phy.c 117 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2012 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "../wifi.h"
  30. #include "../pci.h"
  31. #include "../ps.h"
  32. #include "../core.h"
  33. #include "reg.h"
  34. #include "def.h"
  35. #include "phy.h"
  36. #include "rf.h"
  37. #include "dm.h"
  38. #include "table.h"
  39. #include "sw.h"
  40. #include "hw.h"
  41. #define MAX_RF_IMR_INDEX 12
  42. #define MAX_RF_IMR_INDEX_NORMAL 13
  43. #define RF_REG_NUM_FOR_C_CUT_5G 6
  44. #define RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA 7
  45. #define RF_REG_NUM_FOR_C_CUT_2G 5
  46. #define RF_CHNL_NUM_5G 19
  47. #define RF_CHNL_NUM_5G_40M 17
  48. #define TARGET_CHNL_NUM_5G 221
  49. #define TARGET_CHNL_NUM_2G 14
  50. #define CV_CURVE_CNT 64
  51. static u32 rf_reg_for_5g_swchnl_normal[MAX_RF_IMR_INDEX_NORMAL] = {
  52. 0, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x0
  53. };
  54. static u8 rf_reg_for_c_cut_5g[RF_REG_NUM_FOR_C_CUT_5G] = {
  55. RF_SYN_G1, RF_SYN_G2, RF_SYN_G3, RF_SYN_G4, RF_SYN_G5, RF_SYN_G6
  56. };
  57. static u8 rf_reg_for_c_cut_2g[RF_REG_NUM_FOR_C_CUT_2G] = {
  58. RF_SYN_G1, RF_SYN_G2, RF_SYN_G3, RF_SYN_G7, RF_SYN_G8
  59. };
  60. static u8 rf_for_c_cut_5g_internal_pa[RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA] = {
  61. 0x0B, 0x48, 0x49, 0x4B, 0x03, 0x04, 0x0E
  62. };
  63. static u32 rf_reg_mask_for_c_cut_2g[RF_REG_NUM_FOR_C_CUT_2G] = {
  64. BIT(19) | BIT(18) | BIT(17) | BIT(14) | BIT(1),
  65. BIT(10) | BIT(9),
  66. BIT(18) | BIT(17) | BIT(16) | BIT(1),
  67. BIT(2) | BIT(1),
  68. BIT(15) | BIT(14) | BIT(13) | BIT(12) | BIT(11)
  69. };
  70. static u8 rf_chnl_5g[RF_CHNL_NUM_5G] = {
  71. 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108,
  72. 112, 116, 120, 124, 128, 132, 136, 140
  73. };
  74. static u8 rf_chnl_5g_40m[RF_CHNL_NUM_5G_40M] = {
  75. 38, 42, 46, 50, 54, 58, 62, 102, 106, 110, 114,
  76. 118, 122, 126, 130, 134, 138
  77. };
  78. static u32 rf_reg_pram_c_5g[5][RF_REG_NUM_FOR_C_CUT_5G] = {
  79. {0xE43BE, 0xFC638, 0x77C0A, 0xDE471, 0xd7110, 0x8EB04},
  80. {0xE43BE, 0xFC078, 0xF7C1A, 0xE0C71, 0xD7550, 0xAEB04},
  81. {0xE43BF, 0xFF038, 0xF7C0A, 0xDE471, 0xE5550, 0xAEB04},
  82. {0xE43BF, 0xFF079, 0xF7C1A, 0xDE471, 0xE5550, 0xAEB04},
  83. {0xE43BF, 0xFF038, 0xF7C1A, 0xDE471, 0xd7550, 0xAEB04}
  84. };
  85. static u32 rf_reg_param_for_c_cut_2g[3][RF_REG_NUM_FOR_C_CUT_2G] = {
  86. {0x643BC, 0xFC038, 0x77C1A, 0x41289, 0x01840},
  87. {0x643BC, 0xFC038, 0x07C1A, 0x41289, 0x01840},
  88. {0x243BC, 0xFC438, 0x07C1A, 0x4128B, 0x0FC41}
  89. };
  90. static u32 rf_syn_g4_for_c_cut_2g = 0xD1C31 & 0x7FF;
  91. static u32 rf_pram_c_5g_int_pa[3][RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA] = {
  92. {0x01a00, 0x40443, 0x00eb5, 0x89bec, 0x94a12, 0x94a12, 0x94a12},
  93. {0x01800, 0xc0443, 0x00730, 0x896ee, 0x94a52, 0x94a52, 0x94a52},
  94. {0x01800, 0xc0443, 0x00730, 0x896ee, 0x94a12, 0x94a12, 0x94a12}
  95. };
  96. /* [mode][patha+b][reg] */
  97. static u32 rf_imr_param_normal[1][3][MAX_RF_IMR_INDEX_NORMAL] = {
  98. {
  99. /* channel 1-14. */
  100. {
  101. 0x70000, 0x00ff0, 0x4400f, 0x00ff0, 0x0, 0x0, 0x0,
  102. 0x0, 0x0, 0x64888, 0xe266c, 0x00090, 0x22fff
  103. },
  104. /* path 36-64 */
  105. {
  106. 0x70000, 0x22880, 0x4470f, 0x55880, 0x00070, 0x88000,
  107. 0x0, 0x88080, 0x70000, 0x64a82, 0xe466c, 0x00090,
  108. 0x32c9a
  109. },
  110. /* 100 -165 */
  111. {
  112. 0x70000, 0x44880, 0x4477f, 0x77880, 0x00070, 0x88000,
  113. 0x0, 0x880b0, 0x0, 0x64b82, 0xe466c, 0x00090, 0x32c9a
  114. }
  115. }
  116. };
  117. static u32 curveindex_5g[TARGET_CHNL_NUM_5G] = {0};
  118. static u32 curveindex_2g[TARGET_CHNL_NUM_2G] = {0};
  119. static u32 targetchnl_5g[TARGET_CHNL_NUM_5G] = {
  120. 25141, 25116, 25091, 25066, 25041,
  121. 25016, 24991, 24966, 24941, 24917,
  122. 24892, 24867, 24843, 24818, 24794,
  123. 24770, 24765, 24721, 24697, 24672,
  124. 24648, 24624, 24600, 24576, 24552,
  125. 24528, 24504, 24480, 24457, 24433,
  126. 24409, 24385, 24362, 24338, 24315,
  127. 24291, 24268, 24245, 24221, 24198,
  128. 24175, 24151, 24128, 24105, 24082,
  129. 24059, 24036, 24013, 23990, 23967,
  130. 23945, 23922, 23899, 23876, 23854,
  131. 23831, 23809, 23786, 23764, 23741,
  132. 23719, 23697, 23674, 23652, 23630,
  133. 23608, 23586, 23564, 23541, 23519,
  134. 23498, 23476, 23454, 23432, 23410,
  135. 23388, 23367, 23345, 23323, 23302,
  136. 23280, 23259, 23237, 23216, 23194,
  137. 23173, 23152, 23130, 23109, 23088,
  138. 23067, 23046, 23025, 23003, 22982,
  139. 22962, 22941, 22920, 22899, 22878,
  140. 22857, 22837, 22816, 22795, 22775,
  141. 22754, 22733, 22713, 22692, 22672,
  142. 22652, 22631, 22611, 22591, 22570,
  143. 22550, 22530, 22510, 22490, 22469,
  144. 22449, 22429, 22409, 22390, 22370,
  145. 22350, 22336, 22310, 22290, 22271,
  146. 22251, 22231, 22212, 22192, 22173,
  147. 22153, 22134, 22114, 22095, 22075,
  148. 22056, 22037, 22017, 21998, 21979,
  149. 21960, 21941, 21921, 21902, 21883,
  150. 21864, 21845, 21826, 21807, 21789,
  151. 21770, 21751, 21732, 21713, 21695,
  152. 21676, 21657, 21639, 21620, 21602,
  153. 21583, 21565, 21546, 21528, 21509,
  154. 21491, 21473, 21454, 21436, 21418,
  155. 21400, 21381, 21363, 21345, 21327,
  156. 21309, 21291, 21273, 21255, 21237,
  157. 21219, 21201, 21183, 21166, 21148,
  158. 21130, 21112, 21095, 21077, 21059,
  159. 21042, 21024, 21007, 20989, 20972,
  160. 25679, 25653, 25627, 25601, 25575,
  161. 25549, 25523, 25497, 25471, 25446,
  162. 25420, 25394, 25369, 25343, 25318,
  163. 25292, 25267, 25242, 25216, 25191,
  164. 25166
  165. };
  166. /* channel 1~14 */
  167. static u32 targetchnl_2g[TARGET_CHNL_NUM_2G] = {
  168. 26084, 26030, 25976, 25923, 25869, 25816, 25764,
  169. 25711, 25658, 25606, 25554, 25502, 25451, 25328
  170. };
  171. static u32 _rtl92d_phy_calculate_bit_shift(u32 bitmask)
  172. {
  173. u32 i;
  174. for (i = 0; i <= 31; i++) {
  175. if (((bitmask >> i) & 0x1) == 1)
  176. break;
  177. }
  178. return i;
  179. }
  180. u32 rtl92d_phy_query_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask)
  181. {
  182. struct rtl_priv *rtlpriv = rtl_priv(hw);
  183. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  184. u32 returnvalue, originalvalue, bitshift;
  185. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x)\n",
  186. regaddr, bitmask);
  187. if (rtlhal->during_mac1init_radioa || rtlhal->during_mac0init_radiob) {
  188. u8 dbi_direct = 0;
  189. /* mac1 use phy0 read radio_b. */
  190. /* mac0 use phy1 read radio_b. */
  191. if (rtlhal->during_mac1init_radioa)
  192. dbi_direct = BIT(3);
  193. else if (rtlhal->during_mac0init_radiob)
  194. dbi_direct = BIT(3) | BIT(2);
  195. originalvalue = rtl92de_read_dword_dbi(hw, (u16)regaddr,
  196. dbi_direct);
  197. } else {
  198. originalvalue = rtl_read_dword(rtlpriv, regaddr);
  199. }
  200. bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
  201. returnvalue = (originalvalue & bitmask) >> bitshift;
  202. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  203. "BBR MASK=0x%x Addr[0x%x]=0x%x\n",
  204. bitmask, regaddr, originalvalue);
  205. return returnvalue;
  206. }
  207. void rtl92d_phy_set_bb_reg(struct ieee80211_hw *hw,
  208. u32 regaddr, u32 bitmask, u32 data)
  209. {
  210. struct rtl_priv *rtlpriv = rtl_priv(hw);
  211. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  212. u8 dbi_direct = 0;
  213. u32 originalvalue, bitshift;
  214. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  215. "regaddr(%#x), bitmask(%#x), data(%#x)\n",
  216. regaddr, bitmask, data);
  217. if (rtlhal->during_mac1init_radioa)
  218. dbi_direct = BIT(3);
  219. else if (rtlhal->during_mac0init_radiob)
  220. /* mac0 use phy1 write radio_b. */
  221. dbi_direct = BIT(3) | BIT(2);
  222. if (bitmask != MASKDWORD) {
  223. if (rtlhal->during_mac1init_radioa ||
  224. rtlhal->during_mac0init_radiob)
  225. originalvalue = rtl92de_read_dword_dbi(hw,
  226. (u16) regaddr,
  227. dbi_direct);
  228. else
  229. originalvalue = rtl_read_dword(rtlpriv, regaddr);
  230. bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
  231. data = ((originalvalue & (~bitmask)) | (data << bitshift));
  232. }
  233. if (rtlhal->during_mac1init_radioa || rtlhal->during_mac0init_radiob)
  234. rtl92de_write_dword_dbi(hw, (u16) regaddr, data, dbi_direct);
  235. else
  236. rtl_write_dword(rtlpriv, regaddr, data);
  237. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  238. "regaddr(%#x), bitmask(%#x), data(%#x)\n",
  239. regaddr, bitmask, data);
  240. }
  241. static u32 _rtl92d_phy_rf_serial_read(struct ieee80211_hw *hw,
  242. enum radio_path rfpath, u32 offset)
  243. {
  244. struct rtl_priv *rtlpriv = rtl_priv(hw);
  245. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  246. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  247. u32 newoffset;
  248. u32 tmplong, tmplong2;
  249. u8 rfpi_enable = 0;
  250. u32 retvalue;
  251. newoffset = offset;
  252. tmplong = rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD);
  253. if (rfpath == RF90_PATH_A)
  254. tmplong2 = tmplong;
  255. else
  256. tmplong2 = rtl_get_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD);
  257. tmplong2 = (tmplong2 & (~BLSSIREADADDRESS)) |
  258. (newoffset << 23) | BLSSIREADEDGE;
  259. rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD,
  260. tmplong & (~BLSSIREADEDGE));
  261. udelay(10);
  262. rtl_set_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD, tmplong2);
  263. udelay(50);
  264. udelay(50);
  265. rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD,
  266. tmplong | BLSSIREADEDGE);
  267. udelay(10);
  268. if (rfpath == RF90_PATH_A)
  269. rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1,
  270. BIT(8));
  271. else if (rfpath == RF90_PATH_B)
  272. rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XB_HSSIPARAMETER1,
  273. BIT(8));
  274. if (rfpi_enable)
  275. retvalue = rtl_get_bbreg(hw, pphyreg->rf_rbpi,
  276. BLSSIREADBACKDATA);
  277. else
  278. retvalue = rtl_get_bbreg(hw, pphyreg->rf_rb,
  279. BLSSIREADBACKDATA);
  280. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFR-%d Addr[0x%x] = 0x%x\n",
  281. rfpath, pphyreg->rf_rb, retvalue);
  282. return retvalue;
  283. }
  284. static void _rtl92d_phy_rf_serial_write(struct ieee80211_hw *hw,
  285. enum radio_path rfpath,
  286. u32 offset, u32 data)
  287. {
  288. u32 data_and_addr;
  289. u32 newoffset;
  290. struct rtl_priv *rtlpriv = rtl_priv(hw);
  291. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  292. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  293. newoffset = offset;
  294. /* T65 RF */
  295. data_and_addr = ((newoffset << 20) | (data & 0x000fffff)) & 0x0fffffff;
  296. rtl_set_bbreg(hw, pphyreg->rf3wire_offset, MASKDWORD, data_and_addr);
  297. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFW-%d Addr[0x%x]=0x%x\n",
  298. rfpath, pphyreg->rf3wire_offset, data_and_addr);
  299. }
  300. u32 rtl92d_phy_query_rf_reg(struct ieee80211_hw *hw,
  301. enum radio_path rfpath, u32 regaddr, u32 bitmask)
  302. {
  303. struct rtl_priv *rtlpriv = rtl_priv(hw);
  304. u32 original_value, readback_value, bitshift;
  305. unsigned long flags;
  306. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  307. "regaddr(%#x), rfpath(%#x), bitmask(%#x)\n",
  308. regaddr, rfpath, bitmask);
  309. spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
  310. original_value = _rtl92d_phy_rf_serial_read(hw, rfpath, regaddr);
  311. bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
  312. readback_value = (original_value & bitmask) >> bitshift;
  313. spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
  314. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  315. "regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n",
  316. regaddr, rfpath, bitmask, original_value);
  317. return readback_value;
  318. }
  319. void rtl92d_phy_set_rf_reg(struct ieee80211_hw *hw, enum radio_path rfpath,
  320. u32 regaddr, u32 bitmask, u32 data)
  321. {
  322. struct rtl_priv *rtlpriv = rtl_priv(hw);
  323. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  324. u32 original_value, bitshift;
  325. unsigned long flags;
  326. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  327. "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
  328. regaddr, bitmask, data, rfpath);
  329. if (bitmask == 0)
  330. return;
  331. spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
  332. if (rtlphy->rf_mode != RF_OP_BY_FW) {
  333. if (bitmask != RFREG_OFFSET_MASK) {
  334. original_value = _rtl92d_phy_rf_serial_read(hw,
  335. rfpath, regaddr);
  336. bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
  337. data = ((original_value & (~bitmask)) |
  338. (data << bitshift));
  339. }
  340. _rtl92d_phy_rf_serial_write(hw, rfpath, regaddr, data);
  341. }
  342. spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
  343. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  344. "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
  345. regaddr, bitmask, data, rfpath);
  346. }
  347. bool rtl92d_phy_mac_config(struct ieee80211_hw *hw)
  348. {
  349. struct rtl_priv *rtlpriv = rtl_priv(hw);
  350. u32 i;
  351. u32 arraylength;
  352. u32 *ptrarray;
  353. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Read Rtl819XMACPHY_Array\n");
  354. arraylength = MAC_2T_ARRAYLENGTH;
  355. ptrarray = rtl8192de_mac_2tarray;
  356. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Img:Rtl819XMAC_Array\n");
  357. for (i = 0; i < arraylength; i = i + 2)
  358. rtl_write_byte(rtlpriv, ptrarray[i], (u8) ptrarray[i + 1]);
  359. if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
  360. /* improve 2-stream TX EVM */
  361. /* rtl_write_byte(rtlpriv, 0x14,0x71); */
  362. /* AMPDU aggregation number 9 */
  363. /* rtl_write_word(rtlpriv, REG_MAX_AGGR_NUM, MAX_AGGR_NUM); */
  364. rtl_write_byte(rtlpriv, REG_MAX_AGGR_NUM, 0x0B);
  365. } else {
  366. /* 92D need to test to decide the num. */
  367. rtl_write_byte(rtlpriv, REG_MAX_AGGR_NUM, 0x07);
  368. }
  369. return true;
  370. }
  371. static void _rtl92d_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw)
  372. {
  373. struct rtl_priv *rtlpriv = rtl_priv(hw);
  374. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  375. /* RF Interface Sowrtware Control */
  376. /* 16 LSBs if read 32-bit from 0x870 */
  377. rtlphy->phyreg_def[RF90_PATH_A].rfintfs = RFPGA0_XAB_RFINTERFACESW;
  378. /* 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) */
  379. rtlphy->phyreg_def[RF90_PATH_B].rfintfs = RFPGA0_XAB_RFINTERFACESW;
  380. /* 16 LSBs if read 32-bit from 0x874 */
  381. rtlphy->phyreg_def[RF90_PATH_C].rfintfs = RFPGA0_XCD_RFINTERFACESW;
  382. /* 16 MSBs if read 32-bit from 0x874 (16-bit for 0x876) */
  383. rtlphy->phyreg_def[RF90_PATH_D].rfintfs = RFPGA0_XCD_RFINTERFACESW;
  384. /* RF Interface Readback Value */
  385. /* 16 LSBs if read 32-bit from 0x8E0 */
  386. rtlphy->phyreg_def[RF90_PATH_A].rfintfi = RFPGA0_XAB_RFINTERFACERB;
  387. /* 16 MSBs if read 32-bit from 0x8E0 (16-bit for 0x8E2) */
  388. rtlphy->phyreg_def[RF90_PATH_B].rfintfi = RFPGA0_XAB_RFINTERFACERB;
  389. /* 16 LSBs if read 32-bit from 0x8E4 */
  390. rtlphy->phyreg_def[RF90_PATH_C].rfintfi = RFPGA0_XCD_RFINTERFACERB;
  391. /* 16 MSBs if read 32-bit from 0x8E4 (16-bit for 0x8E6) */
  392. rtlphy->phyreg_def[RF90_PATH_D].rfintfi = RFPGA0_XCD_RFINTERFACERB;
  393. /* RF Interface Output (and Enable) */
  394. /* 16 LSBs if read 32-bit from 0x860 */
  395. rtlphy->phyreg_def[RF90_PATH_A].rfintfo = RFPGA0_XA_RFINTERFACEOE;
  396. /* 16 LSBs if read 32-bit from 0x864 */
  397. rtlphy->phyreg_def[RF90_PATH_B].rfintfo = RFPGA0_XB_RFINTERFACEOE;
  398. /* RF Interface (Output and) Enable */
  399. /* 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) */
  400. rtlphy->phyreg_def[RF90_PATH_A].rfintfe = RFPGA0_XA_RFINTERFACEOE;
  401. /* 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) */
  402. rtlphy->phyreg_def[RF90_PATH_B].rfintfe = RFPGA0_XB_RFINTERFACEOE;
  403. /* Addr of LSSI. Wirte RF register by driver */
  404. /* LSSI Parameter */
  405. rtlphy->phyreg_def[RF90_PATH_A].rf3wire_offset =
  406. RFPGA0_XA_LSSIPARAMETER;
  407. rtlphy->phyreg_def[RF90_PATH_B].rf3wire_offset =
  408. RFPGA0_XB_LSSIPARAMETER;
  409. /* RF parameter */
  410. /* BB Band Select */
  411. rtlphy->phyreg_def[RF90_PATH_A].rflssi_select = RFPGA0_XAB_RFPARAMETER;
  412. rtlphy->phyreg_def[RF90_PATH_B].rflssi_select = RFPGA0_XAB_RFPARAMETER;
  413. rtlphy->phyreg_def[RF90_PATH_C].rflssi_select = RFPGA0_XCD_RFPARAMETER;
  414. rtlphy->phyreg_def[RF90_PATH_D].rflssi_select = RFPGA0_XCD_RFPARAMETER;
  415. /* Tx AGC Gain Stage (same for all path. Should we remove this?) */
  416. /* Tx gain stage */
  417. rtlphy->phyreg_def[RF90_PATH_A].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  418. /* Tx gain stage */
  419. rtlphy->phyreg_def[RF90_PATH_B].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  420. /* Tx gain stage */
  421. rtlphy->phyreg_def[RF90_PATH_C].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  422. /* Tx gain stage */
  423. rtlphy->phyreg_def[RF90_PATH_D].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  424. /* Tranceiver A~D HSSI Parameter-1 */
  425. /* wire control parameter1 */
  426. rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para1 = RFPGA0_XA_HSSIPARAMETER1;
  427. /* wire control parameter1 */
  428. rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para1 = RFPGA0_XB_HSSIPARAMETER1;
  429. /* Tranceiver A~D HSSI Parameter-2 */
  430. /* wire control parameter2 */
  431. rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para2 = RFPGA0_XA_HSSIPARAMETER2;
  432. /* wire control parameter2 */
  433. rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para2 = RFPGA0_XB_HSSIPARAMETER2;
  434. /* RF switch Control */
  435. /* TR/Ant switch control */
  436. rtlphy->phyreg_def[RF90_PATH_A].rfsw_ctrl = RFPGA0_XAB_SWITCHCONTROL;
  437. rtlphy->phyreg_def[RF90_PATH_B].rfsw_ctrl = RFPGA0_XAB_SWITCHCONTROL;
  438. rtlphy->phyreg_def[RF90_PATH_C].rfsw_ctrl = RFPGA0_XCD_SWITCHCONTROL;
  439. rtlphy->phyreg_def[RF90_PATH_D].rfsw_ctrl = RFPGA0_XCD_SWITCHCONTROL;
  440. /* AGC control 1 */
  441. rtlphy->phyreg_def[RF90_PATH_A].rfagc_control1 = ROFDM0_XAAGCCORE1;
  442. rtlphy->phyreg_def[RF90_PATH_B].rfagc_control1 = ROFDM0_XBAGCCORE1;
  443. rtlphy->phyreg_def[RF90_PATH_C].rfagc_control1 = ROFDM0_XCAGCCORE1;
  444. rtlphy->phyreg_def[RF90_PATH_D].rfagc_control1 = ROFDM0_XDAGCCORE1;
  445. /* AGC control 2 */
  446. rtlphy->phyreg_def[RF90_PATH_A].rfagc_control2 = ROFDM0_XAAGCCORE2;
  447. rtlphy->phyreg_def[RF90_PATH_B].rfagc_control2 = ROFDM0_XBAGCCORE2;
  448. rtlphy->phyreg_def[RF90_PATH_C].rfagc_control2 = ROFDM0_XCAGCCORE2;
  449. rtlphy->phyreg_def[RF90_PATH_D].rfagc_control2 = ROFDM0_XDAGCCORE2;
