htt_tx.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684
  1. /*
  2. * Copyright (c) 2005-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include <linux/etherdevice.h>
  18. #include "htt.h"
  19. #include "mac.h"
  20. #include "hif.h"
  21. #include "txrx.h"
  22. #include "debug.h"
  23. void __ath10k_htt_tx_dec_pending(struct ath10k_htt *htt)
  24. {
  25. htt->num_pending_tx--;
  26. if (htt->num_pending_tx == htt->max_num_pending_tx - 1)
  27. ath10k_mac_tx_unlock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
  28. }
  29. static void ath10k_htt_tx_dec_pending(struct ath10k_htt *htt)
  30. {
  31. spin_lock_bh(&htt->tx_lock);
  32. __ath10k_htt_tx_dec_pending(htt);
  33. spin_unlock_bh(&htt->tx_lock);
  34. }
  35. static int ath10k_htt_tx_inc_pending(struct ath10k_htt *htt)
  36. {
  37. int ret = 0;
  38. spin_lock_bh(&htt->tx_lock);
  39. if (htt->num_pending_tx >= htt->max_num_pending_tx) {
  40. ret = -EBUSY;
  41. goto exit;
  42. }
  43. htt->num_pending_tx++;
  44. if (htt->num_pending_tx == htt->max_num_pending_tx)
  45. ath10k_mac_tx_lock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
  46. exit:
  47. spin_unlock_bh(&htt->tx_lock);
  48. return ret;
  49. }
  50. int ath10k_htt_tx_alloc_msdu_id(struct ath10k_htt *htt, struct sk_buff *skb)
  51. {
  52. struct ath10k *ar = htt->ar;
  53. int ret;
  54. lockdep_assert_held(&htt->tx_lock);
  55. ret = idr_alloc(&htt->pending_tx, skb, 0,
  56. htt->max_num_pending_tx, GFP_ATOMIC);
  57. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx alloc msdu_id %d\n", ret);
  58. return ret;
  59. }
  60. void ath10k_htt_tx_free_msdu_id(struct ath10k_htt *htt, u16 msdu_id)
  61. {
  62. struct ath10k *ar = htt->ar;
  63. lockdep_assert_held(&htt->tx_lock);
  64. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx free msdu_id %hu\n", msdu_id);
  65. idr_remove(&htt->pending_tx, msdu_id);
  66. }
  67. int ath10k_htt_tx_alloc(struct ath10k_htt *htt)
  68. {
  69. struct ath10k *ar = htt->ar;
  70. int ret, size;
  71. ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt tx max num pending tx %d\n",
  72. htt->max_num_pending_tx);
  73. spin_lock_init(&htt->tx_lock);
  74. idr_init(&htt->pending_tx);
  75. htt->tx_pool = dma_pool_create("ath10k htt tx pool", htt->ar->dev,
  76. sizeof(struct ath10k_htt_txbuf), 4, 0);
  77. if (!htt->tx_pool) {
  78. ret = -ENOMEM;
  79. goto free_idr_pending_tx;
  80. }
  81. if (!ar->hw_params.continuous_frag_desc)
  82. goto skip_frag_desc_alloc;
  83. size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
  84. htt->frag_desc.vaddr = dma_alloc_coherent(ar->dev, size,
  85. &htt->frag_desc.paddr,
  86. GFP_DMA);
  87. if (!htt->frag_desc.vaddr) {
  88. ath10k_warn(ar, "failed to alloc fragment desc memory\n");
  89. ret = -ENOMEM;
  90. goto free_tx_pool;
  91. }
  92. skip_frag_desc_alloc:
  93. return 0;
  94. free_tx_pool:
  95. dma_pool_destroy(htt->tx_pool);
  96. free_idr_pending_tx:
  97. idr_destroy(&htt->pending_tx);
  98. return ret;
  99. }
  100. static int ath10k_htt_tx_clean_up_pending(int msdu_id, void *skb, void *ctx)
  101. {
  102. struct ath10k *ar = ctx;
  103. struct ath10k_htt *htt = &ar->htt;
