bcmsdh.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380
  1. /*
  2. * Copyright (c) 2010 Broadcom Corporation
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  11. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  13. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  14. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. /* ****************** SDIO CARD Interface Functions **************************/
  17. #include <linux/types.h>
  18. #include <linux/netdevice.h>
  19. #include <linux/pci.h>
  20. #include <linux/pci_ids.h>
  21. #include <linux/sched.h>
  22. #include <linux/completion.h>
  23. #include <linux/scatterlist.h>
  24. #include <linux/mmc/sdio.h>
  25. #include <linux/mmc/core.h>
  26. #include <linux/mmc/sdio_func.h>
  27. #include <linux/mmc/card.h>
  28. #include <linux/mmc/host.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/platform_data/brcmfmac-sdio.h>
  31. #include <linux/pm_runtime.h>
  32. #include <linux/suspend.h>
  33. #include <linux/errno.h>
  34. #include <linux/module.h>
  35. #include <linux/acpi.h>
  36. #include <net/cfg80211.h>
  37. #include <defs.h>
  38. #include <brcm_hw_ids.h>
  39. #include <brcmu_utils.h>
  40. #include <brcmu_wifi.h>
  41. #include <chipcommon.h>
  42. #include <soc.h>
  43. #include "chip.h"
  44. #include "bus.h"
  45. #include "debug.h"
  46. #include "sdio.h"
  47. #include "of.h"
  48. #define SDIOH_API_ACCESS_RETRY_LIMIT 2
  49. #define DMA_ALIGN_MASK 0x03
  50. #define SDIO_FUNC1_BLOCKSIZE 64
  51. #define SDIO_FUNC2_BLOCKSIZE 512
  52. /* Maximum milliseconds to wait for F2 to come up */
  53. #define SDIO_WAIT_F2RDY 3000
  54. #define BRCMF_DEFAULT_TXGLOM_SIZE 32 /* max tx frames in glom chain */
  55. #define BRCMF_DEFAULT_RXGLOM_SIZE 32 /* max rx frames in glom chain */
  56. struct brcmf_sdiod_freezer {
  57. atomic_t freezing;
  58. atomic_t thread_count;
  59. u32 frozen_count;
  60. wait_queue_head_t thread_freeze;
  61. struct completion resumed;
  62. };
  63. static int brcmf_sdiod_txglomsz = BRCMF_DEFAULT_TXGLOM_SIZE;
  64. module_param_named(txglomsz, brcmf_sdiod_txglomsz, int, 0);
  65. MODULE_PARM_DESC(txglomsz, "maximum tx packet chain size [SDIO]");
  66. static irqreturn_t brcmf_sdiod_oob_irqhandler(int irq, void *dev_id)
  67. {
  68. struct brcmf_bus *bus_if = dev_get_drvdata(dev_id);
  69. struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
  70. brcmf_dbg(INTR, "OOB intr triggered\n");
  71. /* out-of-band interrupt is level-triggered which won't
  72. * be cleared until dpc
  73. */
  74. if (sdiodev->irq_en) {
  75. disable_irq_nosync(irq);
  76. sdiodev->irq_en = false;
  77. }
  78. brcmf_sdio_isr(sdiodev->bus);
  79. return IRQ_HANDLED;
  80. }
  81. static void brcmf_sdiod_ib_irqhandler(struct sdio_func *func)
  82. {
  83. struct brcmf_bus *bus_if = dev_get_drvdata(&func->dev);
  84. struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
  85. brcmf_dbg(INTR, "IB intr triggered\n");
  86. brcmf_sdio_isr(sdiodev->bus);
  87. }
  88. /* dummy handler for SDIO function 2 interrupt */
  89. static void brcmf_sdiod_dummy_irqhandler(struct sdio_func *func)
  90. {
  91. }
  92. int brcmf_sdiod_intr_register(struct brcmf_sdio_dev *sdiodev)
  93. {
  94. int ret = 0;
  95. u8 data;
  96. u32 addr, gpiocontrol;
  97. unsigned long flags;
  98. if ((sdiodev->pdata) && (sdiodev->pdata->oob_irq_supported)) {
  99. brcmf_dbg(SDIO, "Enter, register OOB IRQ %d\n",
  100. sdiodev->pdata->oob_irq_nr);
  101. ret = request_irq(sdiodev->pdata->oob_irq_nr,
  102. brcmf_sdiod_oob_irqhandler,
  103. sdiodev->pdata->oob_irq_flags,
  104. "brcmf_oob_intr",
  105. &sdiodev->func[1]->dev);
  106. if (ret != 0) {
  107. brcmf_err("request_irq failed %d\n", ret);
  108. return ret;
  109. }
  110. sdiodev->oob_irq_requested = true;
  111. spin_lock_init(&sdiodev->irq_en_lock);
  112. spin_lock_irqsave(&sdiodev->irq_en_lock, flags);
  113. sdiodev->irq_en = true;
  114. spin_unlock_irqrestore(&sdiodev->irq_en_lock, flags);
  115. ret = enable_irq_wake(sdiodev->pdata->oob_irq_nr);
  116. if (ret != 0) {
  117. brcmf_err("enable_irq_wake failed %d\n", ret);
  118. return ret;
  119. }
  120. sdiodev->irq_wake = true;
  121. sdio_claim_host(sdiodev->func[1]);
  122. if (sdiodev->bus_if->chip == BRCM_CC_43362_CHIP_ID) {
  123. /* assign GPIO to SDIO core */
  124. addr = CORE_CC_REG(SI_ENUM_BASE, gpiocontrol);
  125. gpiocontrol = brcmf_sdiod_regrl(sdiodev, addr, &ret);
  126. gpiocontrol |= 0x2;
  127. brcmf_sdiod_regwl(sdiodev, addr, gpiocontrol, &ret);
  128. brcmf_sdiod_regwb(sdiodev, SBSDIO_GPIO_SELECT, 0xf,
  129. &ret);
  130. brcmf_sdiod_regwb(sdiodev, SBSDIO_GPIO_OUT, 0, &ret);
  131. brcmf_sdiod_regwb(sdiodev, SBSDIO_GPIO_EN, 0x2, &ret);
  132. }
  133. /* must configure SDIO_CCCR_IENx to enable irq */
  134. data = brcmf_sdiod_regrb(sdiodev, SDIO_CCCR_IENx, &ret);
  135. data |= 1 << SDIO_FUNC_1 | 1 << SDIO_FUNC_2 | 1;
  136. brcmf_sdiod_regwb(sdiodev, SDIO_CCCR_IENx, data, &ret);
  137. /* redirect, configure and enable io for interrupt signal */
  138. data = SDIO_SEPINT_MASK | SDIO_SEPINT_OE;
  139. if (sdiodev->pdata->oob_irq_flags & IRQF_TRIGGER_HIGH)
  140. data |= SDIO_SEPINT_ACT_HI;
  141. brcmf_sdiod_regwb(sdiodev, SDIO_CCCR_BRCM_SEPINT, data, &ret);