  450. /* RX AFE control 1 */
  451. rtlphy->phyreg_def[RF90_PATH_A].rfrxiq_imbal = ROFDM0_XARXIQIMBALANCE;
  452. rtlphy->phyreg_def[RF90_PATH_B].rfrxiq_imbal = ROFDM0_XBRXIQIMBALANCE;
  453. rtlphy->phyreg_def[RF90_PATH_C].rfrxiq_imbal = ROFDM0_XCRXIQIMBALANCE;
  454. rtlphy->phyreg_def[RF90_PATH_D].rfrxiq_imbal = ROFDM0_XDRXIQIMBALANCE;
  455. /*RX AFE control 1 */
  456. rtlphy->phyreg_def[RF90_PATH_A].rfrx_afe = ROFDM0_XARXAFE;
  457. rtlphy->phyreg_def[RF90_PATH_B].rfrx_afe = ROFDM0_XBRXAFE;
  458. rtlphy->phyreg_def[RF90_PATH_C].rfrx_afe = ROFDM0_XCRXAFE;
  459. rtlphy->phyreg_def[RF90_PATH_D].rfrx_afe = ROFDM0_XDRXAFE;
  460. /* Tx AFE control 1 */
  461. rtlphy->phyreg_def[RF90_PATH_A].rftxiq_imbal = ROFDM0_XATxIQIMBALANCE;
  462. rtlphy->phyreg_def[RF90_PATH_B].rftxiq_imbal = ROFDM0_XBTxIQIMBALANCE;
  463. rtlphy->phyreg_def[RF90_PATH_C].rftxiq_imbal = ROFDM0_XCTxIQIMBALANCE;
  464. rtlphy->phyreg_def[RF90_PATH_D].rftxiq_imbal = ROFDM0_XDTxIQIMBALANCE;
  465. /* Tx AFE control 2 */
  466. rtlphy->phyreg_def[RF90_PATH_A].rftx_afe = ROFDM0_XATxAFE;
  467. rtlphy->phyreg_def[RF90_PATH_B].rftx_afe = ROFDM0_XBTxAFE;
  468. rtlphy->phyreg_def[RF90_PATH_C].rftx_afe = ROFDM0_XCTxAFE;
  469. rtlphy->phyreg_def[RF90_PATH_D].rftx_afe = ROFDM0_XDTxAFE;
  470. /* Tranceiver LSSI Readback SI mode */
  471. rtlphy->phyreg_def[RF90_PATH_A].rf_rb = RFPGA0_XA_LSSIREADBACK;
  472. rtlphy->phyreg_def[RF90_PATH_B].rf_rb = RFPGA0_XB_LSSIREADBACK;
  473. rtlphy->phyreg_def[RF90_PATH_C].rf_rb = RFPGA0_XC_LSSIREADBACK;
  474. rtlphy->phyreg_def[RF90_PATH_D].rf_rb = RFPGA0_XD_LSSIREADBACK;
  475. /* Tranceiver LSSI Readback PI mode */
  476. rtlphy->phyreg_def[RF90_PATH_A].rf_rbpi = TRANSCEIVERA_HSPI_READBACK;
  477. rtlphy->phyreg_def[RF90_PATH_B].rf_rbpi = TRANSCEIVERB_HSPI_READBACK;
  478. }
  479. static bool _rtl92d_phy_config_bb_with_headerfile(struct ieee80211_hw *hw,
  480. u8 configtype)
  481. {
  482. int i;
  483. u32 *phy_regarray_table;
  484. u32 *agctab_array_table = NULL;
  485. u32 *agctab_5garray_table;
  486. u16 phy_reg_arraylen, agctab_arraylen = 0, agctab_5garraylen;
  487. struct rtl_priv *rtlpriv = rtl_priv(hw);
  488. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  489. /* Normal chip,Mac0 use AGC_TAB.txt for 2G and 5G band. */
  490. if (rtlhal->interfaceindex == 0) {
  491. agctab_arraylen = AGCTAB_ARRAYLENGTH;
  492. agctab_array_table = rtl8192de_agctab_array;
  493. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  494. " ===> phy:MAC0, Rtl819XAGCTAB_Array\n");
  495. } else {
  496. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  497. agctab_arraylen = AGCTAB_2G_ARRAYLENGTH;
  498. agctab_array_table = rtl8192de_agctab_2garray;
  499. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  500. " ===> phy:MAC1, Rtl819XAGCTAB_2GArray\n");
  501. } else {
  502. agctab_5garraylen = AGCTAB_5G_ARRAYLENGTH;
  503. agctab_5garray_table = rtl8192de_agctab_5garray;
  504. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  505. " ===> phy:MAC1, Rtl819XAGCTAB_5GArray\n");
  506. }
  507. }
  508. phy_reg_arraylen = PHY_REG_2T_ARRAYLENGTH;
  509. phy_regarray_table = rtl8192de_phy_reg_2tarray;
  510. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  511. " ===> phy:Rtl819XPHY_REG_Array_PG\n");
  512. if (configtype == BASEBAND_CONFIG_PHY_REG) {
  513. for (i = 0; i < phy_reg_arraylen; i = i + 2) {
  514. rtl_addr_delay(phy_regarray_table[i]);
  515. rtl_set_bbreg(hw, phy_regarray_table[i], MASKDWORD,
  516. phy_regarray_table[i + 1]);
  517. udelay(1);
  518. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  519. "The phy_regarray_table[0] is %x Rtl819XPHY_REGArray[1] is %x\n",
  520. phy_regarray_table[i],
  521. phy_regarray_table[i + 1]);
  522. }
  523. } else if (configtype == BASEBAND_CONFIG_AGC_TAB) {
  524. if (rtlhal->interfaceindex == 0) {
  525. for (i = 0; i < agctab_arraylen; i = i + 2) {
  526. rtl_set_bbreg(hw, agctab_array_table[i],
  527. MASKDWORD,
  528. agctab_array_table[i + 1]);
  529. /* Add 1us delay between BB/RF register
  530. * setting. */
  531. udelay(1);
  532. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  533. "The Rtl819XAGCTAB_Array_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n",
  534. agctab_array_table[i],
  535. agctab_array_table[i + 1]);
  536. }
  537. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  538. "Normal Chip, MAC0, load Rtl819XAGCTAB_Array\n");
  539. } else {
  540. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  541. for (i = 0; i < agctab_arraylen; i = i + 2) {
  542. rtl_set_bbreg(hw, agctab_array_table[i],
  543. MASKDWORD,
  544. agctab_array_table[i + 1]);
  545. /* Add 1us delay between BB/RF register
  546. * setting. */
  547. udelay(1);
  548. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  549. "The Rtl819XAGCTAB_Array_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n",
  550. agctab_array_table[i],
  551. agctab_array_table[i + 1]);
  552. }
  553. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  554. "Load Rtl819XAGCTAB_2GArray\n");
  555. } else {
  556. for (i = 0; i < agctab_5garraylen; i = i + 2) {
  557. rtl_set_bbreg(hw,
  558. agctab_5garray_table[i],
  559. MASKDWORD,
  560. agctab_5garray_table[i + 1]);
  561. /* Add 1us delay between BB/RF registeri
  562. * setting. */
  563. udelay(1);
  564. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  565. "The Rtl819XAGCTAB_5GArray_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n",
  566. agctab_5garray_table[i],
  567. agctab_5garray_table[i + 1]);
  568. }
  569. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  570. "Load Rtl819XAGCTAB_5GArray\n");
  571. }
  572. }
  573. }
  574. return true;
  575. }
  576. static void _rtl92d_store_pwrindex_diffrate_offset(struct ieee80211_hw *hw,
  577. u32 regaddr, u32 bitmask,
  578. u32 data)
  579. {
  580. struct rtl_priv *rtlpriv = rtl_priv(hw);
  581. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  582. int index;
  583. if (regaddr == RTXAGC_A_RATE18_06)
  584. index = 0;
  585. else if (regaddr == RTXAGC_A_RATE54_24)
  586. index = 1;
  587. else if (regaddr == RTXAGC_A_CCK1_MCS32)
  588. index = 6;
  589. else if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0xffffff00)
  590. index = 7;
  591. else if (regaddr == RTXAGC_A_MCS03_MCS00)
  592. index = 2;
  593. else if (regaddr == RTXAGC_A_MCS07_MCS04)
  594. index = 3;
  595. else if (regaddr == RTXAGC_A_MCS11_MCS08)
  596. index = 4;
  597. else if (regaddr == RTXAGC_A_MCS15_MCS12)
  598. index = 5;
  599. else if (regaddr == RTXAGC_B_RATE18_06)
  600. index = 8;
  601. else if (regaddr == RTXAGC_B_RATE54_24)
  602. index = 9;
  603. else if (regaddr == RTXAGC_B_CCK1_55_MCS32)
  604. index = 14;
  605. else if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0x000000ff)
  606. index = 15;
  607. else if (regaddr == RTXAGC_B_MCS03_MCS00)
  608. index = 10;
  609. else if (regaddr == RTXAGC_B_MCS07_MCS04)
  610. index = 11;
  611. else if (regaddr == RTXAGC_B_MCS11_MCS08)
  612. index = 12;
  613. else if (regaddr == RTXAGC_B_MCS15_MCS12)
  614. index = 13;
  615. else
  616. return;
  617. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][index] = data;
  618. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  619. "MCSTxPowerLevelOriginalOffset[%d][%d] = 0x%x\n",
  620. rtlphy->pwrgroup_cnt, index,
  621. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][index]);
  622. if (index == 13)
  623. rtlphy->pwrgroup_cnt++;
  624. }
  625. static bool _rtl92d_phy_config_bb_with_pgheaderfile(struct ieee80211_hw *hw,
  626. u8 configtype)
  627. {
  628. struct rtl_priv *rtlpriv = rtl_priv(hw);
  629. int i;
  630. u32 *phy_regarray_table_pg;
  631. u16 phy_regarray_pg_len;
  632. phy_regarray_pg_len = PHY_REG_ARRAY_PG_LENGTH;
  633. phy_regarray_table_pg = rtl8192de_phy_reg_array_pg;
  634. if (configtype == BASEBAND_CONFIG_PHY_REG) {
  635. for (i = 0; i < phy_regarray_pg_len; i = i + 3) {
  636. rtl_addr_delay(phy_regarray_table_pg[i]);
  637. _rtl92d_store_pwrindex_diffrate_offset(hw,
  638. phy_regarray_table_pg[i],
  639. phy_regarray_table_pg[i + 1],
  640. phy_regarray_table_pg[i + 2]);
  641. }
  642. } else {
  643. RT_TRACE(rtlpriv, COMP_SEND, DBG_TRACE,
  644. "configtype != BaseBand_Config_PHY_REG\n");
  645. }
  646. return true;
  647. }
  648. static bool _rtl92d_phy_bb_config(struct ieee80211_hw *hw)
  649. {
  650. struct rtl_priv *rtlpriv = rtl_priv(hw);
  651. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  652. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  653. bool rtstatus = true;
  654. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "==>\n");
  655. rtstatus = _rtl92d_phy_config_bb_with_headerfile(hw,
  656. BASEBAND_CONFIG_PHY_REG);
  657. if (!rtstatus) {
  658. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Write BB Reg Fail!!\n");
  659. return false;
  660. }
  661. /* if (rtlphy->rf_type == RF_1T2R) {
  662. * _rtl92c_phy_bb_config_1t(hw);
  663. * RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Config to 1T!!\n");
  664. *} */
  665. if (rtlefuse->autoload_failflag == false) {
  666. rtlphy->pwrgroup_cnt = 0;
  667. rtstatus = _rtl92d_phy_config_bb_with_pgheaderfile(hw,
  668. BASEBAND_CONFIG_PHY_REG);
  669. }
  670. if (!rtstatus) {
  671. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "BB_PG Reg Fail!!\n");
  672. return false;
  673. }
  674. rtstatus = _rtl92d_phy_config_bb_with_headerfile(hw,
  675. BASEBAND_CONFIG_AGC_TAB);
  676. if (!rtstatus) {
  677. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "AGC Table Fail\n");
  678. return false;
  679. }
  680. rtlphy->cck_high_power = (bool) (rtl_get_bbreg(hw,
  681. RFPGA0_XA_HSSIPARAMETER2, 0x200));
  682. return true;
  683. }
  684. bool rtl92d_phy_bb_config(struct ieee80211_hw *hw)
  685. {
  686. struct rtl_priv *rtlpriv = rtl_priv(hw);
  687. u16 regval;
  688. u32 regvaldw;
  689. u8 value;
  690. _rtl92d_phy_init_bb_rf_register_definition(hw);
  691. regval = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  692. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN,
  693. regval | BIT(13) | BIT(0) | BIT(1));
  694. rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x83);
  695. rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL + 1, 0xdb);
  696. /* 0x1f bit7 bit6 represent for mac0/mac1 driver ready */
  697. value = rtl_read_byte(rtlpriv, REG_RF_CTRL);
  698. rtl_write_byte(rtlpriv, REG_RF_CTRL, value | RF_EN | RF_RSTB |
  699. RF_SDMRSTB);
  700. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, FEN_PPLL | FEN_PCIEA |
  701. FEN_DIO_PCIE | FEN_BB_GLB_RSTn | FEN_BBRSTB);
  702. rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL + 1, 0x80);
  703. if (!(IS_92D_SINGLEPHY(rtlpriv->rtlhal.version))) {
  704. regvaldw = rtl_read_dword(rtlpriv, REG_LEDCFG0);
  705. rtl_write_dword(rtlpriv, REG_LEDCFG0, regvaldw | BIT(23));
  706. }
  707. return _rtl92d_phy_bb_config(hw);
  708. }
  709. bool rtl92d_phy_rf_config(struct ieee80211_hw *hw)
  710. {
  711. return rtl92d_phy_rf6052_config(hw);
  712. }
  713. bool rtl92d_phy_config_rf_with_headerfile(struct ieee80211_hw *hw,
  714. enum rf_content content,
  715. enum radio_path rfpath)
  716. {
  717. int i;
  718. u32 *radioa_array_table;
  719. u32 *radiob_array_table;
  720. u16 radioa_arraylen, radiob_arraylen;
  721. struct rtl_priv *rtlpriv = rtl_priv(hw);
  722. radioa_arraylen = RADIOA_2T_ARRAYLENGTH;
  723. radioa_array_table = rtl8192de_radioa_2tarray;
  724. radiob_arraylen = RADIOB_2T_ARRAYLENGTH;
  725. radiob_array_table = rtl8192de_radiob_2tarray;
  726. if (rtlpriv->efuse.internal_pa_5g[0]) {
  727. radioa_arraylen = RADIOA_2T_INT_PA_ARRAYLENGTH;
  728. radioa_array_table = rtl8192de_radioa_2t_int_paarray;
  729. }
  730. if (rtlpriv->efuse.internal_pa_5g[1]) {
  731. radiob_arraylen = RADIOB_2T_INT_PA_ARRAYLENGTH;
  732. radiob_array_table = rtl8192de_radiob_2t_int_paarray;
  733. }
  734. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  735. "PHY_ConfigRFWithHeaderFile() Radio_A:Rtl819XRadioA_1TArray\n");
  736. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  737. "PHY_ConfigRFWithHeaderFile() Radio_B:Rtl819XRadioB_1TArray\n");
  738. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Radio No %x\n", rfpath);
  739. /* this only happens when DMDP, mac0 start on 2.4G,
  740. * mac1 start on 5G, mac 0 has to set phy0&phy1
  741. * pathA or mac1 has to set phy0&phy1 pathA */
  742. if ((content == radiob_txt) && (rfpath == RF90_PATH_A)) {
  743. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  744. " ===> althougth Path A, we load radiob.txt\n");
  745. radioa_arraylen = radiob_arraylen;
  746. radioa_array_table = radiob_array_table;
  747. }
  748. switch (rfpath) {
  749. case RF90_PATH_A:
  750. for (i = 0; i < radioa_arraylen; i = i + 2) {
  751. rtl_rfreg_delay(hw, rfpath, radioa_array_table[i],
  752. RFREG_OFFSET_MASK,
  753. radioa_array_table[i + 1]);
  754. }
  755. break;
  756. case RF90_PATH_B:
  757. for (i = 0; i < radiob_arraylen; i = i + 2) {
  758. rtl_rfreg_delay(hw, rfpath, radiob_array_table[i],
  759. RFREG_OFFSET_MASK,
  760. radiob_array_table[i + 1]);
  761. }
  762. break;
  763. case RF90_PATH_C:
  764. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  765. "switch case not processed\n");
  766. break;
  767. case RF90_PATH_D:
  768. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  769. "switch case not processed\n");
  770. break;
  771. }
  772. return true;
  773. }
  774. void rtl92d_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw)
  775. {
  776. struct rtl_priv *rtlpriv = rtl_priv(hw);
  777. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  778. rtlphy->default_initialgain[0] =
  779. (u8) rtl_get_bbreg(hw, ROFDM0_XAAGCCORE1, MASKBYTE0);
  780. rtlphy->default_initialgain[1] =
  781. (u8) rtl_get_bbreg(hw, ROFDM0_XBAGCCORE1, MASKBYTE0);
  782. rtlphy->default_initialgain[2] =
  783. (u8) rtl_get_bbreg(hw, ROFDM0_XCAGCCORE1, MASKBYTE0);
  784. rtlphy->default_initialgain[3] =
  785. (u8) rtl_get_bbreg(hw, ROFDM0_XDAGCCORE1, MASKBYTE0);
  786. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  787. "Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x\n",
  788. rtlphy->default_initialgain[0],
  789. rtlphy->default_initialgain[1],
  790. rtlphy->default_initialgain[2],
  791. rtlphy->default_initialgain[3]);
  792. rtlphy->framesync = (u8)rtl_get_bbreg(hw, ROFDM0_RXDETECTOR3,
  793. MASKBYTE0);
  794. rtlphy->framesync_c34 = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR2,
  795. MASKDWORD);
  796. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  797. "Default framesync (0x%x) = 0x%x\n",
  798. ROFDM0_RXDETECTOR3, rtlphy->framesync);
  799. }
  800. static void _rtl92d_get_txpower_index(struct ieee80211_hw *hw, u8 channel,
  801. u8 *cckpowerlevel, u8 *ofdmpowerlevel)
  802. {
  803. struct rtl_priv *rtlpriv = rtl_priv(hw);
  804. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  805. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  806. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  807. u8 index = (channel - 1);
  808. /* 1. CCK */
  809. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  810. /* RF-A */
  811. cckpowerlevel[RF90_PATH_A] =
  812. rtlefuse->txpwrlevel_cck[RF90_PATH_A][index];
  813. /* RF-B */
  814. cckpowerlevel[RF90_PATH_B] =
  815. rtlefuse->txpwrlevel_cck[RF90_PATH_B][index];
  816. } else {
  817. cckpowerlevel[RF90_PATH_A] = 0;
  818. cckpowerlevel[RF90_PATH_B] = 0;
  819. }
  820. /* 2. OFDM for 1S or 2S */
  821. if (rtlphy->rf_type == RF_1T2R || rtlphy->rf_type == RF_1T1R) {
  822. /* Read HT 40 OFDM TX power */
  823. ofdmpowerlevel[RF90_PATH_A] =
  824. rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index];
  825. ofdmpowerlevel[RF90_PATH_B] =
  826. rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_B][index];
  827. } else if (rtlphy->rf_type == RF_2T2R) {
  828. /* Read HT 40 OFDM TX power */
  829. ofdmpowerlevel[RF90_PATH_A] =
  830. rtlefuse->txpwrlevel_ht40_2s[RF90_PATH_A][index];
  831. ofdmpowerlevel[RF90_PATH_B] =
  832. rtlefuse->txpwrlevel_ht40_2s[RF90_PATH_B][index];
  833. }
  834. }
  835. static void _rtl92d_ccxpower_index_check(struct ieee80211_hw *hw,
  836. u8 channel, u8 *cckpowerlevel, u8 *ofdmpowerlevel)
  837. {
  838. struct rtl_priv *rtlpriv = rtl_priv(hw);
  839. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  840. rtlphy->cur_cck_txpwridx = cckpowerlevel[0];
  841. rtlphy->cur_ofdm24g_txpwridx = ofdmpowerlevel[0];
  842. }
  843. static u8 _rtl92c_phy_get_rightchnlplace(u8 chnl)
  844. {
  845. u8 channel_5g[59] = {
  846. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  847. 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
  848. 60, 62, 64, 100, 102, 104, 106, 108, 110, 112,
  849. 114, 116, 118, 120, 122, 124, 126, 128,
  850. 130, 132, 134, 136, 138, 140, 149, 151,
  851. 153, 155, 157, 159, 161, 163, 165
  852. };
  853. u8 place = chnl;
  854. if (chnl > 14) {
  855. for (place = 14; place < sizeof(channel_5g); place++) {
  856. if (channel_5g[place] == chnl) {
  857. place++;
  858. break;
  859. }
  860. }
  861. }
  862. return place;
  863. }
  864. void rtl92d_phy_set_txpower_level(struct ieee80211_hw *hw, u8 channel)
  865. {
  866. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  867. struct rtl_priv *rtlpriv = rtl_priv(hw);
  868. u8 cckpowerlevel[2], ofdmpowerlevel[2];
  869. if (!rtlefuse->txpwr_fromeprom)
  870. return;
  871. channel = _rtl92c_phy_get_rightchnlplace(channel);
  872. _rtl92d_get_txpower_index(hw, channel, &cckpowerlevel[0],
  873. &ofdmpowerlevel[0]);
  874. if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G)
  875. _rtl92d_ccxpower_index_check(hw, channel, &cckpowerlevel[0],
  876. &ofdmpowerlevel[0]);
  877. if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G)
  878. rtl92d_phy_rf6052_set_cck_txpower(hw, &cckpowerlevel[0]);
  879. rtl92d_phy_rf6052_set_ofdm_txpower(hw, &ofdmpowerlevel[0], channel);
  880. }
  881. void rtl92d_phy_set_bw_mode(struct ieee80211_hw *hw,
  882. enum nl80211_channel_type ch_type)
  883. {
  884. struct rtl_priv *rtlpriv = rtl_priv(hw);
  885. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  886. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  887. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  888. unsigned long flag = 0;
  889. u8 reg_prsr_rsc;
  890. u8 reg_bw_opmode;
  891. if (rtlphy->set_bwmode_inprogress)
  892. return;
  893. if ((is_hal_stop(rtlhal)) || (RT_CANNOT_IO(hw))) {
  894. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  895. "FALSE driver sleep or unload\n");
  896. return;
  897. }
  898. rtlphy->set_bwmode_inprogress = true;
  899. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "Switch to %s bandwidth\n",
  900. rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ?
