igb_ethtool.c 87 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084
  1. /* Intel(R) Gigabit Ethernet Linux driver
  2. * Copyright(c) 2007-2014 Intel Corporation.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms and conditions of the GNU General Public License,
  6. * version 2, as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope it will be useful, but WITHOUT
  9. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  11. * more details.
  12. *
  13. * You should have received a copy of the GNU General Public License along with
  14. * this program; if not, see <http://www.gnu.org/licenses/>.
  15. *
  16. * The full GNU General Public License is included in this distribution in
  17. * the file called "COPYING".
  18. *
  19. * Contact Information:
  20. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22. */
  23. /* ethtool support for igb */
  24. #include <linux/vmalloc.h>
  25. #include <linux/netdevice.h>
  26. #include <linux/pci.h>
  27. #include <linux/delay.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/if_ether.h>
  30. #include <linux/ethtool.h>
  31. #include <linux/sched.h>
  32. #include <linux/slab.h>
  33. #include <linux/pm_runtime.h>
  34. #include <linux/highmem.h>
  35. #include <linux/mdio.h>
  36. #include "igb.h"
  37. struct igb_stats {
  38. char stat_string[ETH_GSTRING_LEN];
  39. int sizeof_stat;
  40. int stat_offset;
  41. };
  42. #define IGB_STAT(_name, _stat) { \
  43. .stat_string = _name, \
  44. .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
  45. .stat_offset = offsetof(struct igb_adapter, _stat) \
  46. }
  47. static const struct igb_stats igb_gstrings_stats[] = {
  48. IGB_STAT("rx_packets", stats.gprc),
  49. IGB_STAT("tx_packets", stats.gptc),
  50. IGB_STAT("rx_bytes", stats.gorc),
  51. IGB_STAT("tx_bytes", stats.gotc),
  52. IGB_STAT("rx_broadcast", stats.bprc),
  53. IGB_STAT("tx_broadcast", stats.bptc),
  54. IGB_STAT("rx_multicast", stats.mprc),
  55. IGB_STAT("tx_multicast", stats.mptc),
  56. IGB_STAT("multicast", stats.mprc),
  57. IGB_STAT("collisions", stats.colc),
  58. IGB_STAT("rx_crc_errors", stats.crcerrs),
  59. IGB_STAT("rx_no_buffer_count", stats.rnbc),
  60. IGB_STAT("rx_missed_errors", stats.mpc),
  61. IGB_STAT("tx_aborted_errors", stats.ecol),
  62. IGB_STAT("tx_carrier_errors", stats.tncrs),
  63. IGB_STAT("tx_window_errors", stats.latecol),
  64. IGB_STAT("tx_abort_late_coll", stats.latecol),
  65. IGB_STAT("tx_deferred_ok", stats.dc),
  66. IGB_STAT("tx_single_coll_ok", stats.scc),
  67. IGB_STAT("tx_multi_coll_ok", stats.mcc),
  68. IGB_STAT("tx_timeout_count", tx_timeout_count),
  69. IGB_STAT("rx_long_length_errors", stats.roc),
  70. IGB_STAT("rx_short_length_errors", stats.ruc),
  71. IGB_STAT("rx_align_errors", stats.algnerrc),
  72. IGB_STAT("tx_tcp_seg_good", stats.tsctc),
  73. IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
  74. IGB_STAT("rx_flow_control_xon", stats.xonrxc),
  75. IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
  76. IGB_STAT("tx_flow_control_xon", stats.xontxc),
  77. IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
  78. IGB_STAT("rx_long_byte_count", stats.gorc),
  79. IGB_STAT("tx_dma_out_of_sync", stats.doosync),
  80. IGB_STAT("tx_smbus", stats.mgptc),
  81. IGB_STAT("rx_smbus", stats.mgprc),
