chip.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221
  1. /*
  2. * Copyright (c) 2014 Broadcom Corporation
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  11. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  13. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  14. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/delay.h>
  18. #include <linux/list.h>
  19. #include <linux/ssb/ssb_regs.h>
  20. #include <linux/bcma/bcma.h>
  21. #include <linux/bcma/bcma_regs.h>
  22. #include <defs.h>
  23. #include <soc.h>
  24. #include <brcm_hw_ids.h>
  25. #include <brcmu_utils.h>
  26. #include <chipcommon.h>
  27. #include "debug.h"
  28. #include "chip.h"
  29. /* SOC Interconnect types (aka chip types) */
  30. #define SOCI_SB 0
  31. #define SOCI_AI 1
  32. /* PL-368 DMP definitions */
  33. #define DMP_DESC_TYPE_MSK 0x0000000F
  34. #define DMP_DESC_EMPTY 0x00000000
  35. #define DMP_DESC_VALID 0x00000001
  36. #define DMP_DESC_COMPONENT 0x00000001
  37. #define DMP_DESC_MASTER_PORT 0x00000003
  38. #define DMP_DESC_ADDRESS 0x00000005
  39. #define DMP_DESC_ADDRSIZE_GT32 0x00000008
  40. #define DMP_DESC_EOT 0x0000000F
  41. #define DMP_COMP_DESIGNER 0xFFF00000
  42. #define DMP_COMP_DESIGNER_S 20
  43. #define DMP_COMP_PARTNUM 0x000FFF00
  44. #define DMP_COMP_PARTNUM_S 8
  45. #define DMP_COMP_CLASS 0x000000F0
  46. #define DMP_COMP_CLASS_S 4
  47. #define DMP_COMP_REVISION 0xFF000000
  48. #define DMP_COMP_REVISION_S 24
  49. #define DMP_COMP_NUM_SWRAP 0x00F80000
  50. #define DMP_COMP_NUM_SWRAP_S 19
  51. #define DMP_COMP_NUM_MWRAP 0x0007C000
  52. #define DMP_COMP_NUM_MWRAP_S 14
  53. #define DMP_COMP_NUM_SPORT 0x00003E00
  54. #define DMP_COMP_NUM_SPORT_S 9
  55. #define DMP_COMP_NUM_MPORT 0x000001F0
  56. #define DMP_COMP_NUM_MPORT_S 4
  57. #define DMP_MASTER_PORT_UID 0x0000FF00
  58. #define DMP_MASTER_PORT_UID_S 8
  59. #define DMP_MASTER_PORT_NUM 0x000000F0
  60. #define DMP_MASTER_PORT_NUM_S 4
  61. #define DMP_SLAVE_ADDR_BASE 0xFFFFF000
  62. #define DMP_SLAVE_ADDR_BASE_S 12
  63. #define DMP_SLAVE_PORT_NUM 0x00000F00
  64. #define DMP_SLAVE_PORT_NUM_S 8
  65. #define DMP_SLAVE_TYPE 0x000000C0
  66. #define DMP_SLAVE_TYPE_S 6
  67. #define DMP_SLAVE_TYPE_SLAVE 0
  68. #define DMP_SLAVE_TYPE_BRIDGE 1
  69. #define DMP_SLAVE_TYPE_SWRAP 2
  70. #define DMP_SLAVE_TYPE_MWRAP 3
  71. #define DMP_SLAVE_SIZE_TYPE 0x00000030
  72. #define DMP_SLAVE_SIZE_TYPE_S 4
  73. #define DMP_SLAVE_SIZE_4K 0
  74. #define DMP_SLAVE_SIZE_8K 1
  75. #define DMP_SLAVE_SIZE_16K 2
  76. #define DMP_SLAVE_SIZE_DESC 3
  77. /* EROM CompIdentB */
  78. #define CIB_REV_MASK 0xff000000
  79. #define CIB_REV_SHIFT 24
  80. /* ARM CR4 core specific control flag bits */
  81. #define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020
  82. /* D11 core specific control flag bits */
  83. #define D11_BCMA_IOCTL_PHYCLOCKEN 0x0004
  84. #define D11_BCMA_IOCTL_PHYRESET 0x0008
  85. /* chip core base & ramsize */
  86. /* bcm4329 */
  87. /* SDIO device core, ID 0x829 */
  88. #define BCM4329_CORE_BUS_BASE 0x18011000
  89. /* internal memory core, ID 0x80e */
  90. #define BCM4329_CORE_SOCRAM_BASE 0x18003000
  91. /* ARM Cortex M3 core, ID 0x82a */
  92. #define BCM4329_CORE_ARM_BASE 0x18002000
  93. #define CORE_SB(base, field) \
  94. (base + SBCONFIGOFF + offsetof(struct sbconfig, field))
  95. #define SBCOREREV(sbidh) \
  96. ((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
  97. ((sbidh) & SSB_IDHIGH_RCLO))
  98. struct sbconfig {
  99. u32 PAD[2];
  100. u32 sbipsflag; /* initiator port ocp slave flag */
  101. u32 PAD[3];
  102. u32 sbtpsflag; /* target port ocp slave flag */
  103. u32 PAD[11];
  104. u32 sbtmerrloga; /* (sonics >= 2.3) */
  105. u32 PAD;
  106. u32 sbtmerrlog; /* (sonics >= 2.3) */
  107. u32 PAD[3];
  108. u32 sbadmatch3; /* address match3 */
  109. u32 PAD;
  110. u32 sbadmatch2; /* address match2 */
  111. u32 PAD;
  112. u32 sbadmatch1; /* address match1 */
  113. u32 PAD[7];
  114. u32 sbimstate; /* initiator agent state */
  115. u32 sbintvec; /* interrupt mask */
  116. u32 sbtmstatelow; /* target state */
  117. u32 sbtmstatehigh; /* target state */
  118. u32 sbbwa0; /* bandwidth allocation table0 */
  119. u32 PAD;
