_div) {
  268. speed = transfer->speed_hz;
  269. /* clk_div doesn't support odd number */
  270. clk_div = (dws->max_freq / speed + 1) & 0xfffe;
  271. chip->speed_hz = speed;
  272. chip->clk_div = clk_div;
  273. spi_set_clk(dws, chip->clk_div);
  274. }
  275. }
  276. if (transfer->bits_per_word) {
  277. if (transfer->bits_per_word == 8) {
  278. dws->n_bytes = 1;
  279. dws->dma_width = 1;
  280. } else if (transfer->bits_per_word == 16) {
  281. dws->n_bytes = 2;
  282. dws->dma_width = 2;
  283. }
  284. cr0 = (transfer->bits_per_word - 1)
  285. | (chip->type << SPI_FRF_OFFSET)
  286. | (spi->mode << SPI_MODE_OFFSET)
  287. | (chip->tmode << SPI_TMOD_OFFSET);
  288. }
  289. /*
  290. * Adjust transfer mode if necessary. Requires platform dependent
  291. * chipselect mechanism.
  292. */
  293. if (chip->cs_control) {
  294. if (dws->rx && dws->tx)
  295. chip->tmode = SPI_TMOD_TR;
  296. else if (dws->rx)
  297. chip->tmode = SPI_TMOD_RO;
  298. else
  299. chip->tmode = SPI_TMOD_TO;
  300. cr0 &= ~SPI_TMOD_MASK;
  301. cr0 |= (chip->tmode << SPI_TMOD_OFFSET);
  302. }
  303. dw_writel(dws, DW_SPI_CTRL0, cr0);
  304. /* Check if current transfer is a DMA transaction */
  305. if (master->can_dma && master->can_dma(master, spi, transfer))
  306. dws->dma_mapped = master->cur_msg_mapped;
  307. /* For poll mode just disable all interrupts */
  308. spi_mask_intr(dws, 0xff);
  309. /*
  310. * Interrupt mode
  311. * we only need set the TXEI IRQ, as TX/RX always happen syncronizely
  312. */
  313. if (dws->dma_mapped) {
  314. ret = dws->dma_ops->dma_setup(dws, transfer);
  315. if (ret < 0) {
  316. spi_enable_chip(dws, 1);
  317. return ret;
  318. }
  319. } else if (!chip->poll_mode) {
  320. txlevel = min_t(u16, dws->fifo_len / 2, dws->len / dws->n_bytes);
  321. dw_writel(dws, DW_SPI_TXFLTR, txlevel);
  322. /* Set the interrupt mask */
  323. imask |= SPI_INT_TXEI | SPI_INT_TXOI |
  324. SPI_INT_RXUI | SPI_INT_RXOI;
  325. spi_umask_intr(dws, imask);
  326. dws->transfer_handler = interrupt_transfer;
  327. }
  328. spi_enable_chip(dws, 1);
  329. if (dws->dma_mapped) {
  330. ret = dws->dma_ops->dma_transfer(dws, transfer);
  331. if (ret < 0)
  332. return ret;
  333. }
  334. if (chip->poll_mode)
  335. return poll_transfer(dws);
  336. return 1;
  337. }
  338. static void dw_spi_handle_err(struct spi_master *master,
  339. struct spi_message *msg)
  340. {
  341. struct dw_spi *dws = spi_master_get_devdata(master);
  342. if (dws->dma_mapped)
  343. dws->dma_ops->dma_stop(dws);
  344. spi_reset_chip(dws);
  345. }
  346. /* This may be called twice for each spi dev */
  347. static int dw_spi_setup(struct spi_device *spi)
  348. {
  349. struct dw_spi_chip *chip_info = NULL;
  350. struct chip_data *chip;
  351. int ret;
  352. /* Only alloc on first setup */
  353. chip = spi_get_ctldata(spi);
  354. if (!chip) {
  355. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  356. if (!chip)
  357. return -ENOMEM;
  358. spi_set_ctldata(spi, chip);
  359. }
  360. /*
  361. * Protocol drivers may change the chip settings, so...