  82. IGB_STAT("dropped_smbus", stats.mgpdc),
  83. IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
  84. IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
  85. IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
  86. IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
  87. IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  88. IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  89. };
  90. #define IGB_NETDEV_STAT(_net_stat) { \
  91. .stat_string = __stringify(_net_stat), \
  92. .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
  93. .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
  94. }
  95. static const struct igb_stats igb_gstrings_net_stats[] = {
  96. IGB_NETDEV_STAT(rx_errors),
  97. IGB_NETDEV_STAT(tx_errors),
  98. IGB_NETDEV_STAT(tx_dropped),
  99. IGB_NETDEV_STAT(rx_length_errors),
  100. IGB_NETDEV_STAT(rx_over_errors),
  101. IGB_NETDEV_STAT(rx_frame_errors),
  102. IGB_NETDEV_STAT(rx_fifo_errors),
  103. IGB_NETDEV_STAT(tx_fifo_errors),
  104. IGB_NETDEV_STAT(tx_heartbeat_errors)
  105. };
  106. #define IGB_GLOBAL_STATS_LEN \
  107. (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
  108. #define IGB_NETDEV_STATS_LEN \
  109. (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
  110. #define IGB_RX_QUEUE_STATS_LEN \
  111. (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
  112. #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
  113. #define IGB_QUEUE_STATS_LEN \
  114. ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
  115. IGB_RX_QUEUE_STATS_LEN) + \
  116. (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
  117. IGB_TX_QUEUE_STATS_LEN))
  118. #define IGB_STATS_LEN \
  119. (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
  120. static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
  121. "Register test (offline)", "Eeprom test (offline)",
  122. "Interrupt test (offline)", "Loopback test (offline)",
  123. "Link test (on/offline)"
  124. };
  125. #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
  126. static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  127. {
  128. struct igb_adapter *adapter = netdev_priv(netdev);
  129. struct e1000_hw *hw = &adapter->hw;
  130. struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
  131. struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
  132. u32 status;
  133. u32 speed;
  134. status = rd32(E1000_STATUS);
  135. if (hw->phy.media_type == e1000_media_type_copper) {
  136. ecmd->supported = (SUPPORTED_10baseT_Half |
  137. SUPPORTED_10baseT_Full |
  138. SUPPORTED_100baseT_Half |
  139. SUPPORTED_100baseT_Full |
  140. SUPPORTED_1000baseT_Full|
  141. SUPPORTED_Autoneg |
  142. SUPPORTED_TP |
  143. SUPPORTED_Pause);
  144. ecmd->advertising = ADVERTISED_TP;
  145. if (hw->mac.autoneg == 1) {
  146. ecmd->advertising |= ADVERTISED_Autoneg;
  147. /* the e1000 autoneg seems to match ethtool nicely */
  148. ecmd->advertising |= hw->phy.autoneg_advertised;
  149. }
  150. ecmd->port = PORT_TP;
  151. ecmd->phy_address = hw->phy.addr;
  152. ecmd->transceiver = XCVR_INTERNAL;
  153. } else {
  154. ecmd->supported = (SUPPORTED_FIBRE |
  155. SUPPORTED_1000baseKX_Full |
  156. SUPPORTED_Autoneg |
  157. SUPPORTED_Pause);
  158. ecmd->advertising = (ADVERTISED_FIBRE |
