mvneta.c 87 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239
  1. /*
  2. * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
  3. *
  4. * Copyright (C) 2012 Marvell
  5. *
  6. * Rami Rosen <rosenr@marvell.com>
  7. * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
  8. *
  9. * This file is licensed under the terms of the GNU General Public
  10. * License version 2. This program is licensed "as is" without any
  11. * warranty of any kind, whether express or implied.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/netdevice.h>
  15. #include <linux/etherdevice.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/skbuff.h>
  18. #include <linux/inetdevice.h>
  19. #include <linux/mbus.h>
  20. #include <linux/module.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/if_vlan.h>
  23. #include <net/ip.h>
  24. #include <net/ipv6.h>
  25. #include <linux/io.h>
  26. #include <net/tso.h>
  27. #include <linux/of.h>
  28. #include <linux/of_irq.h>
  29. #include <linux/of_mdio.h>
  30. #include <linux/of_net.h>
  31. #include <linux/of_address.h>
  32. #include <linux/phy.h>
  33. #include <linux/clk.h>
  34. /* Registers */
  35. #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
  36. #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
  37. #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
  38. #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
  39. #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
  40. #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
  41. #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
  42. #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
  43. #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
  44. #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
  45. #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
  46. #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
  47. #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
  48. #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
  49. #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
  50. #define MVNETA_PORT_RX_RESET 0x1cc0
  51. #define MVNETA_PORT_RX_DMA_RESET BIT(0)
  52. #define MVNETA_PHY_ADDR 0x2000
  53. #define MVNETA_PHY_ADDR_MASK 0x1f
  54. #define MVNETA_MBUS_RETRY 0x2010
  55. #define MVNETA_UNIT_INTR_CAUSE 0x2080
  56. #define MVNETA_UNIT_CONTROL 0x20B0
  57. #define MVNETA_PHY_POLLING_ENABLE BIT(1)
  58. #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
  59. #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
  60. #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
  61. #define MVNETA_BASE_ADDR_ENABLE 0x2290
  62. #define MVNETA_PORT_CONFIG 0x2400
  63. #define MVNETA_UNI_PROMISC_MODE BIT(0)
  64. #define MVNETA_DEF_RXQ(q) ((q) << 1)
  65. #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
  66. #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
  67. #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
  68. #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
  69. #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
  70. #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
  71. #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
  72. MVNETA_DEF_RXQ_ARP(q) | \
  73. MVNETA_DEF_RXQ_TCP(q) | \
  74. MVNETA_DEF_RXQ_UDP(q) | \
  75. MVNETA_DEF_RXQ_BPDU(q) | \
  76. MVNETA_TX_UNSET_ERR_SUM | \
  77. MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
  78. #define MVNETA_PORT_CONFIG_EXTEND 0x2404
  79. #define MVNETA_MAC_ADDR_LOW 0x2414
  80. #define MVNETA_MAC_ADDR_HIGH 0x2418
  81. #define MVNETA_SDMA_CONFIG 0x241c
  82. #define MVNETA_SDMA_BRST_SIZE_16 4
  83. #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
  84. #define MVNETA_RX_NO_DATA_SWAP BIT(4)
  85. #define MVNETA_TX_NO_DATA_SWAP BIT(5)
  86. #define MVNETA_DESC_SWAP BIT(6)
  87. #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
  88. #define MVNETA_PORT_STATUS 0x2444
  89. #define MVNETA_TX_IN_PRGRS BIT(1)
  90. #define MVNETA_TX_FIFO_EMPTY BIT(8)
  91. #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
  92. #define MVNETA_SERDES_CFG 0x24A0
  93. #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
  94. #define MVNETA_QSGMII_SERDES_PROTO 0x0667
  95. #define MVNETA_TYPE_PRIO 0x24bc
  96. #define MVNETA_FORCE_UNI BIT(21)
  97. #define MVNETA_TXQ_CMD_1 0x24e4
  98. #define MVNETA_TXQ_CMD 0x2448
  99. #define MVNETA_TXQ_DISABLE_SHIFT 8
  100. #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
  101. #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
  102. #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
  103. #define MVNETA_ACC_MODE 0x2500
  104. #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
  105. #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
  106. #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
  107. #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
  108. /* Exception Interrupt Port/Queue Cause register */
  109. #define MVNETA_INTR_NEW_CAUSE 0x25a0
  110. #define MVNETA_INTR_NEW_MASK 0x25a4
  111. /* bits 0..7 = TXQ SENT, one bit per queue.
  112. * bits 8..15 = RXQ OCCUP, one bit per queue.
  113. * bits 16..23 = RXQ FREE, one bit per queue.
  114. * bit 29 = OLD_REG_SUM, see old reg ?
  115. * bit 30 = TX_ERR_SUM, one bit for 4 ports
  116. * bit 31 = MISC_SUM, one bit for 4 ports
  117. */
  118. #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
  119. #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
  120. #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
  121. #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
  122. #define MVNETA_MISCINTR_INTR_MASK BIT(31)
  123. #define MVNETA_INTR_OLD_CAUSE 0x25a8
  124. #define MVNETA_INTR_OLD_MASK 0x25ac
  125. /* Data Path Port/Queue Cause Register */
  126. #define MVNETA_INTR_MISC_CAUSE 0x25b0
  127. #define MVNETA_INTR_MISC_MASK 0x25b4
  128. #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
  129. #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
  130. #define MVNETA_CAUSE_PTP BIT(4)
  131. #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
  132. #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
  133. #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
  134. #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
  135. #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
  136. #define MVNETA_CAUSE_PRBS_ERR BIT(12)
  137. #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
  138. #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
  139. #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
  140. #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
  141. #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
  142. #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
  143. #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
  144. #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
  145. #define MVNETA_INTR_ENABLE 0x25b8
  146. #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
  147. #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 // note: neta says it's 0x000000FF
  148. #define MVNETA_RXQ_CMD 0x2680
  149. #define MVNETA_RXQ_DISABLE_SHIFT 8
  150. #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
  151. #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
  152. #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
  153. #define MVNETA_GMAC_CTRL_0 0x2c00
  154. #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
  155. #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
  156. #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
  157. #define MVNETA_GMAC_CTRL_2 0x2c08
  158. #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
  159. #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
  160. #define MVNETA_GMAC2_PORT_RGMII BIT(4)
  161. #define MVNETA_GMAC2_PORT_RESET BIT(6)
  162. #define MVNETA_GMAC_STATUS 0x2c10
  163. #define MVNETA_GMAC_LINK_UP BIT(0)
  164. #define MVNETA_GMAC_SPEED_1000 BIT(1)
  165. #define MVNETA_GMAC_SPEED_100 BIT(2)
  166. #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
  167. #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
  168. #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
  169. #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
  170. #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
  171. #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
  172. #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
  173. #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
  174. #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
  175. #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
  176. #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
  177. #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
  178. #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
  179. #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
  180. #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
  181. #define MVNETA_MIB_COUNTERS_BASE 0x3080
  182. #define MVNETA_MIB_LATE_COLLISION 0x7c
  183. #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
  184. #define MVNETA_DA_FILT_OTH_MCAST 0x3500
  185. #define MVNETA_DA_FILT_UCAST_BASE 0x3600
  186. #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
  187. #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
  188. #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
  189. #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
  190. #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
  191. #define MVNETA_TXQ_DEC_SENT_SHIFT 16
  192. #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
  193. #define MVNETA_TXQ_SENT_DESC_SHIFT 16
  194. #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
  195. #define MVNETA_PORT_TX_RESET 0x3cf0
  196. #define MVNETA_PORT_TX_DMA_RESET BIT(0)
  197. #define MVNETA_TX_MTU 0x3e0c
  198. #define MVNETA_TX_TOKEN_SIZE 0x3e14
  199. #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
  200. #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
  201. #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
  202. #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
  203. /* Descriptor ring Macros */
  204. #define MVNETA_QUEUE_NEXT_DESC(q, index) \
  205. (((index) < (q)->last_desc) ? ((index) + 1) : 0)
  206. /* Various constants */
  207. /* Coalescing */
  208. #define MVNETA_TXDONE_COAL_PKTS 1
  209. #define MVNETA_RX_COAL_PKTS 32
  210. #define MVNETA_RX_COAL_USEC 100
  211. /* The two bytes Marvell header. Either contains a special value used
  212. * by Marvell switches when a specific hardware mode is enabled (not
  213. * supported by this driver) or is filled automatically by zeroes on
  214. * the RX side. Those two bytes being at the front of the Ethernet
  215. * header, they allow to have the IP header aligned on a 4 bytes
  216. * boundary automatically: the hardware skips those two bytes on its
  217. * own.
  218. */
  219. #define MVNETA_MH_SIZE 2
  220. #define MVNETA_VLAN_TAG_LEN 4
  221. #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
  222. #define MVNETA_TX_CSUM_MAX_SIZE 9800
  223. #define MVNETA_ACC_MODE_EXT 1
  224. /* Timeout constants */
  225. #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
  226. #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
  227. #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
  228. #define MVNETA_TX_MTU_MAX 0x3ffff
  229. /* TSO header size */
  230. #define TSO_HEADER_SIZE 128
  231. /* Max number of Rx descriptors */
  232. #define MVNETA_MAX_RXD 128
  233. /* Max number of Tx descriptors */
  234. #define MVNETA_MAX_TXD 532
  235. /* Max number of allowed TCP segments for software TSO */
  236. #define MVNETA_MAX_TSO_SEGS 100
  237. #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
  238. /* descriptor aligned size */
  239. #define MVNETA_DESC_ALIGNED_SIZE 32
  240. #define MVNETA_RX_PKT_SIZE(mtu) \
  241. ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
  242. ETH_HLEN + ETH_FCS_LEN, \
  243. MVNETA_CPU_D_CACHE_LINE_SIZE)
  244. #define IS_TSO_HEADER(txq, addr) \
  245. ((addr >= txq->tso_hdrs_phys) && \
  246. (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
  247. #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
  248. struct mvneta_pcpu_stats {
  249. struct u64_stats_sync syncp;
  250. u64 rx_packets;
  251. u64 rx_bytes;
  252. u64 tx_packets;
  253. u64 tx_bytes;
  254. };
  255. struct mvneta_port {
  256. int pkt_size;
  257. unsigned int frag_size;
  258. void __iomem *base;
  259. struct mvneta_rx_queue *rxqs;
  260. struct mvneta_tx_queue *txqs;
  261. struct net_device *dev;
  262. u32 cause_rx_tx;
  263. struct napi_struct napi;
  264. /* Core clock */
  265. struct clk *clk;
  266. u8 mcast_count[256];
  267. u16 tx_ring_size;
  268. u16 rx_ring_size;
  269. struct mvneta_pcpu_stats *stats;
  270. struct mii_bus *mii_bus;
  271. struct phy_device *phy_dev;
  272. phy_interface_t phy_interface;
