hw.c 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2014 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * The full GNU General Public License is included in this distribution in the
  15. * file called LICENSE.
  16. *
  17. * Contact Information:
  18. * wlanfae <wlanfae@realtek.com>
  19. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  20. * Hsinchu 300, Taiwan.
  21. *
  22. * Larry Finger <Larry.Finger@lwfinger.net>
  23. *
  24. *****************************************************************************/
  25. #include "../wifi.h"
  26. #include "../efuse.h"
  27. #include "../base.h"
  28. #include "../regd.h"
  29. #include "../cam.h"
  30. #include "../ps.h"
  31. #include "../pci.h"
  32. #include "reg.h"
  33. #include "def.h"
  34. #include "phy.h"
  35. #include "../rtl8723com/phy_common.h"
  36. #include "dm.h"
  37. #include "../rtl8723com/dm_common.h"
  38. #include "fw.h"
  39. #include "../rtl8723com/fw_common.h"
  40. #include "led.h"
  41. #include "hw.h"
  42. #include "../pwrseqcmd.h"
  43. #include "pwrseq.h"
  44. #include "../btcoexist/rtl_btc.h"
  45. #define LLT_CONFIG 5
  46. static void _rtl8723be_return_beacon_queue_skb(struct ieee80211_hw *hw)
  47. {
  48. struct rtl_priv *rtlpriv = rtl_priv(hw);
  49. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  50. struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[BEACON_QUEUE];
  51. unsigned long flags;
  52. spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags);
  53. while (skb_queue_len(&ring->queue)) {
  54. struct rtl_tx_desc *entry = &ring->desc[ring->idx];
  55. struct sk_buff *skb = __skb_dequeue(&ring->queue);
  56. pci_unmap_single(rtlpci->pdev,
  57. rtlpriv->cfg->ops->get_desc(
  58. (u8 *)entry, true, HW_DESC_TXBUFF_ADDR),
  59. skb->len, PCI_DMA_TODEVICE);
  60. kfree_skb(skb);
  61. ring->idx = (ring->idx + 1) % ring->entries;
  62. }
  63. spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
  64. }
  65. static void _rtl8723be_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
  66. u8 set_bits, u8 clear_bits)
  67. {
  68. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  69. struct rtl_priv *rtlpriv = rtl_priv(hw);
  70. rtlpci->reg_bcn_ctrl_val |= set_bits;
  71. rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
  72. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8)rtlpci->reg_bcn_ctrl_val);
  73. }
  74. static void _rtl8723be_stop_tx_beacon(struct ieee80211_hw *hw)
  75. {
  76. struct rtl_priv *rtlpriv = rtl_priv(hw);
  77. u8 tmp1byte;
  78. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  79. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
  80. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
  81. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  82. tmp1byte &= ~(BIT(0));
  83. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  84. }
  85. static void _rtl8723be_resume_tx_beacon(struct ieee80211_hw *hw)
  86. {
  87. struct rtl_priv *rtlpriv = rtl_priv(hw);
  88. u8 tmp1byte;
  89. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  90. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
  91. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  92. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  93. tmp1byte |= BIT(1);
  94. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  95. }
  96. static void _rtl8723be_enable_bcn_sub_func(struct ieee80211_hw *hw)
  97. {
  98. _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(1));
  99. }
  100. static void _rtl8723be_disable_bcn_sub_func(struct ieee80211_hw *hw)
  101. {
  102. _rtl8723be_set_bcn_ctrl_reg(hw, BIT(1), 0);
  103. }
  104. static void _rtl8723be_set_fw_clock_on(struct ieee80211_hw *hw, u8 rpwm_val,
  105. bool b_need_turn_off_ckk)
  106. {
  107. struct rtl_priv *rtlpriv = rtl_priv(hw);
  108. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  109. bool b_support_remote_wake_up;
  110. u32 count = 0, isr_regaddr, content;
  111. bool b_schedule_timer = b_need_turn_off_ckk;
  112. rtlpriv->cfg->ops->get_hw_reg(hw, HAL_DEF_WOWLAN,
  113. (u8 *)(&b_support_remote_wake_up));
  114. if (!rtlhal->fw_ready)
  115. return;
  116. if (!rtlpriv->psc.fw_current_inpsmode)
  117. return;
  118. while (1) {
  119. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  120. if (rtlhal->fw_clk_change_in_progress) {
  121. while (rtlhal->fw_clk_change_in_progress) {
  122. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  123. count++;
  124. udelay(100);
  125. if (count > 1000)
  126. return;
  127. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  128. }
  129. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  130. } else {
  131. rtlhal->fw_clk_change_in_progress = false;
  132. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  133. break;
  134. }
  135. }
  136. if (IS_IN_LOW_POWER_STATE(rtlhal->fw_ps_state)) {
  137. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_SET_RPWM,
  138. (u8 *)(&rpwm_val));
  139. if (FW_PS_IS_ACK(rpwm_val)) {
  140. isr_regaddr = REG_HISR;
  141. content = rtl_read_dword(rtlpriv, isr_regaddr);
  142. while (!(content & IMR_CPWM) && (count < 500)) {
  143. udelay(50);
  144. count++;
  145. content = rtl_read_dword(rtlpriv, isr_regaddr);
  146. }
  147. if (content & IMR_CPWM) {
  148. rtl_write_word(rtlpriv, isr_regaddr, 0x0100);
  149. rtlhal->fw_ps_state = FW_PS_STATE_RF_ON;
  150. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
  151. "Receive CPWM INT!!! Set pHalData->FwPSState = %X\n",
  152. rtlhal->fw_ps_state);
  153. }
  154. }
  155. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  156. rtlhal->fw_clk_change_in_progress = false;
  157. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  158. if (b_schedule_timer)
  159. mod_timer(&rtlpriv->works.fw_clockoff_timer,
  160. jiffies + MSECS(10));
  161. } else {
  162. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  163. rtlhal->fw_clk_change_in_progress = false;
  164. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  165. }
  166. }
  167. static void _rtl8723be_set_fw_clock_off(struct ieee80211_hw *hw, u8 rpwm_val)
  168. {
  169. struct rtl_priv *rtlpriv = rtl_priv(hw);
  170. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  171. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  172. struct rtl8192_tx_ring *ring;
  173. enum rf_pwrstate rtstate;
  174. bool b_schedule_timer = false;
  175. u8 queue;
  176. if (!rtlhal->fw_ready)
  177. return;
  178. if (!rtlpriv->psc.fw_current_inpsmode)
  179. return;
  180. if (!rtlhal->allow_sw_to_change_hwclc)
  181. return;
  182. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *)(&rtstate));
  183. if (rtstate == ERFOFF || rtlpriv->psc.inactive_pwrstate == ERFOFF)
  184. return;
  185. for (queue = 0; queue < RTL_PCI_MAX_TX_QUEUE_COUNT; queue++) {
  186. ring = &rtlpci->tx_ring[queue];
  187. if (skb_queue_len(&ring->queue)) {
  188. b_schedule_timer = true;
  189. break;
  190. }
  191. }
  192. if (b_schedule_timer) {
  193. mod_timer(&rtlpriv->works.fw_clockoff_timer,
  194. jiffies + MSECS(10));
  195. return;
  196. }
  197. if (FW_PS_STATE(rtlhal->fw_ps_state) != FW_PS_STATE_RF_OFF_LOW_PWR) {
  198. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  199. if (!rtlhal->fw_clk_change_in_progress) {
  200. rtlhal->fw_clk_change_in_progress = true;
  201. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  202. rtlhal->fw_ps_state = FW_PS_STATE(rpwm_val);
  203. rtl_write_word(rtlpriv, REG_HISR, 0x0100);
  204. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
  205. (u8 *)(&rpwm_val));
  206. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  207. rtlhal->fw_clk_change_in_progress = false;
  208. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  209. } else {
  210. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  211. mod_timer(&rtlpriv->works.fw_clockoff_timer,
  212. jiffies + MSECS(10));
  213. }
  214. }
  215. }
  216. static void _rtl8723be_set_fw_ps_rf_on(struct ieee80211_hw *hw)
  217. {
  218. u8 rpwm_val = 0;
  219. rpwm_val |= (FW_PS_STATE_RF_OFF | FW_PS_ACK);
  220. _rtl8723be_set_fw_clock_on(hw, rpwm_val, true);
  221. }
  222. static void _rtl8723be_fwlps_leave(struct ieee80211_hw *hw)
  223. {
  224. struct rtl_priv *rtlpriv = rtl_priv(hw);
  225. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  226. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  227. bool fw_current_inps = false;
  228. u8 rpwm_val = 0, fw_pwrmode = FW_PS_ACTIVE_MODE;
  229. if (ppsc->low_power_enable) {
  230. rpwm_val = (FW_PS_STATE_ALL_ON | FW_PS_ACK);/* RF on */
  231. _rtl8723be_set_fw_clock_on(hw, rpwm_val, false);
  232. rtlhal->allow_sw_to_change_hwclc = false;
  233. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
  234. (u8 *)(&fw_pwrmode));
  235. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
  236. (u8 *)(&fw_current_inps));
  237. } else {
  238. rpwm_val = FW_PS_STATE_ALL_ON; /* RF on */
  239. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
  240. (u8 *)(&rpwm_val));
  241. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
  242. (u8 *)(&fw_pwrmode));
  243. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
  244. (u8 *)(&fw_current_inps));
  245. }
  246. }
  247. static void _rtl8723be_fwlps_enter(struct ieee80211_hw *hw)
  248. {
  249. struct rtl_priv *rtlpriv = rtl_priv(hw);
  250. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  251. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  252. bool fw_current_inps = true;
  253. u8 rpwm_val;
  254. if (ppsc->low_power_enable) {
  255. rpwm_val = FW_PS_STATE_RF_OFF_LOW_PWR; /* RF off */
  256. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
  257. (u8 *)(&fw_current_inps));
  258. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
  259. (u8 *)(&ppsc->fwctrl_psmode));
  260. rtlhal->allow_sw_to_change_hwclc = true;
  261. _rtl8723be_set_fw_clock_off(hw, rpwm_val);
  262. } else {
  263. rpwm_val = FW_PS_STATE_RF_OFF; /* RF off */
  264. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
  265. (u8 *)(&fw_current_inps));
  266. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
  267. (u8 *)(&ppsc->fwctrl_psmode));
  268. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
  269. (u8 *)(&rpwm_val));
  270. }
  271. }
  272. void rtl8723be_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  273. {
  274. struct rtl_priv *rtlpriv = rtl_priv(hw);
  275. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  276. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  277. switch (variable) {
  278. case HW_VAR_RCR:
  279. *((u32 *)(val)) = rtlpci->receive_config;
  280. break;
  281. case HW_VAR_RF_STATE:
  282. *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
  283. break;
  284. case HW_VAR_FWLPS_RF_ON:{
  285. enum rf_pwrstate rfState;
  286. u32 val_rcr;
  287. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
  288. (u8 *)(&rfState));
  289. if (rfState == ERFOFF) {
  290. *((bool *)(val)) = true;
  291. } else {
  292. val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  293. val_rcr &= 0x00070000;
  294. if (val_rcr)
  295. *((bool *)(val)) = false;
  296. else
  297. *((bool *)(val)) = true;
  298. }
  299. }
  300. break;
  301. case HW_VAR_FW_PSMODE_STATUS:
  302. *((bool *)(val)) = ppsc->fw_current_inpsmode;
  303. break;
  304. case HW_VAR_CORRECT_TSF:{
  305. u64 tsf;
  306. u32 *ptsf_low = (u32 *)&tsf;
  307. u32 *ptsf_high = ((u32 *)&tsf) + 1;
  308. *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
  309. *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
  310. *((u64 *)(val)) = tsf;
  311. }
  312. break;
  313. default:
  314. RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD,
  315. "switch case not process %x\n", variable);
  316. break;
  317. }
  318. }
