mrf24j40.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826
  1. /*
  2. * Driver for Microchip MRF24J40 802.15.4 Wireless-PAN Networking controller
  3. *
  4. * Copyright (C) 2012 Alan Ott <alan@signal11.us>
  5. * Signal 11 Software
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. */
  17. #include <linux/spi/spi.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/module.h>
  20. #include <linux/ieee802154.h>
  21. #include <net/cfg802154.h>
  22. #include <net/mac802154.h>
  23. /* MRF24J40 Short Address Registers */
  24. #define REG_RXMCR 0x00 /* Receive MAC control */
  25. #define REG_PANIDL 0x01 /* PAN ID (low) */
  26. #define REG_PANIDH 0x02 /* PAN ID (high) */
  27. #define REG_SADRL 0x03 /* Short address (low) */
  28. #define REG_SADRH 0x04 /* Short address (high) */
  29. #define REG_EADR0 0x05 /* Long address (low) (high is EADR7) */
  30. #define REG_TXMCR 0x11 /* Transmit MAC control */
  31. #define REG_PACON0 0x16 /* Power Amplifier Control */
  32. #define REG_PACON1 0x17 /* Power Amplifier Control */
  33. #define REG_PACON2 0x18 /* Power Amplifier Control */
  34. #define REG_TXNCON 0x1B /* Transmit Normal FIFO Control */
  35. #define REG_TXSTAT 0x24 /* TX MAC Status Register */
  36. #define REG_SOFTRST 0x2A /* Soft Reset */
  37. #define REG_TXSTBL 0x2E /* TX Stabilization */
  38. #define REG_INTSTAT 0x31 /* Interrupt Status */
  39. #define REG_INTCON 0x32 /* Interrupt Control */
  40. #define REG_GPIO 0x33 /* GPIO */
  41. #define REG_TRISGPIO 0x34 /* GPIO direction */
  42. #define REG_RFCTL 0x36 /* RF Control Mode Register */
  43. #define REG_BBREG1 0x39 /* Baseband Registers */
  44. #define REG_BBREG2 0x3A /* */
  45. #define REG_BBREG6 0x3E /* */
  46. #define REG_CCAEDTH 0x3F /* Energy Detection Threshold */
  47. /* MRF24J40 Long Address Registers */
  48. #define REG_RFCON0 0x200 /* RF Control Registers */
  49. #define REG_RFCON1 0x201
  50. #define REG_RFCON2 0x202
  51. #define REG_RFCON3 0x203
  52. #define REG_RFCON5 0x205
  53. #define REG_RFCON6 0x206
  54. #define REG_RFCON7 0x207
  55. #define REG_RFCON8 0x208
  56. #define REG_RSSI 0x210
  57. #define REG_SLPCON0 0x211 /* Sleep Clock Control Registers */
  58. #define REG_SLPCON1 0x220
  59. #define REG_WAKETIMEL 0x222 /* Wake-up Time Match Value Low */
  60. #define REG_WAKETIMEH 0x223 /* Wake-up Time Match Value High */
  61. #define REG_TESTMODE 0x22F /* Test mode */
  62. #define REG_RX_FIFO 0x300 /* Receive FIFO */
  63. /* Device configuration: Only channels 11-26 on page 0 are supported. */
  64. #define MRF24J40_CHAN_MIN 11
  65. #define MRF24J40_CHAN_MAX 26
  66. #define CHANNEL_MASK (((u32)1 << (MRF24J40_CHAN_MAX + 1)) \
  67. - ((u32)1 << MRF24J40_CHAN_MIN))
  68. #define TX_FIFO_SIZE 128 /* From datasheet */
  69. #define RX_FIFO_SIZE 144 /* From datasheet */
  70. #define SET_CHANNEL_DELAY_US 192 /* From datasheet */
  71. enum mrf24j40_modules { MRF24J40, MRF24J40MA, MRF24J40MC };
  72. /* Device Private Data */
  73. struct mrf24j40 {
  74. struct spi_device *spi;
  75. struct ieee802154_hw *hw;
  76. struct mutex buffer_mutex; /* only used to protect buf */