  273. struct device_node *phy_node;
  274. unsigned int link;
  275. unsigned int duplex;
  276. unsigned int speed;
  277. unsigned int tx_csum_limit;
  278. int use_inband_status:1;
  279. };
  280. /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
  281. * layout of the transmit and reception DMA descriptors, and their
  282. * layout is therefore defined by the hardware design
  283. */
  284. #define MVNETA_TX_L3_OFF_SHIFT 0
  285. #define MVNETA_TX_IP_HLEN_SHIFT 8
  286. #define MVNETA_TX_L4_UDP BIT(16)
  287. #define MVNETA_TX_L3_IP6 BIT(17)
  288. #define MVNETA_TXD_IP_CSUM BIT(18)
  289. #define MVNETA_TXD_Z_PAD BIT(19)
  290. #define MVNETA_TXD_L_DESC BIT(20)
  291. #define MVNETA_TXD_F_DESC BIT(21)
  292. #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
  293. MVNETA_TXD_L_DESC | \
  294. MVNETA_TXD_F_DESC)
  295. #define MVNETA_TX_L4_CSUM_FULL BIT(30)
  296. #define MVNETA_TX_L4_CSUM_NOT BIT(31)
  297. #define MVNETA_RXD_ERR_CRC 0x0
  298. #define MVNETA_RXD_ERR_SUMMARY BIT(16)
  299. #define MVNETA_RXD_ERR_OVERRUN BIT(17)
  300. #define MVNETA_RXD_ERR_LEN BIT(18)
  301. #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
  302. #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
  303. #define MVNETA_RXD_L3_IP4 BIT(25)
  304. #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
  305. #define MVNETA_RXD_L4_CSUM_OK BIT(30)
  306. #if defined(__LITTLE_ENDIAN)
  307. struct mvneta_tx_desc {
  308. u32 command; /* Options used by HW for packet transmitting.*/
  309. u16 reserverd1; /* csum_l4 (for future use) */
  310. u16 data_size; /* Data size of transmitted packet in bytes */
  311. u32 buf_phys_addr; /* Physical addr of transmitted buffer */
  312. u32 reserved2; /* hw_cmd - (for future use, PMT) */
  313. u32 reserved3[4]; /* Reserved - (for future use) */
  314. };
  315. struct mvneta_rx_desc {
  316. u32 status; /* Info about received packet */
  317. u16 reserved1; /* pnc_info - (for future use, PnC) */
  318. u16 data_size; /* Size of received packet in bytes */
  319. u32 buf_phys_addr; /* Physical address of the buffer */
  320. u32 reserved2; /* pnc_flow_id (for future use, PnC) */
  321. u32 buf_cookie; /* cookie for access to RX buffer in rx path */
  322. u16 reserved3; /* prefetch_cmd, for future use */
  323. u16 reserved4; /* csum_l4 - (for future use, PnC) */
  324. u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
  325. u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
  326. };
  327. #else
  328. struct mvneta_tx_desc {
  329. u16 data_size; /* Data size of transmitted packet in bytes */
  330. u16 reserverd1; /* csum_l4 (for future use) */
  331. u32 command; /* Options used by HW for packet transmitting.*/
  332. u32 reserved2; /* hw_cmd - (for future use, PMT) */
  333. u32 buf_phys_addr; /* Physical addr of transmitted buffer */
  334. u32 reserved3[4]; /* Reserved - (for future use) */
  335. };
  336. struct mvneta_rx_desc {
  337. u16 data_size; /* Size of received packet in bytes */
  338. u16 reserved1; /* pnc_info - (for future use, PnC) */
  339. u32 status; /* Info about received packet */
  340. u32 reserved2; /* pnc_flow_id (for future use, PnC) */
  341. u32 buf_phys_addr; /* Physical address of the buffer */
  342. u16 reserved4; /* csum_l4 - (for future use, PnC) */
  343. u16 reserved3; /* prefetch_cmd, for future use */
  344. u32 buf_cookie; /* cookie for access to RX buffer in rx path */
  345. u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
  346. u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
  347. };
  348. #endif
  349. struct mvneta_tx_queue {
  350. /* Number of this TX queue, in the range 0-7 */
  351. u8 id;
  352. /* Number of TX DMA descriptors in the descriptor ring */
  353. int size;
  354. /* Number of currently used TX DMA descriptor in the
  355. * descriptor ring
  356. */
  357. int count;
  358. int tx_stop_threshold;
  359. int tx_wake_threshold;
  360. /* Array of transmitted skb */
  361. struct sk_buff **tx_skb;
  362. /* Index of last TX DMA descriptor that was inserted */
  363. int txq_put_index;
  364. /* Index of the TX DMA descriptor to be cleaned up */
  365. int txq_get_index;
  366. u32 done_pkts_coal;
  367. /* Virtual address of the TX DMA descriptors array */
  368. struct mvneta_tx_desc *descs;
  369. /* DMA address of the TX DMA descriptors array */
  370. dma_addr_t descs_phys;
  371. /* Index of the last TX DMA descriptor */
  372. int last_desc;
  373. /* Index of the next TX DMA descriptor to process */
  374. int next_desc_to_proc;
  375. /* DMA buffers for TSO headers */
  376. char *tso_hdrs;
  377. /* DMA address of TSO headers */
  378. dma_addr_t tso_hdrs_phys;
  379. };
  380. struct mvneta_rx_queue {
  381. /* rx queue number, in the range 0-7 */
  382. u8 id;
  383. /* num of rx descriptors in the rx descriptor ring */
  384. int size;
  385. /* counter of times when mvneta_refill() failed */
  386. int missed;
  387. u32 pkts_coal;
  388. u32 time_coal;
  389. /* Virtual address of the RX DMA descriptors array */
  390. struct mvneta_rx_desc *descs;
  391. /* DMA address of the RX DMA descriptors array */
  392. dma_addr_t descs_phys;
  393. /* Index of the last RX DMA descriptor */
  394. int last_desc;
  395. /* Index of the next RX DMA descriptor to process */
  396. int next_desc_to_proc;
  397. };
  398. /* The hardware supports eight (8) rx queues, but we are only allowing
  399. * the first one to be used. Therefore, let's just allocate one queue.
  400. */
  401. static int rxq_number = 1;
  402. static int txq_number = 8;
  403. static int rxq_def;
  404. static int rx_copybreak __read_mostly = 256;
  405. #define MVNETA_DRIVER_NAME "mvneta"
  406. #define MVNETA_DRIVER_VERSION "1.0"
  407. /* Utility/helper methods */
  408. /* Write helper method */
  409. static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
  410. {
  411. writel(data, pp->base + offset);
  412. }
  413. /* Read helper method */
  414. static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
  415. {
  416. return readl(pp->base + offset);
  417. }
  418. /* Increment txq get counter */
  419. static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
  420. {
  421. txq->txq_get_index++;
  422. if (txq->txq_get_index == txq->size)
  423. txq->txq_get_index = 0;
  424. }
  425. /* Increment txq put counter */
  426. static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
  427. {
  428. txq->txq_put_index++;
  429. if (txq->txq_put_index == txq->size)
  430. txq->txq_put_index = 0;
  431. }
  432. /* Clear all MIB counters */
  433. static void mvneta_mib_counters_clear(struct mvneta_port *pp)
  434. {
  435. int i;
  436. u32 dummy;
  437. /* Perform dummy reads from MIB counters */
  438. for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
  439. dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
  440. }
  441. /* Get System Network Statistics */
  442. struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
  443. struct rtnl_link_stats64 *stats)
  444. {
  445. struct mvneta_port *pp = netdev_priv(dev);
  446. unsigned int start;
  447. int cpu;
  448. for_each_possible_cpu(cpu) {
  449. struct mvneta_pcpu_stats *cpu_stats;
  450. u64 rx_packets;
  451. u64 rx_bytes;
  452. u64 tx_packets;
  453. u64 tx_bytes;
  454. cpu_stats = per_cpu_ptr(pp->stats, cpu);
  455. do {
  456. start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
  457. rx_packets = cpu_stats->rx_packets;
  458. rx_bytes = cpu_stats->rx_bytes;
  459. tx_packets = cpu_stats->tx_packets;
  460. tx_bytes = cpu_stats->tx_bytes;
  461. } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
  462. stats->rx_packets += rx_packets;
  463. stats->rx_bytes += rx_bytes;
  464. stats->tx_packets += tx_packets;
  465. stats->tx_bytes += tx_bytes;
  466. }
  467. stats->rx_errors = dev->stats.rx_errors;
  468. stats->rx_dropped = dev->stats.rx_dropped;
  469. stats->tx_dropped = dev->stats.tx_dropped;
  470. return stats;
  471. }
  472. /* Rx descriptors helper methods */
  473. /* Checks whether the RX descriptor having this status is both the first
  474. * and the last descriptor for the RX packet. Each RX packet is currently
  475. * received through a single RX descriptor, so not having each RX
  476. * descriptor with its first and last bits set is an error
  477. */
  478. static int mvneta_rxq_desc_is_first_last(u32 status)
  479. {
  480. return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
  481. MVNETA_RXD_FIRST_LAST_DESC;
  482. }
  483. /* Add number of descriptors ready to receive new packets */
  484. static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
  485. struct mvneta_rx_queue *rxq,
  486. int ndescs)
  487. {
  488. /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
  489. * be added at once
  490. */
  491. while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
  492. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  493. (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
  494. MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  495. ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
  496. }
  497. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  498. (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  499. }
  500. /* Get number of RX descriptors occupied by received packets */
  501. static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
  502. struct mvneta_rx_queue *rxq)
  503. {
  504. u32 val;
  505. val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
  506. return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
  507. }
  508. /* Update num of rx desc called upon return from rx path or
  509. * from mvneta_rxq_drop_pkts().
  510. */
  511. static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
  512. struct mvneta_rx_queue *rxq,
  513. int rx_done, int rx_filled)
  514. {
  515. u32 val;
  516. if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
  517. val = rx_done |
  518. (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
  519. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  520. return;
  521. }
  522. /* Only 255 descriptors can be added at once */
  523. while ((rx_done > 0) || (rx_filled > 0)) {
  524. if (rx_done <= 0xff) {
  525. val = rx_done;
  526. rx_done = 0;
  527. } else {
  528. val = 0xff;
  529. rx_done -= 0xff;
  530. }
  531. if (rx_filled <= 0xff) {
  532. val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  533. rx_filled = 0;
  534. } else {
  535. val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  536. rx_filled -= 0xff;
  537. }
  538. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  539. }
  540. }
  541. /* Get pointer to next RX descriptor to be processed by SW */
  542. static struct mvneta_rx_desc *
  543. mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
  544. {
  545. int rx_desc = rxq->next_desc_to_proc;
  546. rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
  547. prefetch(rxq->descs + rxq->next_desc_to_proc);
  548. return rxq->descs + rx_desc;
  549. }
  550. /* Change maximum receive size of the port. */
  551. static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
  552. {
  553. u32 val;
  554. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  555. val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
  556. val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
  557. MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
  558. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  559. }
  560. /* Set rx queue offset */
  561. static void mvneta_rxq_offset_set(struct mvneta_port *pp,
  562. struct mvneta_rx_queue *rxq,
  563. int offset)
  564. {
  565. u32 val;
  566. val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
  567. val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
  568. /* Offset is in */
  569. val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
  570. mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
  571. }
  572. /* Tx descriptors helper methods */
  573. /* Update HW with number of TX descriptors to be sent */
  574. static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
  575. struct mvneta_tx_queue *txq,
  576. int pend_desc)
  577. {
  578. u32 val;
  579. /* Only 255 descriptors can be added at once ; Assume caller
  580. * process TX desriptors in quanta less than 256
  581. */
  582. val = pend_desc;
  583. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  584. }
  585. /* Get pointer to next TX descriptor to be processed (send) by HW */
  586. static struct mvneta_tx_desc *
  587. mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
  588. {
  589. int tx_desc = txq->next_desc_to_proc;
  590. txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
  591. return txq->descs + tx_desc;
  592. }
  593. /* Release the last allocated TX descriptor. Useful to handle DMA
  594. * mapping failures in the TX path.