  159. ADVERTISED_1000baseKX_Full);
  160. if (hw->mac.type == e1000_i354) {
  161. if ((hw->device_id ==
  162. E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
  163. !(status & E1000_STATUS_2P5_SKU_OVER)) {
  164. ecmd->supported |= SUPPORTED_2500baseX_Full;
  165. ecmd->supported &=
  166. ~SUPPORTED_1000baseKX_Full;
  167. ecmd->advertising |= ADVERTISED_2500baseX_Full;
  168. ecmd->advertising &=
  169. ~ADVERTISED_1000baseKX_Full;
  170. }
  171. }
  172. if (eth_flags->e100_base_fx) {
  173. ecmd->supported |= SUPPORTED_100baseT_Full;
  174. ecmd->advertising |= ADVERTISED_100baseT_Full;
  175. }
  176. if (hw->mac.autoneg == 1)
  177. ecmd->advertising |= ADVERTISED_Autoneg;
  178. ecmd->port = PORT_FIBRE;
  179. ecmd->transceiver = XCVR_EXTERNAL;
  180. }
  181. if (hw->mac.autoneg != 1)
  182. ecmd->advertising &= ~(ADVERTISED_Pause |
  183. ADVERTISED_Asym_Pause);
  184. switch (hw->fc.requested_mode) {
  185. case e1000_fc_full:
  186. ecmd->advertising |= ADVERTISED_Pause;
  187. break;
  188. case e1000_fc_rx_pause:
  189. ecmd->advertising |= (ADVERTISED_Pause |
  190. ADVERTISED_Asym_Pause);
  191. break;
  192. case e1000_fc_tx_pause:
  193. ecmd->advertising |= ADVERTISED_Asym_Pause;
  194. break;
  195. default:
  196. ecmd->advertising &= ~(ADVERTISED_Pause |
  197. ADVERTISED_Asym_Pause);
  198. }
  199. if (status & E1000_STATUS_LU) {
  200. if ((status & E1000_STATUS_2P5_SKU) &&
  201. !(status & E1000_STATUS_2P5_SKU_OVER)) {
  202. speed = SPEED_2500;
  203. } else if (status & E1000_STATUS_SPEED_1000) {
  204. speed = SPEED_1000;
  205. } else if (status & E1000_STATUS_SPEED_100) {
  206. speed = SPEED_100;
  207. } else {
  208. speed = SPEED_10;
  209. }
  210. if ((status & E1000_STATUS_FD) ||
  211. hw->phy.media_type != e1000_media_type_copper)
  212. ecmd->duplex = DUPLEX_FULL;
  213. else
  214. ecmd->duplex = DUPLEX_HALF;
  215. } else {
  216. speed = SPEED_UNKNOWN;
  217. ecmd->duplex = DUPLEX_UNKNOWN;
  218. }
  219. ethtool_cmd_speed_set(ecmd, speed);
  220. if ((hw->phy.media_type == e1000_media_type_fiber) ||
  221. hw->mac.autoneg)
  222. ecmd->autoneg = AUTONEG_ENABLE;
  223. else
  224. ecmd->autoneg = AUTONEG_DISABLE;
  225. /* MDI-X => 2; MDI =>1; Invalid =>0 */
  226. if (hw->phy.media_type == e1000_media_type_copper)
  227. ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
  228. ETH_TP_MDI;
  229. else
  230. ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
  231. if (hw->phy.mdix == AUTO_ALL_MODES)
  232. ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
  233. else
  234. ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
  235. return 0;
  236. }
  237. static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  238. {
  239. struct igb_adapter *adapter = netdev_priv(netdev);
  240. struct e1000_hw *hw = &adapter->hw;
  241. /* When SoL/IDER sessions are active, autoneg/speed/duplex
  242. * cannot be changed
  243. */
  244. if (igb_check_reset_block(hw)) {
  245. dev_err(&adapter->pdev->dev,
  246. "Cannot change link characteristics when SoL/IDER is active.\n");
  247. return -EINVAL;
  248. }
  249. /* MDI setting is only allowed when autoneg enabled because
  250. * some hardware doesn't allow MDI setting when speed or
  251. * duplex is forced.