  319. static void _rtl8723be_download_rsvd_page(struct ieee80211_hw *hw)
  320. {
  321. struct rtl_priv *rtlpriv = rtl_priv(hw);
  322. u8 tmp_regcr, tmp_reg422, bcnvalid_reg;
  323. u8 count = 0, dlbcn_count = 0;
  324. bool b_recover = false;
  325. tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
  326. rtl_write_byte(rtlpriv, REG_CR + 1,
  327. (tmp_regcr | BIT(0)));
  328. _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(3));
  329. _rtl8723be_set_bcn_ctrl_reg(hw, BIT(4), 0);
  330. tmp_reg422 = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  331. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422 & (~BIT(6)));
  332. if (tmp_reg422 & BIT(6))
  333. b_recover = true;
  334. do {
  335. bcnvalid_reg = rtl_read_byte(rtlpriv, REG_TDECTRL + 2);
  336. rtl_write_byte(rtlpriv, REG_TDECTRL + 2,
  337. (bcnvalid_reg | BIT(0)));
  338. _rtl8723be_return_beacon_queue_skb(hw);
  339. rtl8723be_set_fw_rsvdpagepkt(hw, 0);
  340. bcnvalid_reg = rtl_read_byte(rtlpriv, REG_TDECTRL + 2);
  341. count = 0;
  342. while (!(bcnvalid_reg & BIT(0)) && count < 20) {
  343. count++;
  344. udelay(10);
  345. bcnvalid_reg = rtl_read_byte(rtlpriv,
  346. REG_TDECTRL + 2);
  347. }
  348. dlbcn_count++;
  349. } while (!(bcnvalid_reg & BIT(0)) && dlbcn_count < 5);
  350. if (bcnvalid_reg & BIT(0))
  351. rtl_write_byte(rtlpriv, REG_TDECTRL + 2, BIT(0));
  352. _rtl8723be_set_bcn_ctrl_reg(hw, BIT(3), 0);
  353. _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(4));
  354. if (b_recover)
  355. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422);
  356. tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
  357. rtl_write_byte(rtlpriv, REG_CR + 1, (tmp_regcr & ~(BIT(0))));
  358. }
  359. void rtl8723be_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  360. {
  361. struct rtl_priv *rtlpriv = rtl_priv(hw);
  362. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  363. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  364. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  365. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  366. u8 idx;
  367. switch (variable) {
  368. case HW_VAR_ETHER_ADDR:
  369. for (idx = 0; idx < ETH_ALEN; idx++)
  370. rtl_write_byte(rtlpriv, (REG_MACID + idx), val[idx]);
  371. break;
  372. case HW_VAR_BASIC_RATE:{
  373. u16 b_rate_cfg = ((u16 *)val)[0];
  374. u8 rate_index = 0;
  375. b_rate_cfg = b_rate_cfg & 0x15f;
  376. b_rate_cfg |= 0x01;
  377. rtl_write_byte(rtlpriv, REG_RRSR, b_rate_cfg & 0xff);
  378. rtl_write_byte(rtlpriv, REG_RRSR + 1, (b_rate_cfg >> 8) & 0xff);
  379. while (b_rate_cfg > 0x1) {
  380. b_rate_cfg = (b_rate_cfg >> 1);
  381. rate_index++;
  382. }
  383. rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, rate_index);
  384. }
  385. break;
  386. case HW_VAR_BSSID:
  387. for (idx = 0; idx < ETH_ALEN; idx++)
  388. rtl_write_byte(rtlpriv, (REG_BSSID + idx), val[idx]);
  389. break;
  390. case HW_VAR_SIFS:
  391. rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
  392. rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
  393. rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
  394. rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
  395. if (!mac->ht_enable)
  396. rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, 0x0e0e);
  397. else
  398. rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
  399. *((u16 *)val));
  400. break;
  401. case HW_VAR_SLOT_TIME:{
  402. u8 e_aci;
  403. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  404. "HW_VAR_SLOT_TIME %x\n", val[0]);
  405. rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
  406. for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
  407. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM,
  408. (u8 *)(&e_aci));
  409. }
  410. }
  411. break;
  412. case HW_VAR_ACK_PREAMBLE:{
  413. u8 reg_tmp;
  414. u8 short_preamble = (bool)(*(u8 *)val);
  415. reg_tmp = rtl_read_byte(rtlpriv, REG_TRXPTCL_CTL + 2);
  416. if (short_preamble) {
  417. reg_tmp |= 0x02;
  418. rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp);
  419. } else {
  420. reg_tmp &= 0xFD;
  421. rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp);
  422. }
  423. }
  424. break;
  425. case HW_VAR_WPA_CONFIG:
  426. rtl_write_byte(rtlpriv, REG_SECCFG, *((u8 *)val));
  427. break;
  428. case HW_VAR_AMPDU_MIN_SPACE:{
  429. u8 min_spacing_to_set;
  430. u8 sec_min_space;
  431. min_spacing_to_set = *((u8 *)val);
  432. if (min_spacing_to_set <= 7) {
  433. sec_min_space = 0;
  434. if (min_spacing_to_set < sec_min_space)
  435. min_spacing_to_set = sec_min_space;
  436. mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) |
  437. min_spacing_to_set);
  438. *val = min_spacing_to_set;
  439. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  440. "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
  441. mac->min_space_cfg);
  442. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  443. mac->min_space_cfg);
  444. }
  445. }
  446. break;
  447. case HW_VAR_SHORTGI_DENSITY:{
  448. u8 density_to_set;
  449. density_to_set = *((u8 *)val);
  450. mac->min_space_cfg |= (density_to_set << 3);
  451. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  452. "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
  453. mac->min_space_cfg);
  454. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  455. mac->min_space_cfg);
  456. }
  457. break;
  458. case HW_VAR_AMPDU_FACTOR:{
  459. u8 regtoset_normal[4] = {0x41, 0xa8, 0x72, 0xb9};
  460. u8 factor_toset;
  461. u8 *p_regtoset = NULL;
  462. u8 index = 0;
  463. p_regtoset = regtoset_normal;
  464. factor_toset = *((u8 *)val);
  465. if (factor_toset <= 3) {
  466. factor_toset = (1 << (factor_toset + 2));
  467. if (factor_toset > 0xf)
  468. factor_toset = 0xf;
  469. for (index = 0; index < 4; index++) {
  470. if ((p_regtoset[index] & 0xf0) >
  471. (factor_toset << 4))
  472. p_regtoset[index] =
  473. (p_regtoset[index] & 0x0f) |
  474. (factor_toset << 4);
  475. if ((p_regtoset[index] & 0x0f) > factor_toset)
  476. p_regtoset[index] =
  477. (p_regtoset[index] & 0xf0) |
  478. (factor_toset);
  479. rtl_write_byte(rtlpriv,
  480. (REG_AGGLEN_LMT + index),
  481. p_regtoset[index]);
  482. }
  483. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  484. "Set HW_VAR_AMPDU_FACTOR: %#x\n",
  485. factor_toset);
  486. }
  487. }
  488. break;
  489. case HW_VAR_AC_PARAM:{
  490. u8 e_aci = *((u8 *)val);
  491. rtl8723_dm_init_edca_turbo(hw);
  492. if (rtlpci->acm_method != EACMWAY2_SW)
  493. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
  494. (u8 *)(&e_aci));
  495. }
  496. break;
  497. case HW_VAR_ACM_CTRL:{
  498. u8 e_aci = *((u8 *)val);
  499. union aci_aifsn *p_aci_aifsn =
  500. (union aci_aifsn *)(&(mac->ac[0].aifs));
  501. u8 acm = p_aci_aifsn->f.acm;
  502. u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
  503. acm_ctrl =
  504. acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
  505. if (acm) {
  506. switch (e_aci) {
  507. case AC0_BE:
  508. acm_ctrl |= ACMHW_BEQEN;
  509. break;
  510. case AC2_VI:
  511. acm_ctrl |= ACMHW_VIQEN;
  512. break;
  513. case AC3_VO:
  514. acm_ctrl |= ACMHW_VOQEN;
  515. break;
  516. default:
  517. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  518. "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
  519. acm);
  520. break;
  521. }
  522. } else {
  523. switch (e_aci) {
  524. case AC0_BE:
  525. acm_ctrl &= (~ACMHW_BEQEN);
  526. break;
  527. case AC2_VI:
  528. acm_ctrl &= (~ACMHW_VIQEN);
  529. break;
  530. case AC3_VO:
  531. acm_ctrl &= (~ACMHW_VOQEN);
  532. break;
  533. default:
  534. RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD,
  535. "switch case not process\n");
  536. break;
  537. }
  538. }
  539. RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
  540. "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
  541. acm_ctrl);
  542. rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
  543. }
  544. break;
  545. case HW_VAR_RCR:
  546. rtl_write_dword(rtlpriv, REG_RCR, ((u32 *)(val))[0]);
  547. rtlpci->receive_config = ((u32 *)(val))[0];
  548. break;
  549. case HW_VAR_RETRY_LIMIT:{
  550. u8 retry_limit = ((u8 *)(val))[0];
  551. rtl_write_word(rtlpriv, REG_RL,
  552. retry_limit << RETRY_LIMIT_SHORT_SHIFT |
  553. retry_limit << RETRY_LIMIT_LONG_SHIFT);
  554. }
  555. break;
  556. case HW_VAR_DUAL_TSF_RST:
  557. rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
  558. break;
  559. case HW_VAR_EFUSE_BYTES:
  560. rtlefuse->efuse_usedbytes = *((u16 *)val);
  561. break;
  562. case HW_VAR_EFUSE_USAGE:
  563. rtlefuse->efuse_usedpercentage = *((u8 *)val);
  564. break;
  565. case HW_VAR_IO_CMD:
  566. rtl8723be_phy_set_io_cmd(hw, (*(enum io_type *)val));
  567. break;
  568. case HW_VAR_SET_RPWM:{
  569. u8 rpwm_val;
  570. rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM);
  571. udelay(1);
  572. if (rpwm_val & BIT(7)) {
  573. rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, (*(u8 *)val));
  574. } else {
  575. rtl_write_byte(rtlpriv, REG_PCIE_HRPWM,
  576. ((*(u8 *)val) | BIT(7)));
  577. }
  578. }
  579. break;
  580. case HW_VAR_H2C_FW_PWRMODE:
  581. rtl8723be_set_fw_pwrmode_cmd(hw, (*(u8 *)val));
  582. break;
  583. case HW_VAR_FW_PSMODE_STATUS:
  584. ppsc->fw_current_inpsmode = *((bool *)val);
  585. break;
  586. case HW_VAR_RESUME_CLK_ON:
  587. _rtl8723be_set_fw_ps_rf_on(hw);
  588. break;
  589. case HW_VAR_FW_LPS_ACTION:{
  590. bool b_enter_fwlps = *((bool *)val);
  591. if (b_enter_fwlps)
  592. _rtl8723be_fwlps_enter(hw);
  593. else
  594. _rtl8723be_fwlps_leave(hw);
  595. }
  596. break;
  597. case HW_VAR_H2C_FW_JOINBSSRPT:{
  598. u8 mstatus = (*(u8 *)val);
  599. if (mstatus == RT_MEDIA_CONNECT) {
  600. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID, NULL);
  601. _rtl8723be_download_rsvd_page(hw);
  602. }
  603. rtl8723be_set_fw_media_status_rpt_cmd(hw, mstatus);
  604. }
  605. break;
  606. case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
  607. rtl8723be_set_p2p_ps_offload_cmd(hw, (*(u8 *)val));
  608. break;
  609. case HW_VAR_AID:{
  610. u16 u2btmp;
  611. u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
  612. u2btmp &= 0xC000;
  613. rtl_write_word(rtlpriv, REG_BCN_PSR_RPT,
  614. (u2btmp | mac->assoc_id));
  615. }
  616. break;
  617. case HW_VAR_CORRECT_TSF:{
  618. u8 btype_ibss = ((u8 *)(val))[0];
  619. if (btype_ibss)
  620. _rtl8723be_stop_tx_beacon(hw);
  621. _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(3));
  622. rtl_write_dword(rtlpriv, REG_TSFTR,
  623. (u32) (mac->tsf & 0xffffffff));
  624. rtl_write_dword(rtlpriv, REG_TSFTR + 4,
  625. (u32) ((mac->tsf >> 32) & 0xffffffff));
  626. _rtl8723be_set_bcn_ctrl_reg(hw, BIT(3), 0);
  627. if (btype_ibss)
  628. _rtl8723be_resume_tx_beacon(hw);
  629. }
  630. break;
  631. case HW_VAR_KEEP_ALIVE:{
  632. u8 array[2];
  633. array[0] = 0xff;
  634. array[1] = *((u8 *)val);
  635. rtl8723be_fill_h2c_cmd(hw, H2C_8723B_KEEP_ALIVE_CTRL, 2, array);
  636. }
  637. break;
  638. default:
  639. RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD,
  640. "switch case not process %x\n",
  641. variable);
  642. break;
  643. }
  644. }
  645. static bool _rtl8723be_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
  646. {
  647. struct rtl_priv *rtlpriv = rtl_priv(hw);
  648. bool status = true;
  649. long count = 0;
  650. u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) |
  651. _LLT_OP(_LLT_WRITE_ACCESS);
  652. rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
  653. do {
  654. value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
  655. if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
  656. break;
  657. if (count > POLLING_LLT_THRESHOLD) {