  104. struct htt_tx_done tx_done = {0};
  105. ath10k_dbg(ar, ATH10K_DBG_HTT, "force cleanup msdu_id %hu\n", msdu_id);
  106. tx_done.discard = 1;
  107. tx_done.msdu_id = msdu_id;
  108. ath10k_txrx_tx_unref(htt, &tx_done);
  109. return 0;
  110. }
  111. void ath10k_htt_tx_free(struct ath10k_htt *htt)
  112. {
  113. int size;
  114. idr_for_each(&htt->pending_tx, ath10k_htt_tx_clean_up_pending, htt->ar);
  115. idr_destroy(&htt->pending_tx);
  116. dma_pool_destroy(htt->tx_pool);
  117. if (htt->frag_desc.vaddr) {
  118. size = htt->max_num_pending_tx *
  119. sizeof(struct htt_msdu_ext_desc);
  120. dma_free_coherent(htt->ar->dev, size, htt->frag_desc.vaddr,
  121. htt->frag_desc.paddr);
  122. }
  123. }
  124. void ath10k_htt_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  125. {
  126. dev_kfree_skb_any(skb);
  127. }
  128. int ath10k_htt_h2t_ver_req_msg(struct ath10k_htt *htt)
  129. {
  130. struct ath10k *ar = htt->ar;
  131. struct sk_buff *skb;
  132. struct htt_cmd *cmd;
  133. int len = 0;
  134. int ret;
  135. len += sizeof(cmd->hdr);
  136. len += sizeof(cmd->ver_req);
  137. skb = ath10k_htc_alloc_skb(ar, len);
  138. if (!skb)
  139. return -ENOMEM;
  140. skb_put(skb, len);
  141. cmd = (struct htt_cmd *)skb->data;
  142. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_VERSION_REQ;
  143. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  144. if (ret) {
  145. dev_kfree_skb_any(skb);
  146. return ret;
  147. }
  148. return 0;
  149. }
  150. int ath10k_htt_h2t_stats_req(struct ath10k_htt *htt, u8 mask, u64 cookie)
  151. {
  152. struct ath10k *ar = htt->ar;
  153. struct htt_stats_req *req;
  154. struct sk_buff *skb;
  155. struct htt_cmd *cmd;
  156. int len = 0, ret;
  157. len += sizeof(cmd->hdr);
  158. len += sizeof(cmd->stats_req);
  159. skb = ath10k_htc_alloc_skb(ar, len);
  160. if (!skb)
  161. return -ENOMEM;
  162. skb_put(skb, len);
  163. cmd = (struct htt_cmd *)skb->data;
  164. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_STATS_REQ;
  165. req = &cmd->stats_req;
  166. memset(req, 0, sizeof(*req));
  167. /* currently we support only max 8 bit masks so no need to worry
  168. * about endian support */
  169. req->upload_types[0] = mask;
  170. req->reset_types[0] = mask;
  171. req->stat_type = HTT_STATS_REQ_CFG_STAT_TYPE_INVALID;
  172. req->cookie_lsb = cpu_to_le32(cookie & 0xffffffff);
  173. req->cookie_msb = cpu_to_le32((cookie & 0xffffffff00000000ULL) >> 32);
  174. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  175. if (ret) {
  176. ath10k_warn(ar, "failed to send htt type stats request: %d",
  177. ret);
  178. dev_kfree_skb_any(skb);
  179. return ret;
  180. }
  181. return 0;
  182. }
  183. int ath10k_htt_send_frag_desc_bank_cfg(struct ath10k_htt *htt)
  184. {
  185. struct ath10k *ar = htt->ar;
  186. struct sk_buff *skb;
  187. struct htt_cmd *cmd;
  188. int ret, size;
  189. if (!ar->hw_params.continuous_frag_desc)
  190. return 0;
  191. if (!htt->frag_desc.paddr) {
  192. ath10k_warn(ar, "invalid frag desc memory\n");
  193. return -EINVAL;
  194. }
  195. size = sizeof(cmd->hdr) + sizeof(cmd->frag_desc_bank_cfg);
  196. skb = ath10k_htc_alloc_skb(ar, size);
  197. if (!skb)