  252. */
  253. if (ecmd->eth_tp_mdix_ctrl) {
  254. if (hw->phy.media_type != e1000_media_type_copper)
  255. return -EOPNOTSUPP;
  256. if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
  257. (ecmd->autoneg != AUTONEG_ENABLE)) {
  258. dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
  259. return -EINVAL;
  260. }
  261. }
  262. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  263. usleep_range(1000, 2000);
  264. if (ecmd->autoneg == AUTONEG_ENABLE) {
  265. hw->mac.autoneg = 1;
  266. if (hw->phy.media_type == e1000_media_type_fiber) {
  267. hw->phy.autoneg_advertised = ecmd->advertising |
  268. ADVERTISED_FIBRE |
  269. ADVERTISED_Autoneg;
  270. switch (adapter->link_speed) {
  271. case SPEED_2500:
  272. hw->phy.autoneg_advertised =
  273. ADVERTISED_2500baseX_Full;
  274. break;
  275. case SPEED_1000:
  276. hw->phy.autoneg_advertised =
  277. ADVERTISED_1000baseT_Full;
  278. break;
  279. case SPEED_100:
  280. hw->phy.autoneg_advertised =
  281. ADVERTISED_100baseT_Full;
  282. break;
  283. default:
  284. break;
  285. }
  286. } else {
  287. hw->phy.autoneg_advertised = ecmd->advertising |
  288. ADVERTISED_TP |
  289. ADVERTISED_Autoneg;
  290. }
  291. ecmd->advertising = hw->phy.autoneg_advertised;
  292. if (adapter->fc_autoneg)
  293. hw->fc.requested_mode = e1000_fc_default;
  294. } else {
  295. u32 speed = ethtool_cmd_speed(ecmd);
  296. /* calling this overrides forced MDI setting */
  297. if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
  298. clear_bit(__IGB_RESETTING, &adapter->state);
  299. return -EINVAL;
  300. }
  301. }
  302. /* MDI-X => 2; MDI => 1; Auto => 3 */
  303. if (ecmd->eth_tp_mdix_ctrl) {
  304. /* fix up the value for auto (3 => 0) as zero is mapped
  305. * internally to auto
  306. */
  307. if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
  308. hw->phy.mdix = AUTO_ALL_MODES;
  309. else
  310. hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
  311. }
  312. /* reset the link */
  313. if (netif_running(adapter->netdev)) {
  314. igb_down(adapter);
  315. igb_up(adapter);
  316. } else
  317. igb_reset(adapter);
  318. clear_bit(__IGB_RESETTING, &adapter->state);
  319. return 0;
  320. }
  321. static u32 igb_get_link(struct net_device *netdev)
  322. {
  323. struct igb_adapter *adapter = netdev_priv(netdev);
  324. struct e1000_mac_info *mac = &adapter->hw.mac;
  325. /* If the link is not reported up to netdev, interrupts are disabled,
  326. * and so the physical link state may have changed since we last
  327. * looked. Set get_link_status to make sure that the true link
  328. * state is interrogated, rather than pulling a cached and possibly
  329. * stale link state from the driver.
  330. */
  331. if (!netif_carrier_ok(netdev))
  332. mac->get_link_status = 1;
  333. return igb_has_link(adapter);
  334. }
  335. static void igb_get_pauseparam(struct net_device *netdev,
  336. struct ethtool_pauseparam *pause)
  337. {
  338. struct igb_adapter *adapter = netdev_priv(netdev);
  339. struct e1000_hw *hw = &adapter->hw;
  340. pause->autoneg =
  341. (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
  342. if (hw->fc.current_mode == e1000_fc_rx_pause)
  343. pause->rx_pause = 1;
  344. else if (hw->fc.current_mode == e1000_fc_tx_pause)
  345. pause->tx_pause = 1;
  346. else if (hw->fc.current_mode == e1000_fc_full) {
  347. pause->rx_pause = 1;
  348. pause->tx_pause = 1;
  349. }
  350. }
  351. static int igb_set_pauseparam(struct net_device *netdev,
  352. struct ethtool_pauseparam *pause)
  353. {
  354. struct igb_adapter *adapter = netdev_priv(netdev);
  355. struct e1000_hw *hw = &adapter->hw;
  356. int retval = 0;
  357. /* 100basefx does not support setting link flow control */
  358. if (hw->dev_spec._82575.eth_flags.e100_base_fx)
  359. return -EINVAL;
  360. adapter->fc_autoneg = pause->autoneg;
  361. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  362. usleep_range(1000, 2000);
  363. if (adapter->fc_autoneg == AUTONEG_ENABLE) {
  364. hw->fc.requested_mode = e1000_fc_default;
  365. if (netif_running(adapter->netdev)) {
  366. igb_down(adapter);
  367. igb_up(adapter);
  368. } else {
  369. igb_reset(adapter);
  370. }
  371. } else {
  372. if (pause->rx_pause && pause->tx_pause)
  373. hw->fc.requested_mode = e1000_fc_full;
  374. else if (pause->rx_pause && !pause->tx_pause)
  375. hw->fc.requested_mode = e1000_fc_rx_pause;
  376. else if (!pause->rx_pause && pause->tx_pause)
  377. hw->fc.requested_mode = e1000_fc_tx_pause;
  378. else if (!pause->rx_pause && !pause->tx_pause)
  379. hw->fc.requested_mode = e1000_fc_none;
  380. hw->fc.current_mode = hw->fc.requested_mode;
  381. retval = ((hw->phy.media_type == e1000_media_type_copper) ?