  658. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  659. "Failed to polling write LLT done at address %d!\n",
  660. address);
  661. status = false;
  662. break;
  663. }
  664. } while (++count);
  665. return status;
  666. }
  667. static bool _rtl8723be_llt_table_init(struct ieee80211_hw *hw)
  668. {
  669. struct rtl_priv *rtlpriv = rtl_priv(hw);
  670. unsigned short i;
  671. u8 txpktbuf_bndy;
  672. u8 maxPage;
  673. bool status;
  674. maxPage = 255;
  675. txpktbuf_bndy = 245;
  676. rtl_write_dword(rtlpriv, REG_TRXFF_BNDY,
  677. (0x27FF0000 | txpktbuf_bndy));
  678. rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
  679. rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
  680. rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
  681. rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
  682. rtl_write_byte(rtlpriv, REG_PBP, 0x31);
  683. rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
  684. for (i = 0; i < (txpktbuf_bndy - 1); i++) {
  685. status = _rtl8723be_llt_write(hw, i, i + 1);
  686. if (!status)
  687. return status;
  688. }
  689. status = _rtl8723be_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
  690. if (!status)
  691. return status;
  692. for (i = txpktbuf_bndy; i < maxPage; i++) {
  693. status = _rtl8723be_llt_write(hw, i, (i + 1));
  694. if (!status)
  695. return status;
  696. }
  697. status = _rtl8723be_llt_write(hw, maxPage, txpktbuf_bndy);
  698. if (!status)
  699. return status;
  700. rtl_write_dword(rtlpriv, REG_RQPN, 0x80e40808);
  701. rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x00);
  702. return true;
  703. }
  704. static void _rtl8723be_gen_refresh_led_state(struct ieee80211_hw *hw)
  705. {
  706. struct rtl_priv *rtlpriv = rtl_priv(hw);
  707. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  708. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  709. struct rtl_led *pled0 = &(pcipriv->ledctl.sw_led0);
  710. if (rtlpriv->rtlhal.up_first_time)
  711. return;
  712. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
  713. rtl8723be_sw_led_on(hw, pled0);
  714. else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
  715. rtl8723be_sw_led_on(hw, pled0);
  716. else
  717. rtl8723be_sw_led_off(hw, pled0);
  718. }
  719. static bool _rtl8723be_init_mac(struct ieee80211_hw *hw)
  720. {
  721. struct rtl_priv *rtlpriv = rtl_priv(hw);
  722. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  723. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  724. unsigned char bytetmp;
  725. unsigned short wordtmp;
  726. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
  727. /*Auto Power Down to CHIP-off State*/
  728. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) & (~BIT(7));
  729. rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
  730. /* HW Power on sequence */
  731. if (!rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK,
  732. PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK,
  733. RTL8723_NIC_ENABLE_FLOW)) {
  734. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  735. "init MAC Fail as power on failure\n");
  736. return false;
  737. }
  738. bytetmp = rtl_read_byte(rtlpriv, REG_MULTI_FUNC_CTRL);
  739. rtl_write_byte(rtlpriv, REG_MULTI_FUNC_CTRL, bytetmp | BIT(3));
  740. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO) | BIT(4);
  741. rtl_write_byte(rtlpriv, REG_APS_FSMCO, bytetmp);
  742. bytetmp = rtl_read_byte(rtlpriv, REG_CR);
  743. bytetmp = 0xff;
  744. rtl_write_byte(rtlpriv, REG_CR, bytetmp);
  745. mdelay(2);
  746. bytetmp = rtl_read_byte(rtlpriv, REG_HWSEQ_CTRL);
  747. bytetmp |= 0x7f;
  748. rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, bytetmp);
  749. mdelay(2);
  750. bytetmp = rtl_read_byte(rtlpriv, REG_SYS_CFG + 3);
  751. if (bytetmp & BIT(0)) {
  752. bytetmp = rtl_read_byte(rtlpriv, 0x7c);
  753. rtl_write_byte(rtlpriv, 0x7c, bytetmp | BIT(6));
  754. }
  755. bytetmp = rtl_read_byte(rtlpriv, REG_SYS_CLKR);
  756. rtl_write_byte(rtlpriv, REG_SYS_CLKR, bytetmp | BIT(3));
  757. bytetmp = rtl_read_byte(rtlpriv, REG_GPIO_MUXCFG + 1);
  758. rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG + 1, bytetmp & (~BIT(4)));
  759. rtl_write_word(rtlpriv, REG_CR, 0x2ff);
  760. if (!rtlhal->mac_func_enable) {
  761. if (_rtl8723be_llt_table_init(hw) == false)
  762. return false;
  763. }
  764. rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
  765. rtl_write_dword(rtlpriv, REG_HISRE, 0xffffffff);
  766. /* Enable FW Beamformer Interrupt */
  767. bytetmp = rtl_read_byte(rtlpriv, REG_FWIMR + 3);
  768. rtl_write_byte(rtlpriv, REG_FWIMR + 3, bytetmp | BIT(6));
  769. wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
  770. wordtmp &= 0xf;
  771. wordtmp |= 0xF5B1;
  772. rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
  773. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
  774. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  775. rtl_write_word(rtlpriv, REG_RXFLTMAP2, 0xFFFF);
  776. rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
  777. rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
  778. ((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) &
  779. DMA_BIT_MASK(32));
  780. rtl_write_dword(rtlpriv, REG_MGQ_DESA,
  781. (u64) rtlpci->tx_ring[MGNT_QUEUE].dma &
  782. DMA_BIT_MASK(32));
  783. rtl_write_dword(rtlpriv, REG_VOQ_DESA,
  784. (u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32));
  785. rtl_write_dword(rtlpriv, REG_VIQ_DESA,
  786. (u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32));
  787. rtl_write_dword(rtlpriv, REG_BEQ_DESA,
  788. (u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32));
  789. rtl_write_dword(rtlpriv, REG_BKQ_DESA,
  790. (u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32));
  791. rtl_write_dword(rtlpriv, REG_HQ_DESA,
  792. (u64) rtlpci->tx_ring[HIGH_QUEUE].dma &
  793. DMA_BIT_MASK(32));
  794. rtl_write_dword(rtlpriv, REG_RX_DESA,
  795. (u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma &
  796. DMA_BIT_MASK(32));
  797. bytetmp = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG + 3);
  798. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, bytetmp | 0x77);
  799. rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
  800. rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
  801. rtl_write_byte(rtlpriv, REG_SECONDARY_CCA_CTRL, 0x3);
  802. /* <20130114, Kordan> The following setting is
  803. * only for DPDT and Fixed board type.
  804. * TODO: A better solution is configure it
  805. * according EFUSE during the run-time.
  806. */
  807. rtl_set_bbreg(hw, 0x64, BIT(20), 0x0);/* 0x66[4]=0 */
  808. rtl_set_bbreg(hw, 0x64, BIT(24), 0x0);/* 0x66[8]=0 */
  809. rtl_set_bbreg(hw, 0x40, BIT(4), 0x0)/* 0x40[4]=0 */;
  810. rtl_set_bbreg(hw, 0x40, BIT(3), 0x1)/* 0x40[3]=1 */;
  811. rtl_set_bbreg(hw, 0x4C, BIT(24) | BIT(23), 0x2)/* 0x4C[24:23]=10 */;
  812. rtl_set_bbreg(hw, 0x944, BIT(1) | BIT(0), 0x3)/* 0x944[1:0]=11 */;
  813. rtl_set_bbreg(hw, 0x930, MASKBYTE0, 0x77)/* 0x930[7:0]=77 */;
  814. rtl_set_bbreg(hw, 0x38, BIT(11), 0x1)/* 0x38[11]=1 */;
  815. bytetmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL);
  816. rtl_write_byte(rtlpriv, REG_RXDMA_CONTROL, bytetmp & (~BIT(2)));
  817. _rtl8723be_gen_refresh_led_state(hw);
  818. return true;
  819. }
  820. static void _rtl8723be_hw_configure(struct ieee80211_hw *hw)
  821. {
  822. struct rtl_priv *rtlpriv = rtl_priv(hw);
  823. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  824. u32 reg_rrsr;
  825. reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
  826. /* Init value for RRSR. */
  827. rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr);
  828. /* ARFB table 9 for 11ac 5G 2SS */
  829. rtl_write_dword(rtlpriv, REG_ARFR0 + 4, 0xfffff000);
  830. /* ARFB table 10 for 11ac 5G 1SS */
  831. rtl_write_dword(rtlpriv, REG_ARFR1 + 4, 0x003ff000);
  832. /* CF-End setting. */
  833. rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F00);
  834. /* 0x456 = 0x70, sugguested by Zhilin */
  835. rtl_write_byte(rtlpriv, REG_AMPDU_MAX_TIME, 0x70);
  836. /* Set retry limit */
  837. rtl_write_word(rtlpriv, REG_RL, 0x0707);
  838. /* Set Data / Response auto rate fallack retry count */
  839. rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
  840. rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
  841. rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
  842. rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
  843. rtlpci->reg_bcn_ctrl_val = 0x1d;
  844. rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
  845. /* TBTT prohibit hold time. Suggested by designer TimChen. */
  846. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); /* 8 ms */
  847. rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0040);
  848. /*For Rx TP. Suggested by SD1 Richard. Added by tynli. 2010.04.12.*/
  849. rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x03086666);
  850. rtl_write_byte(rtlpriv, REG_HT_SINGLE_AMPDU, 0x80);
  851. rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x20);
  852. rtl_write_byte(rtlpriv, REG_MAX_AGGR_NUM, 0x1F);
  853. }
  854. static u8 _rtl8723be_dbi_read(struct rtl_priv *rtlpriv, u16 addr)
  855. {
  856. u16 read_addr = addr & 0xfffc;
  857. u8 ret = 0, tmp = 0, count = 0;
  858. rtl_write_word(rtlpriv, REG_DBI_ADDR, read_addr);
  859. rtl_write_byte(rtlpriv, REG_DBI_FLAG, 0x2);
  860. tmp = rtl_read_byte(rtlpriv, REG_DBI_FLAG);
  861. count = 0;
  862. while (tmp && count < 20) {
  863. udelay(10);
  864. tmp = rtl_read_byte(rtlpriv, REG_DBI_FLAG);
  865. count++;
  866. }
  867. if (0 == tmp) {
  868. read_addr = REG_DBI_RDATA + addr % 4;
  869. ret = rtl_read_byte(rtlpriv, read_addr);
  870. }
  871. return ret;
  872. }
  873. static void _rtl8723be_dbi_write(struct rtl_priv *rtlpriv, u16 addr, u8 data)
  874. {
  875. u8 tmp = 0, count = 0;
  876. u16 write_addr = 0, remainder = addr % 4;
  877. /* Write DBI 1Byte Data */
  878. write_addr = REG_DBI_WDATA + remainder;
  879. rtl_write_byte(rtlpriv, write_addr, data);
  880. /* Write DBI 2Byte Address & Write Enable */
  881. write_addr = (addr & 0xfffc) | (BIT(0) << (remainder + 12));
  882. rtl_write_word(rtlpriv, REG_DBI_ADDR, write_addr);
  883. /* Write DBI Write Flag */
  884. rtl_write_byte(rtlpriv, REG_DBI_FLAG, 0x1);
  885. tmp = rtl_read_byte(rtlpriv, REG_DBI_FLAG);
  886. count = 0;
  887. while (tmp && count < 20) {
  888. udelay(10);
  889. tmp = rtl_read_byte(rtlpriv, REG_DBI_FLAG);
  890. count++;
  891. }
  892. }
  893. static u16 _rtl8723be_mdio_read(struct rtl_priv *rtlpriv, u8 addr)
  894. {
  895. u16 ret = 0;
  896. u8 tmp = 0, count = 0;
  897. rtl_write_byte(rtlpriv, REG_MDIO_CTL, addr | BIT(6));
  898. tmp = rtl_read_byte(rtlpriv, REG_MDIO_CTL) & BIT(6);
  899. count = 0;
  900. while (tmp && count < 20) {
  901. udelay(10);
  902. tmp = rtl_read_byte(rtlpriv, REG_MDIO_CTL) & BIT(6);
  903. count++;
  904. }
  905. if (0 == tmp)
  906. ret = rtl_read_word(rtlpriv, REG_MDIO_RDATA);
  907. return ret;
  908. }
  909. static void _rtl8723be_mdio_write(struct rtl_priv *rtlpriv, u8 addr, u16 data)
  910. {
  911. u8 tmp = 0, count = 0;
  912. rtl_write_word(rtlpriv, REG_MDIO_WDATA, data);
  913. rtl_write_byte(rtlpriv, REG_MDIO_CTL, addr | BIT(5));
  914. tmp = rtl_read_byte(rtlpriv, REG_MDIO_CTL) & BIT(5);
  915. count = 0;
  916. while (tmp && count < 20) {
  917. udelay(10);
  918. tmp = rtl_read_byte(rtlpriv, REG_MDIO_CTL) & BIT(5);
  919. count++;
  920. }
  921. }
  922. static void _rtl8723be_enable_aspm_back_door(struct ieee80211_hw *hw)
  923. {
  924. struct rtl_priv *rtlpriv = rtl_priv(hw);
  925. u8 tmp8 = 0;
  926. u16 tmp16 = 0;
  927. /* <Roger_Notes> Overwrite following ePHY parameter for
  928. * some platform compatibility issue,
  929. * especially when CLKReq is enabled, 2012.11.09.