  142. sdio_release_host(sdiodev->func[1]);
  143. } else {
  144. brcmf_dbg(SDIO, "Entering\n");
  145. sdio_claim_host(sdiodev->func[1]);
  146. sdio_claim_irq(sdiodev->func[1], brcmf_sdiod_ib_irqhandler);
  147. sdio_claim_irq(sdiodev->func[2], brcmf_sdiod_dummy_irqhandler);
  148. sdio_release_host(sdiodev->func[1]);
  149. }
  150. return 0;
  151. }
  152. int brcmf_sdiod_intr_unregister(struct brcmf_sdio_dev *sdiodev)
  153. {
  154. brcmf_dbg(SDIO, "Entering\n");
  155. if ((sdiodev->pdata) && (sdiodev->pdata->oob_irq_supported)) {
  156. sdio_claim_host(sdiodev->func[1]);
  157. brcmf_sdiod_regwb(sdiodev, SDIO_CCCR_BRCM_SEPINT, 0, NULL);
  158. brcmf_sdiod_regwb(sdiodev, SDIO_CCCR_IENx, 0, NULL);
  159. sdio_release_host(sdiodev->func[1]);
  160. if (sdiodev->oob_irq_requested) {
  161. sdiodev->oob_irq_requested = false;
  162. if (sdiodev->irq_wake) {
  163. disable_irq_wake(sdiodev->pdata->oob_irq_nr);
  164. sdiodev->irq_wake = false;
  165. }
  166. free_irq(sdiodev->pdata->oob_irq_nr,
  167. &sdiodev->func[1]->dev);
  168. sdiodev->irq_en = false;
  169. }
  170. } else {
  171. sdio_claim_host(sdiodev->func[1]);
  172. sdio_release_irq(sdiodev->func[2]);
  173. sdio_release_irq(sdiodev->func[1]);
  174. sdio_release_host(sdiodev->func[1]);
  175. }
  176. return 0;
  177. }
  178. void brcmf_sdiod_change_state(struct brcmf_sdio_dev *sdiodev,
  179. enum brcmf_sdiod_state state)
  180. {
  181. if (sdiodev->state == BRCMF_SDIOD_NOMEDIUM ||
  182. state == sdiodev->state)
  183. return;
  184. brcmf_dbg(TRACE, "%d -> %d\n", sdiodev->state, state);
  185. switch (sdiodev->state) {
  186. case BRCMF_SDIOD_DATA:
  187. /* any other state means bus interface is down */
  188. brcmf_bus_change_state(sdiodev->bus_if, BRCMF_BUS_DOWN);
  189. break;
  190. case BRCMF_SDIOD_DOWN:
  191. /* transition from DOWN to DATA means bus interface is up */
  192. if (state == BRCMF_SDIOD_DATA)
  193. brcmf_bus_change_state(sdiodev->bus_if, BRCMF_BUS_UP);
  194. break;
  195. default:
  196. break;
  197. }
  198. sdiodev->state = state;
  199. }
  200. static inline int brcmf_sdiod_f0_writeb(struct sdio_func *func,
  201. uint regaddr, u8 byte)
  202. {
  203. int err_ret;
  204. /*
  205. * Can only directly write to some F0 registers.
  206. * Handle CCCR_IENx and CCCR_ABORT command
  207. * as a special case.
  208. */
  209. if ((regaddr == SDIO_CCCR_ABORT) ||
  210. (regaddr == SDIO_CCCR_IENx))
  211. sdio_writeb(func, byte, regaddr, &err_ret);
  212. else
  213. sdio_f0_writeb(func, byte, regaddr, &err_ret);
  214. return err_ret;
  215. }
  216. static int brcmf_sdiod_request_data(struct brcmf_sdio_dev *sdiodev, u8 fn,
  217. u32 addr, u8 regsz, void *data, bool write)
  218. {
  219. struct sdio_func *func;
  220. int ret;
  221. brcmf_dbg(SDIO, "rw=%d, func=%d, addr=0x%05x, nbytes=%d\n",
  222. write, fn, addr, regsz);
  223. /* only allow byte access on F0 */
  224. if (WARN_ON(regsz > 1 && !fn))
  225. return -EINVAL;
  226. func = sdiodev->func[fn];
  227. switch (regsz) {
  228. case sizeof(u8):
  229. if (write) {
  230. if (fn)
  231. sdio_writeb(func, *(u8 *)data, addr, &ret);
  232. else
  233. ret = brcmf_sdiod_f0_writeb(func, addr,
  234. *(u8 *)data);
  235. } else {
  236. if (fn)
  237. *(u8 *)data = sdio_readb(func, addr, &ret);
  238. else
  239. *(u8 *)data = sdio_f0_readb(func, addr, &ret);
  240. }
  241. break;
  242. case sizeof(u16):
  243. if (write)
  244. sdio_writew(func, *(u16 *)data, addr, &ret);
  245. else
  246. *(u16 *)data = sdio_readw(func, addr, &ret);
  247. break;
  248. case sizeof(u32):
  249. if (write)
  250. sdio_writel(func, *(u32 *)data, addr, &ret);
  251. else
  252. *(u32 *)data = sdio_readl(func, addr, &ret);
  253. break;
  254. default:
  255. brcmf_err("invalid size: %d\n", regsz);
  256. break;
  257. }
  258. if (ret)
  259. brcmf_dbg(SDIO, "failed to %s data F%d@0x%05x, err: %d\n",
  260. write ? "write" : "read", fn, addr, ret);
  261. return ret;
  262. }
  263. static int brcmf_sdiod_regrw_helper(struct brcmf_sdio_dev *sdiodev, u32 addr,
  264. u8 regsz, void *data, bool write)
  265. {
  266. u8 func;
  267. s32 retry = 0;
  268. int ret;
  269. if (sdiodev->state == BRCMF_SDIOD_NOMEDIUM)
  270. return -ENOMEDIUM;
  271. /*
  272. * figure out how to read the register based on address range
  273. * 0x00 ~ 0x7FF: function 0 CCCR and FBR
  274. * 0x10000 ~ 0x1FFFF: function 1 miscellaneous registers
  275. * The rest: function 1 silicon backplane core registers
  276. */
  277. if ((addr & ~REG_F0_REG_MASK) == 0)
  278. func = SDIO_FUNC_0;
  279. else
  280. func = SDIO_FUNC_1;
  281. do {
  282. if (!write)
  283. memset(data, 0, regsz);
  284. /* for retry wait for 1 ms till bus get settled down */
  285. if (retry)
  286. usleep_range(1000, 2000);
  287. ret = brcmf_sdiod_request_data(sdiodev, func, addr, regsz,
  288. data, write);
  289. } while (ret != 0 && ret != -ENOMEDIUM &&
  290. retry++ < SDIOH_API_ACCESS_RETRY_LIMIT);
  291. if (ret == -ENOMEDIUM)
  292. brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_NOMEDIUM);
  293. else if (ret != 0) {
  294. /*
  295. * SleepCSR register access can fail when
  296. * waking up the device so reduce this noise
  297. * in the logs.