  120. u32 sbimconfiglow; /* initiator configuration */
  121. u32 sbimconfighigh; /* initiator configuration */
  122. u32 sbadmatch0; /* address match0 */
  123. u32 PAD;
  124. u32 sbtmconfiglow; /* target configuration */
  125. u32 sbtmconfighigh; /* target configuration */
  126. u32 sbbconfig; /* broadcast configuration */
  127. u32 PAD;
  128. u32 sbbstate; /* broadcast state */
  129. u32 PAD[3];
  130. u32 sbactcnfg; /* activate configuration */
  131. u32 PAD[3];
  132. u32 sbflagst; /* current sbflags */
  133. u32 PAD[3];
  134. u32 sbidlow; /* identification */
  135. u32 sbidhigh; /* identification */
  136. };
  137. /* bankidx and bankinfo reg defines corerev >= 8 */
  138. #define SOCRAM_BANKINFO_RETNTRAM_MASK 0x00010000
  139. #define SOCRAM_BANKINFO_SZMASK 0x0000007f
  140. #define SOCRAM_BANKIDX_ROM_MASK 0x00000100
  141. #define SOCRAM_BANKIDX_MEMTYPE_SHIFT 8
  142. /* socram bankinfo memtype */
  143. #define SOCRAM_MEMTYPE_RAM 0
  144. #define SOCRAM_MEMTYPE_R0M 1
  145. #define SOCRAM_MEMTYPE_DEVRAM 2
  146. #define SOCRAM_BANKINFO_SZBASE 8192
  147. #define SRCI_LSS_MASK 0x00f00000
  148. #define SRCI_LSS_SHIFT 20
  149. #define SRCI_SRNB_MASK 0xf0
  150. #define SRCI_SRNB_SHIFT 4
  151. #define SRCI_SRBSZ_MASK 0xf
  152. #define SRCI_SRBSZ_SHIFT 0
  153. #define SR_BSZ_BASE 14
  154. struct sbsocramregs {
  155. u32 coreinfo;
  156. u32 bwalloc;
  157. u32 extracoreinfo;
  158. u32 biststat;
  159. u32 bankidx;
  160. u32 standbyctrl;
  161. u32 errlogstatus; /* rev 6 */
  162. u32 errlogaddr; /* rev 6 */
  163. /* used for patching rev 3 & 5 */
  164. u32 cambankidx;
  165. u32 cambankstandbyctrl;
  166. u32 cambankpatchctrl;
  167. u32 cambankpatchtblbaseaddr;
  168. u32 cambankcmdreg;
  169. u32 cambankdatareg;
  170. u32 cambankmaskreg;
  171. u32 PAD[1];
  172. u32 bankinfo; /* corev 8 */
  173. u32 bankpda;
  174. u32 PAD[14];
  175. u32 extmemconfig;
  176. u32 extmemparitycsr;
  177. u32 extmemparityerrdata;
  178. u32 extmemparityerrcnt;
  179. u32 extmemwrctrlandsize;
  180. u32 PAD[84];
  181. u32 workaround;
  182. u32 pwrctl; /* corerev >= 2 */
  183. u32 PAD[133];
  184. u32 sr_control; /* corerev >= 15 */
  185. u32 sr_status; /* corerev >= 15 */
  186. u32 sr_address; /* corerev >= 15 */
  187. u32 sr_data; /* corerev >= 15 */
  188. };
  189. #define SOCRAMREGOFFS(_f) offsetof(struct sbsocramregs, _f)
  190. #define ARMCR4_CAP (0x04)
  191. #define ARMCR4_BANKIDX (0x40)
  192. #define ARMCR4_BANKINFO (0x44)
  193. #define ARMCR4_BANKPDA (0x4C)
  194. #define ARMCR4_TCBBNB_MASK 0xf0
  195. #define ARMCR4_TCBBNB_SHIFT 4
  196. #define ARMCR4_TCBANB_MASK 0xf
  197. #define ARMCR4_TCBANB_SHIFT 0
  198. #define ARMCR4_BSZ_MASK 0x3f
  199. #define ARMCR4_BSZ_MULT 8192
  200. struct brcmf_core_priv {
  201. struct brcmf_core pub;
  202. u32 wrapbase;
  203. struct list_head list;
  204. struct brcmf_chip_priv *chip;
  205. };
  206. struct brcmf_chip_priv {
  207. struct brcmf_chip pub;
  208. const struct brcmf_buscore_ops *ops;
  209. void *ctx;
  210. /* assured first core is chipcommon, second core is buscore */
  211. struct list_head cores;
  212. u16 num_cores;
  213. bool (*iscoreup)(struct brcmf_core_priv *core);
  214. void (*coredisable)(struct brcmf_core_priv *core, u32 prereset,
  215. u32 reset);
  216. void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset,
  217. u32 postreset);
  218. };
  219. static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci,
  220. struct brcmf_core *core)
  221. {
  222. u32 regdata;
  223. regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh));
  224. core->rev = SBCOREREV(regdata);
  225. }
  226. static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core)
  227. {
  228. struct brcmf_chip_priv *ci;
  229. u32 regdata;
  230. u32 address;
  231. ci = core->chip;
  232. address = CORE_SB(core->pub.base, sbtmstatelow);
  233. regdata = ci->ops->read32(ci->ctx, address);
  234. regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
  235. SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
  236. return SSB_TMSLOW_CLOCK == regdata;
  237. }
  238. static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core)
  239. {
  240. struct brcmf_chip_priv *ci;
  241. u32 regdata;
  242. bool ret;