  930. */
  931. tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x01);
  932. if (tmp16 != 0x0663)
  933. _rtl8723be_mdio_write(rtlpriv, 0x01, 0x0663);
  934. tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x04);
  935. if (tmp16 != 0x7544)
  936. _rtl8723be_mdio_write(rtlpriv, 0x04, 0x7544);
  937. tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x06);
  938. if (tmp16 != 0xB880)
  939. _rtl8723be_mdio_write(rtlpriv, 0x06, 0xB880);
  940. tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x07);
  941. if (tmp16 != 0x4000)
  942. _rtl8723be_mdio_write(rtlpriv, 0x07, 0x4000);
  943. tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x08);
  944. if (tmp16 != 0x9003)
  945. _rtl8723be_mdio_write(rtlpriv, 0x08, 0x9003);
  946. tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x09);
  947. if (tmp16 != 0x0D03)
  948. _rtl8723be_mdio_write(rtlpriv, 0x09, 0x0D03);
  949. tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x0A);
  950. if (tmp16 != 0x4037)
  951. _rtl8723be_mdio_write(rtlpriv, 0x0A, 0x4037);
  952. tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x0B);
  953. if (tmp16 != 0x0070)
  954. _rtl8723be_mdio_write(rtlpriv, 0x0B, 0x0070);
  955. /* Configuration Space offset 0x70f BIT7 is used to control L0S */
  956. tmp8 = _rtl8723be_dbi_read(rtlpriv, 0x70f);
  957. _rtl8723be_dbi_write(rtlpriv, 0x70f, tmp8 | BIT(7));
  958. /* Configuration Space offset 0x719 Bit3 is for L1
  959. * BIT4 is for clock request
  960. */
  961. tmp8 = _rtl8723be_dbi_read(rtlpriv, 0x719);
  962. _rtl8723be_dbi_write(rtlpriv, 0x719, tmp8 | BIT(3) | BIT(4));
  963. }
  964. void rtl8723be_enable_hw_security_config(struct ieee80211_hw *hw)
  965. {
  966. struct rtl_priv *rtlpriv = rtl_priv(hw);
  967. u8 sec_reg_value;
  968. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  969. "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
  970. rtlpriv->sec.pairwise_enc_algorithm,
  971. rtlpriv->sec.group_enc_algorithm);
  972. if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
  973. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  974. "not open hw encryption\n");
  975. return;
  976. }
  977. sec_reg_value = SCR_TXENCENABLE | SCR_RXDECENABLE;
  978. if (rtlpriv->sec.use_defaultkey) {
  979. sec_reg_value |= SCR_TXUSEDK;
  980. sec_reg_value |= SCR_RXUSEDK;
  981. }
  982. sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
  983. rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
  984. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  985. "The SECR-value %x\n", sec_reg_value);
  986. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
  987. }
  988. static void _rtl8723be_poweroff_adapter(struct ieee80211_hw *hw)
  989. {
  990. struct rtl_priv *rtlpriv = rtl_priv(hw);
  991. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  992. u8 u1b_tmp;
  993. rtlhal->mac_func_enable = false;
  994. /* Combo (PCIe + USB) Card and PCIe-MF Card */
  995. /* 1. Run LPS WL RFOFF flow */
  996. rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
  997. PWR_INTF_PCI_MSK, RTL8723_NIC_LPS_ENTER_FLOW);
  998. /* 2. 0x1F[7:0] = 0 */
  999. /* turn off RF */
  1000. /* rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00); */
  1001. if ((rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7)) &&
  1002. rtlhal->fw_ready) {
  1003. rtl8723be_firmware_selfreset(hw);
  1004. }
  1005. /* Reset MCU. Suggested by Filen. */
  1006. u1b_tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
  1007. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, (u1b_tmp & (~BIT(2))));
  1008. /* g. MCUFWDL 0x80[1:0]=0 */
  1009. /* reset MCU ready status */
  1010. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
  1011. /* HW card disable configuration. */
  1012. rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
  1013. PWR_INTF_PCI_MSK, RTL8723_NIC_DISABLE_FLOW);
  1014. /* Reset MCU IO Wrapper */
  1015. u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL + 1);
  1016. rtl_write_byte(rtlpriv, REG_RSV_CTRL + 1, (u1b_tmp & (~BIT(0))));
  1017. u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL + 1);
  1018. rtl_write_byte(rtlpriv, REG_RSV_CTRL + 1, u1b_tmp | BIT(0));
  1019. /* 7. RSV_CTRL 0x1C[7:0] = 0x0E */
  1020. /* lock ISO/CLK/Power control register */
  1021. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
  1022. }
  1023. static bool _rtl8723be_check_pcie_dma_hang(struct rtl_priv *rtlpriv)
  1024. {
  1025. u8 tmp;
  1026. /* write reg 0x350 Bit[26]=1. Enable debug port. */
  1027. tmp = rtl_read_byte(rtlpriv, REG_DBI_CTRL + 3);
  1028. if (!(tmp & BIT(2))) {
  1029. rtl_write_byte(rtlpriv, REG_DBI_CTRL + 3, (tmp | BIT(2)));
  1030. mdelay(100); /* Suggested by DD Justin_tsai. */
  1031. }
  1032. /* read reg 0x350 Bit[25] if 1 : RX hang
  1033. * read reg 0x350 Bit[24] if 1 : TX hang
  1034. */
  1035. tmp = rtl_read_byte(rtlpriv, REG_DBI_CTRL + 3);
  1036. if ((tmp & BIT(0)) || (tmp & BIT(1))) {
  1037. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1038. "CheckPcieDMAHang8723BE(): true!!\n");
  1039. return true;
  1040. }
  1041. return false;
  1042. }
  1043. static void _rtl8723be_reset_pcie_interface_dma(struct rtl_priv *rtlpriv,
  1044. bool mac_power_on)
  1045. {
  1046. u8 tmp;
  1047. bool release_mac_rx_pause;
  1048. u8 backup_pcie_dma_pause;
  1049. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1050. "ResetPcieInterfaceDMA8723BE()\n");
  1051. /* Revise Note: Follow the document "PCIe RX DMA Hang Reset Flow_v03"
  1052. * released by SD1 Alan.
  1053. * 2013.05.07, by tynli.
  1054. */
  1055. /* 1. disable register write lock
  1056. * write 0x1C bit[1:0] = 2'h0
  1057. * write 0xCC bit[2] = 1'b1
  1058. */
  1059. tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL);
  1060. tmp &= ~(BIT(1) | BIT(0));
  1061. rtl_write_byte(rtlpriv, REG_RSV_CTRL, tmp);
  1062. tmp = rtl_read_byte(rtlpriv, REG_PMC_DBG_CTRL2);
  1063. tmp |= BIT(2);
  1064. rtl_write_byte(rtlpriv, REG_PMC_DBG_CTRL2, tmp);
  1065. /* 2. Check and pause TRX DMA
  1066. * write 0x284 bit[18] = 1'b1
  1067. * write 0x301 = 0xFF
  1068. */
  1069. tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL);
  1070. if (tmp & BIT(2)) {
  1071. /* Already pause before the function for another purpose. */
  1072. release_mac_rx_pause = false;
  1073. } else {
  1074. rtl_write_byte(rtlpriv, REG_RXDMA_CONTROL, (tmp | BIT(2)));
  1075. release_mac_rx_pause = true;
  1076. }
  1077. backup_pcie_dma_pause = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG + 1);
  1078. if (backup_pcie_dma_pause != 0xFF)
  1079. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFF);
  1080. if (mac_power_on) {
  1081. /* 3. reset TRX function
  1082. * write 0x100 = 0x00
  1083. */
  1084. rtl_write_byte(rtlpriv, REG_CR, 0);
  1085. }
  1086. /* 4. Reset PCIe DMA
  1087. * write 0x003 bit[0] = 0
  1088. */
  1089. tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
  1090. tmp &= ~(BIT(0));
  1091. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmp);
  1092. /* 5. Enable PCIe DMA
  1093. * write 0x003 bit[0] = 1
  1094. */
  1095. tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
  1096. tmp |= BIT(0);
  1097. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmp);
  1098. if (mac_power_on) {
  1099. /* 6. enable TRX function
  1100. * write 0x100 = 0xFF
  1101. */
  1102. rtl_write_byte(rtlpriv, REG_CR, 0xFF);
  1103. /* We should init LLT & RQPN and
  1104. * prepare Tx/Rx descrptor address later
  1105. * because MAC function is reset.
  1106. */
  1107. }
  1108. /* 7. Restore PCIe autoload down bit
  1109. * write 0xF8 bit[17] = 1'b1
  1110. */
  1111. tmp = rtl_read_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL + 2);
  1112. tmp |= BIT(1);
  1113. rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL + 2, tmp);
  1114. /* In MAC power on state, BB and RF maybe in ON state,
  1115. * if we release TRx DMA here
  1116. * it will cause packets to be started to Tx/Rx,
  1117. * so we release Tx/Rx DMA later.
  1118. */
  1119. if (!mac_power_on) {
  1120. /* 8. release TRX DMA
  1121. * write 0x284 bit[18] = 1'b0
  1122. * write 0x301 = 0x00
  1123. */
  1124. if (release_mac_rx_pause) {
  1125. tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL);
  1126. rtl_write_byte(rtlpriv, REG_RXDMA_CONTROL,
  1127. (tmp & (~BIT(2))));
  1128. }
  1129. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1,
  1130. backup_pcie_dma_pause);
  1131. }
  1132. /* 9. lock system register
  1133. * write 0xCC bit[2] = 1'b0
  1134. */
  1135. tmp = rtl_read_byte(rtlpriv, REG_PMC_DBG_CTRL2);
  1136. tmp &= ~(BIT(2));
  1137. rtl_write_byte(rtlpriv, REG_PMC_DBG_CTRL2, tmp);
  1138. }
  1139. int rtl8723be_hw_init(struct ieee80211_hw *hw)
  1140. {
  1141. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1142. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1143. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1144. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1145. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1146. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1147. bool rtstatus = true;
  1148. int err;
  1149. u8 tmp_u1b;
  1150. unsigned long flags;
  1151. /* reenable interrupts to not interfere with other devices */
  1152. local_save_flags(flags);
  1153. local_irq_enable();
  1154. rtlhal->fw_ready = false;
  1155. rtlpriv->rtlhal.being_init_adapter = true;
  1156. rtlpriv->intf_ops->disable_aspm(hw);
  1157. tmp_u1b = rtl_read_byte(rtlpriv, REG_CR);
  1158. if (tmp_u1b != 0 && tmp_u1b != 0xea) {
  1159. rtlhal->mac_func_enable = true;
  1160. } else {
  1161. rtlhal->mac_func_enable = false;
  1162. rtlhal->fw_ps_state = FW_PS_STATE_ALL_ON;
  1163. }
  1164. if (_rtl8723be_check_pcie_dma_hang(rtlpriv)) {
  1165. _rtl8723be_reset_pcie_interface_dma(rtlpriv,
  1166. rtlhal->mac_func_enable);
  1167. rtlhal->mac_func_enable = false;
  1168. }
  1169. if (rtlhal->mac_func_enable) {
  1170. _rtl8723be_poweroff_adapter(hw);
  1171. rtlhal->mac_func_enable = false;
  1172. }
  1173. rtstatus = _rtl8723be_init_mac(hw);
  1174. if (!rtstatus) {
  1175. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
  1176. err = 1;
  1177. goto exit;
  1178. }
  1179. tmp_u1b = rtl_read_byte(rtlpriv, REG_SYS_CFG);
  1180. rtl_write_byte(rtlpriv, REG_SYS_CFG, tmp_u1b & 0x7F);
  1181. err = rtl8723_download_fw(hw, true, FW_8723B_POLLING_TIMEOUT_COUNT);
  1182. if (err) {
  1183. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1184. "Failed to download FW. Init HW without FW now..\n");
  1185. err = 1;
  1186. goto exit;
  1187. }
  1188. rtlhal->fw_ready = true;
  1189. rtlhal->last_hmeboxnum = 0;
  1190. rtl8723be_phy_mac_config(hw);
  1191. /* because last function modify RCR, so we update
  1192. * rcr var here, or TP will unstable for receive_config
  1193. * is wrong, RX RCR_ACRC32 will cause TP unstable & Rx
  1194. * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
  1195. */
  1196. rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
  1197. rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
  1198. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  1199. rtl8723be_phy_bb_config(hw);
  1200. rtl8723be_phy_rf_config(hw);
  1201. rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
  1202. RF_CHNLBW, RFREG_OFFSET_MASK);
  1203. rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
  1204. RF_CHNLBW, RFREG_OFFSET_MASK);
  1205. rtlphy->rfreg_chnlval[0] &= 0xFFF03FF;
  1206. rtlphy->rfreg_chnlval[0] |= (BIT(10) | BIT(11));
  1207. _rtl8723be_hw_configure(hw);
  1208. rtlhal->mac_func_enable = true;
  1209. rtl_cam_reset_all_entry(hw);
  1210. rtl8723be_enable_hw_security_config(hw);
  1211. ppsc->rfpwr_state = ERFON;
  1212. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
  1213. _rtl8723be_enable_aspm_back_door(hw);
  1214. rtlpriv->intf_ops->enable_aspm(hw);
  1215. rtl8723be_bt_hw_init(hw);
  1216. if (ppsc->rfpwr_state == ERFON) {
  1217. rtl8723be_phy_set_rfpath_switch(hw, 1);
  1218. /* when use 1ant NIC, iqk will disturb BT music
  1219. * root cause is not clear now, is something
  1220. * related with 'mdelay' and Reg[0x948]
  1221. */
  1222. if (rtlpriv->btcoexist.btc_info.ant_num == ANT_X2 ||
  1223. !rtlpriv->cfg->ops->get_btc_status()) {
  1224. rtl8723be_phy_iq_calibrate(hw, false);
  1225. rtlphy->iqk_initialized = true;
  1226. }
  1227. rtl8723be_dm_check_txpower_tracking(hw);
  1228. rtl8723be_phy_lc_calibrate(hw);
  1229. }
  1230. rtl_write_byte(rtlpriv, REG_NAV_UPPER, ((30000 + 127) / 128));
  1231. /* Release Rx DMA. */
  1232. tmp_u1b = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL);
  1233. if (tmp_u1b & BIT(2)) {
  1234. /* Release Rx DMA if needed */
  1235. tmp_u1b &= (~BIT(2));
  1236. rtl_write_byte(rtlpriv, REG_RXDMA_CONTROL, tmp_u1b);
  1237. }
  1238. /* Release Tx/Rx PCIE DMA. */
  1239. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0);
  1240. rtl8723be_dm_init(hw);
  1241. exit:
  1242. local_irq_restore(flags);
  1243. rtlpriv->rtlhal.being_init_adapter = false;
  1244. return err;
  1245. }
  1246. static enum version_8723e _rtl8723be_read_chip_version(struct ieee80211_hw *hw)
  1247. {
  1248. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1249. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1250. enum version_8723e version = VERSION_UNKNOWN;
  1251. u32 value32;
  1252. value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG1);
  1253. if ((value32 & (CHIP_8723B)) != CHIP_8723B)
  1254. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "unkown chip version\n");
  1255. else
  1256. version = (enum version_8723e)CHIP_8723B;
  1257. rtlphy->rf_type = RF_1T1R;
  1258. /* treat rtl8723be chip as MP version in default */
  1259. version = (enum version_8723e)(version | NORMAL_CHIP);
  1260. value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
  1261. /* cut version */
  1262. version |= (enum version_8723e)(value32 & CHIP_VER_RTL_MASK);
  1263. /* Manufacture */
  1264. if (((value32 & EXT_VENDOR_ID) >> 18) == 0x01)
  1265. version = (enum version_8723e)(version | CHIP_VENDOR_SMIC);
  1266. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1267. "Chip RF Type: %s\n", (rtlphy->rf_type == RF_2T2R) ?
