msgbuf.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568
  1. /* Copyright (c) 2014 Broadcom Corporation
  2. *
  3. * Permission to use, copy, modify, and/or distribute this software for any
  4. * purpose with or without fee is hereby granted, provided that the above
  5. * copyright notice and this permission notice appear in all copies.
  6. *
  7. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  8. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  9. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  10. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  11. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  12. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  13. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  14. */
  15. /*******************************************************************************
  16. * Communicates with the dongle by using dcmd codes.
  17. * For certain dcmd codes, the dongle interprets string data from the host.
  18. ******************************************************************************/
  19. #include <linux/types.h>
  20. #include <linux/netdevice.h>
  21. #include <brcmu_utils.h>
  22. #include <brcmu_wifi.h>
  23. #include "core.h"
  24. #include "debug.h"
  25. #include "proto.h"
  26. #include "msgbuf.h"
  27. #include "commonring.h"
  28. #include "flowring.h"
  29. #include "bus.h"
  30. #include "tracepoint.h"
  31. #define MSGBUF_IOCTL_RESP_TIMEOUT 2000
  32. #define MSGBUF_TYPE_GEN_STATUS 0x1
  33. #define MSGBUF_TYPE_RING_STATUS 0x2
  34. #define MSGBUF_TYPE_FLOW_RING_CREATE 0x3
  35. #define MSGBUF_TYPE_FLOW_RING_CREATE_CMPLT 0x4
  36. #define MSGBUF_TYPE_FLOW_RING_DELETE 0x5
  37. #define MSGBUF_TYPE_FLOW_RING_DELETE_CMPLT 0x6
  38. #define MSGBUF_TYPE_FLOW_RING_FLUSH 0x7
  39. #define MSGBUF_TYPE_FLOW_RING_FLUSH_CMPLT 0x8
  40. #define MSGBUF_TYPE_IOCTLPTR_REQ 0x9
  41. #define MSGBUF_TYPE_IOCTLPTR_REQ_ACK 0xA
  42. #define MSGBUF_TYPE_IOCTLRESP_BUF_POST 0xB
  43. #define MSGBUF_TYPE_IOCTL_CMPLT 0xC
  44. #define MSGBUF_TYPE_EVENT_BUF_POST 0xD
  45. #define MSGBUF_TYPE_WL_EVENT 0xE
  46. #define MSGBUF_TYPE_TX_POST 0xF
  47. #define MSGBUF_TYPE_TX_STATUS 0x10
  48. #define MSGBUF_TYPE_RXBUF_POST 0x11
  49. #define MSGBUF_TYPE_RX_CMPLT 0x12
  50. #define MSGBUF_TYPE_LPBK_DMAXFER 0x13
  51. #define MSGBUF_TYPE_LPBK_DMAXFER_CMPLT 0x14
  52. #define NR_TX_PKTIDS 2048
  53. #define NR_RX_PKTIDS 1024
  54. #define BRCMF_IOCTL_REQ_PKTID 0xFFFE
  55. #define BRCMF_MSGBUF_MAX_PKT_SIZE 2048
  56. #define BRCMF_MSGBUF_RXBUFPOST_THRESHOLD 32
  57. #define BRCMF_MSGBUF_MAX_IOCTLRESPBUF_POST 8
  58. #define BRCMF_MSGBUF_MAX_EVENTBUF_POST 8
  59. #define BRCMF_MSGBUF_PKT_FLAGS_FRAME_802_3 0x01
  60. #define BRCMF_MSGBUF_PKT_FLAGS_PRIO_SHIFT 5
  61. #define BRCMF_MSGBUF_TX_FLUSH_CNT1 32
  62. #define BRCMF_MSGBUF_TX_FLUSH_CNT2 96
  63. #define BRCMF_MSGBUF_DELAY_TXWORKER_THRS 96
  64. #define BRCMF_MSGBUF_TRICKLE_TXWORKER_THRS 32
  65. #define BRCMF_MSGBUF_UPDATE_RX_PTR_THRS 48
  66. struct msgbuf_common_hdr {
  67. u8 msgtype;
  68. u8 ifidx;
  69. u8 flags;
  70. u8 rsvd0;
  71. __le32 request_id;
  72. };
  73. struct msgbuf_buf_addr {
  74. __le32 low_addr;
  75. __le32 high_addr;
  76. };
  77. struct msgbuf_ioctl_req_hdr {
  78. struct msgbuf_common_hdr msg;
  79. __le32 cmd;
  80. __le16 trans_id;
  81. __le16 input_buf_len;
  82. __le16 output_buf_len;
  83. __le16 rsvd0[3];
  84. struct msgbuf_buf_addr req_buf_addr;
  85. __le32 rsvd1[2];
  86. };
  87. struct msgbuf_tx_msghdr {
  88. struct msgbuf_common_hdr msg;
  89. u8 txhdr[ETH_HLEN];
  90. u8 flags;
  91. u8 seg_cnt;
  92. struct msgbuf_buf_addr metadata_buf_addr;
  93. struct msgbuf_buf_addr data_buf_addr;
  94. __le16 metadata_buf_len;
  95. __le16 data_len;
  96. __le32 rsvd0;
  97. };
  98. struct msgbuf_rx_bufpost {
  99. struct msgbuf_common_hdr msg;
  100. __le16 metadata_buf_len;
  101. __le16 data_buf_len;
  102. __le32 rsvd0;
  103. struct msgbuf_buf_addr metadata_buf_addr;
  104. struct msgbuf_buf_addr data_buf_addr;
  105. };
  106. struct msgbuf_rx_ioctl_resp_or_event {
  107. struct msgbuf_common_hdr msg;
  108. __le16 host_buf_len;
  109. __le16 rsvd0[3];
  110. struct msgbuf_buf_addr host_buf_addr;
  111. __le32 rsvd1[4];
  112. };
  113. struct msgbuf_completion_hdr {
  114. __le16 status;
  115. __le16 flow_ring_id;
  116. };
  117. struct msgbuf_rx_event {
  118. struct msgbuf_common_hdr msg;
  119. struct msgbuf_completion_hdr compl_hdr;
  120. __le16 event_data_len;
  121. __le16 seqnum;
  122. __le16 rsvd0[4];
  123. };
  124. struct msgbuf_ioctl_resp_hdr {
  125. struct msgbuf_common_hdr msg;
  126. struct msgbuf_completion_hdr compl_hdr;
  127. __le16 resp_len;
  128. __le16 trans_id;
  129. __le32 cmd;
  130. __le32 rsvd0;
  131. };
  132. struct msgbuf_tx_status {
  133. struct msgbuf_common_hdr msg;
  134. struct msgbuf_completion_hdr compl_hdr;
  135. __le16 metadata_len;
  136. __le16 tx_status;
  137. };
  138. struct msgbuf_rx_complete {
  139. struct msgbuf_common_hdr msg;
  140. struct msgbuf_completion_hdr compl_hdr;
  141. __le16 metadata_len;
  142. __le16 data_len;
  143. __le16 data_offset;
  144. __le16 flags;
  145. __le32 rx_status_0;
  146. __le32 rx_status_1;
  147. __le32 rsvd0;
  148. };
  149. struct msgbuf_tx_flowring_create_req {
  150. struct msgbuf_common_hdr msg;
  151. u8 da[ETH_ALEN];
  152. u8 sa[ETH_ALEN];
  153. u8 tid;
  154. u8 if_flags;
  155. __le16 flow_ring_id;
  156. u8 tc;
  157. u8 priority;
  158. __le16 int_vector;
  159. __le16 max_items;
  160. __le16 len_item;
  161. struct msgbuf_buf_addr flow_ring_addr;
  162. };
  163. struct msgbuf_tx_flowring_delete_req {
  164. struct msgbuf_common_hdr msg;
  165. __le16 flow_ring_id;
  166. __le16 reason;
  167. __le32 rsvd0[7];
  168. };
  169. struct msgbuf_flowring_create_resp {
  170. struct msgbuf_common_hdr msg;
  171. struct msgbuf_completion_hdr compl_hdr;
  172. __le32 rsvd0[3];
  173. };
  174. struct msgbuf_flowring_delete_resp {
  175. struct msgbuf_common_hdr msg;
  176. struct msgbuf_completion_hdr compl_hdr;
  177. __le32 rsvd0[3];
  178. };