  77. struct completion tx_complete;
  78. u8 *buf; /* 3 bytes. Used for SPI single-register transfers. */
  79. };
  80. /* Read/Write SPI Commands for Short and Long Address registers. */
  81. #define MRF24J40_READSHORT(reg) ((reg) << 1)
  82. #define MRF24J40_WRITESHORT(reg) ((reg) << 1 | 1)
  83. #define MRF24J40_READLONG(reg) (1 << 15 | (reg) << 5)
  84. #define MRF24J40_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
  85. /* The datasheet indicates the theoretical maximum for SCK to be 10MHz */
  86. #define MAX_SPI_SPEED_HZ 10000000
  87. #define printdev(X) (&X->spi->dev)
  88. static int write_short_reg(struct mrf24j40 *devrec, u8 reg, u8 value)
  89. {
  90. int ret;
  91. struct spi_message msg;
  92. struct spi_transfer xfer = {
  93. .len = 2,
  94. .tx_buf = devrec->buf,
  95. .rx_buf = devrec->buf,
  96. };
  97. spi_message_init(&msg);
  98. spi_message_add_tail(&xfer, &msg);
  99. mutex_lock(&devrec->buffer_mutex);
  100. devrec->buf[0] = MRF24J40_WRITESHORT(reg);
  101. devrec->buf[1] = value;
  102. ret = spi_sync(devrec->spi, &msg);
  103. if (ret)
  104. dev_err(printdev(devrec),
  105. "SPI write Failed for short register 0x%hhx\n", reg);
  106. mutex_unlock(&devrec->buffer_mutex);
  107. return ret;
  108. }
  109. static int read_short_reg(struct mrf24j40 *devrec, u8 reg, u8 *val)
  110. {
  111. int ret = -1;
  112. struct spi_message msg;
  113. struct spi_transfer xfer = {
  114. .len = 2,
  115. .tx_buf = devrec->buf,
  116. .rx_buf = devrec->buf,
  117. };
  118. spi_message_init(&msg);
  119. spi_message_add_tail(&xfer, &msg);
  120. mutex_lock(&devrec->buffer_mutex);
  121. devrec->buf[0] = MRF24J40_READSHORT(reg);
  122. devrec->buf[1] = 0;
  123. ret = spi_sync(devrec->spi, &msg);
  124. if (ret)
  125. dev_err(printdev(devrec),
  126. "SPI read Failed for short register 0x%hhx\n", reg);
  127. else
  128. *val = devrec->buf[1];
  129. mutex_unlock(&devrec->buffer_mutex);
  130. return ret;
  131. }
  132. static int read_long_reg(struct mrf24j40 *devrec, u16 reg, u8 *value)
  133. {
  134. int ret;
  135. u16 cmd;
  136. struct spi_message msg;
  137. struct spi_transfer xfer = {
  138. .len = 3,
  139. .tx_buf = devrec->buf,
  140. .rx_buf = devrec->buf,
  141. };
  142. spi_message_init(&msg);
  143. spi_message_add_tail(&xfer, &msg);
  144. cmd = MRF24J40_READLONG(reg);
  145. mutex_lock(&devrec->buffer_mutex);
  146. devrec->buf[0] = cmd >> 8 & 0xff;
  147. devrec->buf[1] = cmd & 0xff;
  148. devrec->buf[2] = 0;
  149. ret = spi_sync(devrec->spi, &msg);
  150. if (ret)
  151. dev_err(printdev(devrec),
  152. "SPI read Failed for long register 0x%hx\n", reg);
  153. else
  154. *value = devrec->buf[2];
  155. mutex_unlock(&devrec->buffer_mutex);
  156. return ret;
  157. }
  158. static int write_long_reg(struct mrf24j40 *devrec, u16 reg, u8 val)
  159. {
  160. int ret;
  161. u16 cmd;
  162. struct spi_message msg;
  163. struct spi_transfer xfer = {
  164. .len = 3,
  165. .tx_buf = devrec->buf,
  166. .rx_buf = devrec->buf,
  167. };
  168. spi_message_init(&msg);
  169. spi_message_add_tail(&xfer, &msg);