  901. "20MHz" : "40MHz");
  902. reg_bw_opmode = rtl_read_byte(rtlpriv, REG_BWOPMODE);
  903. reg_prsr_rsc = rtl_read_byte(rtlpriv, REG_RRSR + 2);
  904. switch (rtlphy->current_chan_bw) {
  905. case HT_CHANNEL_WIDTH_20:
  906. reg_bw_opmode |= BW_OPMODE_20MHZ;
  907. rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
  908. break;
  909. case HT_CHANNEL_WIDTH_20_40:
  910. reg_bw_opmode &= ~BW_OPMODE_20MHZ;
  911. rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
  912. reg_prsr_rsc = (reg_prsr_rsc & 0x90) |
  913. (mac->cur_40_prime_sc << 5);
  914. rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_prsr_rsc);
  915. break;
  916. default:
  917. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  918. "unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
  919. break;
  920. }
  921. switch (rtlphy->current_chan_bw) {
  922. case HT_CHANNEL_WIDTH_20:
  923. rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0);
  924. rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0);
  925. /* SET BIT10 BIT11 for receive cck */
  926. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
  927. BIT(11), 3);
  928. break;
  929. case HT_CHANNEL_WIDTH_20_40:
  930. rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1);
  931. rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1);
  932. /* Set Control channel to upper or lower.
  933. * These settings are required only for 40MHz */
  934. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  935. rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag);
  936. rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCKSIDEBAND,
  937. (mac->cur_40_prime_sc >> 1));
  938. rtl92d_release_cckandrw_pagea_ctl(hw, &flag);
  939. }
  940. rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc);
  941. /* SET BIT10 BIT11 for receive cck */
  942. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
  943. BIT(11), 0);
  944. rtl_set_bbreg(hw, 0x818, (BIT(26) | BIT(27)),
  945. (mac->cur_40_prime_sc ==
  946. HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
  947. break;
  948. default:
  949. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  950. "unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
  951. break;
  952. }
  953. rtl92d_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw);
  954. rtlphy->set_bwmode_inprogress = false;
  955. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n");
  956. }
  957. static void _rtl92d_phy_stop_trx_before_changeband(struct ieee80211_hw *hw)
  958. {
  959. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0);
  960. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0);
  961. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0x00);
  962. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x0);
  963. }
  964. static void rtl92d_phy_switch_wirelessband(struct ieee80211_hw *hw, u8 band)
  965. {
  966. struct rtl_priv *rtlpriv = rtl_priv(hw);
  967. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  968. u8 value8;
  969. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==>\n");
  970. rtlhal->bandset = band;
  971. rtlhal->current_bandtype = band;
  972. if (IS_92D_SINGLEPHY(rtlhal->version))
  973. rtlhal->bandset = BAND_ON_BOTH;
  974. /* stop RX/Tx */
  975. _rtl92d_phy_stop_trx_before_changeband(hw);
  976. /* reconfig BB/RF according to wireless mode */
  977. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  978. /* BB & RF Config */
  979. RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "====>2.4G\n");
  980. if (rtlhal->interfaceindex == 1)
  981. _rtl92d_phy_config_bb_with_headerfile(hw,
  982. BASEBAND_CONFIG_AGC_TAB);
  983. } else {
  984. /* 5G band */
  985. RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "====>5G\n");
  986. if (rtlhal->interfaceindex == 1)
  987. _rtl92d_phy_config_bb_with_headerfile(hw,
  988. BASEBAND_CONFIG_AGC_TAB);
  989. }
  990. rtl92d_update_bbrf_configuration(hw);
  991. if (rtlhal->current_bandtype == BAND_ON_2_4G)
  992. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
  993. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
  994. /* 20M BW. */
  995. /* rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1); */
  996. rtlhal->reloadtxpowerindex = true;
  997. /* notice fw know band status 0x81[1]/0x53[1] = 0: 5G, 1: 2G */
  998. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  999. value8 = rtl_read_byte(rtlpriv, (rtlhal->interfaceindex ==
  1000. 0 ? REG_MAC0 : REG_MAC1));
  1001. value8 |= BIT(1);
  1002. rtl_write_byte(rtlpriv, (rtlhal->interfaceindex ==
  1003. 0 ? REG_MAC0 : REG_MAC1), value8);
  1004. } else {
  1005. value8 = rtl_read_byte(rtlpriv, (rtlhal->interfaceindex ==
  1006. 0 ? REG_MAC0 : REG_MAC1));
  1007. value8 &= (~BIT(1));
  1008. rtl_write_byte(rtlpriv, (rtlhal->interfaceindex ==
  1009. 0 ? REG_MAC0 : REG_MAC1), value8);
  1010. }
  1011. mdelay(1);
  1012. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<==Switch Band OK\n");
  1013. }
  1014. static void _rtl92d_phy_reload_imr_setting(struct ieee80211_hw *hw,
  1015. u8 channel, u8 rfpath)
  1016. {
  1017. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1018. u32 imr_num = MAX_RF_IMR_INDEX;
  1019. u32 rfmask = RFREG_OFFSET_MASK;
  1020. u8 group, i;
  1021. unsigned long flag = 0;
  1022. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>path %d\n", rfpath);
  1023. if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G) {
  1024. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>5G\n");
  1025. rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(25) | BIT(24), 0);
  1026. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
  1027. /* fc area 0xd2c */
  1028. if (channel > 99)
  1029. rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(13) |
  1030. BIT(14), 2);
  1031. else
  1032. rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(13) |
  1033. BIT(14), 1);
  1034. /* leave 0 for channel1-14. */
  1035. group = channel <= 64 ? 1 : 2;
  1036. imr_num = MAX_RF_IMR_INDEX_NORMAL;
  1037. for (i = 0; i < imr_num; i++)
  1038. rtl_set_rfreg(hw, (enum radio_path)rfpath,
  1039. rf_reg_for_5g_swchnl_normal[i], rfmask,
  1040. rf_imr_param_normal[0][group][i]);
  1041. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
  1042. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 1);
  1043. } else {
  1044. /* G band. */
  1045. RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
  1046. "Load RF IMR parameters for G band. IMR already setting %d\n",
  1047. rtlpriv->rtlhal.load_imrandiqk_setting_for2g);
  1048. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>2.4G\n");
  1049. if (!rtlpriv->rtlhal.load_imrandiqk_setting_for2g) {
  1050. RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
  1051. "Load RF IMR parameters for G band. %d\n",
  1052. rfpath);
  1053. rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag);
  1054. rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(25) | BIT(24), 0);
  1055. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4,
  1056. 0x00f00000, 0xf);
  1057. imr_num = MAX_RF_IMR_INDEX_NORMAL;
  1058. for (i = 0; i < imr_num; i++) {
  1059. rtl_set_rfreg(hw, (enum radio_path)rfpath,
  1060. rf_reg_for_5g_swchnl_normal[i],
  1061. RFREG_OFFSET_MASK,
  1062. rf_imr_param_normal[0][0][i]);
  1063. }
  1064. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4,
  1065. 0x00f00000, 0);
  1066. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN | BCCKEN, 3);
  1067. rtl92d_release_cckandrw_pagea_ctl(hw, &flag);
  1068. }
  1069. }
  1070. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
  1071. }
  1072. static void _rtl92d_phy_enable_rf_env(struct ieee80211_hw *hw,
  1073. u8 rfpath, u32 *pu4_regval)
  1074. {
  1075. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1076. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1077. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  1078. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "====>\n");
  1079. /*----Store original RFENV control type----*/
  1080. switch (rfpath) {
  1081. case RF90_PATH_A:
  1082. case RF90_PATH_C:
  1083. *pu4_regval = rtl_get_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV);
  1084. break;
  1085. case RF90_PATH_B:
  1086. case RF90_PATH_D:
  1087. *pu4_regval =
  1088. rtl_get_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV << 16);
  1089. break;
  1090. }
  1091. /*----Set RF_ENV enable----*/
  1092. rtl_set_bbreg(hw, pphyreg->rfintfe, BRFSI_RFENV << 16, 0x1);
  1093. udelay(1);
  1094. /*----Set RF_ENV output high----*/
  1095. rtl_set_bbreg(hw, pphyreg->rfintfo, BRFSI_RFENV, 0x1);
  1096. udelay(1);
  1097. /* Set bit number of Address and Data for RF register */
  1098. /* Set 1 to 4 bits for 8255 */
  1099. rtl_set_bbreg(hw, pphyreg->rfhssi_para2, B3WIREADDRESSLENGTH, 0x0);
  1100. udelay(1);
  1101. /*Set 0 to 12 bits for 8255 */
  1102. rtl_set_bbreg(hw, pphyreg->rfhssi_para2, B3WIREDATALENGTH, 0x0);
  1103. udelay(1);
  1104. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<====\n");
  1105. }
  1106. static void _rtl92d_phy_restore_rf_env(struct ieee80211_hw *hw, u8 rfpath,
  1107. u32 *pu4_regval)
  1108. {
  1109. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1110. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1111. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  1112. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "=====>\n");
  1113. /*----Restore RFENV control type----*/
  1114. switch (rfpath) {
  1115. case RF90_PATH_A:
  1116. case RF90_PATH_C:
  1117. rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV, *pu4_regval);
  1118. break;
  1119. case RF90_PATH_B:
  1120. case RF90_PATH_D:
  1121. rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV << 16,
  1122. *pu4_regval);
  1123. break;
  1124. }
  1125. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<=====\n");
  1126. }
  1127. static void _rtl92d_phy_switch_rf_setting(struct ieee80211_hw *hw, u8 channel)
  1128. {
  1129. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1130. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1131. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  1132. u8 path = rtlhal->current_bandtype ==
  1133. BAND_ON_5G ? RF90_PATH_A : RF90_PATH_B;
  1134. u8 index = 0, i = 0, rfpath = RF90_PATH_A;
  1135. bool need_pwr_down = false, internal_pa = false;
  1136. u32 u4regvalue, mask = 0x1C000, value = 0, u4tmp, u4tmp2;
  1137. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>\n");
  1138. /* config path A for 5G */
  1139. if (rtlhal->current_bandtype == BAND_ON_5G) {
  1140. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>5G\n");
  1141. u4tmp = curveindex_5g[channel - 1];
  1142. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1143. "ver 1 set RF-A, 5G, 0x28 = 0x%x !!\n", u4tmp);
  1144. for (i = 0; i < RF_CHNL_NUM_5G; i++) {
  1145. if (channel == rf_chnl_5g[i] && channel <= 140)
  1146. index = 0;
  1147. }
  1148. for (i = 0; i < RF_CHNL_NUM_5G_40M; i++) {
  1149. if (channel == rf_chnl_5g_40m[i] && channel <= 140)
  1150. index = 1;
  1151. }
  1152. if (channel == 149 || channel == 155 || channel == 161)
  1153. index = 2;
  1154. else if (channel == 151 || channel == 153 || channel == 163
  1155. || channel == 165)
  1156. index = 3;
  1157. else if (channel == 157 || channel == 159)
  1158. index = 4;
  1159. if (rtlhal->macphymode == DUALMAC_DUALPHY
  1160. && rtlhal->interfaceindex == 1) {
  1161. need_pwr_down = rtl92d_phy_enable_anotherphy(hw, false);
  1162. rtlhal->during_mac1init_radioa = true;
  1163. /* asume no this case */
  1164. if (need_pwr_down)
  1165. _rtl92d_phy_enable_rf_env(hw, path,
  1166. &u4regvalue);
  1167. }
  1168. for (i = 0; i < RF_REG_NUM_FOR_C_CUT_5G; i++) {
  1169. if (i == 0 && (rtlhal->macphymode == DUALMAC_DUALPHY)) {
  1170. rtl_set_rfreg(hw, (enum radio_path)path,
  1171. rf_reg_for_c_cut_5g[i],
  1172. RFREG_OFFSET_MASK, 0xE439D);
  1173. } else if (rf_reg_for_c_cut_5g[i] == RF_SYN_G4) {
  1174. u4tmp2 = (rf_reg_pram_c_5g[index][i] &
  1175. 0x7FF) | (u4tmp << 11);
  1176. if (channel == 36)
  1177. u4tmp2 &= ~(BIT(7) | BIT(6));
  1178. rtl_set_rfreg(hw, (enum radio_path)path,
  1179. rf_reg_for_c_cut_5g[i],
  1180. RFREG_OFFSET_MASK, u4tmp2);
  1181. } else {
  1182. rtl_set_rfreg(hw, (enum radio_path)path,
  1183. rf_reg_for_c_cut_5g[i],
  1184. RFREG_OFFSET_MASK,
  1185. rf_reg_pram_c_5g[index][i]);
  1186. }
  1187. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  1188. "offset 0x%x value 0x%x path %d index %d readback 0x%x\n",
  1189. rf_reg_for_c_cut_5g[i],
  1190. rf_reg_pram_c_5g[index][i],
  1191. path, index,
  1192. rtl_get_rfreg(hw, (enum radio_path)path,
  1193. rf_reg_for_c_cut_5g[i],
  1194. RFREG_OFFSET_MASK));
  1195. }
  1196. if (need_pwr_down)
  1197. _rtl92d_phy_restore_rf_env(hw, path, &u4regvalue);
  1198. if (rtlhal->during_mac1init_radioa)
  1199. rtl92d_phy_powerdown_anotherphy(hw, false);
  1200. if (channel < 149)
  1201. value = 0x07;
  1202. else if (channel >= 149)
  1203. value = 0x02;
  1204. if (channel >= 36 && channel <= 64)
  1205. index = 0;
  1206. else if (channel >= 100 && channel <= 140)
  1207. index = 1;
  1208. else
  1209. index = 2;
  1210. for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath;
  1211. rfpath++) {
  1212. if (rtlhal->macphymode == DUALMAC_DUALPHY &&
  1213. rtlhal->interfaceindex == 1) /* MAC 1 5G */
  1214. internal_pa = rtlpriv->efuse.internal_pa_5g[1];
  1215. else
  1216. internal_pa =
  1217. rtlpriv->efuse.internal_pa_5g[rfpath];
  1218. if (internal_pa) {
  1219. for (i = 0;
  1220. i < RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA;
  1221. i++) {
  1222. rtl_set_rfreg(hw, rfpath,
  1223. rf_for_c_cut_5g_internal_pa[i],
  1224. RFREG_OFFSET_MASK,
  1225. rf_pram_c_5g_int_pa[index][i]);
  1226. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD,
  1227. "offset 0x%x value 0x%x path %d index %d\n",
  1228. rf_for_c_cut_5g_internal_pa[i],
  1229. rf_pram_c_5g_int_pa[index][i],
  1230. rfpath, index);
  1231. }
  1232. } else {
  1233. rtl_set_rfreg(hw, (enum radio_path)rfpath, 0x0B,
  1234. mask, value);
  1235. }
  1236. }
  1237. } else if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  1238. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>2.4G\n");
  1239. u4tmp = curveindex_2g[channel - 1];
  1240. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1241. "ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n", u4tmp);
  1242. if (channel == 1 || channel == 2 || channel == 4 || channel == 9
  1243. || channel == 10 || channel == 11 || channel == 12)
  1244. index = 0;
  1245. else if (channel == 3 || channel == 13 || channel == 14)
  1246. index = 1;
  1247. else if (channel >= 5 && channel <= 8)
  1248. index = 2;
  1249. if (rtlhal->macphymode == DUALMAC_DUALPHY) {
  1250. path = RF90_PATH_A;
  1251. if (rtlhal->interfaceindex == 0) {
  1252. need_pwr_down =
  1253. rtl92d_phy_enable_anotherphy(hw, true);
  1254. rtlhal->during_mac0init_radiob = true;
  1255. if (need_pwr_down)
  1256. _rtl92d_phy_enable_rf_env(hw, path,
  1257. &u4regvalue);
  1258. }
  1259. }
  1260. for (i = 0; i < RF_REG_NUM_FOR_C_CUT_2G; i++) {
  1261. if (rf_reg_for_c_cut_2g[i] == RF_SYN_G7)
  1262. rtl_set_rfreg(hw, (enum radio_path)path,
  1263. rf_reg_for_c_cut_2g[i],
  1264. RFREG_OFFSET_MASK,
  1265. (rf_reg_param_for_c_cut_2g[index][i] |
  1266. BIT(17)));
  1267. else
  1268. rtl_set_rfreg(hw, (enum radio_path)path,
  1269. rf_reg_for_c_cut_2g[i],
  1270. RFREG_OFFSET_MASK,
  1271. rf_reg_param_for_c_cut_2g
  1272. [index][i]);
  1273. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  1274. "offset 0x%x value 0x%x mak 0x%x path %d index %d readback 0x%x\n",
  1275. rf_reg_for_c_cut_2g[i],
  1276. rf_reg_param_for_c_cut_2g[index][i],