  243. ci = core->chip;
  244. regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  245. ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;
  246. regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
  247. ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);
  248. return ret;
  249. }
  250. static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core,
  251. u32 prereset, u32 reset)
  252. {
  253. struct brcmf_chip_priv *ci;
  254. u32 val, base;
  255. ci = core->chip;
  256. base = core->pub.base;
  257. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  258. if (val & SSB_TMSLOW_RESET)
  259. return;
  260. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  261. if ((val & SSB_TMSLOW_CLOCK) != 0) {
  262. /*
  263. * set target reject and spin until busy is clear
  264. * (preserve core-specific bits)
  265. */
  266. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  267. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  268. val | SSB_TMSLOW_REJECT);
  269. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  270. udelay(1);
  271. SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh))
  272. & SSB_TMSHIGH_BUSY), 100000);
  273. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
  274. if (val & SSB_TMSHIGH_BUSY)
  275. brcmf_err("core state still busy\n");
  276. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
  277. if (val & SSB_IDLOW_INITIATOR) {
  278. val = ci->ops->read32(ci->ctx,
  279. CORE_SB(base, sbimstate));
  280. val |= SSB_IMSTATE_REJECT;
  281. ci->ops->write32(ci->ctx,
  282. CORE_SB(base, sbimstate), val);
  283. val = ci->ops->read32(ci->ctx,
  284. CORE_SB(base, sbimstate));
  285. udelay(1);
  286. SPINWAIT((ci->ops->read32(ci->ctx,
  287. CORE_SB(base, sbimstate)) &
  288. SSB_IMSTATE_BUSY), 100000);
  289. }
  290. /* set reset and reject while enabling the clocks */
  291. val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  292. SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
  293. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val);
  294. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  295. udelay(10);
  296. /* clear the initiator reject bit */
  297. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
  298. if (val & SSB_IDLOW_INITIATOR) {
  299. val = ci->ops->read32(ci->ctx,
  300. CORE_SB(base, sbimstate));
  301. val &= ~SSB_IMSTATE_REJECT;
  302. ci->ops->write32(ci->ctx,
  303. CORE_SB(base, sbimstate), val);
  304. }
  305. }
  306. /* leave reset and reject asserted */
  307. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  308. (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET));
  309. udelay(1);
  310. }
  311. static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core,
  312. u32 prereset, u32 reset)
  313. {
  314. struct brcmf_chip_priv *ci;
  315. u32 regdata;
  316. ci = core->chip;
  317. /* if core is already in reset, skip reset */
  318. regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
  319. if ((regdata & BCMA_RESET_CTL_RESET) != 0)
  320. goto in_reset_configure;
  321. /* configure reset */
  322. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
  323. prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
  324. ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  325. /* put in reset */
  326. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL,
  327. BCMA_RESET_CTL_RESET);
  328. usleep_range(10, 20);
  329. /* wait till reset is 1 */
  330. SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) !=
  331. BCMA_RESET_CTL_RESET, 300);
  332. in_reset_configure:
  333. /* in-reset configure */
  334. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
  335. reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
  336. ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  337. }
  338. static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset,
  339. u32 reset, u32 postreset)
  340. {
  341. struct brcmf_chip_priv *ci;
  342. u32 regdata;
  343. u32 base;
  344. ci = core->chip;
  345. base = core->pub.base;
  346. /*
  347. * Must do the disable sequence first to work for
  348. * arbitrary current core state.
  349. */
  350. brcmf_chip_sb_coredisable(core, 0, 0);
  351. /*
  352. * Now do the initialization sequence.