  170. cmd = MRF24J40_WRITELONG(reg);
  171. mutex_lock(&devrec->buffer_mutex);
  172. devrec->buf[0] = cmd >> 8 & 0xff;
  173. devrec->buf[1] = cmd & 0xff;
  174. devrec->buf[2] = val;
  175. ret = spi_sync(devrec->spi, &msg);
  176. if (ret)
  177. dev_err(printdev(devrec),
  178. "SPI write Failed for long register 0x%hx\n", reg);
  179. mutex_unlock(&devrec->buffer_mutex);
  180. return ret;
  181. }
  182. /* This function relies on an undocumented write method. Once a write command
  183. and address is set, as many bytes of data as desired can be clocked into
  184. the device. The datasheet only shows setting one byte at a time. */
  185. static int write_tx_buf(struct mrf24j40 *devrec, u16 reg,
  186. const u8 *data, size_t length)
  187. {
  188. int ret;
  189. u16 cmd;
  190. u8 lengths[2];
  191. struct spi_message msg;
  192. struct spi_transfer addr_xfer = {
  193. .len = 2,
  194. .tx_buf = devrec->buf,
  195. };
  196. struct spi_transfer lengths_xfer = {
  197. .len = 2,
  198. .tx_buf = &lengths, /* TODO: Is DMA really required for SPI? */
  199. };
  200. struct spi_transfer data_xfer = {
  201. .len = length,
  202. .tx_buf = data,
  203. };
  204. /* Range check the length. 2 bytes are used for the length fields.*/
  205. if (length > TX_FIFO_SIZE-2) {
  206. dev_err(printdev(devrec), "write_tx_buf() was passed too large a buffer. Performing short write.\n");
  207. length = TX_FIFO_SIZE-2;
  208. }
  209. spi_message_init(&msg);
  210. spi_message_add_tail(&addr_xfer, &msg);
  211. spi_message_add_tail(&lengths_xfer, &msg);
  212. spi_message_add_tail(&data_xfer, &msg);
  213. cmd = MRF24J40_WRITELONG(reg);
  214. mutex_lock(&devrec->buffer_mutex);
  215. devrec->buf[0] = cmd >> 8 & 0xff;
  216. devrec->buf[1] = cmd & 0xff;
  217. lengths[0] = 0x0; /* Header Length. Set to 0 for now. TODO */
  218. lengths[1] = length; /* Total length */
  219. ret = spi_sync(devrec->spi, &msg);
  220. if (ret)
  221. dev_err(printdev(devrec), "SPI write Failed for TX buf\n");
  222. mutex_unlock(&devrec->buffer_mutex);
  223. return ret;
  224. }
  225. static int mrf24j40_read_rx_buf(struct mrf24j40 *devrec,
  226. u8 *data, u8 *len, u8 *lqi)
  227. {
  228. u8 rx_len;
  229. u8 addr[2];
  230. u8 lqi_rssi[2];
  231. u16 cmd;
  232. int ret;
  233. struct spi_message msg;
  234. struct spi_transfer addr_xfer = {
  235. .len = 2,
  236. .tx_buf = &addr,
  237. };
  238. struct spi_transfer data_xfer = {
  239. .len = 0x0, /* set below */
  240. .rx_buf = data,
  241. };
  242. struct spi_transfer status_xfer = {
  243. .len = 2,
  244. .rx_buf = &lqi_rssi,
  245. };
  246. /* Get the length of the data in the RX FIFO. The length in this
  247. * register exclues the 1-byte length field at the beginning. */
  248. ret = read_long_reg(devrec, REG_RX_FIFO, &rx_len);
  249. if (ret)
  250. goto out;
  251. /* Range check the RX FIFO length, accounting for the one-byte
  252. * length field at the beginning. */
  253. if (rx_len > RX_FIFO_SIZE-1) {
  254. dev_err(printdev(devrec), "Invalid length read from device. Performing short read.\n");