  595. */
  596. static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
  597. {
  598. if (txq->next_desc_to_proc == 0)
  599. txq->next_desc_to_proc = txq->last_desc - 1;
  600. else
  601. txq->next_desc_to_proc--;
  602. }
  603. /* Set rxq buf size */
  604. static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
  605. struct mvneta_rx_queue *rxq,
  606. int buf_size)
  607. {
  608. u32 val;
  609. val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
  610. val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
  611. val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
  612. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
  613. }
  614. /* Disable buffer management (BM) */
  615. static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
  616. struct mvneta_rx_queue *rxq)
  617. {
  618. u32 val;
  619. val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
  620. val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
  621. mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
  622. }
  623. /* Start the Ethernet port RX and TX activity */
  624. static void mvneta_port_up(struct mvneta_port *pp)
  625. {
  626. int queue;
  627. u32 q_map;
  628. /* Enable all initialized TXs. */
  629. mvneta_mib_counters_clear(pp);
  630. q_map = 0;
  631. for (queue = 0; queue < txq_number; queue++) {
  632. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  633. if (txq->descs != NULL)
  634. q_map |= (1 << queue);
  635. }
  636. mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
  637. /* Enable all initialized RXQs. */
  638. q_map = 0;
  639. for (queue = 0; queue < rxq_number; queue++) {
  640. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  641. if (rxq->descs != NULL)
  642. q_map |= (1 << queue);
  643. }
  644. mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
  645. }
  646. /* Stop the Ethernet port activity */
  647. static void mvneta_port_down(struct mvneta_port *pp)
  648. {
  649. u32 val;
  650. int count;
  651. /* Stop Rx port activity. Check port Rx activity. */
  652. val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
  653. /* Issue stop command for active channels only */
  654. if (val != 0)
  655. mvreg_write(pp, MVNETA_RXQ_CMD,
  656. val << MVNETA_RXQ_DISABLE_SHIFT);
  657. /* Wait for all Rx activity to terminate. */
  658. count = 0;
  659. do {
  660. if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
  661. netdev_warn(pp->dev,
  662. "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
  663. val);
  664. break;
  665. }
  666. mdelay(1);
  667. val = mvreg_read(pp, MVNETA_RXQ_CMD);
  668. } while (val & 0xff);
  669. /* Stop Tx port activity. Check port Tx activity. Issue stop
  670. * command for active channels only
  671. */
  672. val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
  673. if (val != 0)
  674. mvreg_write(pp, MVNETA_TXQ_CMD,
  675. (val << MVNETA_TXQ_DISABLE_SHIFT));
  676. /* Wait for all Tx activity to terminate. */
  677. count = 0;
  678. do {
  679. if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
  680. netdev_warn(pp->dev,
  681. "TIMEOUT for TX stopped status=0x%08x\n",
  682. val);
  683. break;
  684. }
  685. mdelay(1);
  686. /* Check TX Command reg that all Txqs are stopped */
  687. val = mvreg_read(pp, MVNETA_TXQ_CMD);
  688. } while (val & 0xff);
  689. /* Double check to verify that TX FIFO is empty */
  690. count = 0;
  691. do {
  692. if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
  693. netdev_warn(pp->dev,
  694. "TX FIFO empty timeout status=0x08%x\n",
  695. val);
  696. break;
  697. }
  698. mdelay(1);
  699. val = mvreg_read(pp, MVNETA_PORT_STATUS);
  700. } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
  701. (val & MVNETA_TX_IN_PRGRS));
  702. udelay(200);
  703. }
  704. /* Enable the port by setting the port enable bit of the MAC control register */
  705. static void mvneta_port_enable(struct mvneta_port *pp)
  706. {
  707. u32 val;
  708. /* Enable port */
  709. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  710. val |= MVNETA_GMAC0_PORT_ENABLE;
  711. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  712. }
  713. /* Disable the port and wait for about 200 usec before retuning */
  714. static void mvneta_port_disable(struct mvneta_port *pp)
  715. {
  716. u32 val;
  717. /* Reset the Enable bit in the Serial Control Register */
  718. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  719. val &= ~MVNETA_GMAC0_PORT_ENABLE;
  720. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  721. udelay(200);
  722. }
  723. /* Multicast tables methods */
  724. /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
  725. static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
  726. {
  727. int offset;
  728. u32 val;
  729. if (queue == -1) {
  730. val = 0;
  731. } else {
  732. val = 0x1 | (queue << 1);
  733. val |= (val << 24) | (val << 16) | (val << 8);
  734. }
  735. for (offset = 0; offset <= 0xc; offset += 4)
  736. mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
  737. }
  738. /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
  739. static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
  740. {
  741. int offset;
  742. u32 val;
  743. if (queue == -1) {
  744. val = 0;
  745. } else {
  746. val = 0x1 | (queue << 1);
  747. val |= (val << 24) | (val << 16) | (val << 8);
  748. }
  749. for (offset = 0; offset <= 0xfc; offset += 4)
  750. mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
  751. }
  752. /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
  753. static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
  754. {
  755. int offset;
  756. u32 val;
  757. if (queue == -1) {
  758. memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
  759. val = 0;
  760. } else {
  761. memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
  762. val = 0x1 | (queue << 1);
  763. val |= (val << 24) | (val << 16) | (val << 8);
  764. }
  765. for (offset = 0; offset <= 0xfc; offset += 4)
  766. mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
  767. }
  768. /* This method sets defaults to the NETA port:
  769. * Clears interrupt Cause and Mask registers.
  770. * Clears all MAC tables.
  771. * Sets defaults to all registers.
  772. * Resets RX and TX descriptor rings.
  773. * Resets PHY.
  774. * This method can be called after mvneta_port_down() to return the port
  775. * settings to defaults.
  776. */
  777. static void mvneta_defaults_set(struct mvneta_port *pp)
  778. {
  779. int cpu;
  780. int queue;
  781. u32 val;
  782. /* Clear all Cause registers */
  783. mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
  784. mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
  785. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  786. /* Mask all interrupts */
  787. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  788. mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
  789. mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
  790. mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
  791. /* Enable MBUS Retry bit16 */
  792. mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
  793. /* Set CPU queue access map - all CPUs have access to all RX
  794. * queues and to all TX queues
  795. */
  796. for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
  797. mvreg_write(pp, MVNETA_CPU_MAP(cpu),
  798. (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
  799. MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
  800. /* Reset RX and TX DMAs */
  801. mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
  802. mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
  803. /* Disable Legacy WRR, Disable EJP, Release from reset */
  804. mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
  805. for (queue = 0; queue < txq_number; queue++) {
  806. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
  807. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
  808. }
  809. mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
  810. mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
  811. /* Set Port Acceleration Mode */
  812. val = MVNETA_ACC_MODE_EXT;
  813. mvreg_write(pp, MVNETA_ACC_MODE, val);
  814. /* Update val of portCfg register accordingly with all RxQueue types */
  815. val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
  816. mvreg_write(pp, MVNETA_PORT_CONFIG, val);
  817. val = 0;
  818. mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
  819. mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
  820. /* Build PORT_SDMA_CONFIG_REG */
  821. val = 0;
  822. /* Default burst size */
  823. val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  824. val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  825. val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
  826. #if defined(__BIG_ENDIAN)
  827. val |= MVNETA_DESC_SWAP;
  828. #endif
  829. /* Assign port SDMA configuration */
  830. mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
  831. /* Disable PHY polling in hardware, since we're using the
  832. * kernel phylib to do this.
  833. */
  834. val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
  835. val &= ~MVNETA_PHY_POLLING_ENABLE;
  836. mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
  837. if (pp->use_inband_status) {
  838. val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  839. val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
  840. MVNETA_GMAC_FORCE_LINK_DOWN |
  841. MVNETA_GMAC_AN_FLOW_CTRL_EN);
  842. val |= MVNETA_GMAC_INBAND_AN_ENABLE |
  843. MVNETA_GMAC_AN_SPEED_EN |
  844. MVNETA_GMAC_AN_DUPLEX_EN;
  845. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  846. val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
  847. val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
  848. mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
  849. } else {
  850. val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  851. val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
  852. MVNETA_GMAC_AN_SPEED_EN |
  853. MVNETA_GMAC_AN_DUPLEX_EN);
  854. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  855. }
  856. mvneta_set_ucast_table(pp, -1);
  857. mvneta_set_special_mcast_table(pp, -1);
  858. mvneta_set_other_mcast_table(pp, -1);
  859. /* Set port interrupt enable register - default enable all */
  860. mvreg_write(pp, MVNETA_INTR_ENABLE,
  861. (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
  862. | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
  863. }
  864. /* Set max sizes for tx queues */
  865. static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
  866. {
  867. u32 val, size, mtu;
  868. int queue;
  869. mtu = max_tx_size * 8;
  870. if (mtu > MVNETA_TX_MTU_MAX)
  871. mtu = MVNETA_TX_MTU_MAX;
  872. /* Set MTU */
  873. val = mvreg_read(pp, MVNETA_TX_MTU);
  874. val &= ~MVNETA_TX_MTU_MAX;
  875. val |= mtu;
  876. mvreg_write(pp, MVNETA_TX_MTU, val);
  877. /* TX token size and all TXQs token size must be larger that MTU */
  878. val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
  879. size = val & MVNETA_TX_TOKEN_SIZE_MAX;
  880. if (size < mtu) {
  881. size = mtu;
  882. val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
  883. val |= size;
  884. mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
  885. }
  886. for (queue = 0; queue < txq_number; queue++) {
  887. val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
  888. size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
  889. if (size < mtu) {
  890. size = mtu;
  891. val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
  892. val |= size;
  893. mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
  894. }
  895. }
  896. }
  897. /* Set unicast address */
  898. static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
  899. int queue)
  900. {
  901. unsigned int unicast_reg;
  902. unsigned int tbl_offset;
  903. unsigned int reg_offset;
  904. /* Locate the Unicast table entry */
  905. last_nibble = (0xf & last_nibble);
  906. /* offset from unicast tbl base */
  907. tbl_offset = (last_nibble / 4) * 4;
  908. /* offset within the above reg */
  909. reg_offset = last_nibble % 4;
  910. unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
  911. if (queue == -1) {
  912. /* Clear accepts frame bit at specified unicast DA tbl entry */
  913. unicast_reg &= ~(0xff << (8 * reg_offset));
  914. } else {
  915. unicast_reg &= ~(0xff << (8 * reg_offset));
  916. unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  917. }
  918. mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
  919. }
  920. /* Set mac address */
  921. static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
  922. int queue)
  923. {
  924. unsigned int mac_h;
  925. unsigned int mac_l;
  926. if (queue != -1) {
  927. mac_l = (addr[4] << 8) | (addr[5]);
  928. mac_h = (addr[0] << 24) | (addr[1] << 16) |
  929. (addr[2] << 8) | (addr[3] << 0);
  930. mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
  931. mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
  932. }
  933. /* Accept frames of this address */
  934. mvneta_set_ucast_addr(pp, addr[5], queue);
  935. }
  936. /* Set the number of packets that will be received before RX interrupt
  937. * will be generated by HW.
  938. */
  939. static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
  940. struct mvneta_rx_queue *rxq, u32 value)
  941. {
  942. mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
  943. value | MVNETA_RXQ_NON_OCCUPIED(0));
  944. rxq->pkts_coal = value;
  945. }
  946. /* Set the time delay in usec before RX interrupt will be generated by
  947. * HW.
  948. */
  949. static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
  950. struct mvneta_rx_queue *rxq, u32 value)
  951. {
  952. u32 val;
  953. unsigned long clk_rate;
  954. clk_rate = clk_get_rate(pp->clk);
  955. val = (clk_rate / 1000000) * value;
  956. mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
  957. rxq->time_coal = value;
  958. }
  959. /* Set threshold for TX_DONE pkts coalescing */
  960. static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
  961. struct mvneta_tx_queue *txq, u32 value)
  962. {
  963. u32 val;
  964. val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
  965. val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
  966. val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
  967. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
  968. txq->done_pkts_coal = value;
  969. }
  970. /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
  971. static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
  972. u32 phys_addr, u32 cookie)
  973. {
  974. rx_desc->buf_cookie = cookie;
  975. rx_desc->buf_phys_addr = phys_addr;
  976. }
  977. /* Decrement sent descriptors counter */
  978. static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
  979. struct mvneta_tx_queue *txq,
  980. int sent_desc)
  981. {
  982. u32 val;
  983. /* Only 255 TX descriptors can be updated at once */
  984. while (sent_desc > 0xff) {
  985. val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
  986. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  987. sent_desc = sent_desc - 0xff;
  988. }
  989. val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
  990. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  991. }
  992. /* Get number of TX descriptors already sent by HW */
  993. static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
  994. struct mvneta_tx_queue *txq)
  995. {
  996. u32 val;
  997. int sent_desc;
  998. val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
  999. sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
  1000. MVNETA_TXQ_SENT_DESC_SHIFT;
  1001. return sent_desc;
  1002. }
  1003. /* Get number of sent descriptors and decrement counter.
  1004. * The number of sent descriptors is returned.
  1005. */
  1006. static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
  1007. struct mvneta_tx_queue *txq)
  1008. {
  1009. int sent_desc;
  1010. /* Get number of sent descriptors */
  1011. sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
  1012. /* Decrement sent descriptors counter */
  1013. if (sent_desc)
  1014. mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
  1015. return sent_desc;
  1016. }
  1017. /* Set TXQ descriptors fields relevant for CSUM calculation */
  1018. static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
  1019. int ip_hdr_len, int l4_proto)
  1020. {
  1021. u32 command;
  1022. /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
  1023. * G_L4_chk, L4_type; required only for checksum
  1024. * calculation
  1025. */
  1026. command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
  1027. command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
  1028. if (l3_proto == htons(ETH_P_IP))
  1029. command |= MVNETA_TXD_IP_CSUM;
  1030. else
  1031. command |= MVNETA_TX_L3_IP6;
  1032. if (l4_proto == IPPROTO_TCP)
  1033. command |= MVNETA_TX_L4_CSUM_FULL;
  1034. else if (l4_proto == IPPROTO_UDP)
  1035. command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
  1036. else
  1037. command |= MVNETA_TX_L4_CSUM_NOT;
  1038. return command;
  1039. }
  1040. /* Display more error info */
  1041. static void mvneta_rx_error(struct mvneta_port *pp,
  1042. struct mvneta_rx_desc *rx_desc)
  1043. {
  1044. u32 status = rx_desc->status;
  1045. if (!mvneta_rxq_desc_is_first_last(status)) {
  1046. netdev_err(pp->dev,
  1047. "bad rx status %08x (buffer oversize), size=%d\n",
  1048. status, rx_desc->data_size);
  1049. return;
  1050. }
  1051. switch (status & MVNETA_RXD_ERR_CODE_MASK) {
  1052. case MVNETA_RXD_ERR_CRC:
  1053. netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
  1054. status, rx_desc->data_size);
  1055. break;
  1056. case MVNETA_RXD_ERR_OVERRUN:
  1057. netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
  1058. status, rx_desc->data_size);
  1059. break;
  1060. case MVNETA_RXD_ERR_LEN:
  1061. netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
  1062. status, rx_desc->data_size);
  1063. break;
  1064. case MVNETA_RXD_ERR_RESOURCE:
  1065. netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
  1066. status, rx_desc->data_size);
  1067. break;
  1068. }
  1069. }
  1070. /* Handle RX checksum offload based on the descriptor's status */
  1071. static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
  1072. struct sk_buff *skb)
  1073. {
  1074. if ((status & MVNETA_RXD_L3_IP4) &&
  1075. (status & MVNETA_RXD_L4_CSUM_OK)) {
  1076. skb->csum = 0;
  1077. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1078. return;
  1079. }
  1080. skb->ip_summed = CHECKSUM_NONE;
  1081. }
  1082. /* Return tx queue pointer (find last set bit) according to <cause> returned
  1083. * form tx_done reg. <cause> must not be null. The return value is always a
  1084. * valid queue for matching the first one found in <cause>.