  353. * set reset while enabling the clock and
  354. * forcing them on throughout the core
  355. */
  356. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  357. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  358. SSB_TMSLOW_RESET);
  359. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  360. udelay(1);
  361. /* clear any serror */
  362. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
  363. if (regdata & SSB_TMSHIGH_SERR)
  364. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0);
  365. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
  366. if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
  367. regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
  368. ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata);
  369. }
  370. /* clear reset and allow it to propagate throughout the core */
  371. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  372. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK);
  373. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  374. udelay(1);
  375. /* leave clock enabled */
  376. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  377. SSB_TMSLOW_CLOCK);
  378. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  379. udelay(1);
  380. }
  381. static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset,
  382. u32 reset, u32 postreset)
  383. {
  384. struct brcmf_chip_priv *ci;
  385. int count;
  386. ci = core->chip;
  387. /* must disable first to work for arbitrary current core state */
  388. brcmf_chip_ai_coredisable(core, prereset, reset);
  389. count = 0;
  390. while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) &
  391. BCMA_RESET_CTL_RESET) {
  392. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0);
  393. count++;
  394. if (count > 50)
  395. break;
  396. usleep_range(40, 60);
  397. }
  398. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
  399. postreset | BCMA_IOCTL_CLK);
  400. ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  401. }
  402. static char *brcmf_chip_name(uint chipid, char *buf, uint len)
  403. {
  404. const char *fmt;
  405. fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x";
  406. snprintf(buf, len, fmt, chipid);
  407. return buf;
  408. }
  409. static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci,
  410. u16 coreid, u32 base,
  411. u32 wrapbase)
  412. {
  413. struct brcmf_core_priv *core;
  414. core = kzalloc(sizeof(*core), GFP_KERNEL);
  415. if (!core)
  416. return ERR_PTR(-ENOMEM);
  417. core->pub.id = coreid;
  418. core->pub.base = base;
  419. core->chip = ci;
  420. core->wrapbase = wrapbase;
  421. list_add_tail(&core->list, &ci->cores);
  422. return &core->pub;
  423. }
  424. /* safety check for chipinfo */
  425. static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
  426. {
  427. struct brcmf_core_priv *core;
  428. bool need_socram = false;
  429. bool has_socram = false;
  430. bool cpu_found = false;
  431. int idx = 1;
  432. list_for_each_entry(core, &ci->cores, list) {
  433. brcmf_dbg(INFO, " [%-2d] core 0x%x:%-2d base 0x%08x wrap 0x%08x\n",
  434. idx++, core->pub.id, core->pub.rev, core->pub.base,
  435. core->wrapbase);
  436. switch (core->pub.id) {
  437. case BCMA_CORE_ARM_CM3:
  438. cpu_found = true;
  439. need_socram = true;
  440. break;
  441. case BCMA_CORE_INTERNAL_MEM:
  442. has_socram = true;
  443. break;
  444. case BCMA_CORE_ARM_CR4:
  445. cpu_found = true;
  446. break;
  447. default:
  448. break;
  449. }
  450. }
  451. if (!cpu_found) {
  452. brcmf_err("CPU core not detected\n");
  453. return -ENXIO;
  454. }
  455. /* check RAM core presence for ARM CM3 core */
  456. if (need_socram && !has_socram) {
  457. brcmf_err("RAM core not provided with ARM CM3 core\n");
  458. return -ENODEV;
  459. }
  460. return 0;
  461. }
  462. static u32 brcmf_chip_core_read32(struct brcmf_core_priv *core, u16 reg)
  463. {
  464. return core->chip->ops->read32(core->chip->ctx, core->pub.base + reg);
  465. }
  466. static void brcmf_chip_core_write32(struct brcmf_core_priv *core,
  467. u16 reg, u32 val)
  468. {
  469. core->chip->ops->write32(core->chip->ctx, core->pub.base + reg, val);
  470. }
  471. static bool brcmf_chip_socram_banksize(struct brcmf_core_priv *core, u8 idx,
  472. u32 *banksize)
  473. {
  474. u32 bankinfo;
  475. u32 bankidx = (SOCRAM_MEMTYPE_RAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
  476. bankidx |= idx;
  477. brcmf_chip_core_write32(core, SOCRAMREGOFFS(bankidx), bankidx);
  478. bankinfo = brcmf_chip_core_read32(core, SOCRAMREGOFFS(bankinfo));
  479. *banksize = (bankinfo & SOCRAM_BANKINFO_SZMASK) + 1;
  480. *banksize *= SOCRAM_BANKINFO_SZBASE;
  481. return !!(bankinfo & SOCRAM_BANKINFO_RETNTRAM_MASK);
  482. }
  483. static void brcmf_chip_socram_ramsize(struct brcmf_core_priv *sr, u32 *ramsize,
  484. u32 *srsize)
  485. {
  486. u32 coreinfo;
  487. uint nb, banksize, lss;
  488. bool retent;
  489. int i;
  490. *ramsize = 0;
  491. *srsize = 0;
  492. if (WARN_ON(sr->pub.rev < 4))
  493. return;
  494. if (!brcmf_chip_iscoreup(&sr->pub))
  495. brcmf_chip_resetcore(&sr->pub, 0, 0, 0);
  496. /* Get info for determining size */
  497. coreinfo = brcmf_chip_core_read32(sr, SOCRAMREGOFFS(coreinfo));
  498. nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
  499. if ((sr->pub.rev <= 7) || (sr->pub.rev == 12)) {
  500. banksize = (coreinfo & SRCI_SRBSZ_MASK);
  501. lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
  502. if (lss != 0)
  503. nb--;
  504. *ramsize = nb * (1 << (banksize + SR_BSZ_BASE));
  505. if (lss != 0)
  506. *ramsize += (1 << ((lss - 1) + SR_BSZ_BASE));
  507. } else {
  508. nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
  509. for (i = 0; i < nb; i++) {
  510. retent = brcmf_chip_socram_banksize(sr, i, &banksize);
  511. *ramsize += banksize;
  512. if (retent)
  513. *srsize += banksize;
  514. }
  515. }
  516. /* hardcoded save&restore memory sizes */
  517. switch (sr->chip->pub.chip) {
  518. case BRCM_CC_4334_CHIP_ID:
  519. if (sr->chip->pub.chiprev < 2)
  520. *srsize = (32 * 1024);
  521. break;
  522. case BRCM_CC_43430_CHIP_ID:
  523. /* assume sr for now as we can not check
  524. * firmware sr capability at this point.