  1268. "RF_2T2R" : "RF_1T1R");
  1269. return version;
  1270. }
  1271. static int _rtl8723be_set_media_status(struct ieee80211_hw *hw,
  1272. enum nl80211_iftype type)
  1273. {
  1274. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1275. u8 bt_msr = rtl_read_byte(rtlpriv, MSR) & 0xfc;
  1276. enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
  1277. u8 mode = MSR_NOLINK;
  1278. switch (type) {
  1279. case NL80211_IFTYPE_UNSPECIFIED:
  1280. mode = MSR_NOLINK;
  1281. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1282. "Set Network type to NO LINK!\n");
  1283. break;
  1284. case NL80211_IFTYPE_ADHOC:
  1285. case NL80211_IFTYPE_MESH_POINT:
  1286. mode = MSR_ADHOC;
  1287. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1288. "Set Network type to Ad Hoc!\n");
  1289. break;
  1290. case NL80211_IFTYPE_STATION:
  1291. mode = MSR_INFRA;
  1292. ledaction = LED_CTL_LINK;
  1293. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1294. "Set Network type to STA!\n");
  1295. break;
  1296. case NL80211_IFTYPE_AP:
  1297. mode = MSR_AP;
  1298. ledaction = LED_CTL_LINK;
  1299. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1300. "Set Network type to AP!\n");
  1301. break;
  1302. default:
  1303. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1304. "Network type %d not support!\n", type);
  1305. return 1;
  1306. }
  1307. /* MSR_INFRA == Link in infrastructure network;
  1308. * MSR_ADHOC == Link in ad hoc network;
  1309. * Therefore, check link state is necessary.
  1310. *
  1311. * MSR_AP == AP mode; link state is not cared here.
  1312. */
  1313. if (mode != MSR_AP && rtlpriv->mac80211.link_state < MAC80211_LINKED) {
  1314. mode = MSR_NOLINK;
  1315. ledaction = LED_CTL_NO_LINK;
  1316. }
  1317. if (mode == MSR_NOLINK || mode == MSR_INFRA) {
  1318. _rtl8723be_stop_tx_beacon(hw);
  1319. _rtl8723be_enable_bcn_sub_func(hw);
  1320. } else if (mode == MSR_ADHOC || mode == MSR_AP) {
  1321. _rtl8723be_resume_tx_beacon(hw);
  1322. _rtl8723be_disable_bcn_sub_func(hw);
  1323. } else {
  1324. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1325. "Set HW_VAR_MEDIA_STATUS: No such media status(%x).\n",
  1326. mode);
  1327. }
  1328. rtl_write_byte(rtlpriv, MSR, bt_msr | mode);
  1329. rtlpriv->cfg->ops->led_control(hw, ledaction);
  1330. if (mode == MSR_AP)
  1331. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
  1332. else
  1333. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
  1334. return 0;
  1335. }
  1336. void rtl8723be_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
  1337. {
  1338. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1339. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1340. u32 reg_rcr = rtlpci->receive_config;
  1341. if (rtlpriv->psc.rfpwr_state != ERFON)
  1342. return;
  1343. if (check_bssid) {
  1344. reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
  1345. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1346. (u8 *)(&reg_rcr));
  1347. _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(4));
  1348. } else if (!check_bssid) {
  1349. reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
  1350. _rtl8723be_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1351. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1352. (u8 *)(&reg_rcr));
  1353. }
  1354. }
  1355. int rtl8723be_set_network_type(struct ieee80211_hw *hw,
  1356. enum nl80211_iftype type)
  1357. {
  1358. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1359. if (_rtl8723be_set_media_status(hw, type))
  1360. return -EOPNOTSUPP;
  1361. if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
  1362. if (type != NL80211_IFTYPE_AP)
  1363. rtl8723be_set_check_bssid(hw, true);
  1364. } else {
  1365. rtl8723be_set_check_bssid(hw, false);
  1366. }
  1367. return 0;
  1368. }
  1369. /* don't set REG_EDCA_BE_PARAM here
  1370. * because mac80211 will send pkt when scan
  1371. */
  1372. void rtl8723be_set_qos(struct ieee80211_hw *hw, int aci)
  1373. {
  1374. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1375. rtl8723_dm_init_edca_turbo(hw);
  1376. switch (aci) {
  1377. case AC1_BK:
  1378. rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f);
  1379. break;
  1380. case AC0_BE:
  1381. break;
  1382. case AC2_VI:
  1383. rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322);
  1384. break;
  1385. case AC3_VO:
  1386. rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222);
  1387. break;
  1388. default:
  1389. RT_ASSERT(false, "invalid aci: %d !\n", aci);
  1390. break;
  1391. }
  1392. }
  1393. void rtl8723be_enable_interrupt(struct ieee80211_hw *hw)
  1394. {
  1395. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1396. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1397. rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
  1398. rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
  1399. rtlpci->irq_enabled = true;
  1400. /*enable system interrupt*/
  1401. rtl_write_dword(rtlpriv, REG_HSIMR, rtlpci->sys_irq_mask & 0xFFFFFFFF);
  1402. }
  1403. void rtl8723be_disable_interrupt(struct ieee80211_hw *hw)
  1404. {
  1405. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1406. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1407. rtl_write_dword(rtlpriv, REG_HIMR, IMR_DISABLED);
  1408. rtl_write_dword(rtlpriv, REG_HIMRE, IMR_DISABLED);
  1409. rtlpci->irq_enabled = false;
  1410. /*synchronize_irq(rtlpci->pdev->irq);*/
  1411. }
  1412. void rtl8723be_card_disable(struct ieee80211_hw *hw)
  1413. {
  1414. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1415. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1416. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1417. enum nl80211_iftype opmode;
  1418. mac->link_state = MAC80211_NOLINK;
  1419. opmode = NL80211_IFTYPE_UNSPECIFIED;
  1420. _rtl8723be_set_media_status(hw, opmode);
  1421. if (rtlpriv->rtlhal.driver_is_goingto_unload ||
  1422. ppsc->rfoff_reason > RF_CHANGE_BY_PS)
  1423. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1424. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1425. _rtl8723be_poweroff_adapter(hw);
  1426. /* after power off we should do iqk again */
  1427. rtlpriv->phy.iqk_initialized = false;
  1428. }
  1429. void rtl8723be_interrupt_recognized(struct ieee80211_hw *hw,
  1430. u32 *p_inta, u32 *p_intb)
  1431. {
  1432. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1433. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1434. *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
  1435. rtl_write_dword(rtlpriv, ISR, *p_inta);
  1436. *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) &
  1437. rtlpci->irq_mask[1];
  1438. rtl_write_dword(rtlpriv, REG_HISRE, *p_intb);
  1439. }
  1440. void rtl8723be_set_beacon_related_registers(struct ieee80211_hw *hw)
  1441. {
  1442. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1443. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1444. u16 bcn_interval, atim_window;
  1445. bcn_interval = mac->beacon_interval;
  1446. atim_window = 2; /*FIX MERGE */
  1447. rtl8723be_disable_interrupt(hw);
  1448. rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
  1449. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1450. rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
  1451. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18);
  1452. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18);
  1453. rtl_write_byte(rtlpriv, 0x606, 0x30);
  1454. rtl8723be_enable_interrupt(hw);
  1455. }
  1456. void rtl8723be_set_beacon_interval(struct ieee80211_hw *hw)
  1457. {
  1458. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1459. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1460. u16 bcn_interval = mac->beacon_interval;
  1461. RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
  1462. "beacon_interval:%d\n", bcn_interval);
  1463. rtl8723be_disable_interrupt(hw);
  1464. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1465. rtl8723be_enable_interrupt(hw);
  1466. }
  1467. void rtl8723be_update_interrupt_mask(struct ieee80211_hw *hw,
  1468. u32 add_msr, u32 rm_msr)
  1469. {
  1470. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1471. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1472. RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
  1473. "add_msr:%x, rm_msr:%x\n", add_msr, rm_msr);
  1474. if (add_msr)
  1475. rtlpci->irq_mask[0] |= add_msr;
  1476. if (rm_msr)
  1477. rtlpci->irq_mask[0] &= (~rm_msr);
  1478. rtl8723be_disable_interrupt(hw);
  1479. rtl8723be_enable_interrupt(hw);
  1480. }
  1481. static u8 _rtl8723be_get_chnl_group(u8 chnl)
  1482. {
  1483. u8 group;
  1484. if (chnl < 3)
  1485. group = 0;
  1486. else if (chnl < 9)
  1487. group = 1;
  1488. else
  1489. group = 2;
  1490. return group;
  1491. }
  1492. static void _rtl8723be_read_power_value_fromprom(struct ieee80211_hw *hw,
  1493. struct txpower_info_2g *pw2g,
  1494. struct txpower_info_5g *pw5g,
  1495. bool autoload_fail, u8 *hwinfo)
  1496. {
  1497. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1498. u32 path, addr = EEPROM_TX_PWR_INX, group, cnt = 0;
  1499. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1500. "hal_ReadPowerValueFromPROM8723BE(): PROMContent[0x%x]=0x%x\n",
  1501. (addr + 1), hwinfo[addr + 1]);
  1502. if (0xFF == hwinfo[addr + 1]) /*YJ,add,120316*/
  1503. autoload_fail = true;
  1504. if (autoload_fail) {
  1505. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1506. "auto load fail : Use Default value!\n");
  1507. for (path = 0; path < MAX_RF_PATH; path++) {
  1508. /* 2.4G default value */
  1509. for (group = 0 ; group < MAX_CHNL_GROUP_24G; group++) {
  1510. pw2g->index_cck_base[path][group] = 0x2D;
  1511. pw2g->index_bw40_base[path][group] = 0x2D;
  1512. }
  1513. for (cnt = 0; cnt < MAX_TX_COUNT; cnt++) {
  1514. if (cnt == 0) {
  1515. pw2g->bw20_diff[path][0] = 0x02;
  1516. pw2g->ofdm_diff[path][0] = 0x04;
  1517. } else {
  1518. pw2g->bw20_diff[path][cnt] = 0xFE;
  1519. pw2g->bw40_diff[path][cnt] = 0xFE;
  1520. pw2g->cck_diff[path][cnt] = 0xFE;
  1521. pw2g->ofdm_diff[path][cnt] = 0xFE;
  1522. }
  1523. }
  1524. }
  1525. return;
  1526. }
  1527. for (path = 0; path < MAX_RF_PATH; path++) {
  1528. /*2.4G default value*/
  1529. for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