  1277. rf_reg_mask_for_c_cut_2g[i], path, index,
  1278. rtl_get_rfreg(hw, (enum radio_path)path,
  1279. rf_reg_for_c_cut_2g[i],
  1280. RFREG_OFFSET_MASK));
  1281. }
  1282. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1283. "cosa ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n",
  1284. rf_syn_g4_for_c_cut_2g | (u4tmp << 11));
  1285. rtl_set_rfreg(hw, (enum radio_path)path, RF_SYN_G4,
  1286. RFREG_OFFSET_MASK,
  1287. rf_syn_g4_for_c_cut_2g | (u4tmp << 11));
  1288. if (need_pwr_down)
  1289. _rtl92d_phy_restore_rf_env(hw, path, &u4regvalue);
  1290. if (rtlhal->during_mac0init_radiob)
  1291. rtl92d_phy_powerdown_anotherphy(hw, true);
  1292. }
  1293. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
  1294. }
  1295. u8 rtl92d_get_rightchnlplace_for_iqk(u8 chnl)
  1296. {
  1297. u8 channel_all[59] = {
  1298. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  1299. 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
  1300. 60, 62, 64, 100, 102, 104, 106, 108, 110, 112,
  1301. 114, 116, 118, 120, 122, 124, 126, 128, 130,
  1302. 132, 134, 136, 138, 140, 149, 151, 153, 155,
  1303. 157, 159, 161, 163, 165
  1304. };
  1305. u8 place = chnl;
  1306. if (chnl > 14) {
  1307. for (place = 14; place < sizeof(channel_all); place++) {
  1308. if (channel_all[place] == chnl)
  1309. return place - 13;
  1310. }
  1311. }
  1312. return 0;
  1313. }
  1314. #define MAX_TOLERANCE 5
  1315. #define IQK_DELAY_TIME 1 /* ms */
  1316. #define MAX_TOLERANCE_92D 3
  1317. /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
  1318. static u8 _rtl92d_phy_patha_iqk(struct ieee80211_hw *hw, bool configpathb)
  1319. {
  1320. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1321. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1322. u32 regeac, rege94, rege9c, regea4;
  1323. u8 result = 0;
  1324. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK!\n");
  1325. /* path-A IQK setting */
  1326. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A IQK setting!\n");
  1327. if (rtlhal->interfaceindex == 0) {
  1328. rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x10008c1f);
  1329. rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x10008c1f);
  1330. } else {
  1331. rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x10008c22);
  1332. rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x10008c22);
  1333. }
  1334. rtl_set_bbreg(hw, 0xe38, MASKDWORD, 0x82140102);
  1335. rtl_set_bbreg(hw, 0xe3c, MASKDWORD, 0x28160206);
  1336. /* path-B IQK setting */
  1337. if (configpathb) {
  1338. rtl_set_bbreg(hw, 0xe50, MASKDWORD, 0x10008c22);
  1339. rtl_set_bbreg(hw, 0xe54, MASKDWORD, 0x10008c22);
  1340. rtl_set_bbreg(hw, 0xe58, MASKDWORD, 0x82140102);
  1341. rtl_set_bbreg(hw, 0xe5c, MASKDWORD, 0x28160206);
  1342. }
  1343. /* LO calibration setting */
  1344. RTPRINT(rtlpriv, FINIT, INIT_IQK, "LO calibration setting!\n");
  1345. rtl_set_bbreg(hw, 0xe4c, MASKDWORD, 0x00462911);
  1346. /* One shot, path A LOK & IQK */
  1347. RTPRINT(rtlpriv, FINIT, INIT_IQK, "One shot, path A LOK & IQK!\n");
  1348. rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf9000000);
  1349. rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf8000000);
  1350. /* delay x ms */
  1351. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1352. "Delay %d ms for One shot, path A LOK & IQK\n",
  1353. IQK_DELAY_TIME);
  1354. mdelay(IQK_DELAY_TIME);
  1355. /* Check failed */
  1356. regeac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
  1357. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
  1358. rege94 = rtl_get_bbreg(hw, 0xe94, MASKDWORD);
  1359. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe94 = 0x%x\n", rege94);
  1360. rege9c = rtl_get_bbreg(hw, 0xe9c, MASKDWORD);
  1361. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe9c = 0x%x\n", rege9c);
  1362. regea4 = rtl_get_bbreg(hw, 0xea4, MASKDWORD);
  1363. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xea4 = 0x%x\n", regea4);
  1364. if (!(regeac & BIT(28)) && (((rege94 & 0x03FF0000) >> 16) != 0x142) &&
  1365. (((rege9c & 0x03FF0000) >> 16) != 0x42))
  1366. result |= 0x01;
  1367. else /* if Tx not OK, ignore Rx */
  1368. return result;
  1369. /* if Tx is OK, check whether Rx is OK */
  1370. if (!(regeac & BIT(27)) && (((regea4 & 0x03FF0000) >> 16) != 0x132) &&
  1371. (((regeac & 0x03FF0000) >> 16) != 0x36))
  1372. result |= 0x02;
  1373. else
  1374. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A Rx IQK fail!!\n");
  1375. return result;
  1376. }
  1377. /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
  1378. static u8 _rtl92d_phy_patha_iqk_5g_normal(struct ieee80211_hw *hw,
  1379. bool configpathb)
  1380. {
  1381. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1382. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1383. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1384. u32 regeac, rege94, rege9c, regea4;
  1385. u8 result = 0;
  1386. u8 i;
  1387. u8 retrycount = 2;
  1388. u32 TxOKBit = BIT(28), RxOKBit = BIT(27);
  1389. if (rtlhal->interfaceindex == 1) { /* PHY1 */
  1390. TxOKBit = BIT(31);
  1391. RxOKBit = BIT(30);
  1392. }
  1393. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK!\n");
  1394. /* path-A IQK setting */
  1395. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A IQK setting!\n");
  1396. rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x18008c1f);
  1397. rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x18008c1f);
  1398. rtl_set_bbreg(hw, 0xe38, MASKDWORD, 0x82140307);
  1399. rtl_set_bbreg(hw, 0xe3c, MASKDWORD, 0x68160960);
  1400. /* path-B IQK setting */
  1401. if (configpathb) {
  1402. rtl_set_bbreg(hw, 0xe50, MASKDWORD, 0x18008c2f);
  1403. rtl_set_bbreg(hw, 0xe54, MASKDWORD, 0x18008c2f);
  1404. rtl_set_bbreg(hw, 0xe58, MASKDWORD, 0x82110000);
  1405. rtl_set_bbreg(hw, 0xe5c, MASKDWORD, 0x68110000);
  1406. }
  1407. /* LO calibration setting */
  1408. RTPRINT(rtlpriv, FINIT, INIT_IQK, "LO calibration setting!\n");
  1409. rtl_set_bbreg(hw, 0xe4c, MASKDWORD, 0x00462911);
  1410. /* path-A PA on */
  1411. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, MASKDWORD, 0x07000f60);
  1412. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, MASKDWORD, 0x66e60e30);
  1413. for (i = 0; i < retrycount; i++) {
  1414. /* One shot, path A LOK & IQK */
  1415. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1416. "One shot, path A LOK & IQK!\n");
  1417. rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf9000000);
  1418. rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf8000000);
  1419. /* delay x ms */
  1420. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1421. "Delay %d ms for One shot, path A LOK & IQK.\n",
  1422. IQK_DELAY_TIME);
  1423. mdelay(IQK_DELAY_TIME * 10);
  1424. /* Check failed */
  1425. regeac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
  1426. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
  1427. rege94 = rtl_get_bbreg(hw, 0xe94, MASKDWORD);
  1428. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe94 = 0x%x\n", rege94);
  1429. rege9c = rtl_get_bbreg(hw, 0xe9c, MASKDWORD);
  1430. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe9c = 0x%x\n", rege9c);
  1431. regea4 = rtl_get_bbreg(hw, 0xea4, MASKDWORD);
  1432. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xea4 = 0x%x\n", regea4);
  1433. if (!(regeac & TxOKBit) &&
  1434. (((rege94 & 0x03FF0000) >> 16) != 0x142)) {
  1435. result |= 0x01;
  1436. } else { /* if Tx not OK, ignore Rx */
  1437. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1438. "Path A Tx IQK fail!!\n");
  1439. continue;
  1440. }
  1441. /* if Tx is OK, check whether Rx is OK */
  1442. if (!(regeac & RxOKBit) &&
  1443. (((regea4 & 0x03FF0000) >> 16) != 0x132)) {
  1444. result |= 0x02;
  1445. break;
  1446. } else {
  1447. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1448. "Path A Rx IQK fail!!\n");
  1449. }
  1450. }
  1451. /* path A PA off */
  1452. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, MASKDWORD,
  1453. rtlphy->iqk_bb_backup[0]);
  1454. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, MASKDWORD,
  1455. rtlphy->iqk_bb_backup[1]);
  1456. return result;
  1457. }
  1458. /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
  1459. static u8 _rtl92d_phy_pathb_iqk(struct ieee80211_hw *hw)
  1460. {
  1461. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1462. u32 regeac, regeb4, regebc, regec4, regecc;
  1463. u8 result = 0;
  1464. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQK!\n");
  1465. /* One shot, path B LOK & IQK */
  1466. RTPRINT(rtlpriv, FINIT, INIT_IQK, "One shot, path A LOK & IQK!\n");
  1467. rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000002);
  1468. rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000000);
  1469. /* delay x ms */
  1470. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1471. "Delay %d ms for One shot, path B LOK & IQK\n", IQK_DELAY_TIME);
  1472. mdelay(IQK_DELAY_TIME);
  1473. /* Check failed */
  1474. regeac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
  1475. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
  1476. regeb4 = rtl_get_bbreg(hw, 0xeb4, MASKDWORD);
  1477. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeb4 = 0x%x\n", regeb4);
  1478. regebc = rtl_get_bbreg(hw, 0xebc, MASKDWORD);
  1479. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xebc = 0x%x\n", regebc);
  1480. regec4 = rtl_get_bbreg(hw, 0xec4, MASKDWORD);
  1481. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xec4 = 0x%x\n", regec4);
  1482. regecc = rtl_get_bbreg(hw, 0xecc, MASKDWORD);
  1483. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xecc = 0x%x\n", regecc);
  1484. if (!(regeac & BIT(31)) && (((regeb4 & 0x03FF0000) >> 16) != 0x142) &&
  1485. (((regebc & 0x03FF0000) >> 16) != 0x42))
  1486. result |= 0x01;
  1487. else
  1488. return result;
  1489. if (!(regeac & BIT(30)) && (((regec4 & 0x03FF0000) >> 16) != 0x132) &&
  1490. (((regecc & 0x03FF0000) >> 16) != 0x36))
  1491. result |= 0x02;
  1492. else
  1493. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B Rx IQK fail!!\n");
  1494. return result;
  1495. }
  1496. /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
  1497. static u8 _rtl92d_phy_pathb_iqk_5g_normal(struct ieee80211_hw *hw)
  1498. {
  1499. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1500. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1501. u32 regeac, regeb4, regebc, regec4, regecc;
  1502. u8 result = 0;
  1503. u8 i;
  1504. u8 retrycount = 2;
  1505. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQK!\n");
  1506. /* path-A IQK setting */
  1507. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A IQK setting!\n");
  1508. rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x18008c1f);
  1509. rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x18008c1f);
  1510. rtl_set_bbreg(hw, 0xe38, MASKDWORD, 0x82110000);
  1511. rtl_set_bbreg(hw, 0xe3c, MASKDWORD, 0x68110000);
  1512. /* path-B IQK setting */
  1513. rtl_set_bbreg(hw, 0xe50, MASKDWORD, 0x18008c2f);
  1514. rtl_set_bbreg(hw, 0xe54, MASKDWORD, 0x18008c2f);
  1515. rtl_set_bbreg(hw, 0xe58, MASKDWORD, 0x82140307);
  1516. rtl_set_bbreg(hw, 0xe5c, MASKDWORD, 0x68160960);
  1517. /* LO calibration setting */
  1518. RTPRINT(rtlpriv, FINIT, INIT_IQK, "LO calibration setting!\n");
  1519. rtl_set_bbreg(hw, 0xe4c, MASKDWORD, 0x00462911);
  1520. /* path-B PA on */
  1521. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, MASKDWORD, 0x0f600700);
  1522. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, MASKDWORD, 0x061f0d30);
  1523. for (i = 0; i < retrycount; i++) {
  1524. /* One shot, path B LOK & IQK */
  1525. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1526. "One shot, path A LOK & IQK!\n");
  1527. rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xfa000000);
  1528. rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf8000000);
  1529. /* delay x ms */
  1530. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1531. "Delay %d ms for One shot, path B LOK & IQK.\n", 10);
  1532. mdelay(IQK_DELAY_TIME * 10);
  1533. /* Check failed */
  1534. regeac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
  1535. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
  1536. regeb4 = rtl_get_bbreg(hw, 0xeb4, MASKDWORD);
  1537. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeb4 = 0x%x\n", regeb4);
  1538. regebc = rtl_get_bbreg(hw, 0xebc, MASKDWORD);
  1539. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xebc = 0x%x\n", regebc);
  1540. regec4 = rtl_get_bbreg(hw, 0xec4, MASKDWORD);
  1541. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xec4 = 0x%x\n", regec4);
  1542. regecc = rtl_get_bbreg(hw, 0xecc, MASKDWORD);
  1543. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xecc = 0x%x\n", regecc);
  1544. if (!(regeac & BIT(31)) &&
  1545. (((regeb4 & 0x03FF0000) >> 16) != 0x142))
  1546. result |= 0x01;
  1547. else
  1548. continue;
  1549. if (!(regeac & BIT(30)) &&
  1550. (((regec4 & 0x03FF0000) >> 16) != 0x132)) {
  1551. result |= 0x02;
  1552. break;
  1553. } else {
  1554. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1555. "Path B Rx IQK fail!!\n");
  1556. }
  1557. }
  1558. /* path B PA off */
  1559. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, MASKDWORD,
  1560. rtlphy->iqk_bb_backup[0]);
  1561. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, MASKDWORD,
  1562. rtlphy->iqk_bb_backup[2]);
  1563. return result;
  1564. }
  1565. static void _rtl92d_phy_save_adda_registers(struct ieee80211_hw *hw,
  1566. u32 *adda_reg, u32 *adda_backup,
  1567. u32 regnum)
  1568. {
  1569. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1570. u32 i;
  1571. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Save ADDA parameters.\n");
  1572. for (i = 0; i < regnum; i++)
  1573. adda_backup[i] = rtl_get_bbreg(hw, adda_reg[i], MASKDWORD);
  1574. }
  1575. static void _rtl92d_phy_save_mac_registers(struct ieee80211_hw *hw,
  1576. u32 *macreg, u32 *macbackup)
  1577. {
  1578. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1579. u32 i;
  1580. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Save MAC parameters.\n");
  1581. for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
  1582. macbackup[i] = rtl_read_byte(rtlpriv, macreg[i]);
  1583. macbackup[i] = rtl_read_dword(rtlpriv, macreg[i]);
  1584. }
  1585. static void _rtl92d_phy_reload_adda_registers(struct ieee80211_hw *hw,
  1586. u32 *adda_reg, u32 *adda_backup,
  1587. u32 regnum)
  1588. {
  1589. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1590. u32 i;
  1591. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1592. "Reload ADDA power saving parameters !\n");
  1593. for (i = 0; i < regnum; i++)
  1594. rtl_set_bbreg(hw, adda_reg[i], MASKDWORD, adda_backup[i]);
  1595. }
  1596. static void _rtl92d_phy_reload_mac_registers(struct ieee80211_hw *hw,
  1597. u32 *macreg, u32 *macbackup)
  1598. {
  1599. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1600. u32 i;
  1601. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Reload MAC parameters !\n");
  1602. for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
  1603. rtl_write_byte(rtlpriv, macreg[i], (u8) macbackup[i]);
  1604. rtl_write_byte(rtlpriv, macreg[i], macbackup[i]);
  1605. }
  1606. static void _rtl92d_phy_path_adda_on(struct ieee80211_hw *hw,
  1607. u32 *adda_reg, bool patha_on, bool is2t)
  1608. {
  1609. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1610. u32 pathon;
  1611. u32 i;
  1612. RTPRINT(rtlpriv, FINIT, INIT_IQK, "ADDA ON.\n");
  1613. pathon = patha_on ? 0x04db25a4 : 0x0b1b25a4;
  1614. if (patha_on)
  1615. pathon = rtlpriv->rtlhal.interfaceindex == 0 ?