  525. */
  526. *srsize = (64 * 1024);
  527. break;
  528. default:
  529. break;
  530. }
  531. }
  532. /** Return the TCM-RAM size of the ARMCR4 core. */
  533. static u32 brcmf_chip_tcm_ramsize(struct brcmf_core_priv *cr4)
  534. {
  535. u32 corecap;
  536. u32 memsize = 0;
  537. u32 nab;
  538. u32 nbb;
  539. u32 totb;
  540. u32 bxinfo;
  541. u32 idx;
  542. corecap = brcmf_chip_core_read32(cr4, ARMCR4_CAP);
  543. nab = (corecap & ARMCR4_TCBANB_MASK) >> ARMCR4_TCBANB_SHIFT;
  544. nbb = (corecap & ARMCR4_TCBBNB_MASK) >> ARMCR4_TCBBNB_SHIFT;
  545. totb = nab + nbb;
  546. for (idx = 0; idx < totb; idx++) {
  547. brcmf_chip_core_write32(cr4, ARMCR4_BANKIDX, idx);
  548. bxinfo = brcmf_chip_core_read32(cr4, ARMCR4_BANKINFO);
  549. memsize += ((bxinfo & ARMCR4_BSZ_MASK) + 1) * ARMCR4_BSZ_MULT;
  550. }
  551. return memsize;
  552. }
  553. static u32 brcmf_chip_tcm_rambase(struct brcmf_chip_priv *ci)
  554. {
  555. switch (ci->pub.chip) {
  556. case BRCM_CC_4345_CHIP_ID:
  557. return 0x198000;
  558. case BRCM_CC_4335_CHIP_ID:
  559. case BRCM_CC_4339_CHIP_ID:
  560. case BRCM_CC_4354_CHIP_ID:
  561. case BRCM_CC_4356_CHIP_ID:
  562. case BRCM_CC_43567_CHIP_ID:
  563. case BRCM_CC_43569_CHIP_ID:
  564. case BRCM_CC_43570_CHIP_ID:
  565. case BRCM_CC_4358_CHIP_ID:
  566. case BRCM_CC_43602_CHIP_ID:
  567. return 0x180000;
  568. default:
  569. brcmf_err("unknown chip: %s\n", ci->pub.name);
  570. break;
  571. }
  572. return 0;
  573. }
  574. static int brcmf_chip_get_raminfo(struct brcmf_chip_priv *ci)
  575. {
  576. struct brcmf_core_priv *mem_core;
  577. struct brcmf_core *mem;
  578. mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_ARM_CR4);
  579. if (mem) {
  580. mem_core = container_of(mem, struct brcmf_core_priv, pub);
  581. ci->pub.ramsize = brcmf_chip_tcm_ramsize(mem_core);
  582. ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
  583. if (!ci->pub.rambase) {
  584. brcmf_err("RAM base not provided with ARM CR4 core\n");
  585. return -EINVAL;
  586. }
  587. } else {
  588. mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_INTERNAL_MEM);
  589. mem_core = container_of(mem, struct brcmf_core_priv, pub);
  590. brcmf_chip_socram_ramsize(mem_core, &ci->pub.ramsize,
  591. &ci->pub.srsize);
  592. }
  593. brcmf_dbg(INFO, "RAM: base=0x%x size=%d (0x%x) sr=%d (0x%x)\n",
  594. ci->pub.rambase, ci->pub.ramsize, ci->pub.ramsize,
  595. ci->pub.srsize, ci->pub.srsize);
  596. if (!ci->pub.ramsize) {
  597. brcmf_err("RAM size is undetermined\n");
  598. return -ENOMEM;
  599. }
  600. return 0;
  601. }
  602. static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr,
  603. u8 *type)
  604. {
  605. u32 val;
  606. /* read next descriptor */
  607. val = ci->ops->read32(ci->ctx, *eromaddr);
  608. *eromaddr += 4;
  609. if (!type)
  610. return val;
  611. /* determine descriptor type */
  612. *type = (val & DMP_DESC_TYPE_MSK);
  613. if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS)
  614. *type = DMP_DESC_ADDRESS;
  615. return val;
  616. }
  617. static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr,
  618. u32 *regbase, u32 *wrapbase)
  619. {
  620. u8 desc;
  621. u32 val;
  622. u8 mpnum = 0;
  623. u8 stype, sztype, wraptype;
  624. *regbase = 0;
  625. *wrapbase = 0;
  626. val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
  627. if (desc == DMP_DESC_MASTER_PORT) {
  628. mpnum = (val & DMP_MASTER_PORT_NUM) >> DMP_MASTER_PORT_NUM_S;
  629. wraptype = DMP_SLAVE_TYPE_MWRAP;
  630. } else if (desc == DMP_DESC_ADDRESS) {
  631. /* revert erom address */
  632. *eromaddr -= 4;
  633. wraptype = DMP_SLAVE_TYPE_SWRAP;
  634. } else {
  635. *eromaddr -= 4;
  636. return -EILSEQ;
  637. }
  638. do {
  639. /* locate address descriptor */
  640. do {
  641. val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
  642. /* unexpected table end */
  643. if (desc == DMP_DESC_EOT) {
  644. *eromaddr -= 4;
  645. return -EFAULT;
  646. }
  647. } while (desc != DMP_DESC_ADDRESS);
  648. /* skip upper 32-bit address descriptor */
  649. if (val & DMP_DESC_ADDRSIZE_GT32)
  650. brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
  651. sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S;
  652. /* next size descriptor can be skipped */
  653. if (sztype == DMP_SLAVE_SIZE_DESC) {
  654. val = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
  655. /* skip upper size descriptor if present */
  656. if (val & DMP_DESC_ADDRSIZE_GT32)
  657. brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
  658. }
  659. /* only look for 4K register regions */
  660. if (sztype != DMP_SLAVE_SIZE_4K)