  198. return -ENOMEM;
  199. skb_put(skb, size);
  200. cmd = (struct htt_cmd *)skb->data;
  201. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_FRAG_DESC_BANK_CFG;
  202. cmd->frag_desc_bank_cfg.info = 0;
  203. cmd->frag_desc_bank_cfg.num_banks = 1;
  204. cmd->frag_desc_bank_cfg.desc_size = sizeof(struct htt_msdu_ext_desc);
  205. cmd->frag_desc_bank_cfg.bank_base_addrs[0] =
  206. __cpu_to_le32(htt->frag_desc.paddr);
  207. cmd->frag_desc_bank_cfg.bank_id[0].bank_min_id = 0;
  208. cmd->frag_desc_bank_cfg.bank_id[0].bank_max_id =
  209. __cpu_to_le16(htt->max_num_pending_tx - 1);
  210. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  211. if (ret) {
  212. ath10k_warn(ar, "failed to send frag desc bank cfg request: %d\n",
  213. ret);
  214. dev_kfree_skb_any(skb);
  215. return ret;
  216. }
  217. return 0;
  218. }
  219. int ath10k_htt_send_rx_ring_cfg_ll(struct ath10k_htt *htt)
  220. {
  221. struct ath10k *ar = htt->ar;
  222. struct sk_buff *skb;
  223. struct htt_cmd *cmd;
  224. struct htt_rx_ring_setup_ring *ring;
  225. const int num_rx_ring = 1;
  226. u16 flags;
  227. u32 fw_idx;
  228. int len;
  229. int ret;
  230. /*
  231. * the HW expects the buffer to be an integral number of 4-byte
  232. * "words"
  233. */
  234. BUILD_BUG_ON(!IS_ALIGNED(HTT_RX_BUF_SIZE, 4));
  235. BUILD_BUG_ON((HTT_RX_BUF_SIZE & HTT_MAX_CACHE_LINE_SIZE_MASK) != 0);
  236. len = sizeof(cmd->hdr) + sizeof(cmd->rx_setup.hdr)
  237. + (sizeof(*ring) * num_rx_ring);
  238. skb = ath10k_htc_alloc_skb(ar, len);
  239. if (!skb)
  240. return -ENOMEM;
  241. skb_put(skb, len);
  242. cmd = (struct htt_cmd *)skb->data;
  243. ring = &cmd->rx_setup.rings[0];
  244. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_RX_RING_CFG;
  245. cmd->rx_setup.hdr.num_rings = 1;
  246. /* FIXME: do we need all of this? */
  247. flags = 0;
  248. flags |= HTT_RX_RING_FLAGS_MAC80211_HDR;
  249. flags |= HTT_RX_RING_FLAGS_MSDU_PAYLOAD;
  250. flags |= HTT_RX_RING_FLAGS_PPDU_START;
  251. flags |= HTT_RX_RING_FLAGS_PPDU_END;
  252. flags |= HTT_RX_RING_FLAGS_MPDU_START;
  253. flags |= HTT_RX_RING_FLAGS_MPDU_END;
  254. flags |= HTT_RX_RING_FLAGS_MSDU_START;
  255. flags |= HTT_RX_RING_FLAGS_MSDU_END;
  256. flags |= HTT_RX_RING_FLAGS_RX_ATTENTION;
  257. flags |= HTT_RX_RING_FLAGS_FRAG_INFO;
  258. flags |= HTT_RX_RING_FLAGS_UNICAST_RX;
  259. flags |= HTT_RX_RING_FLAGS_MULTICAST_RX;
  260. flags |= HTT_RX_RING_FLAGS_CTRL_RX;
  261. flags |= HTT_RX_RING_FLAGS_MGMT_RX;
  262. flags |= HTT_RX_RING_FLAGS_NULL_RX;
  263. flags |= HTT_RX_RING_FLAGS_PHY_DATA_RX;
  264. fw_idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
  265. ring->fw_idx_shadow_reg_paddr =
  266. __cpu_to_le32(htt->rx_ring.alloc_idx.paddr);
  267. ring->rx_ring_base_paddr = __cpu_to_le32(htt->rx_ring.base_paddr);
  268. ring->rx_ring_len = __cpu_to_le16(htt->rx_ring.size);
  269. ring->rx_ring_bufsize = __cpu_to_le16(HTT_RX_BUF_SIZE);
  270. ring->flags = __cpu_to_le16(flags);
  271. ring->fw_idx_init_val = __cpu_to_le16(fw_idx);
  272. #define desc_offset(x) (offsetof(struct htt_rx_desc, x) / 4)
  273. ring->mac80211_hdr_offset = __cpu_to_le16(desc_offset(rx_hdr_status));