  362. * if chip_info exists, use it
  363. */
  364. chip_info = spi->controller_data;
  365. /* chip_info doesn't always exist */
  366. if (chip_info) {
  367. if (chip_info->cs_control)
  368. chip->cs_control = chip_info->cs_control;
  369. chip->poll_mode = chip_info->poll_mode;
  370. chip->type = chip_info->type;
  371. chip->rx_threshold = 0;
  372. chip->tx_threshold = 0;
  373. }
  374. if (spi->bits_per_word == 8) {
  375. chip->n_bytes = 1;
  376. chip->dma_width = 1;
  377. } else if (spi->bits_per_word == 16) {
  378. chip->n_bytes = 2;
  379. chip->dma_width = 2;
  380. }
  381. chip->bits_per_word = spi->bits_per_word;
  382. if (!spi->max_speed_hz) {
  383. dev_err(&spi->dev, "No max speed HZ parameter\n");
  384. return -EINVAL;
  385. }
  386. chip->tmode = 0; /* Tx & Rx */
  387. /* Default SPI mode is SCPOL = 0, SCPH = 0 */
  388. chip->cr0 = (chip->bits_per_word - 1)
  389. | (chip->type << SPI_FRF_OFFSET)
  390. | (spi->mode << SPI_MODE_OFFSET)
  391. | (chip->tmode << SPI_TMOD_OFFSET);
  392. if (spi->mode & SPI_LOOP)
  393. chip->cr0 |= 1 << SPI_SRL_OFFSET;
  394. if (gpio_is_valid(spi->cs_gpio)) {
  395. ret = gpio_direction_output(spi->cs_gpio,
  396. !(spi->mode & SPI_CS_HIGH));
  397. if (ret)
  398. return ret;
  399. }
  400. return 0;
  401. }
  402. static void dw_spi_cleanup(struct spi_device *spi)
  403. {
  404. struct chip_data *chip = spi_get_ctldata(spi);
  405. kfree(chip);
  406. spi_set_ctldata(spi, NULL);
  407. }
  408. /* Restart the controller, disable all interrupts, clean rx fifo */
  409. static void spi_hw_init(struct device *dev, struct dw_spi *dws)
  410. {
  411. spi_reset_chip(dws);
  412. /*
  413. * Try to detect the FIFO depth if not set by interface driver,
  414. * the depth could be from 2 to 256 from HW spec
  415. */
  416. if (!dws->fifo_len) {
  417. u32 fifo;
  418. for (fifo = 1; fifo < 256; fifo++) {
  419. dw_writel(dws, DW_SPI_TXFLTR, fifo);
  420. if (fifo != dw_readl(dws, DW_SPI_TXFLTR))
  421. break;
  422. }
  423. dw_writel(dws, DW_SPI_TXFLTR, 0);
  424. dws->fifo_len = (fifo == 1) ? 0 : fifo;
  425. dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
  426. }
  427. }
  428. int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
  429. {
  430. struct spi_master *master;
  431. int ret;
  432. BUG_ON(dws == NULL);
  433. master = spi_alloc_master(dev, 0);
  434. if (!master)
  435. return -ENOMEM;
  436. dws->master = master;
  437. dws->type = SSI_MOTO_SPI;
  438. dws->dma_inited = 0;
  439. dws->dma_addr = (dma_addr_t)(dws->paddr + 0x60);
  440. snprintf(dws->name, sizeof(dws->name), "dw_spi%d", dws->bus_num);
  441. ret = devm_request_irq(dev, dws->irq, dw_spi_irq, IRQF_SHARED,
  442. dws->name, master);
  443. if (ret < 0) {
  444. dev_err(&master->dev, "can not get IRQ\n");
  445. goto err_free_master;
  446. }
  447. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
  448. master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
  449. master->bus_num = dws->bus_num;
  450. master->num_chipselect = dws->num_cs;
  451. master->setup = dw_spi_setup;
  452. master->cleanup = dw_spi_cleanup;
  453. master->set_cs = dw_spi_set_cs;
  454. master->transfer_one = dw_spi_transfer_one;
  455. master->handle_err = dw_spi_handle_err;
  456. master->max_speed_hz = dws->max_freq;
  457. master->dev.of_node = dev->of_node;
  458. /* Basic HW init */
  459. spi_hw_init(dev, dws);
  460. if (dws->dma_ops && dws->dma_ops->dma_init) {
  461. ret = dws->dma_ops->dma_init(dws);
  462. if (ret) {
  463. dev_warn(dev, "DMA init failed\n");
  464. dws->dma_inited = 0;
  465. } else {
  466. master->can_dma = dws->dma_ops->can_dma;
  467. }
  468. }
  469. spi_master_set_devdata(master, dws);
  470. ret = devm_spi_register_master(dev, master);
  471. if (ret) {
  472. dev_err(&master->dev, "problem registering spi master\n");
  473. goto err_dma_exit;
  474. }
  475. dw_spi_debugfs_init(dws);
  476. return 0;
  477. err_dma_exit:
  478. if (dws->dma_ops && dws->dma_ops->dma_exit)
  479. dws->dma_ops->dma_exit(dws);
  480. spi_enable_chip(dws, 0);
  481. err_free_master:
  482. spi_master_put(master);
  483. return ret;
  484. }
  485. EXPORT_SYMBOL_GPL(dw_spi_add_host);
  486. void dw_spi_remove_host(struct dw_spi *dws)
  487. {
  488. if (!dws)
  489. return;
  490. dw_spi_debugfs_remove(dws);
  491. if (dws->dma_ops && dws->dma_ops->dma_exit)
  492. dws->dma_ops->dma_exit(dws);
  493. spi_enable_chip(dws, 0);
  494. /* Disable clk */
  495. spi_set_clk(dws, 0);
  496. }
  497. EXPORT_SYMBOL_GPL(dw_spi_remove_host);
  498. int dw_spi_suspend_host(struct dw_spi *dws)
  499. {
  500. int ret = 0;
  501. ret = spi_master_suspend(dws->master);
  502. if (ret)
  503. return ret;
  504. spi_enable_chip(dws, 0);
  505. spi_set_clk(dws, 0);
  506. return ret;
  507. }
  508. EXPORT_SYMBOL_GPL(dw_spi_suspend_host);
  509. int dw_spi_resume_host(struct dw_spi *dws)
  510. {
  511. int ret;
  512. spi_hw_init(&dws->master->dev, dws);
  513. ret = spi_master_resume(dws->master);
  514. if (ret)
  515. dev_err(&dws->master->dev, "fail to start queue (%d)\n", ret);
  516. return ret;
  517. }
  518. EXPORT_SYMBOL_GPL(dw_spi_resume_host);
  519. MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
  520. MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
  521. MODULE_LICENSE("GPL v2");