  661. continue;
  662. stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S;
  663. /* only regular slave and wrapper */
  664. if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE)
  665. *regbase = val & DMP_SLAVE_ADDR_BASE;
  666. if (*wrapbase == 0 && stype == wraptype)
  667. *wrapbase = val & DMP_SLAVE_ADDR_BASE;
  668. } while (*regbase == 0 || *wrapbase == 0);
  669. return 0;
  670. }
  671. static
  672. int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci)
  673. {
  674. struct brcmf_core *core;
  675. u32 eromaddr;
  676. u8 desc_type = 0;
  677. u32 val;
  678. u16 id;
  679. u8 nmp, nsp, nmw, nsw, rev;
  680. u32 base, wrap;
  681. int err;
  682. eromaddr = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, eromptr));
  683. while (desc_type != DMP_DESC_EOT) {
  684. val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
  685. if (!(val & DMP_DESC_VALID))
  686. continue;
  687. if (desc_type == DMP_DESC_EMPTY)
  688. continue;
  689. /* need a component descriptor */
  690. if (desc_type != DMP_DESC_COMPONENT)
  691. continue;
  692. id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S;
  693. /* next descriptor must be component as well */
  694. val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
  695. if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT))
  696. return -EFAULT;
  697. /* only look at cores with master port(s) */
  698. nmp = (val & DMP_COMP_NUM_MPORT) >> DMP_COMP_NUM_MPORT_S;
  699. nsp = (val & DMP_COMP_NUM_SPORT) >> DMP_COMP_NUM_SPORT_S;
  700. nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S;
  701. nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S;
  702. rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S;
  703. /* need core with ports */
  704. if (nmw + nsw == 0)
  705. continue;
  706. /* try to obtain register address info */
  707. err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap);
  708. if (err)
  709. continue;
  710. /* finally a core to be added */
  711. core = brcmf_chip_add_core(ci, id, base, wrap);
  712. if (IS_ERR(core))
  713. return PTR_ERR(core);
  714. core->rev = rev;
  715. }
  716. return 0;
  717. }
  718. static int brcmf_chip_recognition(struct brcmf_chip_priv *ci)
  719. {
  720. struct brcmf_core *core;
  721. u32 regdata;
  722. u32 socitype;
  723. int ret;
  724. /* Get CC core rev
  725. * Chipid is assume to be at offset 0 from SI_ENUM_BASE
  726. * For different chiptypes or old sdio hosts w/o chipcommon,
  727. * other ways of recognition should be added here.
  728. */
  729. regdata = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, chipid));
  730. ci->pub.chip = regdata & CID_ID_MASK;
  731. ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
  732. socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
  733. brcmf_chip_name(ci->pub.chip, ci->pub.name, sizeof(ci->pub.name));
  734. brcmf_dbg(INFO, "found %s chip: BCM%s, rev=%d\n",
  735. socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name,
  736. ci->pub.chiprev);
  737. if (socitype == SOCI_SB) {
  738. if (ci->pub.chip != BRCM_CC_4329_CHIP_ID) {
  739. brcmf_err("SB chip is not supported\n");
  740. return -ENODEV;
  741. }
  742. ci->iscoreup = brcmf_chip_sb_iscoreup;
  743. ci->coredisable = brcmf_chip_sb_coredisable;
  744. ci->resetcore = brcmf_chip_sb_resetcore;
  745. core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON,
  746. SI_ENUM_BASE, 0);
  747. brcmf_chip_sb_corerev(ci, core);
  748. core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV,
  749. BCM4329_CORE_BUS_BASE, 0);
  750. brcmf_chip_sb_corerev(ci, core);
  751. core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM,
  752. BCM4329_CORE_SOCRAM_BASE, 0);
  753. brcmf_chip_sb_corerev(ci, core);
  754. core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3,
  755. BCM4329_CORE_ARM_BASE, 0);
  756. brcmf_chip_sb_corerev(ci, core);
  757. core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0);
  758. brcmf_chip_sb_corerev(ci, core);
  759. } else if (socitype == SOCI_AI) {
  760. ci->iscoreup = brcmf_chip_ai_iscoreup;
  761. ci->coredisable = brcmf_chip_ai_coredisable;
  762. ci->resetcore = brcmf_chip_ai_resetcore;
  763. brcmf_chip_dmp_erom_scan(ci);
  764. } else {
  765. brcmf_err("chip backplane type %u is not supported\n",
  766. socitype);
  767. return -ENODEV;
  768. }
  769. ret = brcmf_chip_cores_check(ci);
  770. if (ret)
  771. return ret;
  772. /* assure chip is passive for core access */
  773. brcmf_chip_set_passive(&ci->pub);
  774. return brcmf_chip_get_raminfo(ci);
  775. }
  776. static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id)