  298. */
  299. if (addr != SBSDIO_FUNC1_SLEEPCSR)
  300. brcmf_err("failed to %s data F%d@0x%05x, err: %d\n",
  301. write ? "write" : "read", func, addr, ret);
  302. else
  303. brcmf_dbg(SDIO, "failed to %s data F%d@0x%05x, err: %d\n",
  304. write ? "write" : "read", func, addr, ret);
  305. }
  306. return ret;
  307. }
  308. static int
  309. brcmf_sdiod_set_sbaddr_window(struct brcmf_sdio_dev *sdiodev, u32 address)
  310. {
  311. int err = 0, i;
  312. u8 addr[3];
  313. if (sdiodev->state == BRCMF_SDIOD_NOMEDIUM)
  314. return -ENOMEDIUM;
  315. addr[0] = (address >> 8) & SBSDIO_SBADDRLOW_MASK;
  316. addr[1] = (address >> 16) & SBSDIO_SBADDRMID_MASK;
  317. addr[2] = (address >> 24) & SBSDIO_SBADDRHIGH_MASK;
  318. for (i = 0; i < 3; i++) {
  319. err = brcmf_sdiod_regrw_helper(sdiodev,
  320. SBSDIO_FUNC1_SBADDRLOW + i,
  321. sizeof(u8), &addr[i], true);
  322. if (err) {
  323. brcmf_err("failed at addr: 0x%0x\n",
  324. SBSDIO_FUNC1_SBADDRLOW + i);
  325. break;
  326. }
  327. }
  328. return err;
  329. }
  330. static int
  331. brcmf_sdiod_addrprep(struct brcmf_sdio_dev *sdiodev, uint width, u32 *addr)
  332. {
  333. uint bar0 = *addr & ~SBSDIO_SB_OFT_ADDR_MASK;
  334. int err = 0;
  335. if (bar0 != sdiodev->sbwad) {
  336. err = brcmf_sdiod_set_sbaddr_window(sdiodev, bar0);
  337. if (err)
  338. return err;
  339. sdiodev->sbwad = bar0;
  340. }
  341. *addr &= SBSDIO_SB_OFT_ADDR_MASK;
  342. if (width == 4)
  343. *addr |= SBSDIO_SB_ACCESS_2_4B_FLAG;
  344. return 0;
  345. }
  346. u8 brcmf_sdiod_regrb(struct brcmf_sdio_dev *sdiodev, u32 addr, int *ret)
  347. {
  348. u8 data;
  349. int retval;
  350. brcmf_dbg(SDIO, "addr:0x%08x\n", addr);
  351. retval = brcmf_sdiod_regrw_helper(sdiodev, addr, sizeof(data), &data,
  352. false);
  353. brcmf_dbg(SDIO, "data:0x%02x\n", data);
  354. if (ret)
  355. *ret = retval;
  356. return data;
  357. }
  358. u32 brcmf_sdiod_regrl(struct brcmf_sdio_dev *sdiodev, u32 addr, int *ret)
  359. {
  360. u32 data;
  361. int retval;
  362. brcmf_dbg(SDIO, "addr:0x%08x\n", addr);
  363. retval = brcmf_sdiod_addrprep(sdiodev, sizeof(data), &addr);
  364. if (retval)
  365. goto done;
  366. retval = brcmf_sdiod_regrw_helper(sdiodev, addr, sizeof(data), &data,
  367. false);
  368. brcmf_dbg(SDIO, "data:0x%08x\n", data);
  369. done:
  370. if (ret)
  371. *ret = retval;
  372. return data;
  373. }
  374. void brcmf_sdiod_regwb(struct brcmf_sdio_dev *sdiodev, u32 addr,
  375. u8 data, int *ret)
  376. {
  377. int retval;
  378. brcmf_dbg(SDIO, "addr:0x%08x, data:0x%02x\n", addr, data);
  379. retval = brcmf_sdiod_regrw_helper(sdiodev, addr, sizeof(data), &data,
  380. true);
  381. if (ret)
  382. *ret = retval;
  383. }
  384. void brcmf_sdiod_regwl(struct brcmf_sdio_dev *sdiodev, u32 addr,
  385. u32 data, int *ret)
  386. {
  387. int retval;
  388. brcmf_dbg(SDIO, "addr:0x%08x, data:0x%08x\n", addr, data);
  389. retval = brcmf_sdiod_addrprep(sdiodev, sizeof(data), &addr);
  390. if (retval)
  391. goto done;
  392. retval = brcmf_sdiod_regrw_helper(sdiodev, addr, sizeof(data), &data,
  393. true);
  394. done:
  395. if (ret)
  396. *ret = retval;
  397. }
  398. static int brcmf_sdiod_buffrw(struct brcmf_sdio_dev *sdiodev, uint fn,
  399. bool write, u32 addr, struct sk_buff *pkt)
  400. {
  401. unsigned int req_sz;
  402. int err;
  403. /* Single skb use the standard mmc interface */
  404. req_sz = pkt->len + 3;
  405. req_sz &= (uint)~3;
  406. if (write)
  407. err = sdio_memcpy_toio(sdiodev->func[fn], addr,
  408. ((u8 *)(pkt->data)), req_sz);
  409. else if (fn == 1)
  410. err = sdio_memcpy_fromio(sdiodev->func[fn], ((u8 *)(pkt->data)),
  411. addr, req_sz);
  412. else
  413. /* function 2 read is FIFO operation */
  414. err = sdio_readsb(sdiodev->func[fn], ((u8 *)(pkt->data)), addr,
  415. req_sz);
  416. if (err == -ENOMEDIUM)
  417. brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_NOMEDIUM);
  418. return err;
  419. }
  420. /**
  421. * brcmf_sdiod_sglist_rw - SDIO interface function for block data access
  422. * @sdiodev: brcmfmac sdio device
  423. * @fn: SDIO function number
  424. * @write: direction flag
  425. * @addr: dongle memory address as source/destination
  426. * @pkt: skb pointer
  427. *
  428. * This function takes the respbonsibility as the interface function to MMC
  429. * stack for block data access. It assumes that the skb passed down by the
  430. * caller has already been padded and aligned.