  255. rx_len = RX_FIFO_SIZE-1;
  256. }
  257. if (rx_len > *len) {
  258. /* Passed in buffer wasn't big enough. Should never happen. */
  259. dev_err(printdev(devrec), "Buffer not big enough. Performing short read\n");
  260. rx_len = *len;
  261. }
  262. /* Set up the commands to read the data. */
  263. cmd = MRF24J40_READLONG(REG_RX_FIFO+1);
  264. addr[0] = cmd >> 8 & 0xff;
  265. addr[1] = cmd & 0xff;
  266. data_xfer.len = rx_len;
  267. spi_message_init(&msg);
  268. spi_message_add_tail(&addr_xfer, &msg);
  269. spi_message_add_tail(&data_xfer, &msg);
  270. spi_message_add_tail(&status_xfer, &msg);
  271. ret = spi_sync(devrec->spi, &msg);
  272. if (ret) {
  273. dev_err(printdev(devrec), "SPI RX Buffer Read Failed.\n");
  274. goto out;
  275. }
  276. *lqi = lqi_rssi[0];
  277. *len = rx_len;
  278. #ifdef DEBUG
  279. print_hex_dump(KERN_DEBUG, "mrf24j40 rx: ",
  280. DUMP_PREFIX_OFFSET, 16, 1, data, *len, 0);
  281. pr_debug("mrf24j40 rx: lqi: %02hhx rssi: %02hhx\n",
  282. lqi_rssi[0], lqi_rssi[1]);
  283. #endif
  284. out:
  285. return ret;
  286. }
  287. static int mrf24j40_tx(struct ieee802154_hw *hw, struct sk_buff *skb)
  288. {
  289. struct mrf24j40 *devrec = hw->priv;
  290. u8 val;
  291. int ret = 0;
  292. dev_dbg(printdev(devrec), "tx packet of %d bytes\n", skb->len);
  293. ret = write_tx_buf(devrec, 0x000, skb->data, skb->len);
  294. if (ret)
  295. goto err;
  296. reinit_completion(&devrec->tx_complete);
  297. /* Set TXNTRIG bit of TXNCON to send packet */
  298. ret = read_short_reg(devrec, REG_TXNCON, &val);
  299. if (ret)
  300. goto err;
  301. val |= 0x1;
  302. /* Set TXNACKREQ if the ACK bit is set in the packet. */
  303. if (skb->data[0] & IEEE802154_FC_ACK_REQ)
  304. val |= 0x4;
  305. write_short_reg(devrec, REG_TXNCON, val);
  306. /* Wait for the device to send the TX complete interrupt. */
  307. ret = wait_for_completion_interruptible_timeout(
  308. &devrec->tx_complete,
  309. 5 * HZ);
  310. if (ret == -ERESTARTSYS)
  311. goto err;
  312. if (ret == 0) {
  313. dev_warn(printdev(devrec), "Timeout waiting for TX interrupt\n");
  314. ret = -ETIMEDOUT;
  315. goto err;
  316. }
  317. /* Check for send error from the device. */
  318. ret = read_short_reg(devrec, REG_TXSTAT, &val);
  319. if (ret)
  320. goto err;
  321. if (val & 0x1) {
  322. dev_dbg(printdev(devrec), "Error Sending. Retry count exceeded\n");
  323. ret = -ECOMM; /* TODO: Better error code ? */
  324. } else
  325. dev_dbg(printdev(devrec), "Packet Sent\n");
  326. err:
  327. return ret;
  328. }
  329. static int mrf24j40_ed(struct ieee802154_hw *hw, u8 *level)
  330. {
  331. /* TODO: */
  332. pr_warn("mrf24j40: ed not implemented\n");
  333. *level = 0;
  334. return 0;
  335. }
  336. static int mrf24j40_start(struct ieee802154_hw *hw)
  337. {
  338. struct mrf24j40 *devrec = hw->priv;
  339. u8 val;
  340. int ret;
  341. dev_dbg(printdev(devrec), "start\n");
  342. ret = read_short_reg(devrec, REG_INTCON, &val);
  343. if (ret)
  344. return ret;
  345. val &= ~(0x1|0x8); /* Clear TXNIE and RXIE. Enable interrupts */