  777. {
  778. struct brcmf_core *core;
  779. struct brcmf_core_priv *cr4;
  780. u32 val;
  781. core = brcmf_chip_get_core(&chip->pub, id);
  782. if (!core)
  783. return;
  784. switch (id) {
  785. case BCMA_CORE_ARM_CM3:
  786. brcmf_chip_coredisable(core, 0, 0);
  787. break;
  788. case BCMA_CORE_ARM_CR4:
  789. cr4 = container_of(core, struct brcmf_core_priv, pub);
  790. /* clear all IOCTL bits except HALT bit */
  791. val = chip->ops->read32(chip->ctx, cr4->wrapbase + BCMA_IOCTL);
  792. val &= ARMCR4_BCMA_IOCTL_CPUHALT;
  793. brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT,
  794. ARMCR4_BCMA_IOCTL_CPUHALT);
  795. break;
  796. default:
  797. brcmf_err("unknown id: %u\n", id);
  798. break;
  799. }
  800. }
  801. static int brcmf_chip_setup(struct brcmf_chip_priv *chip)
  802. {
  803. struct brcmf_chip *pub;
  804. struct brcmf_core_priv *cc;
  805. u32 base;
  806. u32 val;
  807. int ret = 0;
  808. pub = &chip->pub;
  809. cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
  810. base = cc->pub.base;
  811. /* get chipcommon capabilites */
  812. pub->cc_caps = chip->ops->read32(chip->ctx,
  813. CORE_CC_REG(base, capabilities));
  814. /* get pmu caps & rev */
  815. if (pub->cc_caps & CC_CAP_PMU) {
  816. val = chip->ops->read32(chip->ctx,
  817. CORE_CC_REG(base, pmucapabilities));
  818. pub->pmurev = val & PCAP_REV_MASK;
  819. pub->pmucaps = val;
  820. }
  821. brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n",
  822. cc->pub.rev, pub->pmurev, pub->pmucaps);
  823. /* execute bus core specific setup */
  824. if (chip->ops->setup)
  825. ret = chip->ops->setup(chip->ctx, pub);
  826. return ret;
  827. }
  828. struct brcmf_chip *brcmf_chip_attach(void *ctx,
  829. const struct brcmf_buscore_ops *ops)
  830. {
  831. struct brcmf_chip_priv *chip;
  832. int err = 0;
  833. if (WARN_ON(!ops->read32))
  834. err = -EINVAL;
  835. if (WARN_ON(!ops->write32))
  836. err = -EINVAL;
  837. if (WARN_ON(!ops->prepare))
  838. err = -EINVAL;
  839. if (WARN_ON(!ops->activate))
  840. err = -EINVAL;
  841. if (err < 0)
  842. return ERR_PTR(-EINVAL);
  843. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  844. if (!chip)
  845. return ERR_PTR(-ENOMEM);
  846. INIT_LIST_HEAD(&chip->cores);
  847. chip->num_cores = 0;
  848. chip->ops = ops;
  849. chip->ctx = ctx;
  850. err = ops->prepare(ctx);
  851. if (err < 0)
  852. goto fail;
  853. err = brcmf_chip_recognition(chip);
  854. if (err < 0)
  855. goto fail;
  856. err = brcmf_chip_setup(chip);
  857. if (err < 0)
  858. goto fail;
  859. return &chip->pub;
  860. fail:
  861. brcmf_chip_detach(&chip->pub);
  862. return ERR_PTR(err);
  863. }
  864. void brcmf_chip_detach(struct brcmf_chip *pub)
  865. {
  866. struct brcmf_chip_priv *chip;
  867. struct brcmf_core_priv *core;
  868. struct brcmf_core_priv *tmp;
  869. chip = container_of(pub, struct brcmf_chip_priv, pub);
  870. list_for_each_entry_safe(core, tmp, &chip->cores, list) {
  871. list_del(&core->list);
  872. kfree(core);
  873. }
  874. kfree(chip);
  875. }
  876. struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid)
  877. {
  878. struct brcmf_chip_priv *chip;
  879. struct brcmf_core_priv *core;
  880. chip = container_of(pub, struct brcmf_chip_priv, pub);
  881. list_for_each_entry(core, &chip->cores, list)
  882. if (core->pub.id == coreid)
  883. return &core->pub;
  884. return NULL;
  885. }
  886. struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub)
  887. {
  888. struct brcmf_chip_priv *chip;
  889. struct brcmf_core_priv *cc;
  890. chip = container_of(pub, struct brcmf_chip_priv, pub);
  891. cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
  892. if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON))
  893. return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON);
  894. return &cc->pub;
  895. }
  896. bool brcmf_chip_iscoreup(struct brcmf_core *pub)
  897. {
  898. struct brcmf_core_priv *core;
  899. core = container_of(pub, struct brcmf_core_priv, pub);
  900. return core->chip->iscoreup(core);
  901. }
  902. void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset)
  903. {
  904. struct brcmf_core_priv *core;
  905. core = container_of(pub, struct brcmf_core_priv, pub);
  906. core->chip->coredisable(core, prereset, reset);
  907. }
  908. void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset,
  909. u32 postreset)
  910. {
  911. struct brcmf_core_priv *core;
  912. core = container_of(pub, struct brcmf_core_priv, pub);
  913. core->chip->resetcore(core, prereset, reset, postreset);
  914. }
  915. static void