  1616. 0x04db25a4 : 0x0b1b25a4;
  1617. for (i = 0; i < IQK_ADDA_REG_NUM; i++)
  1618. rtl_set_bbreg(hw, adda_reg[i], MASKDWORD, pathon);
  1619. }
  1620. static void _rtl92d_phy_mac_setting_calibration(struct ieee80211_hw *hw,
  1621. u32 *macreg, u32 *macbackup)
  1622. {
  1623. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1624. u32 i;
  1625. RTPRINT(rtlpriv, FINIT, INIT_IQK, "MAC settings for Calibration.\n");
  1626. rtl_write_byte(rtlpriv, macreg[0], 0x3F);
  1627. for (i = 1; i < (IQK_MAC_REG_NUM - 1); i++)
  1628. rtl_write_byte(rtlpriv, macreg[i], (u8)(macbackup[i] &
  1629. (~BIT(3))));
  1630. rtl_write_byte(rtlpriv, macreg[i], (u8) (macbackup[i] & (~BIT(5))));
  1631. }
  1632. static void _rtl92d_phy_patha_standby(struct ieee80211_hw *hw)
  1633. {
  1634. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1635. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A standby mode!\n");
  1636. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x0);
  1637. rtl_set_bbreg(hw, RFPGA0_XA_LSSIPARAMETER, MASKDWORD, 0x00010000);
  1638. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
  1639. }
  1640. static void _rtl92d_phy_pimode_switch(struct ieee80211_hw *hw, bool pi_mode)
  1641. {
  1642. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1643. u32 mode;
  1644. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1645. "BB Switch to %s mode!\n", pi_mode ? "PI" : "SI");
  1646. mode = pi_mode ? 0x01000100 : 0x01000000;
  1647. rtl_set_bbreg(hw, 0x820, MASKDWORD, mode);
  1648. rtl_set_bbreg(hw, 0x828, MASKDWORD, mode);
  1649. }
  1650. static void _rtl92d_phy_iq_calibrate(struct ieee80211_hw *hw, long result[][8],
  1651. u8 t, bool is2t)
  1652. {
  1653. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1654. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1655. u32 i;
  1656. u8 patha_ok, pathb_ok;
  1657. static u32 adda_reg[IQK_ADDA_REG_NUM] = {
  1658. RFPGA0_XCD_SWITCHCONTROL, 0xe6c, 0xe70, 0xe74,
  1659. 0xe78, 0xe7c, 0xe80, 0xe84,
  1660. 0xe88, 0xe8c, 0xed0, 0xed4,
  1661. 0xed8, 0xedc, 0xee0, 0xeec
  1662. };
  1663. static u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
  1664. 0x522, 0x550, 0x551, 0x040
  1665. };
  1666. static u32 iqk_bb_reg[IQK_BB_REG_NUM] = {
  1667. RFPGA0_XAB_RFINTERFACESW, RFPGA0_XA_RFINTERFACEOE,
  1668. RFPGA0_XB_RFINTERFACEOE, ROFDM0_TRMUXPAR,
  1669. RFPGA0_XCD_RFINTERFACESW, ROFDM0_TRXPATHENABLE,
  1670. RFPGA0_RFMOD, RFPGA0_ANALOGPARAMETER4,
  1671. ROFDM0_XAAGCCORE1, ROFDM0_XBAGCCORE1
  1672. };
  1673. const u32 retrycount = 2;
  1674. u32 bbvalue;
  1675. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK for 2.4G :Start!!!\n");
  1676. if (t == 0) {
  1677. bbvalue = rtl_get_bbreg(hw, RFPGA0_RFMOD, MASKDWORD);
  1678. RTPRINT(rtlpriv, FINIT, INIT_IQK, "==>0x%08x\n", bbvalue);
  1679. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQ Calibration for %s\n",
  1680. is2t ? "2T2R" : "1T1R");
  1681. /* Save ADDA parameters, turn Path A ADDA on */
  1682. _rtl92d_phy_save_adda_registers(hw, adda_reg,
  1683. rtlphy->adda_backup, IQK_ADDA_REG_NUM);
  1684. _rtl92d_phy_save_mac_registers(hw, iqk_mac_reg,
  1685. rtlphy->iqk_mac_backup);
  1686. _rtl92d_phy_save_adda_registers(hw, iqk_bb_reg,
  1687. rtlphy->iqk_bb_backup, IQK_BB_REG_NUM);
  1688. }
  1689. _rtl92d_phy_path_adda_on(hw, adda_reg, true, is2t);
  1690. if (t == 0)
  1691. rtlphy->rfpi_enable = (u8) rtl_get_bbreg(hw,
  1692. RFPGA0_XA_HSSIPARAMETER1, BIT(8));
  1693. /* Switch BB to PI mode to do IQ Calibration. */
  1694. if (!rtlphy->rfpi_enable)
  1695. _rtl92d_phy_pimode_switch(hw, true);
  1696. rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(24), 0x00);
  1697. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKDWORD, 0x03a05600);
  1698. rtl_set_bbreg(hw, ROFDM0_TRMUXPAR, MASKDWORD, 0x000800e4);
  1699. rtl_set_bbreg(hw, RFPGA0_XCD_RFINTERFACESW, MASKDWORD, 0x22204000);
  1700. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xf00000, 0x0f);
  1701. if (is2t) {
  1702. rtl_set_bbreg(hw, RFPGA0_XA_LSSIPARAMETER, MASKDWORD,
  1703. 0x00010000);
  1704. rtl_set_bbreg(hw, RFPGA0_XB_LSSIPARAMETER, MASKDWORD,
  1705. 0x00010000);
  1706. }
  1707. /* MAC settings */
  1708. _rtl92d_phy_mac_setting_calibration(hw, iqk_mac_reg,
  1709. rtlphy->iqk_mac_backup);
  1710. /* Page B init */
  1711. rtl_set_bbreg(hw, 0xb68, MASKDWORD, 0x0f600000);
  1712. if (is2t)
  1713. rtl_set_bbreg(hw, 0xb6c, MASKDWORD, 0x0f600000);
  1714. /* IQ calibration setting */
  1715. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK setting!\n");
  1716. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
  1717. rtl_set_bbreg(hw, 0xe40, MASKDWORD, 0x01007c00);
  1718. rtl_set_bbreg(hw, 0xe44, MASKDWORD, 0x01004800);
  1719. for (i = 0; i < retrycount; i++) {
  1720. patha_ok = _rtl92d_phy_patha_iqk(hw, is2t);
  1721. if (patha_ok == 0x03) {
  1722. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1723. "Path A IQK Success!!\n");
  1724. result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) &
  1725. 0x3FF0000) >> 16;
  1726. result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) &
  1727. 0x3FF0000) >> 16;
  1728. result[t][2] = (rtl_get_bbreg(hw, 0xea4, MASKDWORD) &
  1729. 0x3FF0000) >> 16;
  1730. result[t][3] = (rtl_get_bbreg(hw, 0xeac, MASKDWORD) &
  1731. 0x3FF0000) >> 16;
  1732. break;
  1733. } else if (i == (retrycount - 1) && patha_ok == 0x01) {
  1734. /* Tx IQK OK */
  1735. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1736. "Path A IQK Only Tx Success!!\n");
  1737. result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) &
  1738. 0x3FF0000) >> 16;
  1739. result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) &
  1740. 0x3FF0000) >> 16;
  1741. }
  1742. }
  1743. if (0x00 == patha_ok)
  1744. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK failed!!\n");
  1745. if (is2t) {
  1746. _rtl92d_phy_patha_standby(hw);
  1747. /* Turn Path B ADDA on */
  1748. _rtl92d_phy_path_adda_on(hw, adda_reg, false, is2t);
  1749. for (i = 0; i < retrycount; i++) {
  1750. pathb_ok = _rtl92d_phy_pathb_iqk(hw);
  1751. if (pathb_ok == 0x03) {
  1752. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1753. "Path B IQK Success!!\n");
  1754. result[t][4] = (rtl_get_bbreg(hw, 0xeb4,
  1755. MASKDWORD) & 0x3FF0000) >> 16;
  1756. result[t][5] = (rtl_get_bbreg(hw, 0xebc,
  1757. MASKDWORD) & 0x3FF0000) >> 16;
  1758. result[t][6] = (rtl_get_bbreg(hw, 0xec4,
  1759. MASKDWORD) & 0x3FF0000) >> 16;
  1760. result[t][7] = (rtl_get_bbreg(hw, 0xecc,
  1761. MASKDWORD) & 0x3FF0000) >> 16;
  1762. break;
  1763. } else if (i == (retrycount - 1) && pathb_ok == 0x01) {
  1764. /* Tx IQK OK */
  1765. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1766. "Path B Only Tx IQK Success!!\n");
  1767. result[t][4] = (rtl_get_bbreg(hw, 0xeb4,
  1768. MASKDWORD) & 0x3FF0000) >> 16;
  1769. result[t][5] = (rtl_get_bbreg(hw, 0xebc,
  1770. MASKDWORD) & 0x3FF0000) >> 16;
  1771. }
  1772. }
  1773. if (0x00 == pathb_ok)
  1774. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1775. "Path B IQK failed!!\n");
  1776. }
  1777. /* Back to BB mode, load original value */
  1778. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1779. "IQK:Back to BB mode, load original value!\n");
  1780. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0);
  1781. if (t != 0) {
  1782. /* Switch back BB to SI mode after finish IQ Calibration. */
  1783. if (!rtlphy->rfpi_enable)
  1784. _rtl92d_phy_pimode_switch(hw, false);
  1785. /* Reload ADDA power saving parameters */
  1786. _rtl92d_phy_reload_adda_registers(hw, adda_reg,
  1787. rtlphy->adda_backup, IQK_ADDA_REG_NUM);
  1788. /* Reload MAC parameters */
  1789. _rtl92d_phy_reload_mac_registers(hw, iqk_mac_reg,
  1790. rtlphy->iqk_mac_backup);
  1791. if (is2t)
  1792. _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
  1793. rtlphy->iqk_bb_backup,
  1794. IQK_BB_REG_NUM);
  1795. else
  1796. _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
  1797. rtlphy->iqk_bb_backup,
  1798. IQK_BB_REG_NUM - 1);
  1799. /* load 0xe30 IQC default value */
  1800. rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x01008c00);
  1801. rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x01008c00);
  1802. }
  1803. RTPRINT(rtlpriv, FINIT, INIT_IQK, "<==\n");
  1804. }
  1805. static void _rtl92d_phy_iq_calibrate_5g_normal(struct ieee80211_hw *hw,
  1806. long result[][8], u8 t)
  1807. {
  1808. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1809. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1810. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  1811. u8 patha_ok, pathb_ok;
  1812. static u32 adda_reg[IQK_ADDA_REG_NUM] = {
  1813. RFPGA0_XCD_SWITCHCONTROL, 0xe6c, 0xe70, 0xe74,
  1814. 0xe78, 0xe7c, 0xe80, 0xe84,
  1815. 0xe88, 0xe8c, 0xed0, 0xed4,
  1816. 0xed8, 0xedc, 0xee0, 0xeec
  1817. };
  1818. static u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
  1819. 0x522, 0x550, 0x551, 0x040
  1820. };
  1821. static u32 iqk_bb_reg[IQK_BB_REG_NUM] = {
  1822. RFPGA0_XAB_RFINTERFACESW, RFPGA0_XA_RFINTERFACEOE,
  1823. RFPGA0_XB_RFINTERFACEOE, ROFDM0_TRMUXPAR,
  1824. RFPGA0_XCD_RFINTERFACESW, ROFDM0_TRXPATHENABLE,
  1825. RFPGA0_RFMOD, RFPGA0_ANALOGPARAMETER4,
  1826. ROFDM0_XAAGCCORE1, ROFDM0_XBAGCCORE1
  1827. };
  1828. u32 bbvalue;
  1829. bool is2t = IS_92D_SINGLEPHY(rtlhal->version);
  1830. /* Note: IQ calibration must be performed after loading
  1831. * PHY_REG.txt , and radio_a, radio_b.txt */
  1832. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK for 5G NORMAL:Start!!!\n");
  1833. mdelay(IQK_DELAY_TIME * 20);
  1834. if (t == 0) {
  1835. bbvalue = rtl_get_bbreg(hw, RFPGA0_RFMOD, MASKDWORD);
  1836. RTPRINT(rtlpriv, FINIT, INIT_IQK, "==>0x%08x\n", bbvalue);
  1837. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQ Calibration for %s\n",
  1838. is2t ? "2T2R" : "1T1R");
  1839. /* Save ADDA parameters, turn Path A ADDA on */
  1840. _rtl92d_phy_save_adda_registers(hw, adda_reg,
  1841. rtlphy->adda_backup,
  1842. IQK_ADDA_REG_NUM);
  1843. _rtl92d_phy_save_mac_registers(hw, iqk_mac_reg,
  1844. rtlphy->iqk_mac_backup);
  1845. if (is2t)
  1846. _rtl92d_phy_save_adda_registers(hw, iqk_bb_reg,
  1847. rtlphy->iqk_bb_backup,
  1848. IQK_BB_REG_NUM);
  1849. else
  1850. _rtl92d_phy_save_adda_registers(hw, iqk_bb_reg,
  1851. rtlphy->iqk_bb_backup,
  1852. IQK_BB_REG_NUM - 1);
  1853. }
  1854. _rtl92d_phy_path_adda_on(hw, adda_reg, true, is2t);
  1855. /* MAC settings */
  1856. _rtl92d_phy_mac_setting_calibration(hw, iqk_mac_reg,
  1857. rtlphy->iqk_mac_backup);
  1858. if (t == 0)
  1859. rtlphy->rfpi_enable = (u8) rtl_get_bbreg(hw,
  1860. RFPGA0_XA_HSSIPARAMETER1, BIT(8));
  1861. /* Switch BB to PI mode to do IQ Calibration. */
  1862. if (!rtlphy->rfpi_enable)
  1863. _rtl92d_phy_pimode_switch(hw, true);
  1864. rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(24), 0x00);
  1865. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKDWORD, 0x03a05600);
  1866. rtl_set_bbreg(hw, ROFDM0_TRMUXPAR, MASKDWORD, 0x000800e4);
  1867. rtl_set_bbreg(hw, RFPGA0_XCD_RFINTERFACESW, MASKDWORD, 0x22208000);
  1868. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xf00000, 0x0f);
  1869. /* Page B init */
  1870. rtl_set_bbreg(hw, 0xb68, MASKDWORD, 0x0f600000);
  1871. if (is2t)
  1872. rtl_set_bbreg(hw, 0xb6c, MASKDWORD, 0x0f600000);
  1873. /* IQ calibration setting */
  1874. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK setting!\n");
  1875. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
  1876. rtl_set_bbreg(hw, 0xe40, MASKDWORD, 0x10007c00);
  1877. rtl_set_bbreg(hw, 0xe44, MASKDWORD, 0x01004800);
  1878. patha_ok = _rtl92d_phy_patha_iqk_5g_normal(hw, is2t);
  1879. if (patha_ok == 0x03) {
  1880. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK Success!!\n");
  1881. result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) &
  1882. 0x3FF0000) >> 16;
  1883. result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) &
  1884. 0x3FF0000) >> 16;
  1885. result[t][2] = (rtl_get_bbreg(hw, 0xea4, MASKDWORD) &
  1886. 0x3FF0000) >> 16;
  1887. result[t][3] = (rtl_get_bbreg(hw, 0xeac, MASKDWORD) &
  1888. 0x3FF0000) >> 16;
  1889. } else if (patha_ok == 0x01) { /* Tx IQK OK */
  1890. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1891. "Path A IQK Only Tx Success!!\n");
  1892. result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) &
  1893. 0x3FF0000) >> 16;
  1894. result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) &
  1895. 0x3FF0000) >> 16;
  1896. } else {
  1897. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK Fail!!\n");
  1898. }
  1899. if (is2t) {
  1900. /* _rtl92d_phy_patha_standby(hw); */
  1901. /* Turn Path B ADDA on */
  1902. _rtl92d_phy_path_adda_on(hw, adda_reg, false, is2t);
  1903. pathb_ok = _rtl92d_phy_pathb_iqk_5g_normal(hw);
  1904. if (pathb_ok == 0x03) {
  1905. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1906. "Path B IQK Success!!\n");
  1907. result[t][4] = (rtl_get_bbreg(hw, 0xeb4, MASKDWORD) &
  1908. 0x3FF0000) >> 16;
  1909. result[t][5] = (rtl_get_bbreg(hw, 0xebc, MASKDWORD) &
  1910. 0x3FF0000) >> 16;
  1911. result[t][6] = (rtl_get_bbreg(hw, 0xec4, MASKDWORD) &
  1912. 0x3FF0000) >> 16;
  1913. result[t][7] = (rtl_get_bbreg(hw, 0xecc, MASKDWORD) &
  1914. 0x3FF0000) >> 16;
  1915. } else if (pathb_ok == 0x01) { /* Tx IQK OK */
  1916. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1917. "Path B Only Tx IQK Success!!\n");
  1918. result[t][4] = (rtl_get_bbreg(hw, 0xeb4, MASKDWORD) &
  1919. 0x3FF0000) >> 16;
  1920. result[t][5] = (rtl_get_bbreg(hw, 0xebc, MASKDWORD) &
  1921. 0x3FF0000) >> 16;
  1922. } else {
  1923. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1924. "Path B IQK failed!!\n");
  1925. }
  1926. }
  1927. /* Back to BB mode, load original value */
  1928. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1929. "IQK:Back to BB mode, load original value!\n");
  1930. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0);
  1931. if (t != 0) {
  1932. if (is2t)
  1933. _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
  1934. rtlphy->iqk_bb_backup,
  1935. IQK_BB_REG_NUM);
  1936. else
  1937. _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
  1938. rtlphy->iqk_bb_backup,
  1939. IQK_BB_REG_NUM - 1);
  1940. /* Reload MAC parameters */
  1941. _rtl92d_phy_reload_mac_registers(hw, iqk_mac_reg,
  1942. rtlphy->iqk_mac_backup);
  1943. /* Switch back BB to SI mode after finish IQ Calibration. */
  1944. if (!rtlphy->rfpi_enable)
  1945. _rtl92d_phy_pimode_switch(hw, false);
  1946. /* Reload ADDA power saving parameters */
  1947. _rtl92d_phy_reload_adda_registers(hw, adda_reg,
  1948. rtlphy->adda_backup,
  1949. IQK_ADDA_REG_NUM);
  1950. }
  1951. RTPRINT(rtlpriv, FINIT, INIT_IQK, "<==\n");
  1952. }
  1953. static bool _rtl92d_phy_simularity_compare(struct ieee80211_hw *hw,
  1954. long result[][8], u8 c1, u8 c2)
  1955. {
  1956. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1957. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  1958. u32 i, j, diff, sim_bitmap, bound;
  1959. u8 final_candidate[2] = {0xFF, 0xFF}; /* for path A and path B */
  1960. bool bresult = true;
  1961. bool is2t = IS_92D_SINGLEPHY(rtlhal->version);
  1962. if (is2t)
  1963. bound = 8;
  1964. else
  1965. bound = 4;
  1966. sim_bitmap = 0;
  1967. for (i = 0; i < bound; i++) {
  1968. diff = (result[c1][i] > result[c2][i]) ? (result[c1][i] -
  1969. result[c2][i]) : (result[c2][i] - result[c1][i]);
  1970. if (diff > MAX_TOLERANCE_92D) {
  1971. if ((i == 2 || i == 6) && !sim_bitmap) {
  1972. if (result[c1][i] + result[c1][i + 1] == 0)
  1973. final_candidate[(i / 4)] = c2;
  1974. else if (result[c2][i] + result[c2][i + 1] == 0)
  1975. final_candidate[(i / 4)] = c1;
  1976. else
  1977. sim_bitmap = sim_bitmap | (1 << i);
  1978. } else {
  1979. sim_bitmap = sim_bitmap | (1 << i);
  1980. }
  1981. }
  1982. }
  1983. if (sim_bitmap == 0) {
  1984. for (i = 0; i < (bound / 4); i++) {
  1985. if (final_candidate[i] != 0xFF) {
  1986. for (j = i * 4; j < (i + 1) * 4 - 2; j++)
  1987. result[3][j] =
  1988. result[final_candidate[i]][j];
  1989. bresult = false;
  1990. }
  1991. }
  1992. return bresult;
  1993. }
  1994. if (!(sim_bitmap & 0x0F)) { /* path A OK */
  1995. for (i = 0; i < 4; i++)
  1996. result[3][i] = result[c1][i];
  1997. } else if (!(sim_bitmap & 0x03)) { /* path A, Tx OK */
  1998. for (i = 0; i < 2; i++)
  1999. result[3][i] = result[c1][i];
  2000. }
  2001. if (!(sim_bitmap & 0xF0) && is2t) { /* path B OK */
  2002. for (i = 4; i < 8; i++)
  2003. result[3][i] = result[c1][i];
  2004. } else if (!(sim_bitmap & 0x30)) { /* path B, Tx OK */
  2005. for (i = 4; i < 6; i++)
  2006. result[3][i] = result[c1][i];
  2007. }
  2008. return false;
  2009. }
  2010. static void _rtl92d_phy_patha_fill_iqk_matrix(struct ieee80211_hw *hw,
  2011. bool iqk_ok, long result[][8],
  2012. u8 final_candidate, bool txonly)
  2013. {
  2014. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2015. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2016. u32 oldval_0, val_x, tx0_a, reg;
  2017. long val_y, tx0_c;
  2018. bool is2t = IS_92D_SINGLEPHY(rtlhal->version) ||
  2019. rtlhal->macphymode == DUALMAC_DUALPHY;
  2020. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2021. "Path A IQ Calibration %s !\n", iqk_ok ? "Success" : "Failed");
  2022. if (final_candidate == 0xFF) {
  2023. return;
  2024. } else if (iqk_ok) {
  2025. oldval_0 = (rtl_get_bbreg(hw, ROFDM0_XATxIQIMBALANCE,
  2026. MASKDWORD) >> 22) & 0x3FF; /* OFDM0_D */
  2027. val_x = result[final_candidate][0];
  2028. if ((val_x & 0x00000200) != 0)
  2029. val_x = val_x | 0xFFFFFC00;
  2030. tx0_a = (val_x * oldval_0) >> 8;
  2031. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2032. "X = 0x%x, tx0_a = 0x%x, oldval_0 0x%x\n",
  2033. val_x, tx0_a, oldval_0);
  2034. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, 0x3FF, tx0_a);