  1530. pw2g->index_cck_base[path][group] = hwinfo[addr++];
  1531. if (pw2g->index_cck_base[path][group] == 0xFF)
  1532. pw2g->index_cck_base[path][group] = 0x2D;
  1533. }
  1534. for (group = 0; group < MAX_CHNL_GROUP_24G - 1; group++) {
  1535. pw2g->index_bw40_base[path][group] = hwinfo[addr++];
  1536. if (pw2g->index_bw40_base[path][group] == 0xFF)
  1537. pw2g->index_bw40_base[path][group] = 0x2D;
  1538. }
  1539. for (cnt = 0; cnt < MAX_TX_COUNT; cnt++) {
  1540. if (cnt == 0) {
  1541. pw2g->bw40_diff[path][cnt] = 0;
  1542. if (hwinfo[addr] == 0xFF) {
  1543. pw2g->bw20_diff[path][cnt] = 0x02;
  1544. } else {
  1545. pw2g->bw20_diff[path][cnt] =
  1546. (hwinfo[addr] & 0xf0) >> 4;
  1547. /*bit sign number to 8 bit sign number*/
  1548. if (pw2g->bw20_diff[path][cnt] & BIT(3))
  1549. pw2g->bw20_diff[path][cnt] |=
  1550. 0xF0;
  1551. }
  1552. if (hwinfo[addr] == 0xFF) {
  1553. pw2g->ofdm_diff[path][cnt] = 0x04;
  1554. } else {
  1555. pw2g->ofdm_diff[path][cnt] =
  1556. (hwinfo[addr] & 0x0f);
  1557. /*bit sign number to 8 bit sign number*/
  1558. if (pw2g->ofdm_diff[path][cnt] & BIT(3))
  1559. pw2g->ofdm_diff[path][cnt] |=
  1560. 0xF0;
  1561. }
  1562. pw2g->cck_diff[path][cnt] = 0;
  1563. addr++;
  1564. } else {
  1565. if (hwinfo[addr] == 0xFF) {
  1566. pw2g->bw40_diff[path][cnt] = 0xFE;
  1567. } else {
  1568. pw2g->bw40_diff[path][cnt] =
  1569. (hwinfo[addr] & 0xf0) >> 4;
  1570. if (pw2g->bw40_diff[path][cnt] & BIT(3))
  1571. pw2g->bw40_diff[path][cnt] |=
  1572. 0xF0;
  1573. }
  1574. if (hwinfo[addr] == 0xFF) {
  1575. pw2g->bw20_diff[path][cnt] = 0xFE;
  1576. } else {
  1577. pw2g->bw20_diff[path][cnt] =
  1578. (hwinfo[addr] & 0x0f);
  1579. if (pw2g->bw20_diff[path][cnt] & BIT(3))
  1580. pw2g->bw20_diff[path][cnt] |=
  1581. 0xF0;
  1582. }
  1583. addr++;
  1584. if (hwinfo[addr] == 0xFF) {
  1585. pw2g->ofdm_diff[path][cnt] = 0xFE;
  1586. } else {
  1587. pw2g->ofdm_diff[path][cnt] =
  1588. (hwinfo[addr] & 0xf0) >> 4;
  1589. if (pw2g->ofdm_diff[path][cnt] & BIT(3))
  1590. pw2g->ofdm_diff[path][cnt] |=
  1591. 0xF0;
  1592. }
  1593. if (hwinfo[addr] == 0xFF)
  1594. pw2g->cck_diff[path][cnt] = 0xFE;
  1595. else {
  1596. pw2g->cck_diff[path][cnt] =
  1597. (hwinfo[addr] & 0x0f);
  1598. if (pw2g->cck_diff[path][cnt] & BIT(3))
  1599. pw2g->cck_diff[path][cnt] |=
  1600. 0xF0;
  1601. }
  1602. addr++;
  1603. }
  1604. }
  1605. /*5G default value*/
  1606. for (group = 0; group < MAX_CHNL_GROUP_5G; group++) {
  1607. pw5g->index_bw40_base[path][group] = hwinfo[addr++];
  1608. if (pw5g->index_bw40_base[path][group] == 0xFF)
  1609. pw5g->index_bw40_base[path][group] = 0xFE;
  1610. }
  1611. for (cnt = 0; cnt < MAX_TX_COUNT; cnt++) {
  1612. if (cnt == 0) {
  1613. pw5g->bw40_diff[path][cnt] = 0;
  1614. if (hwinfo[addr] == 0xFF) {
  1615. pw5g->bw20_diff[path][cnt] = 0;
  1616. } else {
  1617. pw5g->bw20_diff[path][0] =
  1618. (hwinfo[addr] & 0xf0) >> 4;
  1619. if (pw5g->bw20_diff[path][cnt] & BIT(3))
  1620. pw5g->bw20_diff[path][cnt] |=
  1621. 0xF0;
  1622. }
  1623. if (hwinfo[addr] == 0xFF)
  1624. pw5g->ofdm_diff[path][cnt] = 0x04;
  1625. else {
  1626. pw5g->ofdm_diff[path][0] =
  1627. (hwinfo[addr] & 0x0f);
  1628. if (pw5g->ofdm_diff[path][cnt] & BIT(3))
  1629. pw5g->ofdm_diff[path][cnt] |=
  1630. 0xF0;
  1631. }
  1632. addr++;
  1633. } else {
  1634. if (hwinfo[addr] == 0xFF) {
  1635. pw5g->bw40_diff[path][cnt] = 0xFE;
  1636. } else {
  1637. pw5g->bw40_diff[path][cnt] =
  1638. (hwinfo[addr] & 0xf0) >> 4;
  1639. if (pw5g->bw40_diff[path][cnt] & BIT(3))
  1640. pw5g->bw40_diff[path][cnt] |= 0xF0;
  1641. }
  1642. if (hwinfo[addr] == 0xFF) {
  1643. pw5g->bw20_diff[path][cnt] = 0xFE;
  1644. } else {
  1645. pw5g->bw20_diff[path][cnt] =
  1646. (hwinfo[addr] & 0x0f);
  1647. if (pw5g->bw20_diff[path][cnt] & BIT(3))
  1648. pw5g->bw20_diff[path][cnt] |= 0xF0;
  1649. }
  1650. addr++;
  1651. }
  1652. }
  1653. if (hwinfo[addr] == 0xFF) {
  1654. pw5g->ofdm_diff[path][1] = 0xFE;
  1655. pw5g->ofdm_diff[path][2] = 0xFE;
  1656. } else {
  1657. pw5g->ofdm_diff[path][1] = (hwinfo[addr] & 0xf0) >> 4;
  1658. pw5g->ofdm_diff[path][2] = (hwinfo[addr] & 0x0f);
  1659. }
  1660. addr++;
  1661. if (hwinfo[addr] == 0xFF)
  1662. pw5g->ofdm_diff[path][3] = 0xFE;
  1663. else
  1664. pw5g->ofdm_diff[path][3] = (hwinfo[addr] & 0x0f);
  1665. addr++;
  1666. for (cnt = 1; cnt < MAX_TX_COUNT; cnt++) {
  1667. if (pw5g->ofdm_diff[path][cnt] == 0xFF)
  1668. pw5g->ofdm_diff[path][cnt] = 0xFE;
  1669. else if (pw5g->ofdm_diff[path][cnt] & BIT(3))
  1670. pw5g->ofdm_diff[path][cnt] |= 0xF0;
  1671. }
  1672. }
  1673. }
  1674. static void _rtl8723be_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
  1675. bool autoload_fail,
  1676. u8 *hwinfo)
  1677. {
  1678. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1679. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1680. struct txpower_info_2g pw2g;
  1681. struct txpower_info_5g pw5g;
  1682. u8 rf_path, index;
  1683. u8 i;
  1684. _rtl8723be_read_power_value_fromprom(hw, &pw2g, &pw5g, autoload_fail,
  1685. hwinfo);
  1686. for (rf_path = 0; rf_path < 2; rf_path++) {
  1687. for (i = 0; i < 14; i++) {
  1688. index = _rtl8723be_get_chnl_group(i+1);
  1689. rtlefuse->txpwrlevel_cck[rf_path][i] =
  1690. pw2g.index_cck_base[rf_path][index];
  1691. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  1692. pw2g.index_bw40_base[rf_path][index];
  1693. }
  1694. for (i = 0; i < MAX_TX_COUNT; i++) {
  1695. rtlefuse->txpwr_ht20diff[rf_path][i] =
  1696. pw2g.bw20_diff[rf_path][i];
  1697. rtlefuse->txpwr_ht40diff[rf_path][i] =
  1698. pw2g.bw40_diff[rf_path][i];
  1699. rtlefuse->txpwr_legacyhtdiff[rf_path][i] =
  1700. pw2g.ofdm_diff[rf_path][i];
  1701. }
  1702. for (i = 0; i < 14; i++) {
  1703. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1704. "RF(%d)-Ch(%d) [CCK / HT40_1S ] = [0x%x / 0x%x ]\n",
  1705. rf_path, i,
  1706. rtlefuse->txpwrlevel_cck[rf_path][i],
  1707. rtlefuse->txpwrlevel_ht40_1s[rf_path][i]);
  1708. }
  1709. }
  1710. if (!autoload_fail)
  1711. rtlefuse->eeprom_thermalmeter =
  1712. hwinfo[EEPROM_THERMAL_METER_88E];
  1713. else
  1714. rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
  1715. if (rtlefuse->eeprom_thermalmeter == 0xff || autoload_fail) {
  1716. rtlefuse->apk_thermalmeterignore = true;
  1717. rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
  1718. }
  1719. rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
  1720. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1721. "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
  1722. if (!autoload_fail) {
  1723. rtlefuse->eeprom_regulatory =
  1724. hwinfo[EEPROM_RF_BOARD_OPTION_88E] & 0x07;/*bit0~2*/
  1725. if (hwinfo[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
  1726. rtlefuse->eeprom_regulatory = 0;
  1727. } else {
  1728. rtlefuse->eeprom_regulatory = 0;
  1729. }
  1730. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1731. "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
  1732. }
  1733. static void _rtl8723be_read_adapter_info(struct ieee80211_hw *hw,
  1734. bool pseudo_test)
  1735. {
  1736. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1737. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1738. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1739. u16 i, usvalue;
  1740. u8 hwinfo[HWSET_MAX_SIZE];
  1741. u16 eeprom_id;
  1742. bool is_toshiba_smid1 = false;
  1743. bool is_toshiba_smid2 = false;
  1744. bool is_samsung_smid = false;
  1745. bool is_lenovo_smid = false;
  1746. u16 toshiba_smid1[] = {
  1747. 0x6151, 0x6152, 0x6154, 0x6155, 0x6177, 0x6178, 0x6179, 0x6180,
  1748. 0x7151, 0x7152, 0x7154, 0x7155, 0x7177, 0x7178, 0x7179, 0x7180,
  1749. 0x8151, 0x8152, 0x8154, 0x8155, 0x8181, 0x8182, 0x8184, 0x8185,
  1750. 0x9151, 0x9152, 0x9154, 0x9155, 0x9181, 0x9182, 0x9184, 0x9185
  1751. };
  1752. u16 toshiba_smid2[] = {
  1753. 0x6181, 0x6184, 0x6185, 0x7181, 0x7182, 0x7184, 0x7185, 0x8181,
  1754. 0x8182, 0x8184, 0x8185, 0x9181, 0x9182, 0x9184, 0x9185
  1755. };
  1756. u16 samsung_smid[] = {
  1757. 0x6191, 0x6192, 0x6193, 0x7191, 0x7192, 0x7193, 0x8191, 0x8192,
  1758. 0x8193, 0x9191, 0x9192, 0x9193
  1759. };
  1760. u16 lenovo_smid[] = {
  1761. 0x8195, 0x9195, 0x7194, 0x8200, 0x8201, 0x8202, 0x9199, 0x9200
  1762. };
  1763. if (pseudo_test) {
  1764. /* needs to be added */
  1765. return;
  1766. }
  1767. if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  1768. rtl_efuse_shadow_map_update(hw);
  1769. memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  1770. HWSET_MAX_SIZE);
  1771. } else if (rtlefuse->epromtype == EEPROM_93C46) {
  1772. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1773. "RTL819X Not boot from eeprom, check it !!");
  1774. }
  1775. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, ("MAP\n"),
  1776. hwinfo, HWSET_MAX_SIZE);
  1777. eeprom_id = *((u16 *)&hwinfo[0]);
  1778. if (eeprom_id != RTL8723BE_EEPROM_ID) {
  1779. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1780. "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
  1781. rtlefuse->autoload_failflag = true;
  1782. } else {
  1783. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1784. rtlefuse->autoload_failflag = false;
  1785. }
  1786. if (rtlefuse->autoload_failflag)
  1787. return;
  1788. rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
  1789. rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
  1790. rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
  1791. rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
  1792. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1793. "EEPROMId = 0x%4x\n", eeprom_id);
  1794. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1795. "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
  1796. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1797. "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
  1798. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1799. "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
  1800. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1801. "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
  1802. for (i = 0; i < 6; i += 2) {
  1803. usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
  1804. *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
  1805. }