  916. brcmf_chip_cm3_set_passive(struct brcmf_chip_priv *chip)
  917. {
  918. struct brcmf_core *core;
  919. struct brcmf_core_priv *sr;
  920. brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
  921. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
  922. brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
  923. D11_BCMA_IOCTL_PHYCLOCKEN,
  924. D11_BCMA_IOCTL_PHYCLOCKEN,
  925. D11_BCMA_IOCTL_PHYCLOCKEN);
  926. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
  927. brcmf_chip_resetcore(core, 0, 0, 0);
  928. /* disable bank #3 remap for this device */
  929. if (chip->pub.chip == BRCM_CC_43430_CHIP_ID) {
  930. sr = container_of(core, struct brcmf_core_priv, pub);
  931. brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankidx), 3);
  932. brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankpda), 0);
  933. }
  934. }
  935. static bool brcmf_chip_cm3_set_active(struct brcmf_chip_priv *chip)
  936. {
  937. struct brcmf_core *core;
  938. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
  939. if (!brcmf_chip_iscoreup(core)) {
  940. brcmf_err("SOCRAM core is down after reset?\n");
  941. return false;
  942. }
  943. chip->ops->activate(chip->ctx, &chip->pub, 0);
  944. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3);
  945. brcmf_chip_resetcore(core, 0, 0, 0);
  946. return true;
  947. }
  948. static inline void
  949. brcmf_chip_cr4_set_passive(struct brcmf_chip_priv *chip)
  950. {
  951. struct brcmf_core *core;
  952. brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);
  953. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
  954. brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
  955. D11_BCMA_IOCTL_PHYCLOCKEN,
  956. D11_BCMA_IOCTL_PHYCLOCKEN,
  957. D11_BCMA_IOCTL_PHYCLOCKEN);
  958. }
  959. static bool brcmf_chip_cr4_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
  960. {
  961. struct brcmf_core *core;
  962. chip->ops->activate(chip->ctx, &chip->pub, rstvec);
  963. /* restore ARM */
  964. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4);
  965. brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
  966. return true;
  967. }
  968. void brcmf_chip_set_passive(struct brcmf_chip *pub)
  969. {
  970. struct brcmf_chip_priv *chip;
  971. struct brcmf_core *arm;
  972. brcmf_dbg(TRACE, "Enter\n");
  973. chip = container_of(pub, struct brcmf_chip_priv, pub);
  974. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
  975. if (arm) {
  976. brcmf_chip_cr4_set_passive(chip);
  977. return;
  978. }
  979. brcmf_chip_cm3_set_passive(chip);
  980. }
  981. bool brcmf_chip_set_active(struct brcmf_chip *pub, u32 rstvec)
  982. {
  983. struct brcmf_chip_priv *chip;
  984. struct brcmf_core *arm;
  985. brcmf_dbg(TRACE, "Enter\n");
  986. chip = container_of(pub, struct brcmf_chip_priv, pub);
  987. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
  988. if (arm)
  989. return brcmf_chip_cr4_set_active(chip, rstvec);
  990. return brcmf_chip_cm3_set_active(chip);
  991. }
  992. bool brcmf_chip_sr_capable(struct brcmf_chip *pub)
  993. {
  994. u32 base, addr, reg, pmu_cc3_mask = ~0;
  995. struct brcmf_chip_priv *chip;
  996. brcmf_dbg(TRACE, "Enter\n");
  997. /* old chips with PMU version less than 17 don't support save restore */
  998. if (pub->pmurev < 17)
  999. return false;
  1000. base = brcmf_chip_get_chipcommon(pub)->base;
  1001. chip = container_of(pub, struct brcmf_chip_priv, pub);
  1002. switch (pub->chip) {
  1003. case BRCM_CC_4354_CHIP_ID:
  1004. /* explicitly check SR engine enable bit */
  1005. pmu_cc3_mask = BIT(2);
  1006. /* fall-through */
  1007. case BRCM_CC_43241_CHIP_ID:
  1008. case BRCM_CC_4335_CHIP_ID:
  1009. case BRCM_CC_4339_CHIP_ID:
  1010. /* read PMU chipcontrol register 3 */
  1011. addr = CORE_CC_REG(base, chipcontrol_addr);
  1012. chip->ops->write32(chip->ctx, addr, 3);
  1013. addr = CORE_CC_REG(base, chipcontrol_data);
  1014. reg = chip->ops->read32(chip->ctx, addr);
  1015. return (reg & pmu_cc3_mask) != 0;
  1016. case BRCM_CC_43430_CHIP_ID:
  1017. addr = CORE_CC_REG(base, sr_control1);
  1018. reg = chip->ops->read32(chip->ctx, addr);
  1019. return reg != 0;
  1020. default:
  1021. addr = CORE_CC_REG(base, pmucapabilities_ext);
  1022. reg = chip->ops->read32(chip->ctx, addr);
  1023. if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0)
  1024. return false;
  1025. addr = CORE_CC_REG(base, retention_ctl);
  1026. reg = chip->ops->read32(chip->ctx, addr);
  1027. return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
  1028. PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
  1029. }
  1030. }