  2035. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(24),
  2036. ((val_x * oldval_0 >> 7) & 0x1));
  2037. val_y = result[final_candidate][1];
  2038. if ((val_y & 0x00000200) != 0)
  2039. val_y = val_y | 0xFFFFFC00;
  2040. /* path B IQK result + 3 */
  2041. if (rtlhal->interfaceindex == 1 &&
  2042. rtlhal->current_bandtype == BAND_ON_5G)
  2043. val_y += 3;
  2044. tx0_c = (val_y * oldval_0) >> 8;
  2045. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2046. "Y = 0x%lx, tx0_c = 0x%lx\n",
  2047. val_y, tx0_c);
  2048. rtl_set_bbreg(hw, ROFDM0_XCTxAFE, 0xF0000000,
  2049. ((tx0_c & 0x3C0) >> 6));
  2050. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, 0x003F0000,
  2051. (tx0_c & 0x3F));
  2052. if (is2t)
  2053. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(26),
  2054. ((val_y * oldval_0 >> 7) & 0x1));
  2055. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xC80 = 0x%x\n",
  2056. rtl_get_bbreg(hw, ROFDM0_XATxIQIMBALANCE,
  2057. MASKDWORD));
  2058. if (txonly) {
  2059. RTPRINT(rtlpriv, FINIT, INIT_IQK, "only Tx OK\n");
  2060. return;
  2061. }
  2062. reg = result[final_candidate][2];
  2063. rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0x3FF, reg);
  2064. reg = result[final_candidate][3] & 0x3F;
  2065. rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0xFC00, reg);
  2066. reg = (result[final_candidate][3] >> 6) & 0xF;
  2067. rtl_set_bbreg(hw, 0xca0, 0xF0000000, reg);
  2068. }
  2069. }
  2070. static void _rtl92d_phy_pathb_fill_iqk_matrix(struct ieee80211_hw *hw,
  2071. bool iqk_ok, long result[][8], u8 final_candidate, bool txonly)
  2072. {
  2073. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2074. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2075. u32 oldval_1, val_x, tx1_a, reg;
  2076. long val_y, tx1_c;
  2077. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQ Calibration %s !\n",
  2078. iqk_ok ? "Success" : "Failed");
  2079. if (final_candidate == 0xFF) {
  2080. return;
  2081. } else if (iqk_ok) {
  2082. oldval_1 = (rtl_get_bbreg(hw, ROFDM0_XBTxIQIMBALANCE,
  2083. MASKDWORD) >> 22) & 0x3FF;
  2084. val_x = result[final_candidate][4];
  2085. if ((val_x & 0x00000200) != 0)
  2086. val_x = val_x | 0xFFFFFC00;
  2087. tx1_a = (val_x * oldval_1) >> 8;
  2088. RTPRINT(rtlpriv, FINIT, INIT_IQK, "X = 0x%x, tx1_a = 0x%x\n",
  2089. val_x, tx1_a);
  2090. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, 0x3FF, tx1_a);
  2091. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(28),
  2092. ((val_x * oldval_1 >> 7) & 0x1));
  2093. val_y = result[final_candidate][5];
  2094. if ((val_y & 0x00000200) != 0)
  2095. val_y = val_y | 0xFFFFFC00;
  2096. if (rtlhal->current_bandtype == BAND_ON_5G)
  2097. val_y += 3;
  2098. tx1_c = (val_y * oldval_1) >> 8;
  2099. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Y = 0x%lx, tx1_c = 0x%lx\n",
  2100. val_y, tx1_c);
  2101. rtl_set_bbreg(hw, ROFDM0_XDTxAFE, 0xF0000000,
  2102. ((tx1_c & 0x3C0) >> 6));
  2103. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, 0x003F0000,
  2104. (tx1_c & 0x3F));
  2105. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(30),
  2106. ((val_y * oldval_1 >> 7) & 0x1));
  2107. if (txonly)
  2108. return;
  2109. reg = result[final_candidate][6];
  2110. rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, 0x3FF, reg);
  2111. reg = result[final_candidate][7] & 0x3F;
  2112. rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, 0xFC00, reg);
  2113. reg = (result[final_candidate][7] >> 6) & 0xF;
  2114. rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, 0x0000F000, reg);
  2115. }
  2116. }
  2117. void rtl92d_phy_iq_calibrate(struct ieee80211_hw *hw)
  2118. {
  2119. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2120. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2121. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2122. long result[4][8];
  2123. u8 i, final_candidate, indexforchannel;
  2124. bool patha_ok, pathb_ok;
  2125. long rege94, rege9c, regea4, regeac, regeb4;
  2126. long regebc, regec4, regecc, regtmp = 0;
  2127. bool is12simular, is13simular, is23simular;
  2128. unsigned long flag = 0;
  2129. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2130. "IQK:Start!!!channel %d\n", rtlphy->current_channel);
  2131. for (i = 0; i < 8; i++) {
  2132. result[0][i] = 0;
  2133. result[1][i] = 0;
  2134. result[2][i] = 0;
  2135. result[3][i] = 0;
  2136. }
  2137. final_candidate = 0xff;
  2138. patha_ok = false;
  2139. pathb_ok = false;
  2140. is12simular = false;
  2141. is23simular = false;
  2142. is13simular = false;
  2143. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2144. "IQK !!!currentband %d\n", rtlhal->current_bandtype);
  2145. rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag);
  2146. for (i = 0; i < 3; i++) {
  2147. if (rtlhal->current_bandtype == BAND_ON_5G) {
  2148. _rtl92d_phy_iq_calibrate_5g_normal(hw, result, i);
  2149. } else if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  2150. if (IS_92D_SINGLEPHY(rtlhal->version))
  2151. _rtl92d_phy_iq_calibrate(hw, result, i, true);
  2152. else
  2153. _rtl92d_phy_iq_calibrate(hw, result, i, false);
  2154. }
  2155. if (i == 1) {
  2156. is12simular = _rtl92d_phy_simularity_compare(hw, result,
  2157. 0, 1);
  2158. if (is12simular) {
  2159. final_candidate = 0;
  2160. break;
  2161. }
  2162. }
  2163. if (i == 2) {
  2164. is13simular = _rtl92d_phy_simularity_compare(hw, result,
  2165. 0, 2);
  2166. if (is13simular) {
  2167. final_candidate = 0;
  2168. break;
  2169. }
  2170. is23simular = _rtl92d_phy_simularity_compare(hw, result,
  2171. 1, 2);
  2172. if (is23simular) {
  2173. final_candidate = 1;
  2174. } else {
  2175. for (i = 0; i < 8; i++)
  2176. regtmp += result[3][i];
  2177. if (regtmp != 0)
  2178. final_candidate = 3;
  2179. else
  2180. final_candidate = 0xFF;
  2181. }
  2182. }
  2183. }
  2184. rtl92d_release_cckandrw_pagea_ctl(hw, &flag);
  2185. for (i = 0; i < 4; i++) {
  2186. rege94 = result[i][0];
  2187. rege9c = result[i][1];
  2188. regea4 = result[i][2];
  2189. regeac = result[i][3];
  2190. regeb4 = result[i][4];
  2191. regebc = result[i][5];
  2192. regec4 = result[i][6];
  2193. regecc = result[i][7];
  2194. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2195. "IQK: rege94=%lx rege9c=%lx regea4=%lx regeac=%lx regeb4=%lx regebc=%lx regec4=%lx regecc=%lx\n",
  2196. rege94, rege9c, regea4, regeac, regeb4, regebc, regec4,
  2197. regecc);
  2198. }
  2199. if (final_candidate != 0xff) {
  2200. rtlphy->reg_e94 = rege94 = result[final_candidate][0];
  2201. rtlphy->reg_e9c = rege9c = result[final_candidate][1];
  2202. regea4 = result[final_candidate][2];
  2203. regeac = result[final_candidate][3];
  2204. rtlphy->reg_eb4 = regeb4 = result[final_candidate][4];
  2205. rtlphy->reg_ebc = regebc = result[final_candidate][5];
  2206. regec4 = result[final_candidate][6];
  2207. regecc = result[final_candidate][7];
  2208. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2209. "IQK: final_candidate is %x\n", final_candidate);
  2210. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2211. "IQK: rege94=%lx rege9c=%lx regea4=%lx regeac=%lx regeb4=%lx regebc=%lx regec4=%lx regecc=%lx\n",
  2212. rege94, rege9c, regea4, regeac, regeb4, regebc, regec4,
  2213. regecc);
  2214. patha_ok = pathb_ok = true;
  2215. } else {
  2216. rtlphy->reg_e94 = rtlphy->reg_eb4 = 0x100; /* X default value */
  2217. rtlphy->reg_e9c = rtlphy->reg_ebc = 0x0; /* Y default value */
  2218. }
  2219. if ((rege94 != 0) /*&&(regea4 != 0) */)
  2220. _rtl92d_phy_patha_fill_iqk_matrix(hw, patha_ok, result,
  2221. final_candidate, (regea4 == 0));
  2222. if (IS_92D_SINGLEPHY(rtlhal->version)) {
  2223. if ((regeb4 != 0) /*&&(regec4 != 0) */)
  2224. _rtl92d_phy_pathb_fill_iqk_matrix(hw, pathb_ok, result,
  2225. final_candidate, (regec4 == 0));
  2226. }
  2227. if (final_candidate != 0xFF) {
  2228. indexforchannel = rtl92d_get_rightchnlplace_for_iqk(
  2229. rtlphy->current_channel);
  2230. for (i = 0; i < IQK_MATRIX_REG_NUM; i++)
  2231. rtlphy->iqk_matrix[indexforchannel].
  2232. value[0][i] = result[final_candidate][i];
  2233. rtlphy->iqk_matrix[indexforchannel].iqk_done =
  2234. true;
  2235. RT_TRACE(rtlpriv, COMP_SCAN | COMP_MLME, DBG_LOUD,
  2236. "IQK OK indexforchannel %d\n", indexforchannel);
  2237. }
  2238. }
  2239. void rtl92d_phy_reload_iqk_setting(struct ieee80211_hw *hw, u8 channel)
  2240. {
  2241. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2242. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2243. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2244. u8 indexforchannel;
  2245. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "channel %d\n", channel);
  2246. /*------Do IQK for normal chip and test chip 5G band------- */
  2247. indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
  2248. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "indexforchannel %d done %d\n",
  2249. indexforchannel,
  2250. rtlphy->iqk_matrix[indexforchannel].iqk_done);
  2251. if (0 && !rtlphy->iqk_matrix[indexforchannel].iqk_done &&
  2252. rtlphy->need_iqk) {
  2253. /* Re Do IQK. */
  2254. RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_LOUD,
  2255. "Do IQK Matrix reg for channel:%d....\n", channel);
  2256. rtl92d_phy_iq_calibrate(hw);
  2257. } else {
  2258. /* Just load the value. */
  2259. /* 2G band just load once. */
  2260. if (((!rtlhal->load_imrandiqk_setting_for2g) &&
  2261. indexforchannel == 0) || indexforchannel > 0) {
  2262. RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
  2263. "Just Read IQK Matrix reg for channel:%d....\n",
  2264. channel);
  2265. if ((rtlphy->iqk_matrix[indexforchannel].
  2266. value[0] != NULL)
  2267. /*&&(regea4 != 0) */)
  2268. _rtl92d_phy_patha_fill_iqk_matrix(hw, true,
  2269. rtlphy->iqk_matrix[
  2270. indexforchannel].value, 0,
  2271. (rtlphy->iqk_matrix[
  2272. indexforchannel].value[0][2] == 0));
  2273. if (IS_92D_SINGLEPHY(rtlhal->version)) {
  2274. if ((rtlphy->iqk_matrix[
  2275. indexforchannel].value[0][4] != 0)
  2276. /*&&(regec4 != 0) */)
  2277. _rtl92d_phy_pathb_fill_iqk_matrix(hw,
  2278. true,
  2279. rtlphy->iqk_matrix[
  2280. indexforchannel].value, 0,
  2281. (rtlphy->iqk_matrix[
  2282. indexforchannel].value[0][6]
  2283. == 0));
  2284. }
  2285. }
  2286. }
  2287. rtlphy->need_iqk = false;
  2288. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
  2289. }
  2290. static u32 _rtl92d_phy_get_abs(u32 val1, u32 val2)
  2291. {
  2292. u32 ret;
  2293. if (val1 >= val2)
  2294. ret = val1 - val2;
  2295. else
  2296. ret = val2 - val1;
  2297. return ret;
  2298. }
  2299. static bool _rtl92d_is_legal_5g_channel(struct ieee80211_hw *hw, u8 channel)
  2300. {
  2301. int i;
  2302. u8 channel_5g[45] = {
  2303. 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
  2304. 60, 62, 64, 100, 102, 104, 106, 108, 110, 112,
  2305. 114, 116, 118, 120, 122, 124, 126, 128, 130, 132,
  2306. 134, 136, 138, 140, 149, 151, 153, 155, 157, 159,
  2307. 161, 163, 165
  2308. };
  2309. for (i = 0; i < sizeof(channel_5g); i++)
  2310. if (channel == channel_5g[i])
  2311. return true;
  2312. return false;
  2313. }
  2314. static void _rtl92d_phy_calc_curvindex(struct ieee80211_hw *hw,
  2315. u32 *targetchnl, u32 * curvecount_val,
  2316. bool is5g, u32 *curveindex)
  2317. {
  2318. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2319. u32 smallest_abs_val = 0xffffffff, u4tmp;
  2320. u8 i, j;
  2321. u8 chnl_num = is5g ? TARGET_CHNL_NUM_5G : TARGET_CHNL_NUM_2G;
  2322. for (i = 0; i < chnl_num; i++) {
  2323. if (is5g && !_rtl92d_is_legal_5g_channel(hw, i + 1))
  2324. continue;
  2325. curveindex[i] = 0;
  2326. for (j = 0; j < (CV_CURVE_CNT * 2); j++) {
  2327. u4tmp = _rtl92d_phy_get_abs(targetchnl[i],
  2328. curvecount_val[j]);
  2329. if (u4tmp < smallest_abs_val) {
  2330. curveindex[i] = j;
  2331. smallest_abs_val = u4tmp;
  2332. }
  2333. }
  2334. smallest_abs_val = 0xffffffff;
  2335. RTPRINT(rtlpriv, FINIT, INIT_IQK, "curveindex[%d] = %x\n",
  2336. i, curveindex[i]);
  2337. }
  2338. }
  2339. static void _rtl92d_phy_reload_lck_setting(struct ieee80211_hw *hw,
  2340. u8 channel)
  2341. {
  2342. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2343. u8 erfpath = rtlpriv->rtlhal.current_bandtype ==
  2344. BAND_ON_5G ? RF90_PATH_A :
  2345. IS_92D_SINGLEPHY(rtlpriv->rtlhal.version) ?
  2346. RF90_PATH_B : RF90_PATH_A;
  2347. u32 u4tmp = 0, u4regvalue = 0;
  2348. bool bneed_powerdown_radio = false;
  2349. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "path %d\n", erfpath);
  2350. RTPRINT(rtlpriv, FINIT, INIT_IQK, "band type = %d\n",
  2351. rtlpriv->rtlhal.current_bandtype);
  2352. RTPRINT(rtlpriv, FINIT, INIT_IQK, "channel = %d\n", channel);
  2353. if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G) {/* Path-A for 5G */
  2354. u4tmp = curveindex_5g[channel-1];
  2355. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2356. "ver 1 set RF-A, 5G, 0x28 = 0x%x !!\n", u4tmp);
  2357. if (rtlpriv->rtlhal.macphymode == DUALMAC_DUALPHY &&
  2358. rtlpriv->rtlhal.interfaceindex == 1) {
  2359. bneed_powerdown_radio =
  2360. rtl92d_phy_enable_anotherphy(hw, false);
  2361. rtlpriv->rtlhal.during_mac1init_radioa = true;
  2362. /* asume no this case */
  2363. if (bneed_powerdown_radio)
  2364. _rtl92d_phy_enable_rf_env(hw, erfpath,
  2365. &u4regvalue);
  2366. }
  2367. rtl_set_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800, u4tmp);
  2368. if (bneed_powerdown_radio)
  2369. _rtl92d_phy_restore_rf_env(hw, erfpath, &u4regvalue);
  2370. if (rtlpriv->rtlhal.during_mac1init_radioa)
  2371. rtl92d_phy_powerdown_anotherphy(hw, false);
  2372. } else if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G) {
  2373. u4tmp = curveindex_2g[channel-1];
  2374. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2375. "ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n", u4tmp);
  2376. if (rtlpriv->rtlhal.macphymode == DUALMAC_DUALPHY &&
  2377. rtlpriv->rtlhal.interfaceindex == 0) {
  2378. bneed_powerdown_radio =
  2379. rtl92d_phy_enable_anotherphy(hw, true);
  2380. rtlpriv->rtlhal.during_mac0init_radiob = true;
  2381. if (bneed_powerdown_radio)
  2382. _rtl92d_phy_enable_rf_env(hw, erfpath,
  2383. &u4regvalue);
  2384. }
  2385. rtl_set_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800, u4tmp);
  2386. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2387. "ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n",
  2388. rtl_get_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800));
  2389. if (bneed_powerdown_radio)
  2390. _rtl92d_phy_restore_rf_env(hw, erfpath, &u4regvalue);
  2391. if (rtlpriv->rtlhal.during_mac0init_radiob)
  2392. rtl92d_phy_powerdown_anotherphy(hw, true);
  2393. }
  2394. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
  2395. }
  2396. static void _rtl92d_phy_lc_calibrate_sw(struct ieee80211_hw *hw, bool is2t)
  2397. {
  2398. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2399. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2400. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2401. u8 tmpreg, index, rf_mode[2];
  2402. u8 path = is2t ? 2 : 1;
  2403. u8 i;
  2404. u32 u4tmp, offset;
  2405. u32 curvecount_val[CV_CURVE_CNT * 2] = {0};
  2406. u16 timeout = 800, timecount = 0;
  2407. /* Check continuous TX and Packet TX */
  2408. tmpreg = rtl_read_byte(rtlpriv, 0xd03);
  2409. /* if Deal with contisuous TX case, disable all continuous TX */
  2410. /* if Deal with Packet TX case, block all queues */
  2411. if ((tmpreg & 0x70) != 0)
  2412. rtl_write_byte(rtlpriv, 0xd03, tmpreg & 0x8F);
  2413. else
  2414. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  2415. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xF00000, 0x0F);
  2416. for (index = 0; index < path; index++) {
  2417. /* 1. Read original RF mode */
  2418. offset = index == 0 ? ROFDM0_XAAGCCORE1 : ROFDM0_XBAGCCORE1;
  2419. rf_mode[index] = rtl_read_byte(rtlpriv, offset);
  2420. /* 2. Set RF mode = standby mode */
  2421. rtl_set_rfreg(hw, (enum radio_path)index, RF_AC,
  2422. RFREG_OFFSET_MASK, 0x010000);
  2423. if (rtlpci->init_ready) {
  2424. /* switch CV-curve control by LC-calibration */
  2425. rtl_set_rfreg(hw, (enum radio_path)index, RF_SYN_G7,
  2426. BIT(17), 0x0);
  2427. /* 4. Set LC calibration begin */
  2428. rtl_set_rfreg(hw, (enum radio_path)index, RF_CHNLBW,
  2429. 0x08000, 0x01);
  2430. }
  2431. u4tmp = rtl_get_rfreg(hw, (enum radio_path)index, RF_SYN_G6,
  2432. RFREG_OFFSET_MASK);
  2433. while ((!(u4tmp & BIT(11))) && timecount <= timeout) {
  2434. mdelay(50);
  2435. timecount += 50;
  2436. u4tmp = rtl_get_rfreg(hw, (enum radio_path)index,
  2437. RF_SYN_G6, RFREG_OFFSET_MASK);
  2438. }
  2439. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2440. "PHY_LCK finish delay for %d ms=2\n", timecount);
  2441. u4tmp = rtl_get_rfreg(hw, index, RF_SYN_G4, RFREG_OFFSET_MASK);
  2442. if (index == 0 && rtlhal->interfaceindex == 0) {
  2443. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2444. "path-A / 5G LCK\n");
  2445. } else {
  2446. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2447. "path-B / 2.4G LCK\n");
  2448. }
  2449. memset(&curvecount_val[0], 0, CV_CURVE_CNT * 2);
  2450. /* Set LC calibration off */
  2451. rtl_set_rfreg(hw, (enum radio_path)index, RF_CHNLBW,
  2452. 0x08000, 0x0);
  2453. RTPRINT(rtlpriv, FINIT, INIT_IQK, "set RF 0x18[15] = 0\n");
  2454. /* save Curve-counting number */
  2455. for (i = 0; i < CV_CURVE_CNT; i++) {
  2456. u32 readval = 0, readval2 = 0;
  2457. rtl_set_rfreg(hw, (enum radio_path)index, 0x3F,
  2458. 0x7f, i);
  2459. rtl_set_rfreg(hw, (enum radio_path)index, 0x4D,
  2460. RFREG_OFFSET_MASK, 0x0);
  2461. readval = rtl_get_rfreg(hw, (enum radio_path)index,
  2462. 0x4F, RFREG_OFFSET_MASK);
  2463. curvecount_val[2 * i + 1] = (readval & 0xfffe0) >> 5;
  2464. /* reg 0x4f [4:0] */
  2465. /* reg 0x50 [19:10] */