  431. */
  432. static int brcmf_sdiod_sglist_rw(struct brcmf_sdio_dev *sdiodev, uint fn,
  433. bool write, u32 addr,
  434. struct sk_buff_head *pktlist)
  435. {
  436. unsigned int req_sz, func_blk_sz, sg_cnt, sg_data_sz, pkt_offset;
  437. unsigned int max_req_sz, orig_offset, dst_offset;
  438. unsigned short max_seg_cnt, seg_sz;
  439. unsigned char *pkt_data, *orig_data, *dst_data;
  440. struct sk_buff *pkt_next = NULL, *local_pkt_next;
  441. struct sk_buff_head local_list, *target_list;
  442. struct mmc_request mmc_req;
  443. struct mmc_command mmc_cmd;
  444. struct mmc_data mmc_dat;
  445. struct scatterlist *sgl;
  446. int ret = 0;
  447. if (!pktlist->qlen)
  448. return -EINVAL;
  449. target_list = pktlist;
  450. /* for host with broken sg support, prepare a page aligned list */
  451. __skb_queue_head_init(&local_list);
  452. if (sdiodev->pdata && sdiodev->pdata->broken_sg_support && !write) {
  453. req_sz = 0;
  454. skb_queue_walk(pktlist, pkt_next)
  455. req_sz += pkt_next->len;
  456. req_sz = ALIGN(req_sz, sdiodev->func[fn]->cur_blksize);
  457. while (req_sz > PAGE_SIZE) {
  458. pkt_next = brcmu_pkt_buf_get_skb(PAGE_SIZE);
  459. if (pkt_next == NULL) {
  460. ret = -ENOMEM;
  461. goto exit;
  462. }
  463. __skb_queue_tail(&local_list, pkt_next);
  464. req_sz -= PAGE_SIZE;
  465. }
  466. pkt_next = brcmu_pkt_buf_get_skb(req_sz);
  467. if (pkt_next == NULL) {
  468. ret = -ENOMEM;
  469. goto exit;
  470. }
  471. __skb_queue_tail(&local_list, pkt_next);
  472. target_list = &local_list;
  473. }
  474. func_blk_sz = sdiodev->func[fn]->cur_blksize;
  475. max_req_sz = sdiodev->max_request_size;
  476. max_seg_cnt = min_t(unsigned short, sdiodev->max_segment_count,
  477. target_list->qlen);
  478. seg_sz = target_list->qlen;
  479. pkt_offset = 0;
  480. pkt_next = target_list->next;
  481. memset(&mmc_req, 0, sizeof(struct mmc_request));
  482. memset(&mmc_cmd, 0, sizeof(struct mmc_command));
  483. memset(&mmc_dat, 0, sizeof(struct mmc_data));
  484. mmc_dat.sg = sdiodev->sgtable.sgl;
  485. mmc_dat.blksz = func_blk_sz;
  486. mmc_dat.flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
  487. mmc_cmd.opcode = SD_IO_RW_EXTENDED;
  488. mmc_cmd.arg = write ? 1<<31 : 0; /* write flag */
  489. mmc_cmd.arg |= (fn & 0x7) << 28; /* SDIO func num */
  490. mmc_cmd.arg |= 1<<27; /* block mode */
  491. /* for function 1 the addr will be incremented */
  492. mmc_cmd.arg |= (fn == 1) ? 1<<26 : 0;
  493. mmc_cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
  494. mmc_req.cmd = &mmc_cmd;
  495. mmc_req.data = &mmc_dat;
  496. while (seg_sz) {
  497. req_sz = 0;
  498. sg_cnt = 0;
  499. sgl = sdiodev->sgtable.sgl;
  500. /* prep sg table */
  501. while (pkt_next != (struct sk_buff *)target_list) {
  502. pkt_data = pkt_next->data + pkt_offset;
  503. sg_data_sz = pkt_next->len - pkt_offset;
  504. if (sg_data_sz > sdiodev->max_segment_size)
  505. sg_data_sz = sdiodev->max_segment_size;
  506. if (sg_data_sz > max_req_sz - req_sz)
  507. sg_data_sz = max_req_sz - req_sz;
  508. sg_set_buf(sgl, pkt_data, sg_data_sz);
  509. sg_cnt++;
  510. sgl = sg_next(sgl);
  511. req_sz += sg_data_sz;
  512. pkt_offset += sg_data_sz;
  513. if (pkt_offset == pkt_next->len) {
  514. pkt_offset = 0;
  515. pkt_next = pkt_next->next;
  516. }
  517. if (req_sz >= max_req_sz || sg_cnt >= max_seg_cnt)
  518. break;
  519. }
  520. seg_sz -= sg_cnt;
  521. if (req_sz % func_blk_sz != 0) {
  522. brcmf_err("sg request length %u is not %u aligned\n",
  523. req_sz, func_blk_sz);
  524. ret = -ENOTBLK;
  525. goto exit;
  526. }
  527. mmc_dat.sg_len = sg_cnt;
  528. mmc_dat.blocks = req_sz / func_blk_sz;
  529. mmc_cmd.arg |= (addr & 0x1FFFF) << 9; /* address */
  530. mmc_cmd.arg |= mmc_dat.blocks & 0x1FF; /* block count */
  531. /* incrementing addr for function 1 */
  532. if (fn == 1)
  533. addr += req_sz;
  534. mmc_set_data_timeout(&mmc_dat, sdiodev->func[fn]->card);
  535. mmc_wait_for_req(sdiodev->func[fn]->card->host, &mmc_req);
  536. ret = mmc_cmd.error ? mmc_cmd.error : mmc_dat.error;
  537. if (ret == -ENOMEDIUM) {
  538. brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_NOMEDIUM);
  539. break;
  540. } else if (ret != 0) {
  541. brcmf_err("CMD53 sg block %s failed %d\n",
  542. write ? "write" : "read", ret);
  543. ret = -EIO;
  544. break;
  545. }
  546. }
  547. if (sdiodev->pdata && sdiodev->pdata->broken_sg_support && !write) {
  548. local_pkt_next = local_list.next;
  549. orig_offset = 0;
  550. skb_queue_walk(pktlist, pkt_next) {
  551. dst_offset = 0;
  552. do {
  553. req_sz = local_pkt_next->len - orig_offset;
  554. req_sz = min_t(uint, pkt_next->len - dst_offset,
  555. req_sz);
  556. orig_data = local_pkt_next->data + orig_offset;
  557. dst_data = pkt_next->data + dst_offset;
  558. memcpy(dst_data, orig_data, req_sz);
  559. orig_offset += req_sz;
  560. dst_offset += req_sz;
  561. if (orig_offset == local_pkt_next->len) {
  562. orig_offset = 0;
  563. local_pkt_next = local_pkt_next->next;
  564. }
  565. if (dst_offset == pkt_next->len)
  566. break;
  567. } while (!skb_queue_empty(&local_list));
  568. }
  569. }
  570. exit:
  571. sg_init_table(sdiodev->sgtable.sgl, sdiodev->sgtable.orig_nents);
  572. while ((pkt_next = __skb_dequeue(&local_list)) != NULL)
  573. brcmu_pkt_buf_free_skb(pkt_next);
  574. return ret;
  575. }
  576. int brcmf_sdiod_recv_buf(struct brcmf_sdio_dev *sdiodev, u8 *buf, uint nbytes)
  577. {
  578. struct sk_buff *mypkt;
  579. int err;