  274. ring->msdu_payload_offset = __cpu_to_le16(desc_offset(msdu_payload));
  275. ring->ppdu_start_offset = __cpu_to_le16(desc_offset(ppdu_start));
  276. ring->ppdu_end_offset = __cpu_to_le16(desc_offset(ppdu_end));
  277. ring->mpdu_start_offset = __cpu_to_le16(desc_offset(mpdu_start));
  278. ring->mpdu_end_offset = __cpu_to_le16(desc_offset(mpdu_end));
  279. ring->msdu_start_offset = __cpu_to_le16(desc_offset(msdu_start));
  280. ring->msdu_end_offset = __cpu_to_le16(desc_offset(msdu_end));
  281. ring->rx_attention_offset = __cpu_to_le16(desc_offset(attention));
  282. ring->frag_info_offset = __cpu_to_le16(desc_offset(frag_info));
  283. #undef desc_offset
  284. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  285. if (ret) {
  286. dev_kfree_skb_any(skb);
  287. return ret;
  288. }
  289. return 0;
  290. }
  291. int ath10k_htt_h2t_aggr_cfg_msg(struct ath10k_htt *htt,
  292. u8 max_subfrms_ampdu,
  293. u8 max_subfrms_amsdu)
  294. {
  295. struct ath10k *ar = htt->ar;
  296. struct htt_aggr_conf *aggr_conf;
  297. struct sk_buff *skb;
  298. struct htt_cmd *cmd;
  299. int len;
  300. int ret;
  301. /* Firmware defaults are: amsdu = 3 and ampdu = 64 */
  302. if (max_subfrms_ampdu == 0 || max_subfrms_ampdu > 64)
  303. return -EINVAL;
  304. if (max_subfrms_amsdu == 0 || max_subfrms_amsdu > 31)
  305. return -EINVAL;
  306. len = sizeof(cmd->hdr);
  307. len += sizeof(cmd->aggr_conf);
  308. skb = ath10k_htc_alloc_skb(ar, len);
  309. if (!skb)
  310. return -ENOMEM;
  311. skb_put(skb, len);
  312. cmd = (struct htt_cmd *)skb->data;
  313. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_AGGR_CFG;
  314. aggr_conf = &cmd->aggr_conf;
  315. aggr_conf->max_num_ampdu_subframes = max_subfrms_ampdu;
  316. aggr_conf->max_num_amsdu_subframes = max_subfrms_amsdu;
  317. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt h2t aggr cfg msg amsdu %d ampdu %d",
  318. aggr_conf->max_num_amsdu_subframes,
  319. aggr_conf->max_num_ampdu_subframes);
  320. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  321. if (ret) {
  322. dev_kfree_skb_any(skb);
  323. return ret;
  324. }
  325. return 0;
  326. }
  327. int ath10k_htt_mgmt_tx(struct ath10k_htt *htt, struct sk_buff *msdu)
  328. {
  329. struct ath10k *ar = htt->ar;
  330. struct device *dev = ar->dev;
  331. struct sk_buff *txdesc = NULL;
  332. struct htt_cmd *cmd;
  333. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  334. u8 vdev_id = skb_cb->vdev_id;
  335. int len = 0;
  336. int msdu_id = -1;
  337. int res;
  338. res = ath10k_htt_tx_inc_pending(htt);
  339. if (res)
  340. goto err;
  341. len += sizeof(cmd->hdr);
  342. len += sizeof(cmd->mgmt_tx);
  343. spin_lock_bh(&htt->tx_lock);
  344. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  345. spin_unlock_bh(&htt->tx_lock);
  346. if (res < 0) {
  347. goto err_tx_dec;
  348. }
  349. msdu_id = res;
  350. txdesc = ath10k_htc_alloc_skb(ar, len);
  351. if (!txdesc) {
  352. res = -ENOMEM;
  353. goto err_free_msdu_id;
  354. }
  355. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  356. DMA_TO_DEVICE);
  357. res = dma_mapping_error(dev, skb_cb->paddr);
  358. if (res) {
  359. res = -EIO;
  360. goto err_free_txdesc;