  1085. */
  1086. static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
  1087. u32 cause)
  1088. {
  1089. int queue = fls(cause) - 1;
  1090. return &pp->txqs[queue];
  1091. }
  1092. /* Free tx queue skbuffs */
  1093. static void mvneta_txq_bufs_free(struct mvneta_port *pp,
  1094. struct mvneta_tx_queue *txq, int num)
  1095. {
  1096. int i;
  1097. for (i = 0; i < num; i++) {
  1098. struct mvneta_tx_desc *tx_desc = txq->descs +
  1099. txq->txq_get_index;
  1100. struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
  1101. mvneta_txq_inc_get(txq);
  1102. if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
  1103. dma_unmap_single(pp->dev->dev.parent,
  1104. tx_desc->buf_phys_addr,
  1105. tx_desc->data_size, DMA_TO_DEVICE);
  1106. if (!skb)
  1107. continue;
  1108. dev_kfree_skb_any(skb);
  1109. }
  1110. }
  1111. /* Handle end of transmission */
  1112. static void mvneta_txq_done(struct mvneta_port *pp,
  1113. struct mvneta_tx_queue *txq)
  1114. {
  1115. struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
  1116. int tx_done;
  1117. tx_done = mvneta_txq_sent_desc_proc(pp, txq);
  1118. if (!tx_done)
  1119. return;
  1120. mvneta_txq_bufs_free(pp, txq, tx_done);
  1121. txq->count -= tx_done;
  1122. if (netif_tx_queue_stopped(nq)) {
  1123. if (txq->count <= txq->tx_wake_threshold)
  1124. netif_tx_wake_queue(nq);
  1125. }
  1126. }
  1127. static void *mvneta_frag_alloc(const struct mvneta_port *pp)
  1128. {
  1129. if (likely(pp->frag_size <= PAGE_SIZE))
  1130. return netdev_alloc_frag(pp->frag_size);
  1131. else
  1132. return kmalloc(pp->frag_size, GFP_ATOMIC);
  1133. }
  1134. static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
  1135. {
  1136. if (likely(pp->frag_size <= PAGE_SIZE))
  1137. skb_free_frag(data);
  1138. else
  1139. kfree(data);
  1140. }
  1141. /* Refill processing */
  1142. static int mvneta_rx_refill(struct mvneta_port *pp,
  1143. struct mvneta_rx_desc *rx_desc)
  1144. {
  1145. dma_addr_t phys_addr;
  1146. void *data;
  1147. data = mvneta_frag_alloc(pp);
  1148. if (!data)
  1149. return -ENOMEM;
  1150. phys_addr = dma_map_single(pp->dev->dev.parent, data,
  1151. MVNETA_RX_BUF_SIZE(pp->pkt_size),
  1152. DMA_FROM_DEVICE);
  1153. if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
  1154. mvneta_frag_free(pp, data);
  1155. return -ENOMEM;
  1156. }
  1157. mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
  1158. return 0;
  1159. }
  1160. /* Handle tx checksum */
  1161. static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
  1162. {
  1163. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1164. int ip_hdr_len = 0;
  1165. __be16 l3_proto = vlan_get_protocol(skb);
  1166. u8 l4_proto;
  1167. if (l3_proto == htons(ETH_P_IP)) {
  1168. struct iphdr *ip4h = ip_hdr(skb);
  1169. /* Calculate IPv4 checksum and L4 checksum */
  1170. ip_hdr_len = ip4h->ihl;
  1171. l4_proto = ip4h->protocol;
  1172. } else if (l3_proto == htons(ETH_P_IPV6)) {
  1173. struct ipv6hdr *ip6h = ipv6_hdr(skb);
  1174. /* Read l4_protocol from one of IPv6 extra headers */
  1175. if (skb_network_header_len(skb) > 0)
  1176. ip_hdr_len = (skb_network_header_len(skb) >> 2);
  1177. l4_proto = ip6h->nexthdr;
  1178. } else
  1179. return MVNETA_TX_L4_CSUM_NOT;
  1180. return mvneta_txq_desc_csum(skb_network_offset(skb),
  1181. l3_proto, ip_hdr_len, l4_proto);
  1182. }
  1183. return MVNETA_TX_L4_CSUM_NOT;
  1184. }
  1185. /* Returns rx queue pointer (find last set bit) according to causeRxTx
  1186. * value
  1187. */
  1188. static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
  1189. u32 cause)
  1190. {
  1191. int queue = fls(cause >> 8) - 1;
  1192. return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
  1193. }
  1194. /* Drop packets received by the RXQ and free buffers */
  1195. static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
  1196. struct mvneta_rx_queue *rxq)
  1197. {
  1198. int rx_done, i;
  1199. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  1200. for (i = 0; i < rxq->size; i++) {
  1201. struct mvneta_rx_desc *rx_desc = rxq->descs + i;
  1202. void *data = (void *)rx_desc->buf_cookie;
  1203. mvneta_frag_free(pp, data);
  1204. dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
  1205. MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
  1206. }
  1207. if (rx_done)
  1208. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
  1209. }
  1210. /* Main rx processing */
  1211. static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
  1212. struct mvneta_rx_queue *rxq)
  1213. {
  1214. struct net_device *dev = pp->dev;
  1215. int rx_done;
  1216. u32 rcvd_pkts = 0;
  1217. u32 rcvd_bytes = 0;
  1218. /* Get number of received packets */
  1219. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  1220. if (rx_todo > rx_done)
  1221. rx_todo = rx_done;
  1222. rx_done = 0;
  1223. /* Fairness NAPI loop */
  1224. while (rx_done < rx_todo) {
  1225. struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
  1226. struct sk_buff *skb;
  1227. unsigned char *data;
  1228. dma_addr_t phys_addr;
  1229. u32 rx_status;
  1230. int rx_bytes, err;
  1231. rx_done++;
  1232. rx_status = rx_desc->status;
  1233. rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
  1234. data = (unsigned char *)rx_desc->buf_cookie;
  1235. phys_addr = rx_desc->buf_phys_addr;
  1236. if (!mvneta_rxq_desc_is_first_last(rx_status) ||
  1237. (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
  1238. err_drop_frame:
  1239. dev->stats.rx_errors++;
  1240. mvneta_rx_error(pp, rx_desc);
  1241. /* leave the descriptor untouched */
  1242. continue;
  1243. }
  1244. if (rx_bytes <= rx_copybreak) {
  1245. /* better copy a small frame and not unmap the DMA region */
  1246. skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
  1247. if (unlikely(!skb))
  1248. goto err_drop_frame;
  1249. dma_sync_single_range_for_cpu(dev->dev.parent,
  1250. rx_desc->buf_phys_addr,
  1251. MVNETA_MH_SIZE + NET_SKB_PAD,
  1252. rx_bytes,
  1253. DMA_FROM_DEVICE);
  1254. memcpy(skb_put(skb, rx_bytes),
  1255. data + MVNETA_MH_SIZE + NET_SKB_PAD,
  1256. rx_bytes);
  1257. skb->protocol = eth_type_trans(skb, dev);
  1258. mvneta_rx_csum(pp, rx_status, skb);
  1259. napi_gro_receive(&pp->napi, skb);
  1260. rcvd_pkts++;
  1261. rcvd_bytes += rx_bytes;
  1262. /* leave the descriptor and buffer untouched */
  1263. continue;
  1264. }
  1265. /* Refill processing */
  1266. err = mvneta_rx_refill(pp, rx_desc);
  1267. if (err) {
  1268. netdev_err(dev, "Linux processing - Can't refill\n");
  1269. rxq->missed++;
  1270. goto err_drop_frame;
  1271. }
  1272. skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
  1273. if (!skb)
  1274. goto err_drop_frame;
  1275. dma_unmap_single(dev->dev.parent, phys_addr,
  1276. MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
  1277. rcvd_pkts++;
  1278. rcvd_bytes += rx_bytes;
  1279. /* Linux processing */
  1280. skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
  1281. skb_put(skb, rx_bytes);
  1282. skb->protocol = eth_type_trans(skb, dev);
  1283. mvneta_rx_csum(pp, rx_status, skb);
  1284. napi_gro_receive(&pp->napi, skb);
  1285. }
  1286. if (rcvd_pkts) {
  1287. struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
  1288. u64_stats_update_begin(&stats->syncp);
  1289. stats->rx_packets += rcvd_pkts;
  1290. stats->rx_bytes += rcvd_bytes;
  1291. u64_stats_update_end(&stats->syncp);
  1292. }
  1293. /* Update rxq management counters */
  1294. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
  1295. return rx_done;
  1296. }
  1297. static inline void
  1298. mvneta_tso_put_hdr(struct sk_buff *skb,
  1299. struct mvneta_port *pp, struct mvneta_tx_queue *txq)
  1300. {
  1301. struct mvneta_tx_desc *tx_desc;
  1302. int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
  1303. txq->tx_skb[txq->txq_put_index] = NULL;
  1304. tx_desc = mvneta_txq_next_desc_get(txq);
  1305. tx_desc->data_size = hdr_len;
  1306. tx_desc->command = mvneta_skb_tx_csum(pp, skb);
  1307. tx_desc->command |= MVNETA_TXD_F_DESC;
  1308. tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
  1309. txq->txq_put_index * TSO_HEADER_SIZE;
  1310. mvneta_txq_inc_put(txq);
  1311. }
  1312. static inline int
  1313. mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
  1314. struct sk_buff *skb, char *data, int size,
  1315. bool last_tcp, bool is_last)
  1316. {
  1317. struct mvneta_tx_desc *tx_desc;
  1318. tx_desc = mvneta_txq_next_desc_get(txq);
  1319. tx_desc->data_size = size;
  1320. tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
  1321. size, DMA_TO_DEVICE);
  1322. if (unlikely(dma_mapping_error(dev->dev.parent,
  1323. tx_desc->buf_phys_addr))) {
  1324. mvneta_txq_desc_put(txq);
  1325. return -ENOMEM;
  1326. }
  1327. tx_desc->command = 0;
  1328. txq->tx_skb[txq->txq_put_index] = NULL;
  1329. if (last_tcp) {
  1330. /* last descriptor in the TCP packet */
  1331. tx_desc->command = MVNETA_TXD_L_DESC;
  1332. /* last descriptor in SKB */
  1333. if (is_last)
  1334. txq->tx_skb[txq->txq_put_index] = skb;
  1335. }
  1336. mvneta_txq_inc_put(txq);
  1337. return 0;
  1338. }
  1339. static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
  1340. struct mvneta_tx_queue *txq)
  1341. {
  1342. int total_len, data_left;
  1343. int desc_count = 0;
  1344. struct mvneta_port *pp = netdev_priv(dev);
  1345. struct tso_t tso;
  1346. int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
  1347. int i;
  1348. /* Count needed descriptors */
  1349. if ((txq->count + tso_count_descs(skb)) >= txq->size)
  1350. return 0;
  1351. if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
  1352. pr_info("*** Is this even possible???!?!?\n");
  1353. return 0;
  1354. }
  1355. /* Initialize the TSO handler, and prepare the first payload */
  1356. tso_start(skb, &tso);
  1357. total_len = skb->len - hdr_len;
  1358. while (total_len > 0) {
  1359. char *hdr;
  1360. data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
  1361. total_len -= data_left;
  1362. desc_count++;
  1363. /* prepare packet headers: MAC + IP + TCP */
  1364. hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
  1365. tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
  1366. mvneta_tso_put_hdr(skb, pp, txq);
  1367. while (data_left > 0) {
  1368. int size;
  1369. desc_count++;
  1370. size = min_t(int, tso.size, data_left);
  1371. if (mvneta_tso_put_data(dev, txq, skb,
  1372. tso.data, size,
  1373. size == data_left,
  1374. total_len == 0))
  1375. goto err_release;
  1376. data_left -= size;
  1377. tso_build_data(skb, &tso, size);
  1378. }
  1379. }
  1380. return desc_count;
  1381. err_release:
  1382. /* Release all used data descriptors; header descriptors must not
  1383. * be DMA-unmapped.