  580. mypkt = brcmu_pkt_buf_get_skb(nbytes);
  581. if (!mypkt) {
  582. brcmf_err("brcmu_pkt_buf_get_skb failed: len %d\n",
  583. nbytes);
  584. return -EIO;
  585. }
  586. err = brcmf_sdiod_recv_pkt(sdiodev, mypkt);
  587. if (!err)
  588. memcpy(buf, mypkt->data, nbytes);
  589. brcmu_pkt_buf_free_skb(mypkt);
  590. return err;
  591. }
  592. int brcmf_sdiod_recv_pkt(struct brcmf_sdio_dev *sdiodev, struct sk_buff *pkt)
  593. {
  594. u32 addr = sdiodev->sbwad;
  595. int err = 0;
  596. brcmf_dbg(SDIO, "addr = 0x%x, size = %d\n", addr, pkt->len);
  597. err = brcmf_sdiod_addrprep(sdiodev, 4, &addr);
  598. if (err)
  599. goto done;
  600. err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, false, addr, pkt);
  601. done:
  602. return err;
  603. }
  604. int brcmf_sdiod_recv_chain(struct brcmf_sdio_dev *sdiodev,
  605. struct sk_buff_head *pktq, uint totlen)
  606. {
  607. struct sk_buff *glom_skb;
  608. struct sk_buff *skb;
  609. u32 addr = sdiodev->sbwad;
  610. int err = 0;
  611. brcmf_dbg(SDIO, "addr = 0x%x, size = %d\n",
  612. addr, pktq->qlen);
  613. err = brcmf_sdiod_addrprep(sdiodev, 4, &addr);
  614. if (err)
  615. goto done;
  616. if (pktq->qlen == 1)
  617. err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, false, addr,
  618. pktq->next);
  619. else if (!sdiodev->sg_support) {
  620. glom_skb = brcmu_pkt_buf_get_skb(totlen);
  621. if (!glom_skb)
  622. return -ENOMEM;
  623. err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, false, addr,
  624. glom_skb);
  625. if (err)
  626. goto done;
  627. skb_queue_walk(pktq, skb) {
  628. memcpy(skb->data, glom_skb->data, skb->len);
  629. skb_pull(glom_skb, skb->len);
  630. }
  631. } else
  632. err = brcmf_sdiod_sglist_rw(sdiodev, SDIO_FUNC_2, false, addr,
  633. pktq);
  634. done:
  635. return err;
  636. }
  637. int brcmf_sdiod_send_buf(struct brcmf_sdio_dev *sdiodev, u8 *buf, uint nbytes)
  638. {
  639. struct sk_buff *mypkt;
  640. u32 addr = sdiodev->sbwad;
  641. int err;
  642. mypkt = brcmu_pkt_buf_get_skb(nbytes);
  643. if (!mypkt) {
  644. brcmf_err("brcmu_pkt_buf_get_skb failed: len %d\n",
  645. nbytes);
  646. return -EIO;
  647. }
  648. memcpy(mypkt->data, buf, nbytes);
  649. err = brcmf_sdiod_addrprep(sdiodev, 4, &addr);
  650. if (!err)
  651. err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, true, addr,
  652. mypkt);
  653. brcmu_pkt_buf_free_skb(mypkt);
  654. return err;
  655. }
  656. int brcmf_sdiod_send_pkt(struct brcmf_sdio_dev *sdiodev,
  657. struct sk_buff_head *pktq)
  658. {
  659. struct sk_buff *skb;
  660. u32 addr = sdiodev->sbwad;
  661. int err;
  662. brcmf_dbg(SDIO, "addr = 0x%x, size = %d\n", addr, pktq->qlen);
  663. err = brcmf_sdiod_addrprep(sdiodev, 4, &addr);
  664. if (err)
  665. return err;
  666. if (pktq->qlen == 1 || !sdiodev->sg_support)
  667. skb_queue_walk(pktq, skb) {
  668. err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, true,
  669. addr, skb);
  670. if (err)
  671. break;
  672. }
  673. else
  674. err = brcmf_sdiod_sglist_rw(sdiodev, SDIO_FUNC_2, true, addr,
  675. pktq);
  676. return err;
  677. }
  678. int
  679. brcmf_sdiod_ramrw(struct brcmf_sdio_dev *sdiodev, bool write, u32 address,
  680. u8 *data, uint size)
  681. {
  682. int bcmerror = 0;
  683. struct sk_buff *pkt;
  684. u32 sdaddr;
  685. uint dsize;
  686. dsize = min_t(uint, SBSDIO_SB_OFT_ADDR_LIMIT, size);
  687. pkt = dev_alloc_skb(dsize);
  688. if (!pkt) {
  689. brcmf_err("dev_alloc_skb failed: len %d\n", dsize);
  690. return -EIO;
  691. }
  692. pkt->priority = 0;
  693. /* Determine initial transfer parameters */
  694. sdaddr = address & SBSDIO_SB_OFT_ADDR_MASK;
  695. if ((sdaddr + size) & SBSDIO_SBWINDOW_MASK)
  696. dsize = (SBSDIO_SB_OFT_ADDR_LIMIT - sdaddr);
  697. else
  698. dsize = size;
  699. sdio_claim_host(sdiodev->func[1]);
  700. /* Do the transfer(s) */
  701. while (size) {
  702. /* Set the backplane window to include the start address */
  703. bcmerror = brcmf_sdiod_set_sbaddr_window(sdiodev, address);
  704. if (bcmerror)
  705. break;
  706. brcmf_dbg(SDIO, "%s %d bytes at offset 0x%08x in window 0x%08x\n",
  707. write ? "write" : "read", dsize,
  708. sdaddr, address & SBSDIO_SBWINDOW_MASK);
  709. sdaddr &= SBSDIO_SB_OFT_ADDR_MASK;
  710. sdaddr |= SBSDIO_SB_ACCESS_2_4B_FLAG;
  711. skb_put(pkt, dsize);
  712. if (write)
  713. memcpy(pkt->data, data, dsize);
  714. bcmerror = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_1, write,
  715. sdaddr, pkt);
  716. if (bcmerror) {
  717. brcmf_err("membytes transfer failed\n");
  718. break;
  719. }
  720. if (!write)
  721. memcpy(data, pkt->data, dsize);
  722. skb_trim(pkt, 0);
  723. /* Adjust for next transfer (if any) */
  724. size -= dsize;
  725. if (size) {
  726. data += dsize;
  727. address += dsize;
  728. sdaddr = 0;
  729. dsize = min_t(uint, SBSDIO_SB_OFT_ADDR_LIMIT, size);
  730. }
  731. }
  732. dev_kfree_skb(pkt);
  733. /* Return the window to backplane enumeration space for core access */
  734. if (brcmf_sdiod_set_sbaddr_window(sdiodev, sdiodev->sbwad))
  735. brcmf_err("FAILED to set window back to 0x%x\n",
  736. sdiodev->sbwad);
  737. sdio_release_host(sdiodev->func[1]);
  738. return bcmerror;
  739. }
  740. int brcmf_sdiod_abort(struct brcmf_sdio_dev *sdiodev, uint fn)
  741. {
  742. char t_func = (char)fn;
  743. brcmf_dbg(SDIO, "Enter\n");
  744. /* issue abort cmd52 command through F0 */
  745. brcmf_sdiod_request_data(sdiodev, SDIO_FUNC_0, SDIO_CCCR_ABORT,