  1806. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "dev_addr: %pM\n",
  1807. rtlefuse->dev_addr);
  1808. /*parse xtal*/
  1809. rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_8723BE];
  1810. if (rtlefuse->crystalcap == 0xFF)
  1811. rtlefuse->crystalcap = 0x20;
  1812. _rtl8723be_read_txpower_info_from_hwpg(hw, rtlefuse->autoload_failflag,
  1813. hwinfo);
  1814. rtl8723be_read_bt_coexist_info_from_hwpg(hw,
  1815. rtlefuse->autoload_failflag,
  1816. hwinfo);
  1817. rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN];
  1818. rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
  1819. rtlefuse->txpwr_fromeprom = true;
  1820. rtlefuse->eeprom_oemid = hwinfo[EEPROM_CUSTOMER_ID];
  1821. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1822. "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
  1823. /* set channel plan from efuse */
  1824. rtlefuse->channel_plan = rtlefuse->eeprom_channelplan;
  1825. if (rtlhal->oem_id == RT_CID_DEFAULT) {
  1826. /* Does this one have a Toshiba SMID from group 1? */
  1827. for (i = 0; i < sizeof(toshiba_smid1) / sizeof(u16); i++) {
  1828. if (rtlefuse->eeprom_smid == toshiba_smid1[i]) {
  1829. is_toshiba_smid1 = true;
  1830. break;
  1831. }
  1832. }
  1833. /* Does this one have a Toshiba SMID from group 2? */
  1834. for (i = 0; i < sizeof(toshiba_smid2) / sizeof(u16); i++) {
  1835. if (rtlefuse->eeprom_smid == toshiba_smid2[i]) {
  1836. is_toshiba_smid2 = true;
  1837. break;
  1838. }
  1839. }
  1840. /* Does this one have a Samsung SMID? */
  1841. for (i = 0; i < sizeof(samsung_smid) / sizeof(u16); i++) {
  1842. if (rtlefuse->eeprom_smid == samsung_smid[i]) {
  1843. is_samsung_smid = true;
  1844. break;
  1845. }
  1846. }
  1847. /* Does this one have a Lenovo SMID? */
  1848. for (i = 0; i < sizeof(lenovo_smid) / sizeof(u16); i++) {
  1849. if (rtlefuse->eeprom_smid == lenovo_smid[i]) {
  1850. is_lenovo_smid = true;
  1851. break;
  1852. }
  1853. }
  1854. switch (rtlefuse->eeprom_oemid) {
  1855. case EEPROM_CID_DEFAULT:
  1856. if (rtlefuse->eeprom_did == 0x8176) {
  1857. if (rtlefuse->eeprom_svid == 0x10EC &&
  1858. is_toshiba_smid1) {
  1859. rtlhal->oem_id = RT_CID_TOSHIBA;
  1860. } else if (rtlefuse->eeprom_svid == 0x1025) {
  1861. rtlhal->oem_id = RT_CID_819X_ACER;
  1862. } else if (rtlefuse->eeprom_svid == 0x10EC &&
  1863. is_samsung_smid) {
  1864. rtlhal->oem_id = RT_CID_819X_SAMSUNG;
  1865. } else if (rtlefuse->eeprom_svid == 0x10EC &&
  1866. is_lenovo_smid) {
  1867. rtlhal->oem_id = RT_CID_819X_LENOVO;
  1868. } else if ((rtlefuse->eeprom_svid == 0x10EC &&
  1869. rtlefuse->eeprom_smid == 0x8197) ||
  1870. (rtlefuse->eeprom_svid == 0x10EC &&
  1871. rtlefuse->eeprom_smid == 0x9196)) {
  1872. rtlhal->oem_id = RT_CID_819X_CLEVO;
  1873. } else if ((rtlefuse->eeprom_svid == 0x1028 &&
  1874. rtlefuse->eeprom_smid == 0x8194) ||
  1875. (rtlefuse->eeprom_svid == 0x1028 &&
  1876. rtlefuse->eeprom_smid == 0x8198) ||
  1877. (rtlefuse->eeprom_svid == 0x1028 &&
  1878. rtlefuse->eeprom_smid == 0x9197) ||
  1879. (rtlefuse->eeprom_svid == 0x1028 &&
  1880. rtlefuse->eeprom_smid == 0x9198)) {
  1881. rtlhal->oem_id = RT_CID_819X_DELL;
  1882. } else if ((rtlefuse->eeprom_svid == 0x103C &&
  1883. rtlefuse->eeprom_smid == 0x1629)) {
  1884. rtlhal->oem_id = RT_CID_819X_HP;
  1885. } else if ((rtlefuse->eeprom_svid == 0x1A32 &&
  1886. rtlefuse->eeprom_smid == 0x2315)) {
  1887. rtlhal->oem_id = RT_CID_819X_QMI;
  1888. } else if ((rtlefuse->eeprom_svid == 0x10EC &&
  1889. rtlefuse->eeprom_smid == 0x8203)) {
  1890. rtlhal->oem_id = RT_CID_819X_PRONETS;
  1891. } else if ((rtlefuse->eeprom_svid == 0x1043 &&
  1892. rtlefuse->eeprom_smid == 0x84B5)) {
  1893. rtlhal->oem_id = RT_CID_819X_EDIMAX_ASUS;
  1894. } else {
  1895. rtlhal->oem_id = RT_CID_DEFAULT;
  1896. }
  1897. } else if (rtlefuse->eeprom_did == 0x8178) {
  1898. if (rtlefuse->eeprom_svid == 0x10EC &&
  1899. is_toshiba_smid2)
  1900. rtlhal->oem_id = RT_CID_TOSHIBA;
  1901. else if (rtlefuse->eeprom_svid == 0x1025)
  1902. rtlhal->oem_id = RT_CID_819X_ACER;
  1903. else if ((rtlefuse->eeprom_svid == 0x10EC &&
  1904. rtlefuse->eeprom_smid == 0x8186))
  1905. rtlhal->oem_id = RT_CID_819X_PRONETS;
  1906. else if ((rtlefuse->eeprom_svid == 0x1043 &&
  1907. rtlefuse->eeprom_smid == 0x84B6))
  1908. rtlhal->oem_id =
  1909. RT_CID_819X_EDIMAX_ASUS;
  1910. else
  1911. rtlhal->oem_id = RT_CID_DEFAULT;
  1912. } else {
  1913. rtlhal->oem_id = RT_CID_DEFAULT;
  1914. }
  1915. break;
  1916. case EEPROM_CID_TOSHIBA:
  1917. rtlhal->oem_id = RT_CID_TOSHIBA;
  1918. break;
  1919. case EEPROM_CID_CCX:
  1920. rtlhal->oem_id = RT_CID_CCX;
  1921. break;
  1922. case EEPROM_CID_QMI:
  1923. rtlhal->oem_id = RT_CID_819X_QMI;
  1924. break;
  1925. case EEPROM_CID_WHQL:
  1926. break;
  1927. default:
  1928. rtlhal->oem_id = RT_CID_DEFAULT;
  1929. break;
  1930. }
  1931. }
  1932. }
  1933. static void _rtl8723be_hal_customized_behavior(struct ieee80211_hw *hw)
  1934. {
  1935. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1936. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1937. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1938. pcipriv->ledctl.led_opendrain = true;
  1939. switch (rtlhal->oem_id) {
  1940. case RT_CID_819X_HP:
  1941. pcipriv->ledctl.led_opendrain = true;
  1942. break;
  1943. case RT_CID_819X_LENOVO:
  1944. case RT_CID_DEFAULT:
  1945. case RT_CID_TOSHIBA:
  1946. case RT_CID_CCX:
  1947. case RT_CID_819X_ACER:
  1948. case RT_CID_WHQL:
  1949. default:
  1950. break;
  1951. }
  1952. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1953. "RT Customized ID: 0x%02X\n", rtlhal->oem_id);
  1954. }
  1955. void rtl8723be_read_eeprom_info(struct ieee80211_hw *hw)
  1956. {
  1957. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1958. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1959. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1960. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1961. u8 tmp_u1b;
  1962. rtlhal->version = _rtl8723be_read_chip_version(hw);
  1963. if (get_rf_type(rtlphy) == RF_1T1R)
  1964. rtlpriv->dm.rfpath_rxenable[0] = true;
  1965. else
  1966. rtlpriv->dm.rfpath_rxenable[0] =
  1967. rtlpriv->dm.rfpath_rxenable[1] = true;
  1968. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n",
  1969. rtlhal->version);
  1970. tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
  1971. if (tmp_u1b & BIT(4)) {
  1972. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
  1973. rtlefuse->epromtype = EEPROM_93C46;
  1974. } else {
  1975. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
  1976. rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
  1977. }
  1978. if (tmp_u1b & BIT(5)) {
  1979. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1980. rtlefuse->autoload_failflag = false;
  1981. _rtl8723be_read_adapter_info(hw, false);
  1982. } else {
  1983. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
  1984. }
  1985. _rtl8723be_hal_customized_behavior(hw);
  1986. }
  1987. static u8 _rtl8723be_mrate_idx_to_arfr_id(struct ieee80211_hw *hw,
  1988. u8 rate_index)
  1989. {
  1990. u8 ret = 0;
  1991. switch (rate_index) {
  1992. case RATR_INX_WIRELESS_NGB:
  1993. ret = 1;
  1994. break;
  1995. case RATR_INX_WIRELESS_N:
  1996. case RATR_INX_WIRELESS_NG:
  1997. ret = 5;
  1998. break;
  1999. case RATR_INX_WIRELESS_NB:
  2000. ret = 3;
  2001. break;
  2002. case RATR_INX_WIRELESS_GB:
  2003. ret = 6;
  2004. break;
  2005. case RATR_INX_WIRELESS_G:
  2006. ret = 7;
  2007. break;
  2008. case RATR_INX_WIRELESS_B:
  2009. ret = 8;
  2010. break;
  2011. default:
  2012. ret = 0;
  2013. break;
  2014. }
  2015. return ret;
  2016. }
  2017. static void rtl8723be_update_hal_rate_mask(struct ieee80211_hw *hw,
  2018. struct ieee80211_sta *sta,
  2019. u8 rssi_level)
  2020. {
  2021. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2022. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2023. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2024. struct rtl_sta_info *sta_entry = NULL;
  2025. u32 ratr_bitmap;
  2026. u8 ratr_index;
  2027. u8 curtxbw_40mhz = (sta->ht_cap.cap &
  2028. IEEE80211_HT_CAP_SUP_WIDTH_20_40) ? 1 : 0;
  2029. u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  2030. 1 : 0;
  2031. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  2032. 1 : 0;
  2033. enum wireless_mode wirelessmode = 0;
  2034. bool shortgi = false;
  2035. u8 rate_mask[7];
  2036. u8 macid = 0;
  2037. sta_entry = (struct rtl_sta_info *)sta->drv_priv;
  2038. wirelessmode = sta_entry->wireless_mode;
  2039. if (mac->opmode == NL80211_IFTYPE_STATION ||
  2040. mac->opmode == NL80211_IFTYPE_MESH_POINT)
  2041. curtxbw_40mhz = mac->bw_40;
  2042. else if (mac->opmode == NL80211_IFTYPE_AP ||
  2043. mac->opmode == NL80211_IFTYPE_ADHOC)
  2044. macid = sta->aid + 1;
  2045. ratr_bitmap = sta->supp_rates[0];
  2046. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  2047. ratr_bitmap = 0xfff;
  2048. ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  2049. sta->ht_cap.mcs.rx_mask[0] << 12);
  2050. switch (wirelessmode) {
  2051. case WIRELESS_MODE_B:
  2052. ratr_index = RATR_INX_WIRELESS_B;
  2053. if (ratr_bitmap & 0x0000000c)
  2054. ratr_bitmap &= 0x0000000d;
  2055. else
  2056. ratr_bitmap &= 0x0000000f;
  2057. break;
  2058. case WIRELESS_MODE_G:
  2059. ratr_index = RATR_INX_WIRELESS_GB;
  2060. if (rssi_level == 1)
  2061. ratr_bitmap &= 0x00000f00;
  2062. else if (rssi_level == 2)
  2063. ratr_bitmap &= 0x00000ff0;
  2064. else
  2065. ratr_bitmap &= 0x00000ff5;
  2066. break;
  2067. case WIRELESS_MODE_N_24G:
  2068. case WIRELESS_MODE_N_5G:
  2069. ratr_index = RATR_INX_WIRELESS_NGB;
  2070. if (rtlphy->rf_type == RF_1T1R) {
  2071. if (curtxbw_40mhz) {
  2072. if (rssi_level == 1)
  2073. ratr_bitmap &= 0x000f0000;
  2074. else if (rssi_level == 2)
  2075. ratr_bitmap &= 0x000ff000;
  2076. else
  2077. ratr_bitmap &= 0x000ff015;
  2078. } else {
  2079. if (rssi_level == 1)
  2080. ratr_bitmap &= 0x000f0000;
  2081. else if (rssi_level == 2)
  2082. ratr_bitmap &= 0x000ff000;
  2083. else
  2084. ratr_bitmap &= 0x000ff005;
  2085. }
  2086. } else {
  2087. if (curtxbw_40mhz) {
  2088. if (rssi_level == 1)
  2089. ratr_bitmap &= 0x0f8f0000;
  2090. else if (rssi_level == 2)