  179. struct msgbuf_flowring_flush_resp {
  180. struct msgbuf_common_hdr msg;
  181. struct msgbuf_completion_hdr compl_hdr;
  182. __le32 rsvd0[3];
  183. };
  184. struct brcmf_msgbuf_work_item {
  185. struct list_head queue;
  186. u32 flowid;
  187. int ifidx;
  188. u8 sa[ETH_ALEN];
  189. u8 da[ETH_ALEN];
  190. };
  191. struct brcmf_msgbuf {
  192. struct brcmf_pub *drvr;
  193. struct brcmf_commonring **commonrings;
  194. struct brcmf_commonring **flowrings;
  195. dma_addr_t *flowring_dma_handle;
  196. u16 nrof_flowrings;
  197. u16 rx_dataoffset;
  198. u32 max_rxbufpost;
  199. u16 rx_metadata_offset;
  200. u32 rxbufpost;
  201. u32 max_ioctlrespbuf;
  202. u32 cur_ioctlrespbuf;
  203. u32 max_eventbuf;
  204. u32 cur_eventbuf;
  205. void *ioctbuf;
  206. dma_addr_t ioctbuf_handle;
  207. u32 ioctbuf_phys_hi;
  208. u32 ioctbuf_phys_lo;
  209. int ioctl_resp_status;
  210. u32 ioctl_resp_ret_len;
  211. u32 ioctl_resp_pktid;
  212. u16 data_seq_no;
  213. u16 ioctl_seq_no;
  214. u32 reqid;
  215. wait_queue_head_t ioctl_resp_wait;
  216. bool ctl_completed;
  217. struct brcmf_msgbuf_pktids *tx_pktids;
  218. struct brcmf_msgbuf_pktids *rx_pktids;
  219. struct brcmf_flowring *flow;
  220. struct workqueue_struct *txflow_wq;
  221. struct work_struct txflow_work;
  222. unsigned long *flow_map;
  223. unsigned long *txstatus_done_map;
  224. struct work_struct flowring_work;
  225. spinlock_t flowring_work_lock;
  226. struct list_head work_queue;
  227. };
  228. struct brcmf_msgbuf_pktid {
  229. atomic_t allocated;
  230. u16 data_offset;
  231. struct sk_buff *skb;
  232. dma_addr_t physaddr;
  233. };
  234. struct brcmf_msgbuf_pktids {
  235. u32 array_size;
  236. u32 last_allocated_idx;
  237. enum dma_data_direction direction;
  238. struct brcmf_msgbuf_pktid *array;
  239. };
  240. static void brcmf_msgbuf_rxbuf_ioctlresp_post(struct brcmf_msgbuf *msgbuf);
  241. static struct brcmf_msgbuf_pktids *
  242. brcmf_msgbuf_init_pktids(u32 nr_array_entries,
  243. enum dma_data_direction direction)
  244. {
  245. struct brcmf_msgbuf_pktid *array;
  246. struct brcmf_msgbuf_pktids *pktids;
  247. array = kcalloc(nr_array_entries, sizeof(*array), GFP_KERNEL);
  248. if (!array)
  249. return NULL;
  250. pktids = kzalloc(sizeof(*pktids), GFP_KERNEL);
  251. if (!pktids) {
  252. kfree(array);
  253. return NULL;
  254. }
  255. pktids->array = array;
  256. pktids->array_size = nr_array_entries;
  257. return pktids;
  258. }
  259. static int
  260. brcmf_msgbuf_alloc_pktid(struct device *dev,
  261. struct brcmf_msgbuf_pktids *pktids,
  262. struct sk_buff *skb, u16 data_offset,
  263. dma_addr_t *physaddr, u32 *idx)
  264. {
  265. struct brcmf_msgbuf_pktid *array;
  266. u32 count;
  267. array = pktids->array;
  268. *physaddr = dma_map_single(dev, skb->data + data_offset,
  269. skb->len - data_offset, pktids->direction);
  270. if (dma_mapping_error(dev, *physaddr)) {
  271. brcmf_err("dma_map_single failed !!\n");
  272. return -ENOMEM;
  273. }
  274. *idx = pktids->last_allocated_idx;
  275. count = 0;
  276. do {
  277. (*idx)++;
  278. if (*idx == pktids->array_size)
  279. *idx = 0;
  280. if (array[*idx].allocated.counter == 0)
  281. if (atomic_cmpxchg(&array[*idx].allocated, 0, 1) == 0)
  282. break;
  283. count++;
  284. } while (count < pktids->array_size);
  285. if (count == pktids->array_size)
  286. return -ENOMEM;
  287. array[*idx].data_offset = data_offset;
  288. array[*idx].physaddr = *physaddr;
  289. array[*idx].skb = skb;
  290. pktids->last_allocated_idx = *idx;
  291. return 0;
  292. }
  293. static struct sk_buff *
  294. brcmf_msgbuf_get_pktid(struct device *dev, struct brcmf_msgbuf_pktids *pktids,
  295. u32 idx)
  296. {
  297. struct brcmf_msgbuf_pktid *pktid;
  298. struct sk_buff *skb;
  299. if (idx >= pktids->array_size) {
  300. brcmf_err("Invalid packet id %d (max %d)\n", idx,
  301. pktids->array_size);
  302. return NULL;
  303. }
  304. if (pktids->array[idx].allocated.counter) {
  305. pktid = &pktids->array[idx];
  306. dma_unmap_single(dev, pktid->physaddr,
  307. pktid->skb->len - pktid->data_offset,
  308. pktids->direction);
  309. skb = pktid->skb;
  310. pktid->allocated.counter = 0;
  311. return skb;
  312. } else {
  313. brcmf_err("Invalid packet id %d (not in use)\n", idx);
  314. }
  315. return NULL;
  316. }
  317. static void
  318. brcmf_msgbuf_release_array(struct device *dev,
  319. struct brcmf_msgbuf_pktids *pktids)
  320. {
  321. struct brcmf_msgbuf_pktid *array;
  322. struct brcmf_msgbuf_pktid *pktid;
  323. u32 count;
  324. array = pktids->array;
  325. count = 0;
  326. do {
  327. if (array[count].allocated.counter) {
  328. pktid = &array[count];
  329. dma_unmap_single(dev, pktid->physaddr,
  330. pktid->skb->len - pktid->data_offset,
  331. pktids->direction);
  332. brcmu_pkt_buf_free_skb(pktid->skb);
  333. }
  334. count++;
  335. } while (count < pktids->array_size);
  336. kfree(array);
  337. kfree(pktids);
  338. }
  339. static void brcmf_msgbuf_release_pktids(struct brcmf_msgbuf *msgbuf)
  340. {
  341. if (msgbuf->rx_pktids)
  342. brcmf_msgbuf_release_array(msgbuf->drvr->bus_if->dev,
  343. msgbuf->rx_pktids);
  344. if (msgbuf->tx_pktids)
  345. brcmf_msgbuf_release_array(msgbuf->drvr->bus_if->dev,
  346. msgbuf->tx_pktids);
  347. }
  348. static int brcmf_msgbuf_tx_ioctl(struct brcmf_pub *drvr, int ifidx,
  349. uint cmd, void *buf, uint len)
  350. {
  351. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  352. struct brcmf_commonring *commonring;
  353. struct msgbuf_ioctl_req_hdr *request;
  354. u16 buf_len;
  355. void *ret_ptr;
  356. int err;
  357. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  358. brcmf_commonring_lock(commonring);
  359. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  360. if (!ret_ptr) {
  361. brcmf_err("Failed to reserve space in commonring\n");
  362. brcmf_commonring_unlock(commonring);
  363. return -ENOMEM;
  364. }
  365. msgbuf->reqid++;
  366. request = (struct msgbuf_ioctl_req_hdr *)ret_ptr;
  367. request->msg.msgtype = MSGBUF_TYPE_IOCTLPTR_REQ;