  746. sizeof(t_func), &t_func, true);
  747. brcmf_dbg(SDIO, "Exit\n");
  748. return 0;
  749. }
  750. static void brcmf_sdiod_sgtable_alloc(struct brcmf_sdio_dev *sdiodev)
  751. {
  752. uint nents;
  753. int err;
  754. if (!sdiodev->sg_support)
  755. return;
  756. nents = max_t(uint, BRCMF_DEFAULT_RXGLOM_SIZE, brcmf_sdiod_txglomsz);
  757. nents += (nents >> 4) + 1;
  758. WARN_ON(nents > sdiodev->max_segment_count);
  759. brcmf_dbg(TRACE, "nents=%d\n", nents);
  760. err = sg_alloc_table(&sdiodev->sgtable, nents, GFP_KERNEL);
  761. if (err < 0) {
  762. brcmf_err("allocation failed: disable scatter-gather");
  763. sdiodev->sg_support = false;
  764. }
  765. sdiodev->txglomsz = brcmf_sdiod_txglomsz;
  766. }
  767. #ifdef CONFIG_PM_SLEEP
  768. static int brcmf_sdiod_freezer_attach(struct brcmf_sdio_dev *sdiodev)
  769. {
  770. sdiodev->freezer = kzalloc(sizeof(*sdiodev->freezer), GFP_KERNEL);
  771. if (!sdiodev->freezer)
  772. return -ENOMEM;
  773. atomic_set(&sdiodev->freezer->thread_count, 0);
  774. atomic_set(&sdiodev->freezer->freezing, 0);
  775. init_waitqueue_head(&sdiodev->freezer->thread_freeze);
  776. init_completion(&sdiodev->freezer->resumed);
  777. return 0;
  778. }
  779. static void brcmf_sdiod_freezer_detach(struct brcmf_sdio_dev *sdiodev)
  780. {
  781. if (sdiodev->freezer) {
  782. WARN_ON(atomic_read(&sdiodev->freezer->freezing));
  783. kfree(sdiodev->freezer);
  784. }
  785. }
  786. static int brcmf_sdiod_freezer_on(struct brcmf_sdio_dev *sdiodev)
  787. {
  788. atomic_t *expect = &sdiodev->freezer->thread_count;
  789. int res = 0;
  790. sdiodev->freezer->frozen_count = 0;
  791. reinit_completion(&sdiodev->freezer->resumed);
  792. atomic_set(&sdiodev->freezer->freezing, 1);
  793. brcmf_sdio_trigger_dpc(sdiodev->bus);
  794. wait_event(sdiodev->freezer->thread_freeze,
  795. atomic_read(expect) == sdiodev->freezer->frozen_count);
  796. sdio_claim_host(sdiodev->func[1]);
  797. res = brcmf_sdio_sleep(sdiodev->bus, true);
  798. sdio_release_host(sdiodev->func[1]);
  799. return res;
  800. }
  801. static void brcmf_sdiod_freezer_off(struct brcmf_sdio_dev *sdiodev)
  802. {
  803. sdio_claim_host(sdiodev->func[1]);
  804. brcmf_sdio_sleep(sdiodev->bus, false);
  805. sdio_release_host(sdiodev->func[1]);
  806. atomic_set(&sdiodev->freezer->freezing, 0);
  807. complete_all(&sdiodev->freezer->resumed);
  808. }
  809. bool brcmf_sdiod_freezing(struct brcmf_sdio_dev *sdiodev)
  810. {
  811. return atomic_read(&sdiodev->freezer->freezing);
  812. }
  813. void brcmf_sdiod_try_freeze(struct brcmf_sdio_dev *sdiodev)
  814. {
  815. if (!brcmf_sdiod_freezing(sdiodev))
  816. return;
  817. sdiodev->freezer->frozen_count++;
  818. wake_up(&sdiodev->freezer->thread_freeze);
  819. wait_for_completion(&sdiodev->freezer->resumed);
  820. }
  821. void brcmf_sdiod_freezer_count(struct brcmf_sdio_dev *sdiodev)
  822. {
  823. atomic_inc(&sdiodev->freezer->thread_count);
  824. }
  825. void brcmf_sdiod_freezer_uncount(struct brcmf_sdio_dev *sdiodev)
  826. {
  827. atomic_dec(&sdiodev->freezer->thread_count);
  828. }
  829. #else
  830. static int brcmf_sdiod_freezer_attach(struct brcmf_sdio_dev *sdiodev)
  831. {
  832. return 0;
  833. }
  834. static void brcmf_sdiod_freezer_detach(struct brcmf_sdio_dev *sdiodev)
  835. {
  836. }
  837. #endif /* CONFIG_PM_SLEEP */
  838. static int brcmf_sdiod_remove(struct brcmf_sdio_dev *sdiodev)
  839. {
  840. sdiodev->state = BRCMF_SDIOD_DOWN;
  841. if (sdiodev->bus) {
  842. brcmf_sdio_remove(sdiodev->bus);
  843. sdiodev->bus = NULL;
  844. }
  845. brcmf_sdiod_freezer_detach(sdiodev);
  846. /* Disable Function 2 */
  847. sdio_claim_host(sdiodev->func[2]);
  848. sdio_disable_func(sdiodev->func[2]);
  849. sdio_release_host(sdiodev->func[2]);
  850. /* Disable Function 1 */
  851. sdio_claim_host(sdiodev->func[1]);
  852. sdio_disable_func(sdiodev->func[1]);
  853. sdio_release_host(sdiodev->func[1]);
  854. sg_free_table(&sdiodev->sgtable);
  855. sdiodev->sbwad = 0;
  856. pm_runtime_allow(sdiodev->func[1]->card->host->parent);
  857. return 0;
  858. }
  859. static void brcmf_sdiod_host_fixup(struct mmc_host *host)
  860. {
  861. /* runtime-pm powers off the device */
  862. pm_runtime_forbid(host->parent);
  863. /* avoid removal detection upon resume */
  864. host->caps |= MMC_CAP_NONREMOVABLE;
  865. }
  866. static int brcmf_sdiod_probe(struct brcmf_sdio_dev *sdiodev)
  867. {
  868. struct sdio_func *func;
  869. struct mmc_host *host;
  870. uint max_blocks;
  871. int ret = 0;
  872. sdiodev->num_funcs = 2;
  873. sdio_claim_host(sdiodev->func[1]);
  874. ret = sdio_set_block_size(sdiodev->func[1], SDIO_FUNC1_BLOCKSIZE);
  875. if (ret) {
  876. brcmf_err("Failed to set F1 blocksize\n");
  877. sdio_release_host(sdiodev->func[1]);
  878. goto out;
  879. }
  880. ret = sdio_set_block_size(sdiodev->func[2], SDIO_FUNC2_BLOCKSIZE);
  881. if (ret) {
  882. brcmf_err("Failed to set F2 blocksize\n");
  883. sdio_release_host(sdiodev->func[1]);
  884. goto out;
  885. }
  886. /* increase F2 timeout */
  887. sdiodev->func[2]->enable_timeout = SDIO_WAIT_F2RDY;
  888. /* Enable Function 1 */
  889. ret = sdio_enable_func(sdiodev->func[1]);
  890. sdio_release_host(sdiodev->func[1]);
  891. if (ret) {
  892. brcmf_err("Failed to enable F1: err=%d\n", ret);
  893. goto out;
  894. }
  895. /*
  896. * determine host related variables after brcmf_sdiod_probe()
  897. * as func->cur_blksize is properly set and F2 init has been
  898. * completed successfully.