  346. write_short_reg(devrec, REG_INTCON, val);
  347. return 0;
  348. }
  349. static void mrf24j40_stop(struct ieee802154_hw *hw)
  350. {
  351. struct mrf24j40 *devrec = hw->priv;
  352. u8 val;
  353. int ret;
  354. dev_dbg(printdev(devrec), "stop\n");
  355. ret = read_short_reg(devrec, REG_INTCON, &val);
  356. if (ret)
  357. return;
  358. val |= 0x1|0x8; /* Set TXNIE and RXIE. Disable Interrupts */
  359. write_short_reg(devrec, REG_INTCON, val);
  360. }
  361. static int mrf24j40_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
  362. {
  363. struct mrf24j40 *devrec = hw->priv;
  364. u8 val;
  365. int ret;
  366. dev_dbg(printdev(devrec), "Set Channel %d\n", channel);
  367. WARN_ON(page != 0);
  368. WARN_ON(channel < MRF24J40_CHAN_MIN);
  369. WARN_ON(channel > MRF24J40_CHAN_MAX);
  370. /* Set Channel TODO */
  371. val = (channel-11) << 4 | 0x03;
  372. write_long_reg(devrec, REG_RFCON0, val);
  373. /* RF Reset */
  374. ret = read_short_reg(devrec, REG_RFCTL, &val);
  375. if (ret)
  376. return ret;
  377. val |= 0x04;
  378. write_short_reg(devrec, REG_RFCTL, val);
  379. val &= ~0x04;
  380. write_short_reg(devrec, REG_RFCTL, val);
  381. udelay(SET_CHANNEL_DELAY_US); /* per datasheet */
  382. return 0;
  383. }
  384. static int mrf24j40_filter(struct ieee802154_hw *hw,
  385. struct ieee802154_hw_addr_filt *filt,
  386. unsigned long changed)
  387. {
  388. struct mrf24j40 *devrec = hw->priv;
  389. dev_dbg(printdev(devrec), "filter\n");
  390. if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
  391. /* Short Addr */
  392. u8 addrh, addrl;
  393. addrh = le16_to_cpu(filt->short_addr) >> 8 & 0xff;
  394. addrl = le16_to_cpu(filt->short_addr) & 0xff;
  395. write_short_reg(devrec, REG_SADRH, addrh);
  396. write_short_reg(devrec, REG_SADRL, addrl);
  397. dev_dbg(printdev(devrec),
  398. "Set short addr to %04hx\n", filt->short_addr);
  399. }
  400. if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
  401. /* Device Address */
  402. u8 i, addr[8];
  403. memcpy(addr, &filt->ieee_addr, 8);
  404. for (i = 0; i < 8; i++)
  405. write_short_reg(devrec, REG_EADR0 + i, addr[i]);
  406. #ifdef DEBUG
  407. pr_debug("Set long addr to: ");
  408. for (i = 0; i < 8; i++)
  409. pr_debug("%02hhx ", addr[7 - i]);
  410. pr_debug("\n");
  411. #endif
  412. }
  413. if (changed & IEEE802154_AFILT_PANID_CHANGED) {
  414. /* PAN ID */
  415. u8 panidl, panidh;
  416. panidh = le16_to_cpu(filt->pan_id) >> 8 & 0xff;
  417. panidl = le16_to_cpu(filt->pan_id) & 0xff;
  418. write_short_reg(devrec, REG_PANIDH, panidh);
  419. write_short_reg(devrec, REG_PANIDL, panidl);
  420. dev_dbg(printdev(devrec), "Set PANID to %04hx\n", filt->pan_id);
  421. }
  422. if (changed & IEEE802154_AFILT_PANC_CHANGED) {
  423. /* Pan Coordinator */
  424. u8 val;
  425. int ret;
  426. ret = read_short_reg(devrec, REG_RXMCR, &val);
  427. if (ret)
  428. return ret;
  429. if (filt->pan_coord)
  430. val |= 0x8;
  431. else
  432. val &= ~0x8;
  433. write_short_reg(devrec, REG_RXMCR, val);
  434. /* REG_SLOTTED is maintained as default (unslotted/CSMA-CA).