  368. request->msg.ifidx = (u8)ifidx;
  369. request->msg.flags = 0;
  370. request->msg.request_id = cpu_to_le32(BRCMF_IOCTL_REQ_PKTID);
  371. request->cmd = cpu_to_le32(cmd);
  372. request->output_buf_len = cpu_to_le16(len);
  373. request->trans_id = cpu_to_le16(msgbuf->reqid);
  374. buf_len = min_t(u16, len, BRCMF_TX_IOCTL_MAX_MSG_SIZE);
  375. request->input_buf_len = cpu_to_le16(buf_len);
  376. request->req_buf_addr.high_addr = cpu_to_le32(msgbuf->ioctbuf_phys_hi);
  377. request->req_buf_addr.low_addr = cpu_to_le32(msgbuf->ioctbuf_phys_lo);
  378. if (buf)
  379. memcpy(msgbuf->ioctbuf, buf, buf_len);
  380. else
  381. memset(msgbuf->ioctbuf, 0, buf_len);
  382. err = brcmf_commonring_write_complete(commonring);
  383. brcmf_commonring_unlock(commonring);
  384. return err;
  385. }
  386. static int brcmf_msgbuf_ioctl_resp_wait(struct brcmf_msgbuf *msgbuf)
  387. {
  388. return wait_event_timeout(msgbuf->ioctl_resp_wait,
  389. msgbuf->ctl_completed,
  390. msecs_to_jiffies(MSGBUF_IOCTL_RESP_TIMEOUT));
  391. }
  392. static void brcmf_msgbuf_ioctl_resp_wake(struct brcmf_msgbuf *msgbuf)
  393. {
  394. msgbuf->ctl_completed = true;
  395. if (waitqueue_active(&msgbuf->ioctl_resp_wait))
  396. wake_up(&msgbuf->ioctl_resp_wait);
  397. }
  398. static int brcmf_msgbuf_query_dcmd(struct brcmf_pub *drvr, int ifidx,
  399. uint cmd, void *buf, uint len)
  400. {
  401. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  402. struct sk_buff *skb = NULL;
  403. int timeout;
  404. int err;
  405. brcmf_dbg(MSGBUF, "ifidx=%d, cmd=%d, len=%d\n", ifidx, cmd, len);
  406. msgbuf->ctl_completed = false;
  407. err = brcmf_msgbuf_tx_ioctl(drvr, ifidx, cmd, buf, len);
  408. if (err)
  409. return err;
  410. timeout = brcmf_msgbuf_ioctl_resp_wait(msgbuf);
  411. if (!timeout) {
  412. brcmf_err("Timeout on response for query command\n");
  413. return -EIO;
  414. }
  415. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  416. msgbuf->rx_pktids,
  417. msgbuf->ioctl_resp_pktid);
  418. if (msgbuf->ioctl_resp_ret_len != 0) {
  419. if (!skb)
  420. return -EBADF;
  421. memcpy(buf, skb->data, (len < msgbuf->ioctl_resp_ret_len) ?
  422. len : msgbuf->ioctl_resp_ret_len);
  423. }
  424. brcmu_pkt_buf_free_skb(skb);
  425. return msgbuf->ioctl_resp_status;
  426. }
  427. static int brcmf_msgbuf_set_dcmd(struct brcmf_pub *drvr, int ifidx,
  428. uint cmd, void *buf, uint len)
  429. {
  430. return brcmf_msgbuf_query_dcmd(drvr, ifidx, cmd, buf, len);
  431. }
  432. static int brcmf_msgbuf_hdrpull(struct brcmf_pub *drvr, bool do_fws,
  433. u8 *ifidx, struct sk_buff *skb)
  434. {
  435. return -ENODEV;
  436. }
  437. static void
  438. brcmf_msgbuf_remove_flowring(struct brcmf_msgbuf *msgbuf, u16 flowid)
  439. {
  440. u32 dma_sz;
  441. void *dma_buf;
  442. brcmf_dbg(MSGBUF, "Removing flowring %d\n", flowid);
  443. dma_sz = BRCMF_H2D_TXFLOWRING_MAX_ITEM * BRCMF_H2D_TXFLOWRING_ITEMSIZE;
  444. dma_buf = msgbuf->flowrings[flowid]->buf_addr;
  445. dma_free_coherent(msgbuf->drvr->bus_if->dev, dma_sz, dma_buf,
  446. msgbuf->flowring_dma_handle[flowid]);
  447. brcmf_flowring_delete(msgbuf->flow, flowid);
  448. }
  449. static struct brcmf_msgbuf_work_item *
  450. brcmf_msgbuf_dequeue_work(struct brcmf_msgbuf *msgbuf)
  451. {
  452. struct brcmf_msgbuf_work_item *work = NULL;
  453. ulong flags;
  454. spin_lock_irqsave(&msgbuf->flowring_work_lock, flags);
  455. if (!list_empty(&msgbuf->work_queue)) {
  456. work = list_first_entry(&msgbuf->work_queue,
  457. struct brcmf_msgbuf_work_item, queue);
  458. list_del(&work->queue);
  459. }
  460. spin_unlock_irqrestore(&msgbuf->flowring_work_lock, flags);
  461. return work;
  462. }
  463. static u32
  464. brcmf_msgbuf_flowring_create_worker(struct brcmf_msgbuf *msgbuf,
  465. struct brcmf_msgbuf_work_item *work)
  466. {
  467. struct msgbuf_tx_flowring_create_req *create;
  468. struct brcmf_commonring *commonring;
  469. void *ret_ptr;
  470. u32 flowid;
  471. void *dma_buf;
  472. u32 dma_sz;
  473. u64 address;
  474. int err;
  475. flowid = work->flowid;
  476. dma_sz = BRCMF_H2D_TXFLOWRING_MAX_ITEM * BRCMF_H2D_TXFLOWRING_ITEMSIZE;
  477. dma_buf = dma_alloc_coherent(msgbuf->drvr->bus_if->dev, dma_sz,
  478. &msgbuf->flowring_dma_handle[flowid],
  479. GFP_KERNEL);
  480. if (!dma_buf) {
  481. brcmf_err("dma_alloc_coherent failed\n");
  482. brcmf_flowring_delete(msgbuf->flow, flowid);
  483. return BRCMF_FLOWRING_INVALID_ID;
  484. }
  485. brcmf_commonring_config(msgbuf->flowrings[flowid],
  486. BRCMF_H2D_TXFLOWRING_MAX_ITEM,
  487. BRCMF_H2D_TXFLOWRING_ITEMSIZE, dma_buf);
  488. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  489. brcmf_commonring_lock(commonring);
  490. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  491. if (!ret_ptr) {
  492. brcmf_err("Failed to reserve space in commonring\n");
  493. brcmf_commonring_unlock(commonring);
  494. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  495. return BRCMF_FLOWRING_INVALID_ID;
  496. }
  497. create = (struct msgbuf_tx_flowring_create_req *)ret_ptr;
  498. create->msg.msgtype = MSGBUF_TYPE_FLOW_RING_CREATE;
  499. create->msg.ifidx = work->ifidx;
  500. create->msg.request_id = 0;
  501. create->tid = brcmf_flowring_tid(msgbuf->flow, flowid);
  502. create->flow_ring_id = cpu_to_le16(flowid +
  503. BRCMF_NROF_H2D_COMMON_MSGRINGS);
  504. memcpy(create->sa, work->sa, ETH_ALEN);
  505. memcpy(create->da, work->da, ETH_ALEN);
  506. address = (u64)msgbuf->flowring_dma_handle[flowid];
  507. create->flow_ring_addr.high_addr = cpu_to_le32(address >> 32);
  508. create->flow_ring_addr.low_addr = cpu_to_le32(address & 0xffffffff);
  509. create->max_items = cpu_to_le16(BRCMF_H2D_TXFLOWRING_MAX_ITEM);
  510. create->len_item = cpu_to_le16(BRCMF_H2D_TXFLOWRING_ITEMSIZE);
  511. brcmf_dbg(MSGBUF, "Send Flow Create Req flow ID %d for peer %pM prio %d ifindex %d\n",
  512. flowid, work->da, create->tid, work->ifidx);
  513. err = brcmf_commonring_write_complete(commonring);
  514. brcmf_commonring_unlock(commonring);
  515. if (err) {