  899. */
  900. func = sdiodev->func[2];
  901. host = func->card->host;
  902. sdiodev->sg_support = host->max_segs > 1;
  903. max_blocks = min_t(uint, host->max_blk_count, 511u);
  904. sdiodev->max_request_size = min_t(uint, host->max_req_size,
  905. max_blocks * func->cur_blksize);
  906. sdiodev->max_segment_count = min_t(uint, host->max_segs,
  907. SG_MAX_SINGLE_ALLOC);
  908. sdiodev->max_segment_size = host->max_seg_size;
  909. /* allocate scatter-gather table. sg support
  910. * will be disabled upon allocation failure.
  911. */
  912. brcmf_sdiod_sgtable_alloc(sdiodev);
  913. ret = brcmf_sdiod_freezer_attach(sdiodev);
  914. if (ret)
  915. goto out;
  916. /* try to attach to the target device */
  917. sdiodev->bus = brcmf_sdio_probe(sdiodev);
  918. if (!sdiodev->bus) {
  919. ret = -ENODEV;
  920. goto out;
  921. }
  922. brcmf_sdiod_host_fixup(host);
  923. out:
  924. if (ret)
  925. brcmf_sdiod_remove(sdiodev);
  926. return ret;
  927. }
  928. #define BRCMF_SDIO_DEVICE(dev_id) \
  929. {SDIO_DEVICE(SDIO_VENDOR_ID_BROADCOM, dev_id)}
  930. /* devices we support, null terminated */
  931. static const struct sdio_device_id brcmf_sdmmc_ids[] = {
  932. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43143),
  933. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43241),
  934. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4329),
  935. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4330),
  936. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4334),
  937. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43340),
  938. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43341),
  939. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43362),
  940. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4335_4339),
  941. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43430),
  942. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4345),
  943. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4354),
  944. { /* end: all zeroes */ }
  945. };
  946. MODULE_DEVICE_TABLE(sdio, brcmf_sdmmc_ids);
  947. static struct brcmfmac_sdio_platform_data *brcmfmac_sdio_pdata;
  948. static void brcmf_sdiod_acpi_set_power_manageable(struct device *dev,
  949. int val)
  950. {
  951. #if IS_ENABLED(CONFIG_ACPI)
  952. struct acpi_device *adev;
  953. adev = ACPI_COMPANION(dev);
  954. if (adev)
  955. adev->flags.power_manageable = 0;
  956. #endif
  957. }
  958. static int brcmf_ops_sdio_probe(struct sdio_func *func,
  959. const struct sdio_device_id *id)
  960. {
  961. int err;
  962. struct brcmf_sdio_dev *sdiodev;
  963. struct brcmf_bus *bus_if;
  964. struct device *dev;
  965. brcmf_dbg(SDIO, "Enter\n");
  966. brcmf_dbg(SDIO, "Class=%x\n", func->class);
  967. brcmf_dbg(SDIO, "sdio vendor ID: 0x%04x\n", func->vendor);
  968. brcmf_dbg(SDIO, "sdio device ID: 0x%04x\n", func->device);
  969. brcmf_dbg(SDIO, "Function#: %d\n", func->num);
  970. dev = &func->dev;
  971. /* prohibit ACPI power management for this device */
  972. brcmf_sdiod_acpi_set_power_manageable(dev, 0);
  973. /* Consume func num 1 but dont do anything with it. */
  974. if (func->num == 1)
  975. return 0;
  976. /* Ignore anything but func 2 */
  977. if (func->num != 2)
  978. return -ENODEV;
  979. bus_if = kzalloc(sizeof(struct brcmf_bus), GFP_KERNEL);
  980. if (!bus_if)
  981. return -ENOMEM;
  982. sdiodev = kzalloc(sizeof(struct brcmf_sdio_dev), GFP_KERNEL);
  983. if (!sdiodev) {
  984. kfree(bus_if);
  985. return -ENOMEM;
  986. }
  987. /* store refs to functions used. mmc_card does
  988. * not hold the F0 function pointer.
  989. */
  990. sdiodev->func[0] = kmemdup(func, sizeof(*func), GFP_KERNEL);
  991. sdiodev->func[0]->num = 0;
  992. sdiodev->func[1] = func->card->sdio_func[0];
  993. sdiodev->func[2] = func;
  994. sdiodev->bus_if = bus_if;
  995. bus_if->bus_priv.sdio = sdiodev;
  996. bus_if->proto_type = BRCMF_PROTO_BCDC;
  997. dev_set_drvdata(&func->dev, bus_if);
  998. dev_set_drvdata(&sdiodev->func[1]->dev, bus_if);
  999. sdiodev->dev = &sdiodev->func[1]->dev;
  1000. sdiodev->pdata = brcmfmac_sdio_pdata;
  1001. if (!sdiodev->pdata)
  1002. brcmf_of_probe(sdiodev);
  1003. #ifdef CONFIG_PM_SLEEP
  1004. /* wowl can be supported when KEEP_POWER is true and (WAKE_SDIO_IRQ
  1005. * is true or when platform data OOB irq is true).