  435. * REG_ORDER is maintained as default (no beacon/superframe).
  436. */
  437. dev_dbg(printdev(devrec), "Set Pan Coord to %s\n",
  438. filt->pan_coord ? "on" : "off");
  439. }
  440. return 0;
  441. }
  442. static int mrf24j40_handle_rx(struct mrf24j40 *devrec)
  443. {
  444. u8 len = RX_FIFO_SIZE;
  445. u8 lqi = 0;
  446. u8 val;
  447. int ret = 0;
  448. int ret2;
  449. struct sk_buff *skb;
  450. /* Turn off reception of packets off the air. This prevents the
  451. * device from overwriting the buffer while we're reading it. */
  452. ret = read_short_reg(devrec, REG_BBREG1, &val);
  453. if (ret)
  454. goto out;
  455. val |= 4; /* SET RXDECINV */
  456. write_short_reg(devrec, REG_BBREG1, val);
  457. skb = dev_alloc_skb(len);
  458. if (!skb) {
  459. ret = -ENOMEM;
  460. goto out;
  461. }
  462. ret = mrf24j40_read_rx_buf(devrec, skb_put(skb, len), &len, &lqi);
  463. if (ret < 0) {
  464. dev_err(printdev(devrec), "Failure reading RX FIFO\n");
  465. kfree_skb(skb);
  466. ret = -EINVAL;
  467. goto out;
  468. }
  469. /* Cut off the checksum */
  470. skb_trim(skb, len-2);
  471. /* TODO: Other drivers call ieee20154_rx_irqsafe() here (eg: cc2040,
  472. * also from a workqueue). I think irqsafe is not necessary here.
  473. * Can someone confirm? */
  474. ieee802154_rx_irqsafe(devrec->hw, skb, lqi);
  475. dev_dbg(printdev(devrec), "RX Handled\n");
  476. out:
  477. /* Turn back on reception of packets off the air. */
  478. ret2 = read_short_reg(devrec, REG_BBREG1, &val);
  479. if (ret2)
  480. return ret2;
  481. val &= ~0x4; /* Clear RXDECINV */
  482. write_short_reg(devrec, REG_BBREG1, val);
  483. return ret;
  484. }
  485. static const struct ieee802154_ops mrf24j40_ops = {
  486. .owner = THIS_MODULE,
  487. .xmit_sync = mrf24j40_tx,
  488. .ed = mrf24j40_ed,
  489. .start = mrf24j40_start,
  490. .stop = mrf24j40_stop,
  491. .set_channel = mrf24j40_set_channel,
  492. .set_hw_addr_filt = mrf24j40_filter,
  493. };
  494. static irqreturn_t mrf24j40_isr(int irq, void *data)
  495. {
  496. struct mrf24j40 *devrec = data;
  497. u8 intstat;
  498. int ret;
  499. /* Read the interrupt status */
  500. ret = read_short_reg(devrec, REG_INTSTAT, &intstat);
  501. if (ret)
  502. goto out;
  503. /* Check for TX complete */
  504. if (intstat & 0x1)
  505. complete(&devrec->tx_complete);
  506. /* Check for Rx */
  507. if (intstat & 0x8)
  508. mrf24j40_handle_rx(devrec);
  509. out:
  510. return IRQ_HANDLED;
  511. }
  512. static int mrf24j40_hw_init(struct mrf24j40 *devrec)
  513. {
  514. int ret;
  515. u8 val;
  516. /* Initialize the device.