  1384. */
  1385. for (i = desc_count - 1; i >= 0; i--) {
  1386. struct mvneta_tx_desc *tx_desc = txq->descs + i;
  1387. if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
  1388. dma_unmap_single(pp->dev->dev.parent,
  1389. tx_desc->buf_phys_addr,
  1390. tx_desc->data_size,
  1391. DMA_TO_DEVICE);
  1392. mvneta_txq_desc_put(txq);
  1393. }
  1394. return 0;
  1395. }
  1396. /* Handle tx fragmentation processing */
  1397. static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
  1398. struct mvneta_tx_queue *txq)
  1399. {
  1400. struct mvneta_tx_desc *tx_desc;
  1401. int i, nr_frags = skb_shinfo(skb)->nr_frags;
  1402. for (i = 0; i < nr_frags; i++) {
  1403. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1404. void *addr = page_address(frag->page.p) + frag->page_offset;
  1405. tx_desc = mvneta_txq_next_desc_get(txq);
  1406. tx_desc->data_size = frag->size;
  1407. tx_desc->buf_phys_addr =
  1408. dma_map_single(pp->dev->dev.parent, addr,
  1409. tx_desc->data_size, DMA_TO_DEVICE);
  1410. if (dma_mapping_error(pp->dev->dev.parent,
  1411. tx_desc->buf_phys_addr)) {
  1412. mvneta_txq_desc_put(txq);
  1413. goto error;
  1414. }
  1415. if (i == nr_frags - 1) {
  1416. /* Last descriptor */
  1417. tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
  1418. txq->tx_skb[txq->txq_put_index] = skb;
  1419. } else {
  1420. /* Descriptor in the middle: Not First, Not Last */
  1421. tx_desc->command = 0;
  1422. txq->tx_skb[txq->txq_put_index] = NULL;
  1423. }
  1424. mvneta_txq_inc_put(txq);
  1425. }
  1426. return 0;
  1427. error:
  1428. /* Release all descriptors that were used to map fragments of
  1429. * this packet, as well as the corresponding DMA mappings
  1430. */
  1431. for (i = i - 1; i >= 0; i--) {
  1432. tx_desc = txq->descs + i;
  1433. dma_unmap_single(pp->dev->dev.parent,
  1434. tx_desc->buf_phys_addr,
  1435. tx_desc->data_size,
  1436. DMA_TO_DEVICE);
  1437. mvneta_txq_desc_put(txq);
  1438. }
  1439. return -ENOMEM;
  1440. }
  1441. /* Main tx processing */
  1442. static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
  1443. {
  1444. struct mvneta_port *pp = netdev_priv(dev);
  1445. u16 txq_id = skb_get_queue_mapping(skb);
  1446. struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
  1447. struct mvneta_tx_desc *tx_desc;
  1448. int len = skb->len;
  1449. int frags = 0;
  1450. u32 tx_cmd;
  1451. if (!netif_running(dev))
  1452. goto out;
  1453. if (skb_is_gso(skb)) {
  1454. frags = mvneta_tx_tso(skb, dev, txq);
  1455. goto out;
  1456. }
  1457. frags = skb_shinfo(skb)->nr_frags + 1;
  1458. /* Get a descriptor for the first part of the packet */
  1459. tx_desc = mvneta_txq_next_desc_get(txq);
  1460. tx_cmd = mvneta_skb_tx_csum(pp, skb);
  1461. tx_desc->data_size = skb_headlen(skb);
  1462. tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
  1463. tx_desc->data_size,
  1464. DMA_TO_DEVICE);
  1465. if (unlikely(dma_mapping_error(dev->dev.parent,
  1466. tx_desc->buf_phys_addr))) {
  1467. mvneta_txq_desc_put(txq);
  1468. frags = 0;
  1469. goto out;
  1470. }
  1471. if (frags == 1) {
  1472. /* First and Last descriptor */
  1473. tx_cmd |= MVNETA_TXD_FLZ_DESC;
  1474. tx_desc->command = tx_cmd;
  1475. txq->tx_skb[txq->txq_put_index] = skb;
  1476. mvneta_txq_inc_put(txq);
  1477. } else {
  1478. /* First but not Last */
  1479. tx_cmd |= MVNETA_TXD_F_DESC;
  1480. txq->tx_skb[txq->txq_put_index] = NULL;
  1481. mvneta_txq_inc_put(txq);
  1482. tx_desc->command = tx_cmd;
  1483. /* Continue with other skb fragments */
  1484. if (mvneta_tx_frag_process(pp, skb, txq)) {
  1485. dma_unmap_single(dev->dev.parent,
  1486. tx_desc->buf_phys_addr,
  1487. tx_desc->data_size,
  1488. DMA_TO_DEVICE);
  1489. mvneta_txq_desc_put(txq);
  1490. frags = 0;
  1491. goto out;
  1492. }
  1493. }
  1494. out:
  1495. if (frags > 0) {
  1496. struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
  1497. struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
  1498. txq->count += frags;
  1499. mvneta_txq_pend_desc_add(pp, txq, frags);
  1500. if (txq->count >= txq->tx_stop_threshold)
  1501. netif_tx_stop_queue(nq);
  1502. u64_stats_update_begin(&stats->syncp);
  1503. stats->tx_packets++;
  1504. stats->tx_bytes += len;
  1505. u64_stats_update_end(&stats->syncp);
  1506. } else {
  1507. dev->stats.tx_dropped++;
  1508. dev_kfree_skb_any(skb);
  1509. }
  1510. return NETDEV_TX_OK;
  1511. }
  1512. /* Free tx resources, when resetting a port */
  1513. static void mvneta_txq_done_force(struct mvneta_port *pp,
  1514. struct mvneta_tx_queue *txq)
  1515. {
  1516. int tx_done = txq->count;
  1517. mvneta_txq_bufs_free(pp, txq, tx_done);
  1518. /* reset txq */
  1519. txq->count = 0;
  1520. txq->txq_put_index = 0;
  1521. txq->txq_get_index = 0;
  1522. }
  1523. /* Handle tx done - called in softirq context. The <cause_tx_done> argument
  1524. * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
  1525. */
  1526. static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
  1527. {
  1528. struct mvneta_tx_queue *txq;
  1529. struct netdev_queue *nq;
  1530. while (cause_tx_done) {
  1531. txq = mvneta_tx_done_policy(pp, cause_tx_done);
  1532. nq = netdev_get_tx_queue(pp->dev, txq->id);
  1533. __netif_tx_lock(nq, smp_processor_id());
  1534. if (txq->count)
  1535. mvneta_txq_done(pp, txq);
  1536. __netif_tx_unlock(nq);
  1537. cause_tx_done &= ~((1 << txq->id));
  1538. }
  1539. }
  1540. /* Compute crc8 of the specified address, using a unique algorithm ,
  1541. * according to hw spec, different than generic crc8 algorithm
  1542. */
  1543. static int mvneta_addr_crc(unsigned char *addr)
  1544. {
  1545. int crc = 0;
  1546. int i;
  1547. for (i = 0; i < ETH_ALEN; i++) {
  1548. int j;
  1549. crc = (crc ^ addr[i]) << 8;
  1550. for (j = 7; j >= 0; j--) {
  1551. if (crc & (0x100 << j))
  1552. crc ^= 0x107 << j;
  1553. }
  1554. }
  1555. return crc;
  1556. }
  1557. /* This method controls the net device special MAC multicast support.
  1558. * The Special Multicast Table for MAC addresses supports MAC of the form
  1559. * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
  1560. * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
  1561. * Table entries in the DA-Filter table. This method set the Special
  1562. * Multicast Table appropriate entry.
  1563. */
  1564. static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
  1565. unsigned char last_byte,
  1566. int queue)
  1567. {
  1568. unsigned int smc_table_reg;
  1569. unsigned int tbl_offset;
  1570. unsigned int reg_offset;
  1571. /* Register offset from SMC table base */
  1572. tbl_offset = (last_byte / 4);
  1573. /* Entry offset within the above reg */
  1574. reg_offset = last_byte % 4;
  1575. smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
  1576. + tbl_offset * 4));
  1577. if (queue == -1)
  1578. smc_table_reg &= ~(0xff << (8 * reg_offset));
  1579. else {
  1580. smc_table_reg &= ~(0xff << (8 * reg_offset));
  1581. smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  1582. }
  1583. mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
  1584. smc_table_reg);
  1585. }
  1586. /* This method controls the network device Other MAC multicast support.
  1587. * The Other Multicast Table is used for multicast of another type.
  1588. * A CRC-8 is used as an index to the Other Multicast Table entries
  1589. * in the DA-Filter table.
  1590. * The method gets the CRC-8 value from the calling routine and
  1591. * sets the Other Multicast Table appropriate entry according to the
  1592. * specified CRC-8 .
  1593. */
  1594. static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
  1595. unsigned char crc8,
  1596. int queue)
  1597. {
  1598. unsigned int omc_table_reg;
  1599. unsigned int tbl_offset;
  1600. unsigned int reg_offset;
  1601. tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
  1602. reg_offset = crc8 % 4; /* Entry offset within the above reg */
  1603. omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
  1604. if (queue == -1) {
  1605. /* Clear accepts frame bit at specified Other DA table entry */
  1606. omc_table_reg &= ~(0xff << (8 * reg_offset));
  1607. } else {
  1608. omc_table_reg &= ~(0xff << (8 * reg_offset));
  1609. omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  1610. }
  1611. mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
  1612. }
  1613. /* The network device supports multicast using two tables:
  1614. * 1) Special Multicast Table for MAC addresses of the form
  1615. * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
  1616. * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
  1617. * Table entries in the DA-Filter table.
  1618. * 2) Other Multicast Table for multicast of another type. A CRC-8 value
  1619. * is used as an index to the Other Multicast Table entries in the
  1620. * DA-Filter table.