  361. }
  362. skb_put(txdesc, len);
  363. cmd = (struct htt_cmd *)txdesc->data;
  364. memset(cmd, 0, len);
  365. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_MGMT_TX;
  366. cmd->mgmt_tx.msdu_paddr = __cpu_to_le32(ATH10K_SKB_CB(msdu)->paddr);
  367. cmd->mgmt_tx.len = __cpu_to_le32(msdu->len);
  368. cmd->mgmt_tx.desc_id = __cpu_to_le32(msdu_id);
  369. cmd->mgmt_tx.vdev_id = __cpu_to_le32(vdev_id);
  370. memcpy(cmd->mgmt_tx.hdr, msdu->data,
  371. min_t(int, msdu->len, HTT_MGMT_FRM_HDR_DOWNLOAD_LEN));
  372. skb_cb->htt.txbuf = NULL;
  373. res = ath10k_htc_send(&htt->ar->htc, htt->eid, txdesc);
  374. if (res)
  375. goto err_unmap_msdu;
  376. return 0;
  377. err_unmap_msdu:
  378. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  379. err_free_txdesc:
  380. dev_kfree_skb_any(txdesc);
  381. err_free_msdu_id:
  382. spin_lock_bh(&htt->tx_lock);
  383. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  384. spin_unlock_bh(&htt->tx_lock);
  385. err_tx_dec:
  386. ath10k_htt_tx_dec_pending(htt);
  387. err:
  388. return res;
  389. }
  390. int ath10k_htt_tx(struct ath10k_htt *htt, struct sk_buff *msdu)
  391. {
  392. struct ath10k *ar = htt->ar;
  393. struct device *dev = ar->dev;
  394. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
  395. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  396. struct ath10k_hif_sg_item sg_items[2];
  397. struct htt_data_tx_desc_frag *frags;
  398. u8 vdev_id = skb_cb->vdev_id;
  399. u8 tid = skb_cb->htt.tid;
  400. int prefetch_len;
  401. int res;
  402. u8 flags0 = 0;
  403. u16 msdu_id, flags1 = 0;
  404. dma_addr_t paddr = 0;
  405. u32 frags_paddr = 0;
  406. struct htt_msdu_ext_desc *ext_desc = NULL;
  407. res = ath10k_htt_tx_inc_pending(htt);
  408. if (res)
  409. goto err;
  410. spin_lock_bh(&htt->tx_lock);
  411. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  412. spin_unlock_bh(&htt->tx_lock);
  413. if (res < 0) {
  414. goto err_tx_dec;
  415. }
  416. msdu_id = res;
  417. prefetch_len = min(htt->prefetch_len, msdu->len);
  418. prefetch_len = roundup(prefetch_len, 4);
  419. skb_cb->htt.txbuf = dma_pool_alloc(htt->tx_pool, GFP_ATOMIC,
  420. &paddr);
  421. if (!skb_cb->htt.txbuf) {
  422. res = -ENOMEM;
  423. goto err_free_msdu_id;
  424. }
  425. skb_cb->htt.txbuf_paddr = paddr;
  426. if ((ieee80211_is_action(hdr->frame_control) ||
  427. ieee80211_is_deauth(hdr->frame_control) ||
  428. ieee80211_is_disassoc(hdr->frame_control)) &&
  429. ieee80211_has_protected(hdr->frame_control)) {
  430. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  431. } else if (!skb_cb->htt.nohwcrypt &&
  432. skb_cb->txmode == ATH10K_HW_TXRX_RAW) {
  433. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  434. }
  435. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  436. DMA_TO_DEVICE);
  437. res = dma_mapping_error(dev, skb_cb->paddr);
  438. if (res) {
  439. res = -EIO;
  440. goto err_free_txbuf;
  441. }
  442. switch (skb_cb->txmode) {
  443. case ATH10K_HW_TXRX_RAW:
  444. case ATH10K_HW_TXRX_NATIVE_WIFI:
  445. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  446. /* pass through */
  447. case ATH10K_HW_TXRX_ETHERNET:
  448. if (ar->hw_params.continuous_frag_desc) {