  2466. readval2 = rtl_get_rfreg(hw, (enum radio_path)index,
  2467. 0x50, 0xffc00);
  2468. curvecount_val[2 * i] = (((readval & 0x1F) << 10) |
  2469. readval2);
  2470. }
  2471. if (index == 0 && rtlhal->interfaceindex == 0)
  2472. _rtl92d_phy_calc_curvindex(hw, targetchnl_5g,
  2473. curvecount_val,
  2474. true, curveindex_5g);
  2475. else
  2476. _rtl92d_phy_calc_curvindex(hw, targetchnl_2g,
  2477. curvecount_val,
  2478. false, curveindex_2g);
  2479. /* switch CV-curve control mode */
  2480. rtl_set_rfreg(hw, (enum radio_path)index, RF_SYN_G7,
  2481. BIT(17), 0x1);
  2482. }
  2483. /* Restore original situation */
  2484. for (index = 0; index < path; index++) {
  2485. offset = index == 0 ? ROFDM0_XAAGCCORE1 : ROFDM0_XBAGCCORE1;
  2486. rtl_write_byte(rtlpriv, offset, 0x50);
  2487. rtl_write_byte(rtlpriv, offset, rf_mode[index]);
  2488. }
  2489. if ((tmpreg & 0x70) != 0)
  2490. rtl_write_byte(rtlpriv, 0xd03, tmpreg);
  2491. else /*Deal with Packet TX case */
  2492. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
  2493. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xF00000, 0x00);
  2494. _rtl92d_phy_reload_lck_setting(hw, rtlpriv->phy.current_channel);
  2495. }
  2496. static void _rtl92d_phy_lc_calibrate(struct ieee80211_hw *hw, bool is2t)
  2497. {
  2498. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2499. RTPRINT(rtlpriv, FINIT, INIT_IQK, "cosa PHY_LCK ver=2\n");
  2500. _rtl92d_phy_lc_calibrate_sw(hw, is2t);
  2501. }
  2502. void rtl92d_phy_lc_calibrate(struct ieee80211_hw *hw)
  2503. {
  2504. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2505. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2506. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2507. u32 timeout = 2000, timecount = 0;
  2508. while (rtlpriv->mac80211.act_scanning && timecount < timeout) {
  2509. udelay(50);
  2510. timecount += 50;
  2511. }
  2512. rtlphy->lck_inprogress = true;
  2513. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2514. "LCK:Start!!! currentband %x delay %d ms\n",
  2515. rtlhal->current_bandtype, timecount);
  2516. if (IS_92D_SINGLEPHY(rtlhal->version)) {
  2517. _rtl92d_phy_lc_calibrate(hw, true);
  2518. } else {
  2519. /* For 1T1R */
  2520. _rtl92d_phy_lc_calibrate(hw, false);
  2521. }
  2522. rtlphy->lck_inprogress = false;
  2523. RTPRINT(rtlpriv, FINIT, INIT_IQK, "LCK:Finish!!!\n");
  2524. }
  2525. void rtl92d_phy_ap_calibrate(struct ieee80211_hw *hw, char delta)
  2526. {
  2527. return;
  2528. }
  2529. static bool _rtl92d_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable,
  2530. u32 cmdtableidx, u32 cmdtablesz, enum swchnlcmd_id cmdid,
  2531. u32 para1, u32 para2, u32 msdelay)
  2532. {
  2533. struct swchnlcmd *pcmd;
  2534. if (cmdtable == NULL) {
  2535. RT_ASSERT(false, "cmdtable cannot be NULL\n");
  2536. return false;
  2537. }
  2538. if (cmdtableidx >= cmdtablesz)
  2539. return false;
  2540. pcmd = cmdtable + cmdtableidx;
  2541. pcmd->cmdid = cmdid;
  2542. pcmd->para1 = para1;
  2543. pcmd->para2 = para2;
  2544. pcmd->msdelay = msdelay;
  2545. return true;
  2546. }
  2547. void rtl92d_phy_reset_iqk_result(struct ieee80211_hw *hw)
  2548. {
  2549. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2550. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2551. u8 i;
  2552. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  2553. "settings regs %d default regs %d\n",
  2554. (int)(sizeof(rtlphy->iqk_matrix) /
  2555. sizeof(struct iqk_matrix_regs)),
  2556. IQK_MATRIX_REG_NUM);
  2557. /* 0xe94, 0xe9c, 0xea4, 0xeac, 0xeb4, 0xebc, 0xec4, 0xecc */
  2558. for (i = 0; i < IQK_MATRIX_SETTINGS_NUM; i++) {
  2559. rtlphy->iqk_matrix[i].value[0][0] = 0x100;
  2560. rtlphy->iqk_matrix[i].value[0][2] = 0x100;
  2561. rtlphy->iqk_matrix[i].value[0][4] = 0x100;
  2562. rtlphy->iqk_matrix[i].value[0][6] = 0x100;
  2563. rtlphy->iqk_matrix[i].value[0][1] = 0x0;
  2564. rtlphy->iqk_matrix[i].value[0][3] = 0x0;
  2565. rtlphy->iqk_matrix[i].value[0][5] = 0x0;
  2566. rtlphy->iqk_matrix[i].value[0][7] = 0x0;
  2567. rtlphy->iqk_matrix[i].iqk_done = false;
  2568. }
  2569. }
  2570. static bool _rtl92d_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw,
  2571. u8 channel, u8 *stage, u8 *step,
  2572. u32 *delay)
  2573. {
  2574. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2575. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2576. struct swchnlcmd precommoncmd[MAX_PRECMD_CNT];
  2577. u32 precommoncmdcnt;
  2578. struct swchnlcmd postcommoncmd[MAX_POSTCMD_CNT];
  2579. u32 postcommoncmdcnt;
  2580. struct swchnlcmd rfdependcmd[MAX_RFDEPENDCMD_CNT];
  2581. u32 rfdependcmdcnt;
  2582. struct swchnlcmd *currentcmd = NULL;
  2583. u8 rfpath;
  2584. u8 num_total_rfpath = rtlphy->num_total_rfpath;
  2585. precommoncmdcnt = 0;
  2586. _rtl92d_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
  2587. MAX_PRECMD_CNT,
  2588. CMDID_SET_TXPOWEROWER_LEVEL, 0, 0, 0);
  2589. _rtl92d_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
  2590. MAX_PRECMD_CNT, CMDID_END, 0, 0, 0);
  2591. postcommoncmdcnt = 0;
  2592. _rtl92d_phy_set_sw_chnl_cmdarray(postcommoncmd, postcommoncmdcnt++,
  2593. MAX_POSTCMD_CNT, CMDID_END, 0, 0, 0);
  2594. rfdependcmdcnt = 0;
  2595. _rtl92d_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
  2596. MAX_RFDEPENDCMD_CNT, CMDID_RF_WRITEREG,
  2597. RF_CHNLBW, channel, 0);
  2598. _rtl92d_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
  2599. MAX_RFDEPENDCMD_CNT, CMDID_END,
  2600. 0, 0, 0);
  2601. do {
  2602. switch (*stage) {
  2603. case 0:
  2604. currentcmd = &precommoncmd[*step];
  2605. break;
  2606. case 1:
  2607. currentcmd = &rfdependcmd[*step];
  2608. break;
  2609. case 2:
  2610. currentcmd = &postcommoncmd[*step];
  2611. break;
  2612. }
  2613. if (currentcmd->cmdid == CMDID_END) {
  2614. if ((*stage) == 2) {
  2615. return true;
  2616. } else {
  2617. (*stage)++;
  2618. (*step) = 0;
  2619. continue;
  2620. }
  2621. }
  2622. switch (currentcmd->cmdid) {
  2623. case CMDID_SET_TXPOWEROWER_LEVEL:
  2624. rtl92d_phy_set_txpower_level(hw, channel);
  2625. break;
  2626. case CMDID_WRITEPORT_ULONG:
  2627. rtl_write_dword(rtlpriv, currentcmd->para1,
  2628. currentcmd->para2);
  2629. break;
  2630. case CMDID_WRITEPORT_USHORT:
  2631. rtl_write_word(rtlpriv, currentcmd->para1,
  2632. (u16)currentcmd->para2);
  2633. break;
  2634. case CMDID_WRITEPORT_UCHAR:
  2635. rtl_write_byte(rtlpriv, currentcmd->para1,
  2636. (u8)currentcmd->para2);
  2637. break;
  2638. case CMDID_RF_WRITEREG:
  2639. for (rfpath = 0; rfpath < num_total_rfpath; rfpath++) {
  2640. rtlphy->rfreg_chnlval[rfpath] =
  2641. ((rtlphy->rfreg_chnlval[rfpath] &
  2642. 0xffffff00) | currentcmd->para2);
  2643. if (rtlpriv->rtlhal.current_bandtype ==
  2644. BAND_ON_5G) {
  2645. if (currentcmd->para2 > 99)
  2646. rtlphy->rfreg_chnlval[rfpath] =
  2647. rtlphy->rfreg_chnlval
  2648. [rfpath] | (BIT(18));
  2649. else
  2650. rtlphy->rfreg_chnlval[rfpath] =
  2651. rtlphy->rfreg_chnlval
  2652. [rfpath] & (~BIT(18));
  2653. rtlphy->rfreg_chnlval[rfpath] |=
  2654. (BIT(16) | BIT(8));
  2655. } else {
  2656. rtlphy->rfreg_chnlval[rfpath] &=
  2657. ~(BIT(8) | BIT(16) | BIT(18));
  2658. }
  2659. rtl_set_rfreg(hw, (enum radio_path)rfpath,
  2660. currentcmd->para1,
  2661. RFREG_OFFSET_MASK,
  2662. rtlphy->rfreg_chnlval[rfpath]);
  2663. _rtl92d_phy_reload_imr_setting(hw, channel,
  2664. rfpath);
  2665. }
  2666. _rtl92d_phy_switch_rf_setting(hw, channel);
  2667. /* do IQK when all parameters are ready */
  2668. rtl92d_phy_reload_iqk_setting(hw, channel);
  2669. break;
  2670. default:
  2671. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2672. "switch case not processed\n");
  2673. break;
  2674. }
  2675. break;
  2676. } while (true);
  2677. (*delay) = currentcmd->msdelay;
  2678. (*step)++;
  2679. return false;
  2680. }
  2681. u8 rtl92d_phy_sw_chnl(struct ieee80211_hw *hw)
  2682. {
  2683. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2684. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2685. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  2686. u32 delay;
  2687. u32 timeout = 1000, timecount = 0;
  2688. u8 channel = rtlphy->current_channel;
  2689. u32 ret_value;
  2690. if (rtlphy->sw_chnl_inprogress)
  2691. return 0;
  2692. if (rtlphy->set_bwmode_inprogress)
  2693. return 0;
  2694. if ((is_hal_stop(rtlhal)) || (RT_CANNOT_IO(hw))) {
  2695. RT_TRACE(rtlpriv, COMP_CHAN, DBG_LOUD,
  2696. "sw_chnl_inprogress false driver sleep or unload\n");
  2697. return 0;
  2698. }
  2699. while (rtlphy->lck_inprogress && timecount < timeout) {
  2700. mdelay(50);
  2701. timecount += 50;
  2702. }
  2703. if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY &&
  2704. rtlhal->bandset == BAND_ON_BOTH) {
  2705. ret_value = rtl_get_bbreg(hw, RFPGA0_XAB_RFPARAMETER,
  2706. MASKDWORD);
  2707. if (rtlphy->current_channel > 14 && !(ret_value & BIT(0)))
  2708. rtl92d_phy_switch_wirelessband(hw, BAND_ON_5G);
  2709. else if (rtlphy->current_channel <= 14 && (ret_value & BIT(0)))
  2710. rtl92d_phy_switch_wirelessband(hw, BAND_ON_2_4G);
  2711. }
  2712. switch (rtlhal->current_bandtype) {
  2713. case BAND_ON_5G:
  2714. /* Get first channel error when change between
  2715. * 5G and 2.4G band. */
  2716. if (channel <= 14)
  2717. return 0;
  2718. RT_ASSERT((channel > 14), "5G but channel<=14\n");
  2719. break;
  2720. case BAND_ON_2_4G:
  2721. /* Get first channel error when change between
  2722. * 5G and 2.4G band. */
  2723. if (channel > 14)
  2724. return 0;
  2725. RT_ASSERT((channel <= 14), "2G but channel>14\n");
  2726. break;
  2727. default:
  2728. RT_ASSERT(false, "Invalid WirelessMode(%#x)!!\n",
  2729. rtlpriv->mac80211.mode);
  2730. break;
  2731. }
  2732. rtlphy->sw_chnl_inprogress = true;
  2733. if (channel == 0)
  2734. channel = 1;
  2735. rtlphy->sw_chnl_stage = 0;
  2736. rtlphy->sw_chnl_step = 0;
  2737. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE,
  2738. "switch to channel%d\n", rtlphy->current_channel);
  2739. do {
  2740. if (!rtlphy->sw_chnl_inprogress)
  2741. break;
  2742. if (!_rtl92d_phy_sw_chnl_step_by_step(hw,
  2743. rtlphy->current_channel,
  2744. &rtlphy->sw_chnl_stage, &rtlphy->sw_chnl_step, &delay)) {
  2745. if (delay > 0)
  2746. mdelay(delay);
  2747. else
  2748. continue;
  2749. } else {
  2750. rtlphy->sw_chnl_inprogress = false;
  2751. }
  2752. break;
  2753. } while (true);
  2754. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n");
  2755. rtlphy->sw_chnl_inprogress = false;
  2756. return 1;
  2757. }
  2758. static void rtl92d_phy_set_io(struct ieee80211_hw *hw)
  2759. {
  2760. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2761. struct dig_t *de_digtable = &rtlpriv->dm_digtable;
  2762. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2763. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  2764. "--->Cmd(%#x), set_io_inprogress(%d)\n",
  2765. rtlphy->current_io_type, rtlphy->set_io_inprogress);
  2766. switch (rtlphy->current_io_type) {
  2767. case IO_CMD_RESUME_DM_BY_SCAN:
  2768. de_digtable->cur_igvalue = rtlphy->initgain_backup.xaagccore1;
  2769. rtl92d_dm_write_dig(hw);
  2770. rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);
  2771. break;
  2772. case IO_CMD_PAUSE_DM_BY_SCAN:
  2773. rtlphy->initgain_backup.xaagccore1 = de_digtable->cur_igvalue;
  2774. de_digtable->cur_igvalue = 0x37;
  2775. rtl92d_dm_write_dig(hw);
  2776. break;
  2777. default:
  2778. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2779. "switch case not processed\n");
  2780. break;
  2781. }
  2782. rtlphy->set_io_inprogress = false;
  2783. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "<---(%#x)\n",
  2784. rtlphy->current_io_type);
  2785. }
  2786. bool rtl92d_phy_set_io_cmd(struct ieee80211_hw *hw, enum io_type iotype)
  2787. {
  2788. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2789. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2790. bool postprocessing = false;
  2791. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  2792. "-->IO Cmd(%#x), set_io_inprogress(%d)\n",
  2793. iotype, rtlphy->set_io_inprogress);
  2794. do {
  2795. switch (iotype) {
  2796. case IO_CMD_RESUME_DM_BY_SCAN:
  2797. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  2798. "[IO CMD] Resume DM after scan\n");
  2799. postprocessing = true;
  2800. break;
  2801. case IO_CMD_PAUSE_DM_BY_SCAN:
  2802. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  2803. "[IO CMD] Pause DM before scan\n");
  2804. postprocessing = true;
  2805. break;
  2806. default:
  2807. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2808. "switch case not processed\n");
  2809. break;
  2810. }
  2811. } while (false);
  2812. if (postprocessing && !rtlphy->set_io_inprogress) {
  2813. rtlphy->set_io_inprogress = true;
  2814. rtlphy->current_io_type = iotype;
  2815. } else {
  2816. return false;
  2817. }
  2818. rtl92d_phy_set_io(hw);
  2819. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "<--IO Type(%#x)\n", iotype);
  2820. return true;
  2821. }
  2822. static void _rtl92d_phy_set_rfon(struct ieee80211_hw *hw)
  2823. {
  2824. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2825. /* a. SYS_CLKR 0x08[11] = 1 restore MAC clock */
  2826. /* b. SPS_CTRL 0x11[7:0] = 0x2b */
  2827. if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY)
  2828. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
  2829. /* c. For PCIE: SYS_FUNC_EN 0x02[7:0] = 0xE3 enable BB TRX function */
  2830. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
  2831. /* RF_ON_EXCEP(d~g): */
  2832. /* d. APSD_CTRL 0x600[7:0] = 0x00 */
  2833. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00);
  2834. /* e. SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB TRX function again */
  2835. /* f. SYS_FUNC_EN 0x02[7:0] = 0xE3 enable BB TRX function*/
  2836. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  2837. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
  2838. /* g. txpause 0x522[7:0] = 0x00 enable mac tx queue */
  2839. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
  2840. }
  2841. static void _rtl92d_phy_set_rfsleep(struct ieee80211_hw *hw)
  2842. {
  2843. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2844. u32 u4btmp;
  2845. u8 delay = 5;
  2846. /* a. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
  2847. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  2848. /* b. RF path 0 offset 0x00 = 0x00 disable RF */
  2849. rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
  2850. /* c. APSD_CTRL 0x600[7:0] = 0x40 */
  2851. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
  2852. /* d. APSD_CTRL 0x600[7:0] = 0x00
  2853. * APSD_CTRL 0x600[7:0] = 0x00
  2854. * RF path 0 offset 0x00 = 0x00
  2855. * APSD_CTRL 0x600[7:0] = 0x40
  2856. * */
  2857. u4btmp = rtl_get_rfreg(hw, RF90_PATH_A, 0, RFREG_OFFSET_MASK);
  2858. while (u4btmp != 0 && delay > 0) {
  2859. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x0);
  2860. rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
  2861. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
  2862. u4btmp = rtl_get_rfreg(hw, RF90_PATH_A, 0, RFREG_OFFSET_MASK);
  2863. delay--;
  2864. }
  2865. if (delay == 0) {
  2866. /* Jump out the LPS turn off sequence to RF_ON_EXCEP */
  2867. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00);
  2868. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  2869. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
  2870. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
  2871. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
  2872. "Fail !!! Switch RF timeout\n");
  2873. return;
  2874. }
  2875. /* e. For PCIE: SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB TRX function */
  2876. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  2877. /* f. SPS_CTRL 0x11[7:0] = 0x22 */
  2878. if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY)
  2879. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x22);
  2880. /* g. SYS_CLKR 0x08[11] = 0 gated MAC clock */
  2881. }
  2882. bool rtl92d_phy_set_rf_power_state(struct ieee80211_hw *hw,
  2883. enum rf_pwrstate rfpwr_state)
  2884. {
  2885. bool bresult = true;
  2886. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2887. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  2888. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2889. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  2890. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2891. u8 i, queue_id;
  2892. struct rtl8192_tx_ring *ring = NULL;
  2893. if (rfpwr_state == ppsc->rfpwr_state)
  2894. return false;
  2895. switch (rfpwr_state) {
  2896. case ERFON:
  2897. if ((ppsc->rfpwr_state == ERFOFF) &&
  2898. RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
  2899. bool rtstatus;
  2900. u32 InitializeCount = 0;
  2901. do {
  2902. InitializeCount++;
  2903. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  2904. "IPS Set eRf nic enable\n");
  2905. rtstatus = rtl_ps_enable_nic(hw);
  2906. } while (!rtstatus && (InitializeCount < 10));
  2907. RT_CLEAR_PS_LEVEL(ppsc,
  2908. RT_RF_OFF_LEVL_HALT_NIC);
  2909. } else {
  2910. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  2911. "awake, sleeped:%d ms state_inap:%x\n",
  2912. jiffies_to_msecs(jiffies -
  2913. ppsc->last_sleep_jiffies),
  2914. rtlpriv->psc.state_inap);
  2915. ppsc->last_awake_jiffies = jiffies;
  2916. _rtl92d_phy_set_rfon(hw);
  2917. }
  2918. if (mac->link_state == MAC80211_LINKED)
  2919. rtlpriv->cfg->ops->led_control(hw,
  2920. LED_CTL_LINK);
  2921. else
  2922. rtlpriv->cfg->ops->led_control(hw,
  2923. LED_CTL_NO_LINK);
  2924. break;
  2925. case ERFOFF:
  2926. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) {
  2927. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  2928. "IPS Set eRf nic disable\n");
  2929. rtl_ps_disable_nic(hw);