  516. brcmf_err("Failed to write commonring\n");
  517. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  518. return BRCMF_FLOWRING_INVALID_ID;
  519. }
  520. return flowid;
  521. }
  522. static void brcmf_msgbuf_flowring_worker(struct work_struct *work)
  523. {
  524. struct brcmf_msgbuf *msgbuf;
  525. struct brcmf_msgbuf_work_item *create;
  526. msgbuf = container_of(work, struct brcmf_msgbuf, flowring_work);
  527. while ((create = brcmf_msgbuf_dequeue_work(msgbuf))) {
  528. brcmf_msgbuf_flowring_create_worker(msgbuf, create);
  529. kfree(create);
  530. }
  531. }
  532. static u32 brcmf_msgbuf_flowring_create(struct brcmf_msgbuf *msgbuf, int ifidx,
  533. struct sk_buff *skb)
  534. {
  535. struct brcmf_msgbuf_work_item *create;
  536. struct ethhdr *eh = (struct ethhdr *)(skb->data);
  537. u32 flowid;
  538. ulong flags;
  539. create = kzalloc(sizeof(*create), GFP_ATOMIC);
  540. if (create == NULL)
  541. return BRCMF_FLOWRING_INVALID_ID;
  542. flowid = brcmf_flowring_create(msgbuf->flow, eh->h_dest,
  543. skb->priority, ifidx);
  544. if (flowid == BRCMF_FLOWRING_INVALID_ID) {
  545. kfree(create);
  546. return flowid;
  547. }
  548. create->flowid = flowid;
  549. create->ifidx = ifidx;
  550. memcpy(create->sa, eh->h_source, ETH_ALEN);
  551. memcpy(create->da, eh->h_dest, ETH_ALEN);
  552. spin_lock_irqsave(&msgbuf->flowring_work_lock, flags);
  553. list_add_tail(&create->queue, &msgbuf->work_queue);
  554. spin_unlock_irqrestore(&msgbuf->flowring_work_lock, flags);
  555. schedule_work(&msgbuf->flowring_work);
  556. return flowid;
  557. }
  558. static void brcmf_msgbuf_txflow(struct brcmf_msgbuf *msgbuf, u8 flowid)
  559. {
  560. struct brcmf_flowring *flow = msgbuf->flow;
  561. struct brcmf_commonring *commonring;
  562. void *ret_ptr;
  563. u32 count;
  564. struct sk_buff *skb;
  565. dma_addr_t physaddr;
  566. u32 pktid;
  567. struct msgbuf_tx_msghdr *tx_msghdr;
  568. u64 address;
  569. commonring = msgbuf->flowrings[flowid];
  570. if (!brcmf_commonring_write_available(commonring))
  571. return;
  572. brcmf_commonring_lock(commonring);
  573. count = BRCMF_MSGBUF_TX_FLUSH_CNT2 - BRCMF_MSGBUF_TX_FLUSH_CNT1;
  574. while (brcmf_flowring_qlen(flow, flowid)) {
  575. skb = brcmf_flowring_dequeue(flow, flowid);
  576. if (skb == NULL) {
  577. brcmf_err("No SKB, but qlen %d\n",
  578. brcmf_flowring_qlen(flow, flowid));
  579. break;
  580. }
  581. skb_orphan(skb);
  582. if (brcmf_msgbuf_alloc_pktid(msgbuf->drvr->bus_if->dev,
  583. msgbuf->tx_pktids, skb, ETH_HLEN,
  584. &physaddr, &pktid)) {
  585. brcmf_flowring_reinsert(flow, flowid, skb);
  586. brcmf_err("No PKTID available !!\n");
  587. break;
  588. }
  589. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  590. if (!ret_ptr) {
  591. brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  592. msgbuf->tx_pktids, pktid);
  593. brcmf_flowring_reinsert(flow, flowid, skb);
  594. break;
  595. }
  596. count++;
  597. tx_msghdr = (struct msgbuf_tx_msghdr *)ret_ptr;
  598. tx_msghdr->msg.msgtype = MSGBUF_TYPE_TX_POST;
  599. tx_msghdr->msg.request_id = cpu_to_le32(pktid);
  600. tx_msghdr->msg.ifidx = brcmf_flowring_ifidx_get(flow, flowid);
  601. tx_msghdr->flags = BRCMF_MSGBUF_PKT_FLAGS_FRAME_802_3;
  602. tx_msghdr->flags |= (skb->priority & 0x07) <<
  603. BRCMF_MSGBUF_PKT_FLAGS_PRIO_SHIFT;
  604. tx_msghdr->seg_cnt = 1;
  605. memcpy(tx_msghdr->txhdr, skb->data, ETH_HLEN);
  606. tx_msghdr->data_len = cpu_to_le16(skb->len - ETH_HLEN);
  607. address = (u64)physaddr;
  608. tx_msghdr->data_buf_addr.high_addr = cpu_to_le32(address >> 32);
  609. tx_msghdr->data_buf_addr.low_addr =
  610. cpu_to_le32(address & 0xffffffff);
  611. tx_msghdr->metadata_buf_len = 0;
  612. tx_msghdr->metadata_buf_addr.high_addr = 0;
  613. tx_msghdr->metadata_buf_addr.low_addr = 0;
  614. atomic_inc(&commonring->outstanding_tx);
  615. if (count >= BRCMF_MSGBUF_TX_FLUSH_CNT2) {
  616. brcmf_commonring_write_complete(commonring);
  617. count = 0;
  618. }
  619. }
  620. if (count)
  621. brcmf_commonring_write_complete(commonring);
  622. brcmf_commonring_unlock(commonring);
  623. }
  624. static void brcmf_msgbuf_txflow_worker(struct work_struct *worker)
  625. {
  626. struct brcmf_msgbuf *msgbuf;
  627. u32 flowid;
  628. msgbuf = container_of(worker, struct brcmf_msgbuf, txflow_work);
  629. for_each_set_bit(flowid, msgbuf->flow_map, msgbuf->nrof_flowrings) {
  630. clear_bit(flowid, msgbuf->flow_map);
  631. brcmf_msgbuf_txflow(msgbuf, flowid);
  632. }
  633. }
  634. static int brcmf_msgbuf_schedule_txdata(struct brcmf_msgbuf *msgbuf, u32 flowid,
  635. bool force)
  636. {
  637. struct brcmf_commonring *commonring;
  638. set_bit(flowid, msgbuf->flow_map);
  639. commonring = msgbuf->flowrings[flowid];
  640. if ((force) || (atomic_read(&commonring->outstanding_tx) <
  641. BRCMF_MSGBUF_DELAY_TXWORKER_THRS))
  642. queue_work(msgbuf->txflow_wq, &msgbuf->txflow_work);
  643. return 0;
  644. }
  645. static int brcmf_msgbuf_txdata(struct brcmf_pub *drvr, int ifidx,
  646. u8 offset, struct sk_buff *skb)
  647. {
  648. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  649. struct brcmf_flowring *flow = msgbuf->flow;
  650. struct ethhdr *eh = (struct ethhdr *)(skb->data);
  651. u32 flowid;
  652. u32 queue_count;
  653. bool force;
  654. flowid = brcmf_flowring_lookup(flow, eh->h_dest, skb->priority, ifidx);
  655. if (flowid == BRCMF_FLOWRING_INVALID_ID) {
  656. flowid = brcmf_msgbuf_flowring_create(msgbuf, ifidx, skb);
  657. if (flowid == BRCMF_FLOWRING_INVALID_ID)
  658. return -ENOMEM;
  659. }
  660. queue_count = brcmf_flowring_enqueue(flow, flowid, skb);
  661. force = ((queue_count % BRCMF_MSGBUF_TRICKLE_TXWORKER_THRS) == 0);
  662. brcmf_msgbuf_schedule_txdata(msgbuf, flowid, force);
  663. return 0;
  664. }
  665. static void
  666. brcmf_msgbuf_configure_addr_mode(struct brcmf_pub *drvr, int ifidx,
  667. enum proto_addr_mode addr_mode)
  668. {
  669. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  670. brcmf_flowring_configure_addr_mode(msgbuf->flow, ifidx, addr_mode);
  671. }
  672. static void