  1621. */
  1622. static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
  1623. int queue)
  1624. {
  1625. unsigned char crc_result = 0;
  1626. if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
  1627. mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
  1628. return 0;
  1629. }
  1630. crc_result = mvneta_addr_crc(p_addr);
  1631. if (queue == -1) {
  1632. if (pp->mcast_count[crc_result] == 0) {
  1633. netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
  1634. crc_result);
  1635. return -EINVAL;
  1636. }
  1637. pp->mcast_count[crc_result]--;
  1638. if (pp->mcast_count[crc_result] != 0) {
  1639. netdev_info(pp->dev,
  1640. "After delete there are %d valid Mcast for crc8=0x%02x\n",
  1641. pp->mcast_count[crc_result], crc_result);
  1642. return -EINVAL;
  1643. }
  1644. } else
  1645. pp->mcast_count[crc_result]++;
  1646. mvneta_set_other_mcast_addr(pp, crc_result, queue);
  1647. return 0;
  1648. }
  1649. /* Configure Fitering mode of Ethernet port */
  1650. static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
  1651. int is_promisc)
  1652. {
  1653. u32 port_cfg_reg, val;
  1654. port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
  1655. val = mvreg_read(pp, MVNETA_TYPE_PRIO);
  1656. /* Set / Clear UPM bit in port configuration register */
  1657. if (is_promisc) {
  1658. /* Accept all Unicast addresses */
  1659. port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
  1660. val |= MVNETA_FORCE_UNI;
  1661. mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
  1662. mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
  1663. } else {
  1664. /* Reject all Unicast addresses */
  1665. port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
  1666. val &= ~MVNETA_FORCE_UNI;
  1667. }
  1668. mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
  1669. mvreg_write(pp, MVNETA_TYPE_PRIO, val);
  1670. }
  1671. /* register unicast and multicast addresses */
  1672. static void mvneta_set_rx_mode(struct net_device *dev)
  1673. {
  1674. struct mvneta_port *pp = netdev_priv(dev);
  1675. struct netdev_hw_addr *ha;
  1676. if (dev->flags & IFF_PROMISC) {
  1677. /* Accept all: Multicast + Unicast */
  1678. mvneta_rx_unicast_promisc_set(pp, 1);
  1679. mvneta_set_ucast_table(pp, rxq_def);
  1680. mvneta_set_special_mcast_table(pp, rxq_def);
  1681. mvneta_set_other_mcast_table(pp, rxq_def);
  1682. } else {
  1683. /* Accept single Unicast */
  1684. mvneta_rx_unicast_promisc_set(pp, 0);
  1685. mvneta_set_ucast_table(pp, -1);
  1686. mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
  1687. if (dev->flags & IFF_ALLMULTI) {
  1688. /* Accept all multicast */
  1689. mvneta_set_special_mcast_table(pp, rxq_def);
  1690. mvneta_set_other_mcast_table(pp, rxq_def);
  1691. } else {
  1692. /* Accept only initialized multicast */
  1693. mvneta_set_special_mcast_table(pp, -1);
  1694. mvneta_set_other_mcast_table(pp, -1);
  1695. if (!netdev_mc_empty(dev)) {
  1696. netdev_for_each_mc_addr(ha, dev) {
  1697. mvneta_mcast_addr_set(pp, ha->addr,
  1698. rxq_def);
  1699. }
  1700. }
  1701. }
  1702. }
  1703. }
  1704. /* Interrupt handling - the callback for request_irq() */
  1705. static irqreturn_t mvneta_isr(int irq, void *dev_id)
  1706. {
  1707. struct mvneta_port *pp = (struct mvneta_port *)dev_id;
  1708. /* Mask all interrupts */
  1709. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  1710. napi_schedule(&pp->napi);
  1711. return IRQ_HANDLED;
  1712. }
  1713. static int mvneta_fixed_link_update(struct mvneta_port *pp,
  1714. struct phy_device *phy)
  1715. {
  1716. struct fixed_phy_status status;
  1717. struct fixed_phy_status changed = {};
  1718. u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
  1719. status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
  1720. if (gmac_stat & MVNETA_GMAC_SPEED_1000)
  1721. status.speed = SPEED_1000;
  1722. else if (gmac_stat & MVNETA_GMAC_SPEED_100)
  1723. status.speed = SPEED_100;
  1724. else
  1725. status.speed = SPEED_10;
  1726. status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
  1727. changed.link = 1;
  1728. changed.speed = 1;
  1729. changed.duplex = 1;
  1730. fixed_phy_update_state(phy, &status, &changed);
  1731. return 0;
  1732. }
  1733. /* NAPI handler
  1734. * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
  1735. * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
  1736. * Bits 8 -15 of the cause Rx Tx register indicate that are received
  1737. * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
  1738. * Each CPU has its own causeRxTx register
  1739. */
  1740. static int mvneta_poll(struct napi_struct *napi, int budget)
  1741. {
  1742. int rx_done = 0;
  1743. u32 cause_rx_tx;
  1744. unsigned long flags;
  1745. struct mvneta_port *pp = netdev_priv(napi->dev);
  1746. if (!netif_running(pp->dev)) {
  1747. napi_complete(napi);
  1748. return rx_done;
  1749. }
  1750. /* Read cause register */
  1751. cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
  1752. if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
  1753. u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
  1754. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  1755. if (pp->use_inband_status && (cause_misc &
  1756. (MVNETA_CAUSE_PHY_STATUS_CHANGE |
  1757. MVNETA_CAUSE_LINK_CHANGE |
  1758. MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
  1759. mvneta_fixed_link_update(pp, pp->phy_dev);
  1760. }
  1761. }
  1762. /* Release Tx descriptors */
  1763. if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
  1764. mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
  1765. cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
  1766. }
  1767. /* For the case where the last mvneta_poll did not process all
  1768. * RX packets
  1769. */
  1770. cause_rx_tx |= pp->cause_rx_tx;
  1771. if (rxq_number > 1) {
  1772. while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) {
  1773. int count;
  1774. struct mvneta_rx_queue *rxq;
  1775. /* get rx queue number from cause_rx_tx */
  1776. rxq = mvneta_rx_policy(pp, cause_rx_tx);
  1777. if (!rxq)
  1778. break;
  1779. /* process the packet in that rx queue */
  1780. count = mvneta_rx(pp, budget, rxq);
  1781. rx_done += count;
  1782. budget -= count;
  1783. if (budget > 0) {
  1784. /* set off the rx bit of the
  1785. * corresponding bit in the cause rx
  1786. * tx register, so that next iteration
  1787. * will find the next rx queue where
  1788. * packets are received on
  1789. */
  1790. cause_rx_tx &= ~((1 << rxq->id) << 8);
  1791. }
  1792. }
  1793. } else {
  1794. rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
  1795. budget -= rx_done;
  1796. }
  1797. if (budget > 0) {
  1798. cause_rx_tx = 0;
  1799. napi_complete(napi);
  1800. local_irq_save(flags);
  1801. mvreg_write(pp, MVNETA_INTR_NEW_MASK,
  1802. MVNETA_RX_INTR_MASK(rxq_number) |
  1803. MVNETA_TX_INTR_MASK(txq_number) |
  1804. MVNETA_MISCINTR_INTR_MASK);
  1805. local_irq_restore(flags);
  1806. }
  1807. pp->cause_rx_tx = cause_rx_tx;
  1808. return rx_done;
  1809. }
  1810. /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
  1811. static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
  1812. int num)
  1813. {
  1814. int i;
  1815. for (i = 0; i < num; i++) {
  1816. memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
  1817. if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
  1818. netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
  1819. __func__, rxq->id, i, num);
  1820. break;
  1821. }
  1822. }
  1823. /* Add this number of RX descriptors as non occupied (ready to
  1824. * get packets)
  1825. */
  1826. mvneta_rxq_non_occup_desc_add(pp, rxq, i);
  1827. return i;
  1828. }
  1829. /* Free all packets pending transmit from all TXQs and reset TX port */
  1830. static void mvneta_tx_reset(struct mvneta_port *pp)
  1831. {
  1832. int queue;
  1833. /* free the skb's in the tx ring */
  1834. for (queue = 0; queue < txq_number; queue++)
  1835. mvneta_txq_done_force(pp, &pp->txqs[queue]);
  1836. mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
  1837. mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
  1838. }
  1839. static void mvneta_rx_reset(struct mvneta_port *pp)
  1840. {
  1841. mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
  1842. mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
  1843. }
  1844. /* Rx/Tx queue initialization/cleanup methods */
  1845. /* Create a specified RX queue */
  1846. static int mvneta_rxq_init(struct mvneta_port *pp,
  1847. struct mvneta_rx_queue *rxq)
  1848. {
  1849. rxq->size = pp->rx_ring_size;
  1850. /* Allocate memory for RX descriptors */
  1851. rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
  1852. rxq->size * MVNETA_DESC_ALIGNED_SIZE,
  1853. &rxq->descs_phys, GFP_KERNEL);
  1854. if (rxq->descs == NULL)
  1855. return -ENOMEM;
  1856. BUG_ON(rxq->descs !=
  1857. PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
  1858. rxq->last_desc = rxq->size - 1;
  1859. /* Set Rx descriptors queue starting address */
  1860. mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
  1861. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
  1862. /* Set Offset */
  1863. mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
  1864. /* Set coalescing pkts and time */
  1865. mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
  1866. mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
  1867. /* Fill RXQ with buffers from RX pool */
  1868. mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
  1869. mvneta_rxq_bm_disable(pp, rxq);
  1870. mvneta_rxq_fill(pp, rxq, rxq->size);
  1871. return 0;
  1872. }
  1873. /* Cleanup Rx queue */
  1874. static void mvneta_rxq_deinit(struct mvneta_port *pp,
  1875. struct mvneta_rx_queue *rxq)
  1876. {
  1877. mvneta_rxq_drop_pkts(pp, rxq);
  1878. if (rxq->descs)
  1879. dma_free_coherent(pp->dev->dev.parent,
  1880. rxq->size * MVNETA_DESC_ALIGNED_SIZE,
  1881. rxq->descs,
  1882. rxq->descs_phys);
  1883. rxq->descs = NULL;
  1884. rxq->last_desc = 0;
  1885. rxq->next_desc_to_proc = 0;
  1886. rxq->descs_phys = 0;
  1887. }
  1888. /* Create and initialize a tx queue */
  1889. static int mvneta_txq_init(struct mvneta_port *pp,
  1890. struct mvneta_tx_queue *txq)
  1891. {
  1892. txq->size = pp->tx_ring_size;
  1893. /* A queue must always have room for at least one skb.
  1894. * Therefore, stop the queue when the free entries reaches
  1895. * the maximum number of descriptors per skb.
  1896. */
  1897. txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
  1898. txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
  1899. /* Allocate memory for TX descriptors */
  1900. txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
  1901. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1902. &txq->descs_phys, GFP_KERNEL);
  1903. if (txq->descs == NULL)
  1904. return -ENOMEM;
  1905. /* Make sure descriptor address is cache line size aligned */
  1906. BUG_ON(txq->descs !=
  1907. PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
  1908. txq->last_desc = txq->size - 1;
  1909. /* Set maximum bandwidth for enabled TXQs */
  1910. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
  1911. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
  1912. /* Set Tx descriptors queue starting address */
  1913. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
  1914. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
  1915. txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
  1916. if (txq->tx_skb == NULL) {
  1917. dma_free_coherent(pp->dev->dev.parent,
  1918. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1919. txq->descs, txq->descs_phys);
  1920. return -ENOMEM;
  1921. }
  1922. /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
  1923. txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
  1924. txq->size * TSO_HEADER_SIZE,
  1925. &txq->tso_hdrs_phys, GFP_KERNEL);
  1926. if (txq->tso_hdrs == NULL) {
  1927. kfree(txq->tx_skb);
  1928. dma_free_coherent(pp->dev->dev.parent,
  1929. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1930. txq->descs, txq->descs_phys);
  1931. return -ENOMEM;
  1932. }
  1933. mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
  1934. return 0;
  1935. }
  1936. /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
  1937. static void mvneta_txq_deinit(struct mvneta_port *pp,
  1938. struct mvneta_tx_queue *txq)
  1939. {
  1940. kfree(txq->tx_skb);
  1941. if (txq->tso_hdrs)
  1942. dma_free_coherent(pp->dev->dev.parent,
  1943. txq->size * TSO_HEADER_SIZE,
  1944. txq->tso_hdrs, txq->tso_hdrs_phys);
  1945. if (txq->descs)
  1946. dma_free_coherent(pp->dev->dev.parent,
  1947. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1948. txq->descs, txq->descs_phys);
  1949. txq->descs = NULL;
  1950. txq->last_desc = 0;
  1951. txq->next_desc_to_proc = 0;