  2091. ratr_bitmap &= 0x0f8ff000;
  2092. else
  2093. ratr_bitmap &= 0x0f8ff015;
  2094. } else {
  2095. if (rssi_level == 1)
  2096. ratr_bitmap &= 0x0f8f0000;
  2097. else if (rssi_level == 2)
  2098. ratr_bitmap &= 0x0f8ff000;
  2099. else
  2100. ratr_bitmap &= 0x0f8ff005;
  2101. }
  2102. }
  2103. if ((curtxbw_40mhz && curshortgi_40mhz) ||
  2104. (!curtxbw_40mhz && curshortgi_20mhz)) {
  2105. if (macid == 0)
  2106. shortgi = true;
  2107. else if (macid == 1)
  2108. shortgi = false;
  2109. }
  2110. break;
  2111. default:
  2112. ratr_index = RATR_INX_WIRELESS_NGB;
  2113. if (rtlphy->rf_type == RF_1T2R)
  2114. ratr_bitmap &= 0x000ff0ff;
  2115. else
  2116. ratr_bitmap &= 0x0f0ff0ff;
  2117. break;
  2118. }
  2119. sta_entry->ratr_index = ratr_index;
  2120. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  2121. "ratr_bitmap :%x\n", ratr_bitmap);
  2122. *(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) |
  2123. (ratr_index << 28);
  2124. rate_mask[0] = macid;
  2125. rate_mask[1] = _rtl8723be_mrate_idx_to_arfr_id(hw, ratr_index) |
  2126. (shortgi ? 0x80 : 0x00);
  2127. rate_mask[2] = curtxbw_40mhz;
  2128. rate_mask[3] = (u8)(ratr_bitmap & 0x000000ff);
  2129. rate_mask[4] = (u8)((ratr_bitmap & 0x0000ff00) >> 8);
  2130. rate_mask[5] = (u8)((ratr_bitmap & 0x00ff0000) >> 16);
  2131. rate_mask[6] = (u8)((ratr_bitmap & 0xff000000) >> 24);
  2132. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  2133. "Rate_index:%x, ratr_val:%x, %x:%x:%x:%x:%x:%x:%x\n",
  2134. ratr_index, ratr_bitmap,
  2135. rate_mask[0], rate_mask[1],
  2136. rate_mask[2], rate_mask[3],
  2137. rate_mask[4], rate_mask[5],
  2138. rate_mask[6]);
  2139. rtl8723be_fill_h2c_cmd(hw, H2C_8723B_RA_MASK, 7, rate_mask);
  2140. _rtl8723be_set_bcn_ctrl_reg(hw, BIT(3), 0);
  2141. }
  2142. void rtl8723be_update_hal_rate_tbl(struct ieee80211_hw *hw,
  2143. struct ieee80211_sta *sta,
  2144. u8 rssi_level)
  2145. {
  2146. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2147. if (rtlpriv->dm.useramask)
  2148. rtl8723be_update_hal_rate_mask(hw, sta, rssi_level);
  2149. }
  2150. void rtl8723be_update_channel_access_setting(struct ieee80211_hw *hw)
  2151. {
  2152. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2153. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2154. u16 sifs_timer;
  2155. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, &mac->slot_time);
  2156. if (!mac->ht_enable)
  2157. sifs_timer = 0x0a0a;
  2158. else
  2159. sifs_timer = 0x0e0e;
  2160. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
  2161. }
  2162. bool rtl8723be_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
  2163. {
  2164. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2165. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  2166. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2167. enum rf_pwrstate e_rfpowerstate_toset, cur_rfstate;
  2168. u8 u1tmp;
  2169. bool b_actuallyset = false;
  2170. if (rtlpriv->rtlhal.being_init_adapter)
  2171. return false;
  2172. if (ppsc->swrf_processing)
  2173. return false;
  2174. spin_lock(&rtlpriv->locks.rf_ps_lock);
  2175. if (ppsc->rfchange_inprogress) {
  2176. spin_unlock(&rtlpriv->locks.rf_ps_lock);
  2177. return false;
  2178. } else {
  2179. ppsc->rfchange_inprogress = true;
  2180. spin_unlock(&rtlpriv->locks.rf_ps_lock);
  2181. }
  2182. cur_rfstate = ppsc->rfpwr_state;
  2183. rtl_write_byte(rtlpriv, REG_GPIO_IO_SEL_2,
  2184. rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL_2) & ~(BIT(1)));
  2185. u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL_2);
  2186. if (rtlphy->polarity_ctl)
  2187. e_rfpowerstate_toset = (u1tmp & BIT(1)) ? ERFOFF : ERFON;
  2188. else
  2189. e_rfpowerstate_toset = (u1tmp & BIT(1)) ? ERFON : ERFOFF;
  2190. if ((ppsc->hwradiooff) && (e_rfpowerstate_toset == ERFON)) {
  2191. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  2192. "GPIOChangeRF - HW Radio ON, RF ON\n");
  2193. e_rfpowerstate_toset = ERFON;
  2194. ppsc->hwradiooff = false;
  2195. b_actuallyset = true;
  2196. } else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
  2197. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  2198. "GPIOChangeRF - HW Radio OFF, RF OFF\n");
  2199. e_rfpowerstate_toset = ERFOFF;
  2200. ppsc->hwradiooff = true;
  2201. b_actuallyset = true;
  2202. }
  2203. if (b_actuallyset) {
  2204. spin_lock(&rtlpriv->locks.rf_ps_lock);
  2205. ppsc->rfchange_inprogress = false;
  2206. spin_unlock(&rtlpriv->locks.rf_ps_lock);
  2207. } else {
  2208. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
  2209. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  2210. spin_lock(&rtlpriv->locks.rf_ps_lock);
  2211. ppsc->rfchange_inprogress = false;
  2212. spin_unlock(&rtlpriv->locks.rf_ps_lock);
  2213. }
  2214. *valid = 1;
  2215. return !ppsc->hwradiooff;
  2216. }
  2217. void rtl8723be_set_key(struct ieee80211_hw *hw, u32 key_index,
  2218. u8 *p_macaddr, bool is_group, u8 enc_algo,
  2219. bool is_wepkey, bool clear_all)
  2220. {
  2221. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2222. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2223. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  2224. u8 *macaddr = p_macaddr;
  2225. u32 entry_id = 0;
  2226. bool is_pairwise = false;
  2227. static u8 cam_const_addr[4][6] = {
  2228. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
  2229. {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
  2230. {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
  2231. {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
  2232. };
  2233. static u8 cam_const_broad[] = {
  2234. 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
  2235. };
  2236. if (clear_all) {
  2237. u8 idx = 0;
  2238. u8 cam_offset = 0;
  2239. u8 clear_number = 5;
  2240. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
  2241. for (idx = 0; idx < clear_number; idx++) {
  2242. rtl_cam_mark_invalid(hw, cam_offset + idx);
  2243. rtl_cam_empty_entry(hw, cam_offset + idx);
  2244. if (idx < 5) {
  2245. memset(rtlpriv->sec.key_buf[idx], 0,
  2246. MAX_KEY_LEN);
  2247. rtlpriv->sec.key_len[idx] = 0;
  2248. }
  2249. }
  2250. } else {
  2251. switch (enc_algo) {
  2252. case WEP40_ENCRYPTION:
  2253. enc_algo = CAM_WEP40;
  2254. break;
  2255. case WEP104_ENCRYPTION:
  2256. enc_algo = CAM_WEP104;
  2257. break;
  2258. case TKIP_ENCRYPTION:
  2259. enc_algo = CAM_TKIP;
  2260. break;
  2261. case AESCCMP_ENCRYPTION:
  2262. enc_algo = CAM_AES;
  2263. break;
  2264. default:
  2265. RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD,
  2266. "switch case not process\n");
  2267. enc_algo = CAM_TKIP;
  2268. break;
  2269. }
  2270. if (is_wepkey || rtlpriv->sec.use_defaultkey) {
  2271. macaddr = cam_const_addr[key_index];
  2272. entry_id = key_index;
  2273. } else {
  2274. if (is_group) {
  2275. macaddr = cam_const_broad;
  2276. entry_id = key_index;
  2277. } else {
  2278. if (mac->opmode == NL80211_IFTYPE_AP) {
  2279. entry_id = rtl_cam_get_free_entry(hw,
  2280. p_macaddr);
  2281. if (entry_id >= TOTAL_CAM_ENTRY) {
  2282. RT_TRACE(rtlpriv, COMP_SEC,
  2283. DBG_EMERG,
  2284. "Can not find free hw security cam entry\n");
  2285. return;
  2286. }
  2287. } else {
  2288. entry_id = CAM_PAIRWISE_KEY_POSITION;
  2289. }
  2290. key_index = PAIRWISE_KEYIDX;
  2291. is_pairwise = true;
  2292. }
  2293. }
  2294. if (rtlpriv->sec.key_len[key_index] == 0) {
  2295. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2296. "delete one entry, entry_id is %d\n",
  2297. entry_id);
  2298. if (mac->opmode == NL80211_IFTYPE_AP)
  2299. rtl_cam_del_entry(hw, p_macaddr);
  2300. rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
  2301. } else {
  2302. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2303. "add one entry\n");
  2304. if (is_pairwise) {
  2305. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2306. "set Pairwiase key\n");
  2307. rtl_cam_add_one_entry(hw, macaddr, key_index,
  2308. entry_id, enc_algo,
  2309. CAM_CONFIG_NO_USEDK,
  2310. rtlpriv->sec.key_buf[key_index]);
  2311. } else {
  2312. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2313. "set group key\n");
  2314. if (mac->opmode == NL80211_IFTYPE_ADHOC) {
  2315. rtl_cam_add_one_entry(hw,
  2316. rtlefuse->dev_addr,
  2317. PAIRWISE_KEYIDX,
  2318. CAM_PAIRWISE_KEY_POSITION,
  2319. enc_algo,
  2320. CAM_CONFIG_NO_USEDK,
  2321. rtlpriv->sec.key_buf
  2322. [entry_id]);
  2323. }
  2324. rtl_cam_add_one_entry(hw, macaddr, key_index,
  2325. entry_id, enc_algo,
  2326. CAM_CONFIG_NO_USEDK,
  2327. rtlpriv->sec.key_buf[entry_id]);
  2328. }
  2329. }
  2330. }
  2331. }
  2332. void rtl8723be_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw,
  2333. bool auto_load_fail, u8 *hwinfo)
  2334. {
  2335. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2336. u8 value;
  2337. u32 tmpu_32;
  2338. if (!auto_load_fail) {
  2339. tmpu_32 = rtl_read_dword(rtlpriv, REG_MULTI_FUNC_CTRL);
  2340. if (tmpu_32 & BIT(18))
  2341. rtlpriv->btcoexist.btc_info.btcoexist = 1;
  2342. else
  2343. rtlpriv->btcoexist.btc_info.btcoexist = 0;
  2344. value = hwinfo[EEPROM_RF_BT_SETTING_8723B];
  2345. rtlpriv->btcoexist.btc_info.bt_type = BT_RTL8723B;
  2346. rtlpriv->btcoexist.btc_info.ant_num = (value & 0x1);
  2347. } else {
  2348. rtlpriv->btcoexist.btc_info.btcoexist = 0;
  2349. rtlpriv->btcoexist.btc_info.bt_type = BT_RTL8723B;
  2350. rtlpriv->btcoexist.btc_info.ant_num = ANT_X2;
  2351. }
  2352. }
  2353. void rtl8723be_bt_reg_init(struct ieee80211_hw *hw)
  2354. {
  2355. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2356. /* 0:Low, 1:High, 2:From Efuse. */
  2357. rtlpriv->btcoexist.reg_bt_iso = 2;
  2358. /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */
  2359. rtlpriv->btcoexist.reg_bt_sco = 3;
  2360. /* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */
  2361. rtlpriv->btcoexist.reg_bt_sco = 0;
  2362. }
  2363. void rtl8723be_bt_hw_init(struct ieee80211_hw *hw)
  2364. {
  2365. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2366. if (rtlpriv->cfg->ops->get_btc_status())
  2367. rtlpriv->btcoexist.btc_ops->btc_init_hw_config(rtlpriv);
  2368. }
  2369. void rtl8723be_suspend(struct ieee80211_hw *hw)
  2370. {
  2371. }
  2372. void rtl8723be_resume(struct ieee80211_hw *hw)
  2373. {
  2374. }