  673. brcmf_msgbuf_delete_peer(struct brcmf_pub *drvr, int ifidx, u8 peer[ETH_ALEN])
  674. {
  675. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  676. brcmf_flowring_delete_peer(msgbuf->flow, ifidx, peer);
  677. }
  678. static void
  679. brcmf_msgbuf_add_tdls_peer(struct brcmf_pub *drvr, int ifidx, u8 peer[ETH_ALEN])
  680. {
  681. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  682. brcmf_flowring_add_tdls_peer(msgbuf->flow, ifidx, peer);
  683. }
  684. static void
  685. brcmf_msgbuf_process_ioctl_complete(struct brcmf_msgbuf *msgbuf, void *buf)
  686. {
  687. struct msgbuf_ioctl_resp_hdr *ioctl_resp;
  688. ioctl_resp = (struct msgbuf_ioctl_resp_hdr *)buf;
  689. msgbuf->ioctl_resp_status =
  690. (s16)le16_to_cpu(ioctl_resp->compl_hdr.status);
  691. msgbuf->ioctl_resp_ret_len = le16_to_cpu(ioctl_resp->resp_len);
  692. msgbuf->ioctl_resp_pktid = le32_to_cpu(ioctl_resp->msg.request_id);
  693. brcmf_msgbuf_ioctl_resp_wake(msgbuf);
  694. if (msgbuf->cur_ioctlrespbuf)
  695. msgbuf->cur_ioctlrespbuf--;
  696. brcmf_msgbuf_rxbuf_ioctlresp_post(msgbuf);
  697. }
  698. static void
  699. brcmf_msgbuf_process_txstatus(struct brcmf_msgbuf *msgbuf, void *buf)
  700. {
  701. struct brcmf_commonring *commonring;
  702. struct msgbuf_tx_status *tx_status;
  703. u32 idx;
  704. struct sk_buff *skb;
  705. u16 flowid;
  706. tx_status = (struct msgbuf_tx_status *)buf;
  707. idx = le32_to_cpu(tx_status->msg.request_id);
  708. flowid = le16_to_cpu(tx_status->compl_hdr.flow_ring_id);
  709. flowid -= BRCMF_NROF_H2D_COMMON_MSGRINGS;
  710. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  711. msgbuf->tx_pktids, idx);
  712. if (!skb)
  713. return;
  714. set_bit(flowid, msgbuf->txstatus_done_map);
  715. commonring = msgbuf->flowrings[flowid];
  716. atomic_dec(&commonring->outstanding_tx);
  717. brcmf_txfinalize(msgbuf->drvr, skb, tx_status->msg.ifidx, true);
  718. }
  719. static u32 brcmf_msgbuf_rxbuf_data_post(struct brcmf_msgbuf *msgbuf, u32 count)
  720. {
  721. struct brcmf_commonring *commonring;
  722. void *ret_ptr;
  723. struct sk_buff *skb;
  724. u16 alloced;
  725. u32 pktlen;
  726. dma_addr_t physaddr;
  727. struct msgbuf_rx_bufpost *rx_bufpost;
  728. u64 address;
  729. u32 pktid;
  730. u32 i;
  731. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_RXPOST_SUBMIT];
  732. ret_ptr = brcmf_commonring_reserve_for_write_multiple(commonring,
  733. count,
  734. &alloced);
  735. if (!ret_ptr) {
  736. brcmf_dbg(MSGBUF, "Failed to reserve space in commonring\n");
  737. return 0;
  738. }
  739. for (i = 0; i < alloced; i++) {
  740. rx_bufpost = (struct msgbuf_rx_bufpost *)ret_ptr;
  741. memset(rx_bufpost, 0, sizeof(*rx_bufpost));
  742. skb = brcmu_pkt_buf_get_skb(BRCMF_MSGBUF_MAX_PKT_SIZE);
  743. if (skb == NULL) {
  744. brcmf_err("Failed to alloc SKB\n");
  745. brcmf_commonring_write_cancel(commonring, alloced - i);
  746. break;
  747. }
  748. pktlen = skb->len;
  749. if (brcmf_msgbuf_alloc_pktid(msgbuf->drvr->bus_if->dev,
  750. msgbuf->rx_pktids, skb, 0,
  751. &physaddr, &pktid)) {
  752. dev_kfree_skb_any(skb);
  753. brcmf_err("No PKTID available !!\n");
  754. brcmf_commonring_write_cancel(commonring, alloced - i);
  755. break;
  756. }
  757. if (msgbuf->rx_metadata_offset) {
  758. address = (u64)physaddr;
  759. rx_bufpost->metadata_buf_len =
  760. cpu_to_le16(msgbuf->rx_metadata_offset);
  761. rx_bufpost->metadata_buf_addr.high_addr =
  762. cpu_to_le32(address >> 32);
  763. rx_bufpost->metadata_buf_addr.low_addr =
  764. cpu_to_le32(address & 0xffffffff);
  765. skb_pull(skb, msgbuf->rx_metadata_offset);
  766. pktlen = skb->len;
  767. physaddr += msgbuf->rx_metadata_offset;
  768. }
  769. rx_bufpost->msg.msgtype = MSGBUF_TYPE_RXBUF_POST;
  770. rx_bufpost->msg.request_id = cpu_to_le32(pktid);
  771. address = (u64)physaddr;
  772. rx_bufpost->data_buf_len = cpu_to_le16((u16)pktlen);
  773. rx_bufpost->data_buf_addr.high_addr =
  774. cpu_to_le32(address >> 32);
  775. rx_bufpost->data_buf_addr.low_addr =
  776. cpu_to_le32(address & 0xffffffff);
  777. ret_ptr += brcmf_commonring_len_item(commonring);
  778. }
  779. if (i)
  780. brcmf_commonring_write_complete(commonring);
  781. return i;
  782. }
  783. static void
  784. brcmf_msgbuf_rxbuf_data_fill(struct brcmf_msgbuf *msgbuf)
  785. {
  786. u32 fillbufs;
  787. u32 retcount;
  788. fillbufs = msgbuf->max_rxbufpost - msgbuf->rxbufpost;
  789. while (fillbufs) {
  790. retcount = brcmf_msgbuf_rxbuf_data_post(msgbuf, fillbufs);
  791. if (!retcount)
  792. break;
  793. msgbuf->rxbufpost += retcount;
  794. fillbufs -= retcount;
  795. }
  796. }
  797. static void
  798. brcmf_msgbuf_update_rxbufpost_count(struct brcmf_msgbuf *msgbuf, u16 rxcnt)
  799. {
  800. msgbuf->rxbufpost -= rxcnt;
  801. if (msgbuf->rxbufpost <= (msgbuf->max_rxbufpost -
  802. BRCMF_MSGBUF_RXBUFPOST_THRESHOLD))
  803. brcmf_msgbuf_rxbuf_data_fill(msgbuf);
  804. }
  805. static u32
  806. brcmf_msgbuf_rxbuf_ctrl_post(struct brcmf_msgbuf *msgbuf, bool event_buf,
  807. u32 count)
  808. {
  809. struct brcmf_commonring *commonring;
  810. void *ret_ptr;
  811. struct sk_buff *skb;
  812. u16 alloced;
  813. u32 pktlen;
  814. dma_addr_t physaddr;
  815. struct msgbuf_rx_ioctl_resp_or_event *rx_bufpost;
  816. u64 address;
  817. u32 pktid;
  818. u32 i;
  819. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  820. brcmf_commonring_lock(commonring);
  821. ret_ptr = brcmf_commonring_reserve_for_write_multiple(commonring,
  822. count,
  823. &alloced);
  824. if (!ret_ptr) {
  825. brcmf_err("Failed to reserve space in commonring\n");
  826. brcmf_commonring_unlock(commonring);
  827. return 0;
  828. }
  829. for (i = 0; i < alloced; i++) {
  830. rx_bufpost = (struct msgbuf_rx_ioctl_resp_or_event *)ret_ptr;
  831. memset(rx_bufpost, 0, sizeof(*rx_bufpost));
  832. skb = brcmu_pkt_buf_get_skb(BRCMF_MSGBUF_MAX_PKT_SIZE);
  833. if (skb == NULL) {
  834. brcmf_err("Failed to alloc SKB\n");
  835. brcmf_commonring_write_cancel(commonring, alloced - i);
  836. break;
  837. }
  838. pktlen = skb->len;