  1952. txq->descs_phys = 0;
  1953. /* Set minimum bandwidth for disabled TXQs */
  1954. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
  1955. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
  1956. /* Set Tx descriptors queue starting address and size */
  1957. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
  1958. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
  1959. }
  1960. /* Cleanup all Tx queues */
  1961. static void mvneta_cleanup_txqs(struct mvneta_port *pp)
  1962. {
  1963. int queue;
  1964. for (queue = 0; queue < txq_number; queue++)
  1965. mvneta_txq_deinit(pp, &pp->txqs[queue]);
  1966. }
  1967. /* Cleanup all Rx queues */
  1968. static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
  1969. {
  1970. int queue;
  1971. for (queue = 0; queue < rxq_number; queue++)
  1972. mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
  1973. }
  1974. /* Init all Rx queues */
  1975. static int mvneta_setup_rxqs(struct mvneta_port *pp)
  1976. {
  1977. int queue;
  1978. for (queue = 0; queue < rxq_number; queue++) {
  1979. int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
  1980. if (err) {
  1981. netdev_err(pp->dev, "%s: can't create rxq=%d\n",
  1982. __func__, queue);
  1983. mvneta_cleanup_rxqs(pp);
  1984. return err;
  1985. }
  1986. }
  1987. return 0;
  1988. }
  1989. /* Init all tx queues */
  1990. static int mvneta_setup_txqs(struct mvneta_port *pp)
  1991. {
  1992. int queue;
  1993. for (queue = 0; queue < txq_number; queue++) {
  1994. int err = mvneta_txq_init(pp, &pp->txqs[queue]);
  1995. if (err) {
  1996. netdev_err(pp->dev, "%s: can't create txq=%d\n",
  1997. __func__, queue);
  1998. mvneta_cleanup_txqs(pp);
  1999. return err;
  2000. }
  2001. }
  2002. return 0;
  2003. }
  2004. static void mvneta_start_dev(struct mvneta_port *pp)
  2005. {
  2006. mvneta_max_rx_size_set(pp, pp->pkt_size);
  2007. mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
  2008. /* start the Rx/Tx activity */
  2009. mvneta_port_enable(pp);
  2010. /* Enable polling on the port */
  2011. napi_enable(&pp->napi);
  2012. /* Unmask interrupts */
  2013. mvreg_write(pp, MVNETA_INTR_NEW_MASK,
  2014. MVNETA_RX_INTR_MASK(rxq_number) |
  2015. MVNETA_TX_INTR_MASK(txq_number) |
  2016. MVNETA_MISCINTR_INTR_MASK);
  2017. mvreg_write(pp, MVNETA_INTR_MISC_MASK,
  2018. MVNETA_CAUSE_PHY_STATUS_CHANGE |
  2019. MVNETA_CAUSE_LINK_CHANGE |
  2020. MVNETA_CAUSE_PSC_SYNC_CHANGE);
  2021. phy_start(pp->phy_dev);
  2022. netif_tx_start_all_queues(pp->dev);
  2023. }
  2024. static void mvneta_stop_dev(struct mvneta_port *pp)
  2025. {
  2026. phy_stop(pp->phy_dev);
  2027. napi_disable(&pp->napi);
  2028. netif_carrier_off(pp->dev);
  2029. mvneta_port_down(pp);
  2030. netif_tx_stop_all_queues(pp->dev);
  2031. /* Stop the port activity */
  2032. mvneta_port_disable(pp);
  2033. /* Clear all ethernet port interrupts */
  2034. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  2035. mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
  2036. /* Mask all ethernet port interrupts */
  2037. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  2038. mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
  2039. mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
  2040. mvneta_tx_reset(pp);
  2041. mvneta_rx_reset(pp);
  2042. }
  2043. /* Return positive if MTU is valid */
  2044. static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
  2045. {
  2046. if (mtu < 68) {
  2047. netdev_err(dev, "cannot change mtu to less than 68\n");
  2048. return -EINVAL;
  2049. }
  2050. /* 9676 == 9700 - 20 and rounding to 8 */
  2051. if (mtu > 9676) {
  2052. netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
  2053. mtu = 9676;
  2054. }
  2055. if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
  2056. netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
  2057. mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
  2058. mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
  2059. }
  2060. return mtu;
  2061. }
  2062. /* Change the device mtu */
  2063. static int mvneta_change_mtu(struct net_device *dev, int mtu)
  2064. {
  2065. struct mvneta_port *pp = netdev_priv(dev);
  2066. int ret;
  2067. mtu = mvneta_check_mtu_valid(dev, mtu);
  2068. if (mtu < 0)
  2069. return -EINVAL;
  2070. dev->mtu = mtu;
  2071. if (!netif_running(dev)) {
  2072. netdev_update_features(dev);
  2073. return 0;
  2074. }
  2075. /* The interface is running, so we have to force a
  2076. * reallocation of the queues
  2077. */
  2078. mvneta_stop_dev(pp);
  2079. mvneta_cleanup_txqs(pp);
  2080. mvneta_cleanup_rxqs(pp);
  2081. pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
  2082. pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
  2083. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  2084. ret = mvneta_setup_rxqs(pp);
  2085. if (ret) {
  2086. netdev_err(dev, "unable to setup rxqs after MTU change\n");
  2087. return ret;
  2088. }
  2089. ret = mvneta_setup_txqs(pp);
  2090. if (ret) {
  2091. netdev_err(dev, "unable to setup txqs after MTU change\n");
  2092. return ret;
  2093. }
  2094. mvneta_start_dev(pp);
  2095. mvneta_port_up(pp);
  2096. netdev_update_features(dev);
  2097. return 0;
  2098. }
  2099. static netdev_features_t mvneta_fix_features(struct net_device *dev,
  2100. netdev_features_t features)
  2101. {
  2102. struct mvneta_port *pp = netdev_priv(dev);
  2103. if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
  2104. features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
  2105. netdev_info(dev,
  2106. "Disable IP checksum for MTU greater than %dB\n",
  2107. pp->tx_csum_limit);
  2108. }
  2109. return features;
  2110. }
  2111. /* Get mac address */
  2112. static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
  2113. {
  2114. u32 mac_addr_l, mac_addr_h;
  2115. mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
  2116. mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
  2117. addr[0] = (mac_addr_h >> 24) & 0xFF;
  2118. addr[1] = (mac_addr_h >> 16) & 0xFF;
  2119. addr[2] = (mac_addr_h >> 8) & 0xFF;
  2120. addr[3] = mac_addr_h & 0xFF;
  2121. addr[4] = (mac_addr_l >> 8) & 0xFF;
  2122. addr[5] = mac_addr_l & 0xFF;
  2123. }
  2124. /* Handle setting mac address */
  2125. static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
  2126. {
  2127. struct mvneta_port *pp = netdev_priv(dev);
  2128. struct sockaddr *sockaddr = addr;
  2129. int ret;
  2130. ret = eth_prepare_mac_addr_change(dev, addr);
  2131. if (ret < 0)
  2132. return ret;
  2133. /* Remove previous address table entry */
  2134. mvneta_mac_addr_set(pp, dev->dev_addr, -1);
  2135. /* Set new addr in hw */
  2136. mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def);
  2137. eth_commit_mac_addr_change(dev, addr);
  2138. return 0;
  2139. }
  2140. static void mvneta_adjust_link(struct net_device *ndev)
  2141. {
  2142. struct mvneta_port *pp = netdev_priv(ndev);
  2143. struct phy_device *phydev = pp->phy_dev;
  2144. int status_change = 0;
  2145. if (phydev->link) {
  2146. if ((pp->speed != phydev->speed) ||
  2147. (pp->duplex != phydev->duplex)) {
  2148. u32 val;
  2149. val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  2150. val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
  2151. MVNETA_GMAC_CONFIG_GMII_SPEED |
  2152. MVNETA_GMAC_CONFIG_FULL_DUPLEX);
  2153. if (phydev->duplex)
  2154. val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
  2155. if (phydev->speed == SPEED_1000)
  2156. val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
  2157. else if (phydev->speed == SPEED_100)
  2158. val |= MVNETA_GMAC_CONFIG_MII_SPEED;
  2159. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  2160. pp->duplex = phydev->duplex;
  2161. pp->speed = phydev->speed;
  2162. }
  2163. }
  2164. if (phydev->link != pp->link) {
  2165. if (!phydev->link) {
  2166. pp->duplex = -1;
  2167. pp->speed = 0;
  2168. }
  2169. pp->link = phydev->link;
  2170. status_change = 1;
  2171. }
  2172. if (status_change) {
  2173. if (phydev->link) {
  2174. if (!pp->use_inband_status) {
  2175. u32 val = mvreg_read(pp,
  2176. MVNETA_GMAC_AUTONEG_CONFIG);
  2177. val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
  2178. val |= MVNETA_GMAC_FORCE_LINK_PASS;
  2179. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
  2180. val);
  2181. }
  2182. mvneta_port_up(pp);
  2183. } else {
  2184. if (!pp->use_inband_status) {
  2185. u32 val = mvreg_read(pp,
  2186. MVNETA_GMAC_AUTONEG_CONFIG);
  2187. val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
  2188. val |= MVNETA_GMAC_FORCE_LINK_DOWN;
  2189. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
  2190. val);
  2191. }
  2192. mvneta_port_down(pp);
  2193. }
  2194. phy_print_status(phydev);
  2195. }
  2196. }
  2197. static int mvneta_mdio_probe(struct mvneta_port *pp)
  2198. {
  2199. struct phy_device *phy_dev;
  2200. phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
  2201. pp->phy_interface);
  2202. if (!phy_dev) {
  2203. netdev_err(pp->dev, "could not find the PHY\n");
  2204. return -ENODEV;
  2205. }
  2206. phy_dev->supported &= PHY_GBIT_FEATURES;
  2207. phy_dev->advertising = phy_dev->supported;
  2208. pp->phy_dev = phy_dev;
  2209. pp->link = 0;
  2210. pp->duplex = 0;
  2211. pp->speed = 0;
  2212. return 0;
  2213. }
  2214. static void mvneta_mdio_remove(struct mvneta_port *pp)
  2215. {
  2216. phy_disconnect(pp->phy_dev);
  2217. pp->phy_dev = NULL;
  2218. }
  2219. static int mvneta_open(struct net_device *dev)
  2220. {
  2221. struct mvneta_port *pp = netdev_priv(dev);
  2222. int ret;
  2223. pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
  2224. pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
  2225. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  2226. ret = mvneta_setup_rxqs(pp);
  2227. if (ret)
  2228. return ret;
  2229. ret = mvneta_setup_txqs(pp);
  2230. if (ret)
  2231. goto err_cleanup_rxqs;
  2232. /* Connect to port interrupt line */
  2233. ret = request_irq(pp->dev->irq, mvneta_isr, 0,
  2234. MVNETA_DRIVER_NAME, pp);
  2235. if (ret) {
  2236. netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
  2237. goto err_cleanup_txqs;
  2238. }
  2239. /* In default link is down */
  2240. netif_carrier_off(pp->dev);
  2241. ret = mvneta_mdio_probe(pp);
  2242. if (ret < 0) {
  2243. netdev_err(dev, "cannot probe MDIO bus\n");
  2244. goto err_free_irq;
  2245. }
  2246. mvneta_start_dev(pp);
  2247. return 0;
  2248. err_free_irq:
  2249. free_irq(pp->dev->irq, pp);
  2250. err_cleanup_txqs:
  2251. mvneta_cleanup_txqs(pp);
  2252. err_cleanup_rxqs:
  2253. mvneta_cleanup_rxqs(pp);
  2254. return ret;
  2255. }
  2256. /* Stop the port, free port interrupt line */
  2257. static int mvneta_stop(struct net_device *dev)
  2258. {
  2259. struct mvneta_port *pp = netdev_priv(dev);
  2260. mvneta_stop_dev(pp);
  2261. mvneta_mdio_remove(pp);
  2262. free_irq(dev->irq, pp);
  2263. mvneta_cleanup_rxqs(pp);
  2264. mvneta_cleanup_txqs(pp);
  2265. return 0;
  2266. }
  2267. static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2268. {
  2269. struct mvneta_port *pp = netdev_priv(dev);
  2270. if (!pp->phy_dev)
  2271. return -ENOTSUPP;
  2272. return phy_mii_ioctl(pp->phy_dev, ifr, cmd);
  2273. }
  2274. /* Ethtool methods */
  2275. /* Get settings (phy address, speed) for ethtools */
  2276. int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2277. {
  2278. struct mvneta_port *pp = netdev_priv(dev);
  2279. if (!pp->phy_dev)
  2280. return -ENODEV;
  2281. return phy_ethtool_gset(pp->phy_dev, cmd);
  2282. }
  2283. /* Set settings (phy address, speed) for ethtools */
  2284. int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2285. {
  2286. struct mvneta_port *pp = netdev_priv(dev);
  2287. if (!pp->phy_dev)
  2288. return -ENODEV;
  2289. return phy_ethtool_sset(pp->phy_dev, cmd);
  2290. }
  2291. /* Set interrupt coalescing for ethtools */
  2292. static int mvneta_ethtool_set_coalesce(struct net_device *dev,
  2293. struct ethtool_coalesce *c)
  2294. {
  2295. struct mvneta_port *pp = netdev_priv(dev);
  2296. int queue;
  2297. for (queue = 0; queue < rxq_number; queue++) {
  2298. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  2299. rxq->time_coal = c->rx_coalesce_usecs;
  2300. rxq->pkts_coal = c->rx_max_coalesced_frames;
  2301. mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
  2302. mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
  2303. }
  2304. for (queue = 0; queue < txq_number; queue++) {
  2305. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  2306. txq->done_pkts_coal = c->tx_max_coalesced_frames;
  2307. mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
  2308. }
  2309. return 0;
  2310. }
  2311. /* get coalescing for ethtools */
  2312. static int mvneta_ethtool_get_coalesce(struct net_device *dev,