  2930. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  2931. } else {
  2932. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
  2933. rtlpriv->cfg->ops->led_control(hw,
  2934. LED_CTL_NO_LINK);
  2935. else
  2936. rtlpriv->cfg->ops->led_control(hw,
  2937. LED_CTL_POWER_OFF);
  2938. }
  2939. break;
  2940. case ERFSLEEP:
  2941. if (ppsc->rfpwr_state == ERFOFF)
  2942. return false;
  2943. for (queue_id = 0, i = 0;
  2944. queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
  2945. ring = &pcipriv->dev.tx_ring[queue_id];
  2946. if (skb_queue_len(&ring->queue) == 0 ||
  2947. queue_id == BEACON_QUEUE) {
  2948. queue_id++;
  2949. continue;
  2950. } else if (rtlpci->pdev->current_state != PCI_D0) {
  2951. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
  2952. "eRf Off/Sleep: %d times TcbBusyQueue[%d] !=0 but lower power state!\n",
  2953. i + 1, queue_id);
  2954. break;
  2955. } else {
  2956. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  2957. "eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
  2958. i + 1, queue_id,
  2959. skb_queue_len(&ring->queue));
  2960. udelay(10);
  2961. i++;
  2962. }
  2963. if (i >= MAX_DOZE_WAITING_TIMES_9x) {
  2964. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  2965. "ERFOFF: %d times TcbBusyQueue[%d] = %d !\n",
  2966. MAX_DOZE_WAITING_TIMES_9x, queue_id,
  2967. skb_queue_len(&ring->queue));
  2968. break;
  2969. }
  2970. }
  2971. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  2972. "Set rfsleep awaked:%d ms\n",
  2973. jiffies_to_msecs(jiffies - ppsc->last_awake_jiffies));
  2974. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  2975. "sleep awaked:%d ms state_inap:%x\n",
  2976. jiffies_to_msecs(jiffies -
  2977. ppsc->last_awake_jiffies),
  2978. rtlpriv->psc.state_inap);
  2979. ppsc->last_sleep_jiffies = jiffies;
  2980. _rtl92d_phy_set_rfsleep(hw);
  2981. break;
  2982. default:
  2983. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2984. "switch case not processed\n");
  2985. bresult = false;
  2986. break;
  2987. }
  2988. if (bresult)
  2989. ppsc->rfpwr_state = rfpwr_state;
  2990. return bresult;
  2991. }
  2992. void rtl92d_phy_config_macphymode(struct ieee80211_hw *hw)
  2993. {
  2994. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2995. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  2996. u8 offset = REG_MAC_PHY_CTRL_NORMAL;
  2997. switch (rtlhal->macphymode) {
  2998. case DUALMAC_DUALPHY:
  2999. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  3000. "MacPhyMode: DUALMAC_DUALPHY\n");
  3001. rtl_write_byte(rtlpriv, offset, 0xF3);
  3002. break;
  3003. case SINGLEMAC_SINGLEPHY:
  3004. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  3005. "MacPhyMode: SINGLEMAC_SINGLEPHY\n");
  3006. rtl_write_byte(rtlpriv, offset, 0xF4);
  3007. break;
  3008. case DUALMAC_SINGLEPHY:
  3009. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  3010. "MacPhyMode: DUALMAC_SINGLEPHY\n");
  3011. rtl_write_byte(rtlpriv, offset, 0xF1);
  3012. break;
  3013. }
  3014. }
  3015. void rtl92d_phy_config_macphymode_info(struct ieee80211_hw *hw)
  3016. {
  3017. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3018. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  3019. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  3020. switch (rtlhal->macphymode) {
  3021. case DUALMAC_SINGLEPHY:
  3022. rtlphy->rf_type = RF_2T2R;
  3023. rtlhal->version |= RF_TYPE_2T2R;
  3024. rtlhal->bandset = BAND_ON_BOTH;
  3025. rtlhal->current_bandtype = BAND_ON_2_4G;
  3026. break;
  3027. case SINGLEMAC_SINGLEPHY:
  3028. rtlphy->rf_type = RF_2T2R;
  3029. rtlhal->version |= RF_TYPE_2T2R;
  3030. rtlhal->bandset = BAND_ON_BOTH;
  3031. rtlhal->current_bandtype = BAND_ON_2_4G;
  3032. break;
  3033. case DUALMAC_DUALPHY:
  3034. rtlphy->rf_type = RF_1T1R;
  3035. rtlhal->version &= RF_TYPE_1T1R;
  3036. /* Now we let MAC0 run on 5G band. */
  3037. if (rtlhal->interfaceindex == 0) {
  3038. rtlhal->bandset = BAND_ON_5G;
  3039. rtlhal->current_bandtype = BAND_ON_5G;
  3040. } else {
  3041. rtlhal->bandset = BAND_ON_2_4G;
  3042. rtlhal->current_bandtype = BAND_ON_2_4G;
  3043. }
  3044. break;
  3045. default:
  3046. break;
  3047. }
  3048. }
  3049. u8 rtl92d_get_chnlgroup_fromarray(u8 chnl)
  3050. {
  3051. u8 group;
  3052. u8 channel_info[59] = {
  3053. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  3054. 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56,
  3055. 58, 60, 62, 64, 100, 102, 104, 106, 108,
  3056. 110, 112, 114, 116, 118, 120, 122, 124,
  3057. 126, 128, 130, 132, 134, 136, 138, 140,
  3058. 149, 151, 153, 155, 157, 159, 161, 163,
  3059. 165
  3060. };
  3061. if (channel_info[chnl] <= 3)
  3062. group = 0;
  3063. else if (channel_info[chnl] <= 9)
  3064. group = 1;
  3065. else if (channel_info[chnl] <= 14)
  3066. group = 2;
  3067. else if (channel_info[chnl] <= 44)
  3068. group = 3;
  3069. else if (channel_info[chnl] <= 54)
  3070. group = 4;
  3071. else if (channel_info[chnl] <= 64)
  3072. group = 5;
  3073. else if (channel_info[chnl] <= 112)
  3074. group = 6;
  3075. else if (channel_info[chnl] <= 126)
  3076. group = 7;
  3077. else if (channel_info[chnl] <= 140)
  3078. group = 8;
  3079. else if (channel_info[chnl] <= 153)
  3080. group = 9;
  3081. else if (channel_info[chnl] <= 159)
  3082. group = 10;
  3083. else
  3084. group = 11;
  3085. return group;
  3086. }
  3087. void rtl92d_phy_set_poweron(struct ieee80211_hw *hw)
  3088. {
  3089. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3090. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  3091. unsigned long flags;
  3092. u8 value8;
  3093. u16 i;
  3094. u32 mac_reg = (rtlhal->interfaceindex == 0 ? REG_MAC0 : REG_MAC1);
  3095. /* notice fw know band status 0x81[1]/0x53[1] = 0: 5G, 1: 2G */
  3096. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  3097. value8 = rtl_read_byte(rtlpriv, mac_reg);
  3098. value8 |= BIT(1);
  3099. rtl_write_byte(rtlpriv, mac_reg, value8);
  3100. } else {
  3101. value8 = rtl_read_byte(rtlpriv, mac_reg);
  3102. value8 &= (~BIT(1));
  3103. rtl_write_byte(rtlpriv, mac_reg, value8);
  3104. }
  3105. if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY) {
  3106. value8 = rtl_read_byte(rtlpriv, REG_MAC0);
  3107. rtl_write_byte(rtlpriv, REG_MAC0, value8 | MAC0_ON);
  3108. } else {
  3109. spin_lock_irqsave(&globalmutex_power, flags);
  3110. if (rtlhal->interfaceindex == 0) {
  3111. value8 = rtl_read_byte(rtlpriv, REG_MAC0);
  3112. rtl_write_byte(rtlpriv, REG_MAC0, value8 | MAC0_ON);
  3113. } else {
  3114. value8 = rtl_read_byte(rtlpriv, REG_MAC1);
  3115. rtl_write_byte(rtlpriv, REG_MAC1, value8 | MAC1_ON);
  3116. }
  3117. value8 = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
  3118. spin_unlock_irqrestore(&globalmutex_power, flags);
  3119. for (i = 0; i < 200; i++) {
  3120. if ((value8 & BIT(7)) == 0) {
  3121. break;
  3122. } else {
  3123. udelay(500);
  3124. spin_lock_irqsave(&globalmutex_power, flags);
  3125. value8 = rtl_read_byte(rtlpriv,
  3126. REG_POWER_OFF_IN_PROCESS);
  3127. spin_unlock_irqrestore(&globalmutex_power,
  3128. flags);
  3129. }
  3130. }
  3131. if (i == 200)
  3132. RT_ASSERT(false, "Another mac power off over time\n");
  3133. }
  3134. }
  3135. void rtl92d_phy_config_maccoexist_rfpage(struct ieee80211_hw *hw)
  3136. {
  3137. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3138. switch (rtlpriv->rtlhal.macphymode) {
  3139. case DUALMAC_DUALPHY:
  3140. rtl_write_byte(rtlpriv, REG_DMC, 0x0);
  3141. rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x08);
  3142. rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x13ff);
  3143. break;
  3144. case DUALMAC_SINGLEPHY:
  3145. rtl_write_byte(rtlpriv, REG_DMC, 0xf8);
  3146. rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x08);
  3147. rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x13ff);
  3148. break;
  3149. case SINGLEMAC_SINGLEPHY:
  3150. rtl_write_byte(rtlpriv, REG_DMC, 0x0);
  3151. rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x10);
  3152. rtl_write_word(rtlpriv, (REG_TRXFF_BNDY + 2), 0x27FF);
  3153. break;
  3154. default:
  3155. break;
  3156. }
  3157. }
  3158. void rtl92d_update_bbrf_configuration(struct ieee80211_hw *hw)
  3159. {
  3160. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3161. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  3162. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  3163. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  3164. u8 rfpath, i;
  3165. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==>\n");
  3166. /* r_select_5G for path_A/B 0 for 2.4G, 1 for 5G */
  3167. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  3168. /* r_select_5G for path_A/B,0x878 */
  3169. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(0), 0x0);
  3170. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0x0);
  3171. if (rtlhal->macphymode != DUALMAC_DUALPHY) {
  3172. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(16), 0x0);
  3173. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(31), 0x0);
  3174. }
  3175. /* rssi_table_select:index 0 for 2.4G.1~3 for 5G,0xc78 */
  3176. rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, BIT(6) | BIT(7), 0x0);
  3177. /* fc_area 0xd2c */
  3178. rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(14) | BIT(13), 0x0);
  3179. /* 5G LAN ON */
  3180. rtl_set_bbreg(hw, 0xB30, 0x00F00000, 0xa);
  3181. /* TX BB gain shift*1,Just for testchip,0xc80,0xc88 */
  3182. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, MASKDWORD,
  3183. 0x40000100);
  3184. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, MASKDWORD,
  3185. 0x40000100);
  3186. if (rtlhal->macphymode == DUALMAC_DUALPHY) {
  3187. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
  3188. BIT(10) | BIT(6) | BIT(5),
  3189. ((rtlefuse->eeprom_c9 & BIT(3)) >> 3) |
  3190. (rtlefuse->eeprom_c9 & BIT(1)) |
  3191. ((rtlefuse->eeprom_cc & BIT(1)) << 4));
  3192. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
  3193. BIT(10) | BIT(6) | BIT(5),
  3194. ((rtlefuse->eeprom_c9 & BIT(2)) >> 2) |
  3195. ((rtlefuse->eeprom_c9 & BIT(0)) << 1) |
  3196. ((rtlefuse->eeprom_cc & BIT(0)) << 5));
  3197. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0);
  3198. } else {
  3199. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
  3200. BIT(26) | BIT(22) | BIT(21) | BIT(10) |
  3201. BIT(6) | BIT(5),
  3202. ((rtlefuse->eeprom_c9 & BIT(3)) >> 3) |
  3203. (rtlefuse->eeprom_c9 & BIT(1)) |
  3204. ((rtlefuse->eeprom_cc & BIT(1)) << 4) |
  3205. ((rtlefuse->eeprom_c9 & BIT(7)) << 9) |
  3206. ((rtlefuse->eeprom_c9 & BIT(5)) << 12) |
  3207. ((rtlefuse->eeprom_cc & BIT(3)) << 18));
  3208. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
  3209. BIT(10) | BIT(6) | BIT(5),
  3210. ((rtlefuse->eeprom_c9 & BIT(2)) >> 2) |
  3211. ((rtlefuse->eeprom_c9 & BIT(0)) << 1) |
  3212. ((rtlefuse->eeprom_cc & BIT(0)) << 5));
  3213. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
  3214. BIT(10) | BIT(6) | BIT(5),
  3215. ((rtlefuse->eeprom_c9 & BIT(6)) >> 6) |
  3216. ((rtlefuse->eeprom_c9 & BIT(4)) >> 3) |
  3217. ((rtlefuse->eeprom_cc & BIT(2)) << 3));
  3218. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER,
  3219. BIT(31) | BIT(15), 0);
  3220. }
  3221. /* 1.5V_LDO */
  3222. } else {
  3223. /* r_select_5G for path_A/B */
  3224. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(0), 0x1);
  3225. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0x1);
  3226. if (rtlhal->macphymode != DUALMAC_DUALPHY) {
  3227. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(16), 0x1);
  3228. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(31), 0x1);
  3229. }
  3230. /* rssi_table_select:index 0 for 2.4G.1~3 for 5G */
  3231. rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, BIT(6) | BIT(7), 0x1);
  3232. /* fc_area */
  3233. rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(14) | BIT(13), 0x1);
  3234. /* 5G LAN ON */
  3235. rtl_set_bbreg(hw, 0xB30, 0x00F00000, 0x0);
  3236. /* TX BB gain shift,Just for testchip,0xc80,0xc88 */
  3237. if (rtlefuse->internal_pa_5g[0])
  3238. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, MASKDWORD,
  3239. 0x2d4000b5);
  3240. else
  3241. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, MASKDWORD,
  3242. 0x20000080);
  3243. if (rtlefuse->internal_pa_5g[1])
  3244. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, MASKDWORD,
  3245. 0x2d4000b5);
  3246. else
  3247. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, MASKDWORD,
  3248. 0x20000080);
  3249. if (rtlhal->macphymode == DUALMAC_DUALPHY) {
  3250. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
  3251. BIT(10) | BIT(6) | BIT(5),
  3252. (rtlefuse->eeprom_cc & BIT(5)));
  3253. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(10),
  3254. ((rtlefuse->eeprom_cc & BIT(4)) >> 4));
  3255. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15),
  3256. (rtlefuse->eeprom_cc & BIT(4)) >> 4);
  3257. } else {
  3258. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
  3259. BIT(26) | BIT(22) | BIT(21) | BIT(10) |
  3260. BIT(6) | BIT(5),
  3261. (rtlefuse->eeprom_cc & BIT(5)) |
  3262. ((rtlefuse->eeprom_cc & BIT(7)) << 14));
  3263. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(10),
  3264. ((rtlefuse->eeprom_cc & BIT(4)) >> 4));
  3265. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BIT(10),
  3266. ((rtlefuse->eeprom_cc & BIT(6)) >> 6));
  3267. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER,
  3268. BIT(31) | BIT(15),
  3269. ((rtlefuse->eeprom_cc & BIT(4)) >> 4) |
  3270. ((rtlefuse->eeprom_cc & BIT(6)) << 10));
  3271. }
  3272. }
  3273. /* update IQK related settings */
  3274. rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, MASKDWORD, 0x40000100);
  3275. rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, MASKDWORD, 0x40000100);
  3276. rtl_set_bbreg(hw, ROFDM0_XCTxAFE, 0xF0000000, 0x00);
  3277. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(30) | BIT(28) |
  3278. BIT(26) | BIT(24), 0x00);
  3279. rtl_set_bbreg(hw, ROFDM0_XDTxAFE, 0xF0000000, 0x00);
  3280. rtl_set_bbreg(hw, 0xca0, 0xF0000000, 0x00);
  3281. rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, 0x0000F000, 0x00);
  3282. /* Update RF */
  3283. for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath;
  3284. rfpath++) {
  3285. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  3286. /* MOD_AG for RF path_A 0x18 BIT8,BIT16 */
  3287. rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(8) | BIT(16) |
  3288. BIT(18), 0);
  3289. /* RF0x0b[16:14] =3b'111 */
  3290. rtl_set_rfreg(hw, (enum radio_path)rfpath, 0x0B,
  3291. 0x1c000, 0x07);
  3292. } else {
  3293. /* MOD_AG for RF path_A 0x18 BIT8,BIT16 */
  3294. rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(8) |
  3295. BIT(16) | BIT(18),
  3296. (BIT(16) | BIT(8)) >> 8);
  3297. }
  3298. }
  3299. /* Update for all band. */
  3300. /* DMDP */
  3301. if (rtlphy->rf_type == RF_1T1R) {
  3302. /* Use antenna 0,0xc04,0xd04 */
  3303. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0x11);
  3304. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x1);
  3305. /* enable ad/da clock1 for dual-phy reg0x888 */
  3306. if (rtlhal->interfaceindex == 0) {
  3307. rtl_set_bbreg(hw, RFPGA0_ADDALLOCKEN, BIT(12) |
  3308. BIT(13), 0x3);
  3309. } else {
  3310. rtl92d_phy_enable_anotherphy(hw, false);
  3311. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  3312. "MAC1 use DBI to update 0x888\n");
  3313. /* 0x888 */
  3314. rtl92de_write_dword_dbi(hw, RFPGA0_ADDALLOCKEN,
  3315. rtl92de_read_dword_dbi(hw,
  3316. RFPGA0_ADDALLOCKEN,
  3317. BIT(3)) | BIT(12) | BIT(13),
  3318. BIT(3));
  3319. rtl92d_phy_powerdown_anotherphy(hw, false);
  3320. }
  3321. } else {
  3322. /* Single PHY */
  3323. /* Use antenna 0 & 1,0xc04,0xd04 */
  3324. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0x33);
  3325. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x3);
  3326. /* disable ad/da clock1,0x888 */
  3327. rtl_set_bbreg(hw, RFPGA0_ADDALLOCKEN, BIT(12) | BIT(13), 0);
  3328. }
  3329. for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath;
  3330. rfpath++) {
  3331. rtlphy->rfreg_chnlval[rfpath] = rtl_get_rfreg(hw, rfpath,
  3332. RF_CHNLBW, RFREG_OFFSET_MASK);
  3333. rtlphy->reg_rf3c[rfpath] = rtl_get_rfreg(hw, rfpath, 0x3C,
  3334. RFREG_OFFSET_MASK);
  3335. }
  3336. for (i = 0; i < 2; i++)
  3337. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "RF 0x18 = 0x%x\n",
  3338. rtlphy->rfreg_chnlval[i]);
  3339. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<==\n");
  3340. }
  3341. bool rtl92d_phy_check_poweroff(struct ieee80211_hw *hw)
  3342. {
  3343. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3344. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  3345. u8 u1btmp;
  3346. unsigned long flags;
  3347. if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY) {
  3348. u1btmp = rtl_read_byte(rtlpriv, REG_MAC0);
  3349. rtl_write_byte(rtlpriv, REG_MAC0, u1btmp & (~MAC0_ON));
  3350. return true;
  3351. }
  3352. spin_lock_irqsave(&globalmutex_power, flags);
  3353. if (rtlhal->interfaceindex == 0) {
  3354. u1btmp = rtl_read_byte(rtlpriv, REG_MAC0);
  3355. rtl_write_byte(rtlpriv, REG_MAC0, u1btmp & (~MAC0_ON));
  3356. u1btmp = rtl_read_byte(rtlpriv, REG_MAC1);
  3357. u1btmp &= MAC1_ON;
  3358. } else {
  3359. u1btmp = rtl_read_byte(rtlpriv, REG_MAC1);
  3360. rtl_write_byte(rtlpriv, REG_MAC1, u1btmp & (~MAC1_ON));
  3361. u1btmp = rtl_read_byte(rtlpriv, REG_MAC0);
  3362. u1btmp &= MAC0_ON;
  3363. }
  3364. if (u1btmp) {
  3365. spin_unlock_irqrestore(&globalmutex_power, flags);
  3366. return false;
  3367. }
  3368. u1btmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
  3369. u1btmp |= BIT(7);
  3370. rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1btmp);
  3371. spin_unlock_irqrestore(&globalmutex_power, flags);
  3372. return true;
  3373. }