  839. if (brcmf_msgbuf_alloc_pktid(msgbuf->drvr->bus_if->dev,
  840. msgbuf->rx_pktids, skb, 0,
  841. &physaddr, &pktid)) {
  842. dev_kfree_skb_any(skb);
  843. brcmf_err("No PKTID available !!\n");
  844. brcmf_commonring_write_cancel(commonring, alloced - i);
  845. break;
  846. }
  847. if (event_buf)
  848. rx_bufpost->msg.msgtype = MSGBUF_TYPE_EVENT_BUF_POST;
  849. else
  850. rx_bufpost->msg.msgtype =
  851. MSGBUF_TYPE_IOCTLRESP_BUF_POST;
  852. rx_bufpost->msg.request_id = cpu_to_le32(pktid);
  853. address = (u64)physaddr;
  854. rx_bufpost->host_buf_len = cpu_to_le16((u16)pktlen);
  855. rx_bufpost->host_buf_addr.high_addr =
  856. cpu_to_le32(address >> 32);
  857. rx_bufpost->host_buf_addr.low_addr =
  858. cpu_to_le32(address & 0xffffffff);
  859. ret_ptr += brcmf_commonring_len_item(commonring);
  860. }
  861. if (i)
  862. brcmf_commonring_write_complete(commonring);
  863. brcmf_commonring_unlock(commonring);
  864. return i;
  865. }
  866. static void brcmf_msgbuf_rxbuf_ioctlresp_post(struct brcmf_msgbuf *msgbuf)
  867. {
  868. u32 count;
  869. count = msgbuf->max_ioctlrespbuf - msgbuf->cur_ioctlrespbuf;
  870. count = brcmf_msgbuf_rxbuf_ctrl_post(msgbuf, false, count);
  871. msgbuf->cur_ioctlrespbuf += count;
  872. }
  873. static void brcmf_msgbuf_rxbuf_event_post(struct brcmf_msgbuf *msgbuf)
  874. {
  875. u32 count;
  876. count = msgbuf->max_eventbuf - msgbuf->cur_eventbuf;
  877. count = brcmf_msgbuf_rxbuf_ctrl_post(msgbuf, true, count);
  878. msgbuf->cur_eventbuf += count;
  879. }
  880. static void
  881. brcmf_msgbuf_rx_skb(struct brcmf_msgbuf *msgbuf, struct sk_buff *skb,
  882. u8 ifidx)
  883. {
  884. struct brcmf_if *ifp;
  885. /* The ifidx is the idx to map to matching netdev/ifp. When receiving
  886. * events this is easy because it contains the bssidx which maps
  887. * 1-on-1 to the netdev/ifp. But for data frames the ifidx is rcvd.
  888. * bssidx 1 is used for p2p0 and no data can be received or
  889. * transmitted on it. Therefor bssidx is ifidx + 1 if ifidx > 0
  890. */
  891. if (ifidx)
  892. (ifidx)++;
  893. ifp = msgbuf->drvr->iflist[ifidx];
  894. if (!ifp || !ifp->ndev) {
  895. brcmf_err("Received pkt for invalid ifidx %d\n", ifidx);
  896. brcmu_pkt_buf_free_skb(skb);
  897. return;
  898. }
  899. brcmf_netif_rx(ifp, skb);
  900. }
  901. static void brcmf_msgbuf_process_event(struct brcmf_msgbuf *msgbuf, void *buf)
  902. {
  903. struct msgbuf_rx_event *event;
  904. u32 idx;
  905. u16 buflen;
  906. struct sk_buff *skb;
  907. event = (struct msgbuf_rx_event *)buf;
  908. idx = le32_to_cpu(event->msg.request_id);
  909. buflen = le16_to_cpu(event->event_data_len);
  910. if (msgbuf->cur_eventbuf)
  911. msgbuf->cur_eventbuf--;
  912. brcmf_msgbuf_rxbuf_event_post(msgbuf);
  913. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  914. msgbuf->rx_pktids, idx);
  915. if (!skb)
  916. return;
  917. if (msgbuf->rx_dataoffset)
  918. skb_pull(skb, msgbuf->rx_dataoffset);
  919. skb_trim(skb, buflen);
  920. brcmf_msgbuf_rx_skb(msgbuf, skb, event->msg.ifidx);
  921. }
  922. static void
  923. brcmf_msgbuf_process_rx_complete(struct brcmf_msgbuf *msgbuf, void *buf)
  924. {
  925. struct msgbuf_rx_complete *rx_complete;
  926. struct sk_buff *skb;
  927. u16 data_offset;
  928. u16 buflen;
  929. u32 idx;
  930. brcmf_msgbuf_update_rxbufpost_count(msgbuf, 1);
  931. rx_complete = (struct msgbuf_rx_complete *)buf;
  932. data_offset = le16_to_cpu(rx_complete->data_offset);
  933. buflen = le16_to_cpu(rx_complete->data_len);
  934. idx = le32_to_cpu(rx_complete->msg.request_id);
  935. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  936. msgbuf->rx_pktids, idx);
  937. if (!skb)
  938. return;
  939. if (data_offset)
  940. skb_pull(skb, data_offset);
  941. else if (msgbuf->rx_dataoffset)
  942. skb_pull(skb, msgbuf->rx_dataoffset);
  943. skb_trim(skb, buflen);
  944. brcmf_msgbuf_rx_skb(msgbuf, skb, rx_complete->msg.ifidx);
  945. }
  946. static void
  947. brcmf_msgbuf_process_flow_ring_create_response(struct brcmf_msgbuf *msgbuf,
  948. void *buf)
  949. {
  950. struct msgbuf_flowring_create_resp *flowring_create_resp;
  951. u16 status;
  952. u16 flowid;
  953. flowring_create_resp = (struct msgbuf_flowring_create_resp *)buf;
  954. flowid = le16_to_cpu(flowring_create_resp->compl_hdr.flow_ring_id);
  955. flowid -= BRCMF_NROF_H2D_COMMON_MSGRINGS;
  956. status = le16_to_cpu(flowring_create_resp->compl_hdr.status);
  957. if (status) {
  958. brcmf_err("Flowring creation failed, code %d\n", status);
  959. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  960. return;
  961. }
  962. brcmf_dbg(MSGBUF, "Flowring %d Create response status %d\n", flowid,
  963. status);
  964. brcmf_flowring_open(msgbuf->flow, flowid);
  965. brcmf_msgbuf_schedule_txdata(msgbuf, flowid, true);
  966. }
  967. static void
  968. brcmf_msgbuf_process_flow_ring_delete_response(struct brcmf_msgbuf *msgbuf,
  969. void *buf)
  970. {
  971. struct msgbuf_flowring_delete_resp *flowring_delete_resp;
  972. u16 status;
  973. u16 flowid;
  974. flowring_delete_resp = (struct msgbuf_flowring_delete_resp *)buf;
  975. flowid = le16_to_cpu(flowring_delete_resp->compl_hdr.flow_ring_id);
  976. flowid -= BRCMF_NROF_H2D_COMMON_MSGRINGS;
  977. status = le16_to_cpu(flowring_delete_resp->compl_hdr.status);
  978. if (status) {
  979. brcmf_err("Flowring deletion failed, code %d\n", status);
  980. brcmf_flowring_delete(msgbuf->flow, flowid);
  981. return;
  982. }
  983. brcmf_dbg(MSGBUF, "Flowring %d Delete response status %d\n", flowid,
  984. status);
  985. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  986. }
  987. static void brcmf_msgbuf_process_msgtype(struct brcmf_msgbuf *msgbuf, void *buf)
  988. {
  989. struct msgbuf_common_hdr *msg;
  990. msg = (struct msgbuf_common_hdr *)buf;
  991. switch (msg->msgtype) {
  992. case MSGBUF_TYPE_FLOW_RING_CREATE_CMPLT:
  993. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_FLOW_RING_CREATE_CMPLT\n");
  994. brcmf_msgbuf_process_flow_ring_create_response(msgbuf, buf);
  995. break;