  449. memset(&htt->frag_desc.vaddr[msdu_id], 0,
  450. sizeof(struct htt_msdu_ext_desc));
  451. frags = (struct htt_data_tx_desc_frag *)
  452. &htt->frag_desc.vaddr[msdu_id].frags;
  453. ext_desc = &htt->frag_desc.vaddr[msdu_id];
  454. frags[0].tword_addr.paddr_lo =
  455. __cpu_to_le32(skb_cb->paddr);
  456. frags[0].tword_addr.paddr_hi = 0;
  457. frags[0].tword_addr.len_16 = __cpu_to_le16(msdu->len);
  458. frags_paddr = htt->frag_desc.paddr +
  459. (sizeof(struct htt_msdu_ext_desc) * msdu_id);
  460. } else {
  461. frags = skb_cb->htt.txbuf->frags;
  462. frags[0].dword_addr.paddr =
  463. __cpu_to_le32(skb_cb->paddr);
  464. frags[0].dword_addr.len = __cpu_to_le32(msdu->len);
  465. frags[1].dword_addr.paddr = 0;
  466. frags[1].dword_addr.len = 0;
  467. frags_paddr = skb_cb->htt.txbuf_paddr;
  468. }
  469. flags0 |= SM(skb_cb->txmode, HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  470. break;
  471. case ATH10K_HW_TXRX_MGMT:
  472. flags0 |= SM(ATH10K_HW_TXRX_MGMT,
  473. HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  474. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  475. frags_paddr = skb_cb->paddr;
  476. break;
  477. }
  478. /* Normally all commands go through HTC which manages tx credits for
  479. * each endpoint and notifies when tx is completed.
  480. *
  481. * HTT endpoint is creditless so there's no need to care about HTC
  482. * flags. In that case it is trivial to fill the HTC header here.
  483. *
  484. * MSDU transmission is considered completed upon HTT event. This
  485. * implies no relevant resources can be freed until after the event is
  486. * received. That's why HTC tx completion handler itself is ignored by
  487. * setting NULL to transfer_context for all sg items.
  488. *
  489. * There is simply no point in pushing HTT TX_FRM through HTC tx path
  490. * as it's a waste of resources. By bypassing HTC it is possible to
  491. * avoid extra memory allocations, compress data structures and thus
  492. * improve performance. */
  493. skb_cb->htt.txbuf->htc_hdr.eid = htt->eid;
  494. skb_cb->htt.txbuf->htc_hdr.len = __cpu_to_le16(
  495. sizeof(skb_cb->htt.txbuf->cmd_hdr) +
  496. sizeof(skb_cb->htt.txbuf->cmd_tx) +
  497. prefetch_len);
  498. skb_cb->htt.txbuf->htc_hdr.flags = 0;
  499. if (skb_cb->htt.nohwcrypt)
  500. flags0 |= HTT_DATA_TX_DESC_FLAGS0_NO_ENCRYPT;
  501. if (!skb_cb->is_protected)
  502. flags0 |= HTT_DATA_TX_DESC_FLAGS0_NO_ENCRYPT;
  503. flags1 |= SM((u16)vdev_id, HTT_DATA_TX_DESC_FLAGS1_VDEV_ID);
  504. flags1 |= SM((u16)tid, HTT_DATA_TX_DESC_FLAGS1_EXT_TID);
  505. if (msdu->ip_summed == CHECKSUM_PARTIAL &&
  506. !test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
  507. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L3_OFFLOAD;
  508. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L4_OFFLOAD;
  509. if (ar->hw_params.continuous_frag_desc)
  510. ext_desc->flags |= HTT_MSDU_CHECKSUM_ENABLE;
  511. }
  512. /* Prevent firmware from sending up tx inspection requests. There's
  513. * nothing ath10k can do with frames requested for inspection so force
  514. * it to simply rely a regular tx completion with discard status.