  1006. */
  1007. if ((sdio_get_host_pm_caps(sdiodev->func[1]) & MMC_PM_KEEP_POWER) &&
  1008. ((sdio_get_host_pm_caps(sdiodev->func[1]) & MMC_PM_WAKE_SDIO_IRQ) ||
  1009. (sdiodev->pdata && sdiodev->pdata->oob_irq_supported)))
  1010. bus_if->wowl_supported = true;
  1011. #endif
  1012. brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_DOWN);
  1013. brcmf_dbg(SDIO, "F2 found, calling brcmf_sdiod_probe...\n");
  1014. err = brcmf_sdiod_probe(sdiodev);
  1015. if (err) {
  1016. brcmf_err("F2 error, probe failed %d...\n", err);
  1017. goto fail;
  1018. }
  1019. brcmf_dbg(SDIO, "F2 init completed...\n");
  1020. return 0;
  1021. fail:
  1022. dev_set_drvdata(&func->dev, NULL);
  1023. dev_set_drvdata(&sdiodev->func[1]->dev, NULL);
  1024. kfree(sdiodev->func[0]);
  1025. kfree(sdiodev);
  1026. kfree(bus_if);
  1027. return err;
  1028. }
  1029. static void brcmf_ops_sdio_remove(struct sdio_func *func)
  1030. {
  1031. struct brcmf_bus *bus_if;
  1032. struct brcmf_sdio_dev *sdiodev;
  1033. brcmf_dbg(SDIO, "Enter\n");
  1034. brcmf_dbg(SDIO, "sdio vendor ID: 0x%04x\n", func->vendor);
  1035. brcmf_dbg(SDIO, "sdio device ID: 0x%04x\n", func->device);
  1036. brcmf_dbg(SDIO, "Function: %d\n", func->num);
  1037. if (func->num != 1)
  1038. return;
  1039. bus_if = dev_get_drvdata(&func->dev);
  1040. if (bus_if) {
  1041. sdiodev = bus_if->bus_priv.sdio;
  1042. brcmf_sdiod_remove(sdiodev);
  1043. dev_set_drvdata(&sdiodev->func[1]->dev, NULL);
  1044. dev_set_drvdata(&sdiodev->func[2]->dev, NULL);
  1045. kfree(bus_if);
  1046. kfree(sdiodev->func[0]);
  1047. kfree(sdiodev);
  1048. }
  1049. brcmf_dbg(SDIO, "Exit\n");
  1050. }
  1051. void brcmf_sdio_wowl_config(struct device *dev, bool enabled)
  1052. {
  1053. struct brcmf_bus *bus_if = dev_get_drvdata(dev);
  1054. struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
  1055. brcmf_dbg(SDIO, "Configuring WOWL, enabled=%d\n", enabled);
  1056. sdiodev->wowl_enabled = enabled;
  1057. }
  1058. #ifdef CONFIG_PM_SLEEP
  1059. static int brcmf_ops_sdio_suspend(struct device *dev)
  1060. {
  1061. struct sdio_func *func;
  1062. struct brcmf_bus *bus_if;
  1063. struct brcmf_sdio_dev *sdiodev;
  1064. mmc_pm_flag_t sdio_flags;
  1065. func = container_of(dev, struct sdio_func, dev);
  1066. brcmf_dbg(SDIO, "Enter: F%d\n", func->num);
  1067. if (func->num != SDIO_FUNC_1)
  1068. return 0;
  1069. bus_if = dev_get_drvdata(dev);
  1070. sdiodev = bus_if->bus_priv.sdio;
  1071. brcmf_sdiod_freezer_on(sdiodev);
  1072. brcmf_sdio_wd_timer(sdiodev->bus, 0);
  1073. sdio_flags = MMC_PM_KEEP_POWER;
  1074. if (sdiodev->wowl_enabled) {
  1075. if (sdiodev->pdata->oob_irq_supported)
  1076. enable_irq_wake(sdiodev->pdata->oob_irq_nr);
  1077. else
  1078. sdio_flags |= MMC_PM_WAKE_SDIO_IRQ;
  1079. }
  1080. if (sdio_set_host_pm_flags(sdiodev->func[1], sdio_flags))
  1081. brcmf_err("Failed to set pm_flags %x\n", sdio_flags);
  1082. return 0;
  1083. }
  1084. static int brcmf_ops_sdio_resume(struct device *dev)
  1085. {
  1086. struct brcmf_bus *bus_if = dev_get_drvdata(dev);
  1087. struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
  1088. struct sdio_func *func = container_of(dev, struct sdio_func, dev);
  1089. brcmf_dbg(SDIO, "Enter: F%d\n", func->num);
  1090. if (func->num != SDIO_FUNC_2)
  1091. return 0;
  1092. brcmf_sdiod_freezer_off(sdiodev);
  1093. return 0;
  1094. }
  1095. static const struct dev_pm_ops brcmf_sdio_pm_ops = {
  1096. .suspend = brcmf_ops_sdio_suspend,
  1097. .resume = brcmf_ops_sdio_resume,
  1098. };
  1099. #endif /* CONFIG_PM_SLEEP */
  1100. static struct sdio_driver brcmf_sdmmc_driver = {
  1101. .probe = brcmf_ops_sdio_probe,
  1102. .remove = brcmf_ops_sdio_remove,
  1103. .name = BRCMFMAC_SDIO_PDATA_NAME,
  1104. .id_table = brcmf_sdmmc_ids,
  1105. .drv = {
  1106. .owner = THIS_MODULE,
  1107. #ifdef CONFIG_PM_SLEEP
  1108. .pm = &brcmf_sdio_pm_ops,
  1109. #endif /* CONFIG_PM_SLEEP */
  1110. },
  1111. };
  1112. static int __init brcmf_sdio_pd_probe(struct platform_device *pdev)
  1113. {
  1114. brcmf_dbg(SDIO, "Enter\n");
  1115. brcmfmac_sdio_pdata = dev_get_platdata(&pdev->dev);
  1116. if (brcmfmac_sdio_pdata->power_on)
  1117. brcmfmac_sdio_pdata->power_on();
  1118. return 0;
  1119. }
  1120. static int brcmf_sdio_pd_remove(struct platform_device *pdev)
  1121. {
  1122. brcmf_dbg(SDIO, "Enter\n");
  1123. if (brcmfmac_sdio_pdata->power_off)
  1124. brcmfmac_sdio_pdata->power_off();
  1125. sdio_unregister_driver(&brcmf_sdmmc_driver);
  1126. return 0;
  1127. }
  1128. static struct platform_driver brcmf_sdio_pd = {
  1129. .remove = brcmf_sdio_pd_remove,
  1130. .driver = {
  1131. .name = BRCMFMAC_SDIO_PDATA_NAME,
  1132. }
  1133. };
  1134. void brcmf_sdio_register(void)
  1135. {
  1136. int ret;
  1137. ret = sdio_register_driver(&brcmf_sdmmc_driver);
  1138. if (ret)
  1139. brcmf_err("sdio_register_driver failed: %d\n", ret);
  1140. }
  1141. void brcmf_sdio_exit(void)
  1142. {
  1143. brcmf_dbg(SDIO, "Enter\n");
  1144. if (brcmfmac_sdio_pdata)
  1145. platform_driver_unregister(&brcmf_sdio_pd);
  1146. else
  1147. sdio_unregister_driver(&brcmf_sdmmc_driver);
  1148. }
  1149. void __init brcmf_sdio_init(void)
  1150. {
  1151. int ret;
  1152. brcmf_dbg(SDIO, "Enter\n");
  1153. ret = platform_driver_probe(&brcmf_sdio_pd, brcmf_sdio_pd_probe);
  1154. if (ret == -ENODEV)
  1155. brcmf_dbg(SDIO, "No platform data available.\n");
  1156. }