  996. case MSGBUF_TYPE_FLOW_RING_DELETE_CMPLT:
  997. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_FLOW_RING_DELETE_CMPLT\n");
  998. brcmf_msgbuf_process_flow_ring_delete_response(msgbuf, buf);
  999. break;
  1000. case MSGBUF_TYPE_IOCTLPTR_REQ_ACK:
  1001. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_IOCTLPTR_REQ_ACK\n");
  1002. break;
  1003. case MSGBUF_TYPE_IOCTL_CMPLT:
  1004. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_IOCTL_CMPLT\n");
  1005. brcmf_msgbuf_process_ioctl_complete(msgbuf, buf);
  1006. break;
  1007. case MSGBUF_TYPE_WL_EVENT:
  1008. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_WL_EVENT\n");
  1009. brcmf_msgbuf_process_event(msgbuf, buf);
  1010. break;
  1011. case MSGBUF_TYPE_TX_STATUS:
  1012. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_TX_STATUS\n");
  1013. brcmf_msgbuf_process_txstatus(msgbuf, buf);
  1014. break;
  1015. case MSGBUF_TYPE_RX_CMPLT:
  1016. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_RX_CMPLT\n");
  1017. brcmf_msgbuf_process_rx_complete(msgbuf, buf);
  1018. break;
  1019. default:
  1020. brcmf_err("Unsupported msgtype %d\n", msg->msgtype);
  1021. break;
  1022. }
  1023. }
  1024. static void brcmf_msgbuf_process_rx(struct brcmf_msgbuf *msgbuf,
  1025. struct brcmf_commonring *commonring)
  1026. {
  1027. void *buf;
  1028. u16 count;
  1029. u16 processed;
  1030. again:
  1031. buf = brcmf_commonring_get_read_ptr(commonring, &count);
  1032. if (buf == NULL)
  1033. return;
  1034. processed = 0;
  1035. while (count) {
  1036. brcmf_msgbuf_process_msgtype(msgbuf,
  1037. buf + msgbuf->rx_dataoffset);
  1038. buf += brcmf_commonring_len_item(commonring);
  1039. processed++;
  1040. if (processed == BRCMF_MSGBUF_UPDATE_RX_PTR_THRS) {
  1041. brcmf_commonring_read_complete(commonring, processed);
  1042. processed = 0;
  1043. }
  1044. count--;
  1045. }
  1046. if (processed)
  1047. brcmf_commonring_read_complete(commonring, processed);
  1048. if (commonring->r_ptr == 0)
  1049. goto again;
  1050. }
  1051. int brcmf_proto_msgbuf_rx_trigger(struct device *dev)
  1052. {
  1053. struct brcmf_bus *bus_if = dev_get_drvdata(dev);
  1054. struct brcmf_pub *drvr = bus_if->drvr;
  1055. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  1056. struct brcmf_commonring *commonring;
  1057. void *buf;
  1058. u32 flowid;
  1059. int qlen;
  1060. buf = msgbuf->commonrings[BRCMF_D2H_MSGRING_RX_COMPLETE];
  1061. brcmf_msgbuf_process_rx(msgbuf, buf);
  1062. buf = msgbuf->commonrings[BRCMF_D2H_MSGRING_TX_COMPLETE];
  1063. brcmf_msgbuf_process_rx(msgbuf, buf);
  1064. buf = msgbuf->commonrings[BRCMF_D2H_MSGRING_CONTROL_COMPLETE];
  1065. brcmf_msgbuf_process_rx(msgbuf, buf);
  1066. for_each_set_bit(flowid, msgbuf->txstatus_done_map,
  1067. msgbuf->nrof_flowrings) {
  1068. clear_bit(flowid, msgbuf->txstatus_done_map);
  1069. commonring = msgbuf->flowrings[flowid];
  1070. qlen = brcmf_flowring_qlen(msgbuf->flow, flowid);
  1071. if ((qlen > BRCMF_MSGBUF_TRICKLE_TXWORKER_THRS) ||
  1072. ((qlen) && (atomic_read(&commonring->outstanding_tx) <
  1073. BRCMF_MSGBUF_TRICKLE_TXWORKER_THRS)))
  1074. brcmf_msgbuf_schedule_txdata(msgbuf, flowid, true);
  1075. }
  1076. return 0;
  1077. }
  1078. void brcmf_msgbuf_delete_flowring(struct brcmf_pub *drvr, u8 flowid)
  1079. {
  1080. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  1081. struct msgbuf_tx_flowring_delete_req *delete;
  1082. struct brcmf_commonring *commonring;
  1083. void *ret_ptr;
  1084. u8 ifidx;
  1085. int err;
  1086. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  1087. brcmf_commonring_lock(commonring);
  1088. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  1089. if (!ret_ptr) {
  1090. brcmf_err("FW unaware, flowring will be removed !!\n");
  1091. brcmf_commonring_unlock(commonring);
  1092. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  1093. return;
  1094. }
  1095. delete = (struct msgbuf_tx_flowring_delete_req *)ret_ptr;
  1096. ifidx = brcmf_flowring_ifidx_get(msgbuf->flow, flowid);
  1097. delete->msg.msgtype = MSGBUF_TYPE_FLOW_RING_DELETE;
  1098. delete->msg.ifidx = ifidx;
  1099. delete->msg.request_id = 0;
  1100. delete->flow_ring_id = cpu_to_le16(flowid +
  1101. BRCMF_NROF_H2D_COMMON_MSGRINGS);
  1102. delete->reason = 0;
  1103. brcmf_dbg(MSGBUF, "Send Flow Delete Req flow ID %d, ifindex %d\n",
  1104. flowid, ifidx);
  1105. err = brcmf_commonring_write_complete(commonring);
  1106. brcmf_commonring_unlock(commonring);
  1107. if (err) {
  1108. brcmf_err("Failed to submit RING_DELETE, flowring will be removed\n");
  1109. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  1110. }
  1111. }
  1112. #ifdef DEBUG
  1113. static int brcmf_msgbuf_stats_read(struct seq_file *seq, void *data)
  1114. {
  1115. struct brcmf_bus *bus_if = dev_get_drvdata(seq->private);
  1116. struct brcmf_pub *drvr = bus_if->drvr;
  1117. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  1118. struct brcmf_commonring *commonring;
  1119. u16 i;
  1120. struct brcmf_flowring_ring *ring;
  1121. struct brcmf_flowring_hash *hash;
  1122. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  1123. seq_printf(seq, "h2d_ctl_submit: rp %4u, wp %4u, depth %4u\n",
  1124. commonring->r_ptr, commonring->w_ptr, commonring->depth);
  1125. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_RXPOST_SUBMIT];
  1126. seq_printf(seq, "h2d_rx_submit: rp %4u, wp %4u, depth %4u\n",
  1127. commonring->r_ptr, commonring->w_ptr, commonring->depth);
  1128. commonring = msgbuf->commonrings[BRCMF_D2H_MSGRING_CONTROL_COMPLETE];
  1129. seq_printf(seq, "d2h_ctl_cmplt: rp %4u, wp %4u, depth %4u\n",
  1130. commonring->r_ptr, commonring->w_ptr, commonring->depth);
  1131. commonring = msgbuf->commonrings[BRCMF_D2H_MSGRING_TX_COMPLETE];
  1132. seq_printf(seq, "d2h_tx_cmplt: rp %4u, wp %4u, depth %4u\n",
  1133. commonring->r_ptr, commonring->w_ptr, commonring->depth);
  1134. commonring = msgbuf->commonrings[BRCMF_D2H_MSGRING_RX_COMPLETE];
  1135. seq_printf(seq, "d2h_rx_cmplt: rp %4u, wp %4u, depth %4u\n",
  1136. commonring->r_ptr, commonring->w_ptr, commonring->depth);