  2313. struct ethtool_coalesce *c)
  2314. {
  2315. struct mvneta_port *pp = netdev_priv(dev);
  2316. c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
  2317. c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
  2318. c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
  2319. return 0;
  2320. }
  2321. static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
  2322. struct ethtool_drvinfo *drvinfo)
  2323. {
  2324. strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
  2325. sizeof(drvinfo->driver));
  2326. strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
  2327. sizeof(drvinfo->version));
  2328. strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
  2329. sizeof(drvinfo->bus_info));
  2330. }
  2331. static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
  2332. struct ethtool_ringparam *ring)
  2333. {
  2334. struct mvneta_port *pp = netdev_priv(netdev);
  2335. ring->rx_max_pending = MVNETA_MAX_RXD;
  2336. ring->tx_max_pending = MVNETA_MAX_TXD;
  2337. ring->rx_pending = pp->rx_ring_size;
  2338. ring->tx_pending = pp->tx_ring_size;
  2339. }
  2340. static int mvneta_ethtool_set_ringparam(struct net_device *dev,
  2341. struct ethtool_ringparam *ring)
  2342. {
  2343. struct mvneta_port *pp = netdev_priv(dev);
  2344. if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
  2345. return -EINVAL;
  2346. pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
  2347. ring->rx_pending : MVNETA_MAX_RXD;
  2348. pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
  2349. MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
  2350. if (pp->tx_ring_size != ring->tx_pending)
  2351. netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
  2352. pp->tx_ring_size, ring->tx_pending);
  2353. if (netif_running(dev)) {
  2354. mvneta_stop(dev);
  2355. if (mvneta_open(dev)) {
  2356. netdev_err(dev,
  2357. "error on opening device after ring param change\n");
  2358. return -ENOMEM;
  2359. }
  2360. }
  2361. return 0;
  2362. }
  2363. static const struct net_device_ops mvneta_netdev_ops = {
  2364. .ndo_open = mvneta_open,
  2365. .ndo_stop = mvneta_stop,
  2366. .ndo_start_xmit = mvneta_tx,
  2367. .ndo_set_rx_mode = mvneta_set_rx_mode,
  2368. .ndo_set_mac_address = mvneta_set_mac_addr,
  2369. .ndo_change_mtu = mvneta_change_mtu,
  2370. .ndo_fix_features = mvneta_fix_features,
  2371. .ndo_get_stats64 = mvneta_get_stats64,
  2372. .ndo_do_ioctl = mvneta_ioctl,
  2373. };
  2374. const struct ethtool_ops mvneta_eth_tool_ops = {
  2375. .get_link = ethtool_op_get_link,
  2376. .get_settings = mvneta_ethtool_get_settings,
  2377. .set_settings = mvneta_ethtool_set_settings,
  2378. .set_coalesce = mvneta_ethtool_set_coalesce,
  2379. .get_coalesce = mvneta_ethtool_get_coalesce,
  2380. .get_drvinfo = mvneta_ethtool_get_drvinfo,
  2381. .get_ringparam = mvneta_ethtool_get_ringparam,
  2382. .set_ringparam = mvneta_ethtool_set_ringparam,
  2383. };
  2384. /* Initialize hw */
  2385. static int mvneta_init(struct device *dev, struct mvneta_port *pp)
  2386. {
  2387. int queue;
  2388. /* Disable port */
  2389. mvneta_port_disable(pp);
  2390. /* Set port default values */
  2391. mvneta_defaults_set(pp);
  2392. pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
  2393. GFP_KERNEL);
  2394. if (!pp->txqs)
  2395. return -ENOMEM;
  2396. /* Initialize TX descriptor rings */
  2397. for (queue = 0; queue < txq_number; queue++) {
  2398. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  2399. txq->id = queue;
  2400. txq->size = pp->tx_ring_size;
  2401. txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
  2402. }
  2403. pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
  2404. GFP_KERNEL);
  2405. if (!pp->rxqs)
  2406. return -ENOMEM;
  2407. /* Create Rx descriptor rings */
  2408. for (queue = 0; queue < rxq_number; queue++) {
  2409. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  2410. rxq->id = queue;
  2411. rxq->size = pp->rx_ring_size;
  2412. rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
  2413. rxq->time_coal = MVNETA_RX_COAL_USEC;
  2414. }
  2415. return 0;
  2416. }
  2417. /* platform glue : initialize decoding windows */
  2418. static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
  2419. const struct mbus_dram_target_info *dram)
  2420. {
  2421. u32 win_enable;
  2422. u32 win_protect;
  2423. int i;
  2424. for (i = 0; i < 6; i++) {
  2425. mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
  2426. mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
  2427. if (i < 4)
  2428. mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
  2429. }
  2430. win_enable = 0x3f;
  2431. win_protect = 0;
  2432. for (i = 0; i < dram->num_cs; i++) {
  2433. const struct mbus_dram_window *cs = dram->cs + i;
  2434. mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
  2435. (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
  2436. mvreg_write(pp, MVNETA_WIN_SIZE(i),
  2437. (cs->size - 1) & 0xffff0000);
  2438. win_enable &= ~(1 << i);
  2439. win_protect |= 3 << (2 * i);
  2440. }
  2441. mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
  2442. }
  2443. /* Power up the port */
  2444. static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
  2445. {
  2446. u32 ctrl;
  2447. /* MAC Cause register should be cleared */
  2448. mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
  2449. ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
  2450. /* Even though it might look weird, when we're configured in
  2451. * SGMII or QSGMII mode, the RGMII bit needs to be set.
  2452. */
  2453. switch(phy_mode) {
  2454. case PHY_INTERFACE_MODE_QSGMII:
  2455. mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
  2456. ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
  2457. break;
  2458. case PHY_INTERFACE_MODE_SGMII:
  2459. mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
  2460. ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
  2461. break;
  2462. case PHY_INTERFACE_MODE_RGMII:
  2463. case PHY_INTERFACE_MODE_RGMII_ID:
  2464. ctrl |= MVNETA_GMAC2_PORT_RGMII;
  2465. break;
  2466. default:
  2467. return -EINVAL;
  2468. }
  2469. if (pp->use_inband_status)
  2470. ctrl |= MVNETA_GMAC2_INBAND_AN_ENABLE;
  2471. /* Cancel Port Reset */
  2472. ctrl &= ~MVNETA_GMAC2_PORT_RESET;
  2473. mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
  2474. while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
  2475. MVNETA_GMAC2_PORT_RESET) != 0)
  2476. continue;
  2477. return 0;
  2478. }
  2479. /* Device initialization routine */
  2480. static int mvneta_probe(struct platform_device *pdev)
  2481. {
  2482. const struct mbus_dram_target_info *dram_target_info;
  2483. struct resource *res;
  2484. struct device_node *dn = pdev->dev.of_node;
  2485. struct device_node *phy_node;
  2486. struct mvneta_port *pp;
  2487. struct net_device *dev;
  2488. const char *dt_mac_addr;
  2489. char hw_mac_addr[ETH_ALEN];
  2490. const char *mac_from;
  2491. const char *managed;
  2492. int phy_mode;
  2493. int err;
  2494. /* Our multiqueue support is not complete, so for now, only
  2495. * allow the usage of the first RX queue
  2496. */
  2497. if (rxq_def != 0) {
  2498. dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
  2499. return -EINVAL;
  2500. }
  2501. dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
  2502. if (!dev)
  2503. return -ENOMEM;
  2504. dev->irq = irq_of_parse_and_map(dn, 0);
  2505. if (dev->irq == 0) {
  2506. err = -EINVAL;
  2507. goto err_free_netdev;
  2508. }
  2509. phy_node = of_parse_phandle(dn, "phy", 0);
  2510. if (!phy_node) {
  2511. if (!of_phy_is_fixed_link(dn)) {
  2512. dev_err(&pdev->dev, "no PHY specified\n");
  2513. err = -ENODEV;
  2514. goto err_free_irq;
  2515. }
  2516. err = of_phy_register_fixed_link(dn);
  2517. if (err < 0) {
  2518. dev_err(&pdev->dev, "cannot register fixed PHY\n");
  2519. goto err_free_irq;
  2520. }
  2521. /* In the case of a fixed PHY, the DT node associated
  2522. * to the PHY is the Ethernet MAC DT node.
  2523. */
  2524. phy_node = of_node_get(dn);
  2525. }
  2526. phy_mode = of_get_phy_mode(dn);
  2527. if (phy_mode < 0) {
  2528. dev_err(&pdev->dev, "incorrect phy-mode\n");
  2529. err = -EINVAL;
  2530. goto err_put_phy_node;
  2531. }
  2532. dev->tx_queue_len = MVNETA_MAX_TXD;
  2533. dev->watchdog_timeo = 5 * HZ;
  2534. dev->netdev_ops = &mvneta_netdev_ops;
  2535. dev->ethtool_ops = &mvneta_eth_tool_ops;
  2536. pp = netdev_priv(dev);
  2537. pp->phy_node = phy_node;
  2538. pp->phy_interface = phy_mode;
  2539. err = of_property_read_string(dn, "managed", &managed);
  2540. pp->use_inband_status = (err == 0 &&
  2541. strcmp(managed, "in-band-status") == 0);
  2542. pp->clk = devm_clk_get(&pdev->dev, NULL);
  2543. if (IS_ERR(pp->clk)) {
  2544. err = PTR_ERR(pp->clk);
  2545. goto err_put_phy_node;
  2546. }
  2547. clk_prepare_enable(pp->clk);
  2548. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2549. pp->base = devm_ioremap_resource(&pdev->dev, res);
  2550. if (IS_ERR(pp->base)) {
  2551. err = PTR_ERR(pp->base);
  2552. goto err_clk;
  2553. }
  2554. /* Alloc per-cpu stats */
  2555. pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
  2556. if (!pp->stats) {
  2557. err = -ENOMEM;
  2558. goto err_clk;
  2559. }
  2560. dt_mac_addr = of_get_mac_address(dn);
  2561. if (dt_mac_addr) {
  2562. mac_from = "device tree";
  2563. memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
  2564. } else {
  2565. mvneta_get_mac_addr(pp, hw_mac_addr);
  2566. if (is_valid_ether_addr(hw_mac_addr)) {
  2567. mac_from = "hardware";
  2568. memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
  2569. } else {
  2570. mac_from = "random";
  2571. eth_hw_addr_random(dev);
  2572. }
  2573. }
  2574. if (of_device_is_compatible(dn, "marvell,armada-370-neta"))
  2575. pp->tx_csum_limit = 1600;
  2576. pp->tx_ring_size = MVNETA_MAX_TXD;
  2577. pp->rx_ring_size = MVNETA_MAX_RXD;
  2578. pp->dev = dev;
  2579. SET_NETDEV_DEV(dev, &pdev->dev);
  2580. err = mvneta_init(&pdev->dev, pp);
  2581. if (err < 0)
  2582. goto err_free_stats;
  2583. err = mvneta_port_power_up(pp, phy_mode);
  2584. if (err < 0) {
  2585. dev_err(&pdev->dev, "can't power up port\n");
  2586. goto err_free_stats;
  2587. }
  2588. dram_target_info = mv_mbus_dram_info();
  2589. if (dram_target_info)
  2590. mvneta_conf_mbus_windows(pp, dram_target_info);
  2591. netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
  2592. dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
  2593. dev->hw_features |= dev->features;
  2594. dev->vlan_features |= dev->features;
  2595. dev->priv_flags |= IFF_UNICAST_FLT;
  2596. dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
  2597. err = register_netdev(dev);
  2598. if (err < 0) {
  2599. dev_err(&pdev->dev, "failed to register\n");
  2600. goto err_free_stats;
  2601. }
  2602. netdev_info(dev, "Using %s mac address %pM\n", mac_from,
  2603. dev->dev_addr);
  2604. platform_set_drvdata(pdev, pp->dev);
  2605. if (pp->use_inband_status) {
  2606. struct phy_device *phy = of_phy_find_device(dn);
  2607. mvneta_fixed_link_update(pp, phy);
  2608. put_device(&phy->dev);
  2609. }
  2610. return 0;
  2611. err_free_stats:
  2612. free_percpu(pp->stats);
  2613. err_clk:
  2614. clk_disable_unprepare(pp->clk);
  2615. err_put_phy_node:
  2616. of_node_put(phy_node);
  2617. err_free_irq:
  2618. irq_dispose_mapping(dev->irq);
  2619. err_free_netdev:
  2620. free_netdev(dev);
  2621. return err;
  2622. }
  2623. /* Device removal routine */
  2624. static int mvneta_remove(struct platform_device *pdev)
  2625. {
  2626. struct net_device *dev = platform_get_drvdata(pdev);
  2627. struct mvneta_port *pp = netdev_priv(dev);
  2628. unregister_netdev(dev);
  2629. clk_disable_unprepare(pp->clk);
  2630. free_percpu(pp->stats);
  2631. irq_dispose_mapping(dev->irq);
  2632. of_node_put(pp->phy_node);
  2633. free_netdev(dev);
  2634. return 0;
  2635. }
  2636. static const struct of_device_id mvneta_match[] = {
  2637. { .compatible = "marvell,armada-370-neta" },
  2638. { .compatible = "marvell,armada-xp-neta" },
  2639. { }
  2640. };
  2641. MODULE_DEVICE_TABLE(of, mvneta_match);
  2642. static struct platform_driver mvneta_driver = {
  2643. .probe = mvneta_probe,
  2644. .remove = mvneta_remove,
  2645. .driver = {
  2646. .name = MVNETA_DRIVER_NAME,
  2647. .of_match_table = mvneta_match,
  2648. },
  2649. };
  2650. module_platform_driver(mvneta_driver);
  2651. MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
  2652. MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
  2653. MODULE_LICENSE("GPL");
  2654. module_param(rxq_number, int, S_IRUGO);
  2655. module_param(txq_number, int, S_IRUGO);
  2656. module_param(rxq_def, int, S_IRUGO);
  2657. module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);