  517. From datasheet section 3.2: Initialization. */
  518. ret = write_short_reg(devrec, REG_SOFTRST, 0x07);
  519. if (ret)
  520. goto err_ret;
  521. ret = write_short_reg(devrec, REG_PACON2, 0x98);
  522. if (ret)
  523. goto err_ret;
  524. ret = write_short_reg(devrec, REG_TXSTBL, 0x95);
  525. if (ret)
  526. goto err_ret;
  527. ret = write_long_reg(devrec, REG_RFCON0, 0x03);
  528. if (ret)
  529. goto err_ret;
  530. ret = write_long_reg(devrec, REG_RFCON1, 0x01);
  531. if (ret)
  532. goto err_ret;
  533. ret = write_long_reg(devrec, REG_RFCON2, 0x80);
  534. if (ret)
  535. goto err_ret;
  536. ret = write_long_reg(devrec, REG_RFCON6, 0x90);
  537. if (ret)
  538. goto err_ret;
  539. ret = write_long_reg(devrec, REG_RFCON7, 0x80);
  540. if (ret)
  541. goto err_ret;
  542. ret = write_long_reg(devrec, REG_RFCON8, 0x10);
  543. if (ret)
  544. goto err_ret;
  545. ret = write_long_reg(devrec, REG_SLPCON1, 0x21);
  546. if (ret)
  547. goto err_ret;
  548. ret = write_short_reg(devrec, REG_BBREG2, 0x80);
  549. if (ret)
  550. goto err_ret;
  551. ret = write_short_reg(devrec, REG_CCAEDTH, 0x60);
  552. if (ret)
  553. goto err_ret;
  554. ret = write_short_reg(devrec, REG_BBREG6, 0x40);
  555. if (ret)
  556. goto err_ret;
  557. ret = write_short_reg(devrec, REG_RFCTL, 0x04);
  558. if (ret)
  559. goto err_ret;
  560. ret = write_short_reg(devrec, REG_RFCTL, 0x0);
  561. if (ret)
  562. goto err_ret;
  563. udelay(192);
  564. /* Set RX Mode. RXMCR<1:0>: 0x0 normal, 0x1 promisc, 0x2 error */
  565. ret = read_short_reg(devrec, REG_RXMCR, &val);
  566. if (ret)
  567. goto err_ret;
  568. val &= ~0x3; /* Clear RX mode (normal) */
  569. ret = write_short_reg(devrec, REG_RXMCR, val);
  570. if (ret)
  571. goto err_ret;
  572. if (spi_get_device_id(devrec->spi)->driver_data == MRF24J40MC) {
  573. /* Enable external amplifier.
  574. * From MRF24J40MC datasheet section 1.3: Operation.
  575. */
  576. read_long_reg(devrec, REG_TESTMODE, &val);
  577. val |= 0x7; /* Configure GPIO 0-2 to control amplifier */
  578. write_long_reg(devrec, REG_TESTMODE, val);
  579. read_short_reg(devrec, REG_TRISGPIO, &val);
  580. val |= 0x8; /* Set GPIO3 as output. */
  581. write_short_reg(devrec, REG_TRISGPIO, val);
  582. read_short_reg(devrec, REG_GPIO, &val);
  583. val |= 0x8; /* Set GPIO3 HIGH to enable U5 voltage regulator */
  584. write_short_reg(devrec, REG_GPIO, val);
  585. /* Reduce TX pwr to meet FCC requirements.