  1137. seq_printf(seq, "\nh2d_flowrings: depth %u\n",
  1138. BRCMF_H2D_TXFLOWRING_MAX_ITEM);
  1139. seq_puts(seq, "Active flowrings:\n");
  1140. hash = msgbuf->flow->hash;
  1141. for (i = 0; i < msgbuf->flow->nrofrings; i++) {
  1142. if (!msgbuf->flow->rings[i])
  1143. continue;
  1144. ring = msgbuf->flow->rings[i];
  1145. if (ring->status != RING_OPEN)
  1146. continue;
  1147. commonring = msgbuf->flowrings[i];
  1148. hash = &msgbuf->flow->hash[ring->hash_id];
  1149. seq_printf(seq, "id %3u: rp %4u, wp %4u, qlen %4u, blocked %u\n"
  1150. " ifidx %u, fifo %u, da %pM\n",
  1151. i, commonring->r_ptr, commonring->w_ptr,
  1152. skb_queue_len(&ring->skblist), ring->blocked,
  1153. hash->ifidx, hash->fifo, hash->mac);
  1154. }
  1155. return 0;
  1156. }
  1157. #else
  1158. static int brcmf_msgbuf_stats_read(struct seq_file *seq, void *data)
  1159. {
  1160. return 0;
  1161. }
  1162. #endif
  1163. int brcmf_proto_msgbuf_attach(struct brcmf_pub *drvr)
  1164. {
  1165. struct brcmf_bus_msgbuf *if_msgbuf;
  1166. struct brcmf_msgbuf *msgbuf;
  1167. u64 address;
  1168. u32 count;
  1169. if_msgbuf = drvr->bus_if->msgbuf;
  1170. msgbuf = kzalloc(sizeof(*msgbuf), GFP_KERNEL);
  1171. if (!msgbuf)
  1172. goto fail;
  1173. msgbuf->txflow_wq = create_singlethread_workqueue("msgbuf_txflow");
  1174. if (msgbuf->txflow_wq == NULL) {
  1175. brcmf_err("workqueue creation failed\n");
  1176. goto fail;
  1177. }
  1178. INIT_WORK(&msgbuf->txflow_work, brcmf_msgbuf_txflow_worker);
  1179. count = BITS_TO_LONGS(if_msgbuf->nrof_flowrings);
  1180. count = count * sizeof(unsigned long);
  1181. msgbuf->flow_map = kzalloc(count, GFP_KERNEL);
  1182. if (!msgbuf->flow_map)
  1183. goto fail;
  1184. msgbuf->txstatus_done_map = kzalloc(count, GFP_KERNEL);
  1185. if (!msgbuf->txstatus_done_map)
  1186. goto fail;
  1187. msgbuf->drvr = drvr;
  1188. msgbuf->ioctbuf = dma_alloc_coherent(drvr->bus_if->dev,
  1189. BRCMF_TX_IOCTL_MAX_MSG_SIZE,
  1190. &msgbuf->ioctbuf_handle,
  1191. GFP_KERNEL);
  1192. if (!msgbuf->ioctbuf)
  1193. goto fail;
  1194. address = (u64)msgbuf->ioctbuf_handle;
  1195. msgbuf->ioctbuf_phys_hi = address >> 32;
  1196. msgbuf->ioctbuf_phys_lo = address & 0xffffffff;
  1197. drvr->proto->hdrpull = brcmf_msgbuf_hdrpull;
  1198. drvr->proto->query_dcmd = brcmf_msgbuf_query_dcmd;
  1199. drvr->proto->set_dcmd = brcmf_msgbuf_set_dcmd;
  1200. drvr->proto->txdata = brcmf_msgbuf_txdata;
  1201. drvr->proto->configure_addr_mode = brcmf_msgbuf_configure_addr_mode;
  1202. drvr->proto->delete_peer = brcmf_msgbuf_delete_peer;
  1203. drvr->proto->add_tdls_peer = brcmf_msgbuf_add_tdls_peer;
  1204. drvr->proto->pd = msgbuf;
  1205. init_waitqueue_head(&msgbuf->ioctl_resp_wait);
  1206. msgbuf->commonrings =
  1207. (struct brcmf_commonring **)if_msgbuf->commonrings;
  1208. msgbuf->flowrings = (struct brcmf_commonring **)if_msgbuf->flowrings;
  1209. msgbuf->nrof_flowrings = if_msgbuf->nrof_flowrings;
  1210. msgbuf->flowring_dma_handle = kzalloc(msgbuf->nrof_flowrings *
  1211. sizeof(*msgbuf->flowring_dma_handle), GFP_KERNEL);
  1212. if (!msgbuf->flowring_dma_handle)
  1213. goto fail;
  1214. msgbuf->rx_dataoffset = if_msgbuf->rx_dataoffset;
  1215. msgbuf->max_rxbufpost = if_msgbuf->max_rxbufpost;
  1216. msgbuf->max_ioctlrespbuf = BRCMF_MSGBUF_MAX_IOCTLRESPBUF_POST;
  1217. msgbuf->max_eventbuf = BRCMF_MSGBUF_MAX_EVENTBUF_POST;
  1218. msgbuf->tx_pktids = brcmf_msgbuf_init_pktids(NR_TX_PKTIDS,
  1219. DMA_TO_DEVICE);
  1220. if (!msgbuf->tx_pktids)
  1221. goto fail;
  1222. msgbuf->rx_pktids = brcmf_msgbuf_init_pktids(NR_RX_PKTIDS,
  1223. DMA_FROM_DEVICE);
  1224. if (!msgbuf->rx_pktids)
  1225. goto fail;
  1226. msgbuf->flow = brcmf_flowring_attach(drvr->bus_if->dev,
  1227. if_msgbuf->nrof_flowrings);
  1228. if (!msgbuf->flow)
  1229. goto fail;
  1230. brcmf_dbg(MSGBUF, "Feeding buffers, rx data %d, rx event %d, rx ioctl resp %d\n",
  1231. msgbuf->max_rxbufpost, msgbuf->max_eventbuf,
  1232. msgbuf->max_ioctlrespbuf);
  1233. count = 0;
  1234. do {
  1235. brcmf_msgbuf_rxbuf_data_fill(msgbuf);
  1236. if (msgbuf->max_rxbufpost != msgbuf->rxbufpost)
  1237. msleep(10);
  1238. else
  1239. break;
  1240. count++;
  1241. } while (count < 10);
  1242. brcmf_msgbuf_rxbuf_event_post(msgbuf);
  1243. brcmf_msgbuf_rxbuf_ioctlresp_post(msgbuf);
  1244. INIT_WORK(&msgbuf->flowring_work, brcmf_msgbuf_flowring_worker);
  1245. spin_lock_init(&msgbuf->flowring_work_lock);
  1246. INIT_LIST_HEAD(&msgbuf->work_queue);
  1247. brcmf_debugfs_add_entry(drvr, "msgbuf_stats", brcmf_msgbuf_stats_read);
  1248. return 0;
  1249. fail:
  1250. if (msgbuf) {
  1251. kfree(msgbuf->flow_map);
  1252. kfree(msgbuf->txstatus_done_map);
  1253. brcmf_msgbuf_release_pktids(msgbuf);
  1254. kfree(msgbuf->flowring_dma_handle);
  1255. if (msgbuf->ioctbuf)
  1256. dma_free_coherent(drvr->bus_if->dev,
  1257. BRCMF_TX_IOCTL_MAX_MSG_SIZE,
  1258. msgbuf->ioctbuf,
  1259. msgbuf->ioctbuf_handle);
  1260. kfree(msgbuf);
  1261. }
  1262. return -ENOMEM;
  1263. }
  1264. void brcmf_proto_msgbuf_detach(struct brcmf_pub *drvr)
  1265. {
  1266. struct brcmf_msgbuf *msgbuf;
  1267. struct brcmf_msgbuf_work_item *work;
  1268. brcmf_dbg(TRACE, "Enter\n");
  1269. if (drvr->proto->pd) {
  1270. msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  1271. cancel_work_sync(&msgbuf->flowring_work);
  1272. while (!list_empty(&msgbuf->work_queue)) {
  1273. work = list_first_entry(&msgbuf->work_queue,
  1274. struct brcmf_msgbuf_work_item,
  1275. queue);
  1276. list_del(&work->queue);
  1277. kfree(work);
  1278. }
  1279. kfree(msgbuf->flow_map);
  1280. kfree(msgbuf->txstatus_done_map);
  1281. if (msgbuf->txflow_wq)
  1282. destroy_workqueue(msgbuf->txflow_wq);
  1283. brcmf_flowring_detach(msgbuf->flow);
  1284. dma_free_coherent(drvr->bus_if->dev,
  1285. BRCMF_TX_IOCTL_MAX_MSG_SIZE,
  1286. msgbuf->ioctbuf, msgbuf->ioctbuf_handle);
  1287. brcmf_msgbuf_release_pktids(msgbuf);
  1288. kfree(msgbuf->flowring_dma_handle);
  1289. kfree(msgbuf);
  1290. drvr->proto->pd = NULL;
  1291. }
  1292. }