  515. */
  516. flags1 |= HTT_DATA_TX_DESC_FLAGS1_POSTPONED;
  517. skb_cb->htt.txbuf->cmd_hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FRM;
  518. skb_cb->htt.txbuf->cmd_tx.flags0 = flags0;
  519. skb_cb->htt.txbuf->cmd_tx.flags1 = __cpu_to_le16(flags1);
  520. skb_cb->htt.txbuf->cmd_tx.len = __cpu_to_le16(msdu->len);
  521. skb_cb->htt.txbuf->cmd_tx.id = __cpu_to_le16(msdu_id);
  522. skb_cb->htt.txbuf->cmd_tx.frags_paddr = __cpu_to_le32(frags_paddr);
  523. skb_cb->htt.txbuf->cmd_tx.peerid = __cpu_to_le16(HTT_INVALID_PEERID);
  524. skb_cb->htt.txbuf->cmd_tx.freq = __cpu_to_le16(skb_cb->htt.freq);
  525. trace_ath10k_htt_tx(ar, msdu_id, msdu->len, vdev_id, tid);
  526. ath10k_dbg(ar, ATH10K_DBG_HTT,
  527. "htt tx flags0 %hhu flags1 %hu len %d id %hu frags_paddr %08x, msdu_paddr %08x vdev %hhu tid %hhu freq %hu\n",
  528. flags0, flags1, msdu->len, msdu_id, frags_paddr,
  529. (u32)skb_cb->paddr, vdev_id, tid, skb_cb->htt.freq);
  530. ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt tx msdu: ",
  531. msdu->data, msdu->len);
  532. trace_ath10k_tx_hdr(ar, msdu->data, msdu->len);
  533. trace_ath10k_tx_payload(ar, msdu->data, msdu->len);
  534. sg_items[0].transfer_id = 0;
  535. sg_items[0].transfer_context = NULL;
  536. sg_items[0].vaddr = &skb_cb->htt.txbuf->htc_hdr;
  537. sg_items[0].paddr = skb_cb->htt.txbuf_paddr +
  538. sizeof(skb_cb->htt.txbuf->frags);
  539. sg_items[0].len = sizeof(skb_cb->htt.txbuf->htc_hdr) +
  540. sizeof(skb_cb->htt.txbuf->cmd_hdr) +
  541. sizeof(skb_cb->htt.txbuf->cmd_tx);
  542. sg_items[1].transfer_id = 0;
  543. sg_items[1].transfer_context = NULL;
  544. sg_items[1].vaddr = msdu->data;
  545. sg_items[1].paddr = skb_cb->paddr;
  546. sg_items[1].len = prefetch_len;
  547. res = ath10k_hif_tx_sg(htt->ar,
  548. htt->ar->htc.endpoint[htt->eid].ul_pipe_id,
  549. sg_items, ARRAY_SIZE(sg_items));
  550. if (res)
  551. goto err_unmap_msdu;
  552. return 0;
  553. err_unmap_msdu:
  554. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  555. err_free_txbuf:
  556. dma_pool_free(htt->tx_pool,
  557. skb_cb->htt.txbuf,
  558. skb_cb->htt.txbuf_paddr);
  559. err_free_msdu_id:
  560. spin_lock_bh(&htt->tx_lock);
  561. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  562. spin_unlock_bh(&htt->tx_lock);
  563. err_tx_dec:
  564. ath10k_htt_tx_dec_pending(htt);
  565. err:
  566. return res;
  567. }