  586. * From MRF24J40MC datasheet section 3.1.1
  587. */
  588. write_long_reg(devrec, REG_RFCON3, 0x28);
  589. }
  590. return 0;
  591. err_ret:
  592. return ret;
  593. }
  594. static int mrf24j40_probe(struct spi_device *spi)
  595. {
  596. int ret = -ENOMEM;
  597. struct mrf24j40 *devrec;
  598. dev_info(&spi->dev, "probe(). IRQ: %d\n", spi->irq);
  599. devrec = devm_kzalloc(&spi->dev, sizeof(struct mrf24j40), GFP_KERNEL);
  600. if (!devrec)
  601. goto err_ret;
  602. devrec->buf = devm_kzalloc(&spi->dev, 3, GFP_KERNEL);
  603. if (!devrec->buf)
  604. goto err_ret;
  605. spi->mode = SPI_MODE_0; /* TODO: Is this appropriate for right here? */
  606. if (spi->max_speed_hz > MAX_SPI_SPEED_HZ)
  607. spi->max_speed_hz = MAX_SPI_SPEED_HZ;
  608. mutex_init(&devrec->buffer_mutex);
  609. init_completion(&devrec->tx_complete);
  610. devrec->spi = spi;
  611. spi_set_drvdata(spi, devrec);
  612. /* Register with the 802154 subsystem */
  613. devrec->hw = ieee802154_alloc_hw(0, &mrf24j40_ops);
  614. if (!devrec->hw)
  615. goto err_ret;
  616. devrec->hw->priv = devrec;
  617. devrec->hw->parent = &devrec->spi->dev;
  618. devrec->hw->phy->supported.channels[0] = CHANNEL_MASK;
  619. devrec->hw->flags = IEEE802154_HW_OMIT_CKSUM | IEEE802154_HW_AFILT;
  620. dev_dbg(printdev(devrec), "registered mrf24j40\n");
  621. ret = ieee802154_register_hw(devrec->hw);
  622. if (ret)
  623. goto err_register_device;
  624. ret = mrf24j40_hw_init(devrec);
  625. if (ret)
  626. goto err_hw_init;
  627. ret = devm_request_threaded_irq(&spi->dev,
  628. spi->irq,
  629. NULL,
  630. mrf24j40_isr,
  631. IRQF_TRIGGER_LOW|IRQF_ONESHOT,
  632. dev_name(&spi->dev),
  633. devrec);
  634. if (ret) {
  635. dev_err(printdev(devrec), "Unable to get IRQ");
  636. goto err_irq;
  637. }
  638. return 0;
  639. err_irq:
  640. err_hw_init:
  641. ieee802154_unregister_hw(devrec->hw);
  642. err_register_device:
  643. ieee802154_free_hw(devrec->hw);
  644. err_ret:
  645. return ret;
  646. }
  647. static int mrf24j40_remove(struct spi_device *spi)
  648. {
  649. struct mrf24j40 *devrec = spi_get_drvdata(spi);
  650. dev_dbg(printdev(devrec), "remove\n");
  651. ieee802154_unregister_hw(devrec->hw);
  652. ieee802154_free_hw(devrec->hw);
  653. /* TODO: Will ieee802154_free_device() wait until ->xmit() is
  654. * complete? */
  655. return 0;
  656. }
  657. static const struct spi_device_id mrf24j40_ids[] = {
  658. { "mrf24j40", MRF24J40 },
  659. { "mrf24j40ma", MRF24J40MA },
  660. { "mrf24j40mc", MRF24J40MC },
  661. { },
  662. };
  663. MODULE_DEVICE_TABLE(spi, mrf24j40_ids);
  664. static struct spi_driver mrf24j40_driver = {
  665. .driver = {
  666. .name = "mrf24j40",
  667. .owner = THIS_MODULE,
  668. },
  669. .id_table = mrf24j40_ids,
  670. .probe = mrf24j40_probe,
  671. .remove = mrf24j40_remove,
  672. };
  673. module_spi_driver(mrf24j40_driver);
  674. MODULE_LICENSE("GPL");
  675. MODULE_AUTHOR("Alan Ott");
  676. MODULE_DESCRIPTION("MRF24J40 SPI 802.15.4 Controller Driver");