  382. igb_force_mac_fc(hw) : igb_setup_link(hw));
  383. }
  384. clear_bit(__IGB_RESETTING, &adapter->state);
  385. return retval;
  386. }
  387. static u32 igb_get_msglevel(struct net_device *netdev)
  388. {
  389. struct igb_adapter *adapter = netdev_priv(netdev);
  390. return adapter->msg_enable;
  391. }
  392. static void igb_set_msglevel(struct net_device *netdev, u32 data)
  393. {
  394. struct igb_adapter *adapter = netdev_priv(netdev);
  395. adapter->msg_enable = data;
  396. }
  397. static int igb_get_regs_len(struct net_device *netdev)
  398. {
  399. #define IGB_REGS_LEN 739
  400. return IGB_REGS_LEN * sizeof(u32);
  401. }
  402. static void igb_get_regs(struct net_device *netdev,
  403. struct ethtool_regs *regs, void *p)
  404. {
  405. struct igb_adapter *adapter = netdev_priv(netdev);
  406. struct e1000_hw *hw = &adapter->hw;
  407. u32 *regs_buff = p;
  408. u8 i;
  409. memset(p, 0, IGB_REGS_LEN * sizeof(u32));
  410. regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
  411. /* General Registers */
  412. regs_buff[0] = rd32(E1000_CTRL);
  413. regs_buff[1] = rd32(E1000_STATUS);
  414. regs_buff[2] = rd32(E1000_CTRL_EXT);
  415. regs_buff[3] = rd32(E1000_MDIC);
  416. regs_buff[4] = rd32(E1000_SCTL);
  417. regs_buff[5] = rd32(E1000_CONNSW);
  418. regs_buff[6] = rd32(E1000_VET);
  419. regs_buff[7] = rd32(E1000_LEDCTL);
  420. regs_buff[8] = rd32(E1000_PBA);
  421. regs_buff[9] = rd32(E1000_PBS);
  422. regs_buff[10] = rd32(E1000_FRTIMER);
  423. regs_buff[11] = rd32(E1000_TCPTIMER);
  424. /* NVM Register */
  425. regs_buff[12] = rd32(E1000_EECD);
  426. /* Interrupt */
  427. /* Reading EICS for EICR because they read the
  428. * same but EICS does not clear on read
  429. */
  430. regs_buff[13] = rd32(E1000_EICS);
  431. regs_buff[14] = rd32(E1000_EICS);
  432. regs_buff[15] = rd32(E1000_EIMS);
  433. regs_buff[16] = rd32(E1000_EIMC);
  434. regs_buff[17] = rd32(E1000_EIAC);
  435. regs_buff[18] = rd32(E1000_EIAM);
  436. /* Reading ICS for ICR because they read the
  437. * same but ICS does not clear on read
  438. */
  439. regs_buff[19] = rd32(E1000_ICS);
  440. regs_buff[20] = rd32(E1000_ICS);
  441. regs_buff[21] = rd32(E1000_IMS);
  442. regs_buff[22] = rd32(E1000_IMC);
  443. regs_buff[23] = rd32(E1000_IAC);
  444. regs_buff[24] = rd32(E1000_IAM);
  445. regs_buff[25] = rd32(E1000_IMIRVP);
  446. /* Flow Control */
  447. regs_buff[26] = rd32(E1000_FCAL);
  448. regs_buff[27] = rd32(E1000_FCAH);
  449. regs_buff[28] = rd32(E1000_FCTTV);
  450. regs_buff[29] = rd32(E1000_FCRTL);
  451. regs_buff[30] = rd32(E1000_FCRTH);
  452. regs_buff[31] = rd32(E1000_FCRTV);
  453. /* Receive */
  454. regs_buff[32] = rd32(E1000_RCTL);
  455. regs_buff[33] = rd32(E1000_RXCSUM);
  456. regs_buff[34] = rd32(E1000_RLPML);
  457. regs_buff[35] = rd32(E1000_RFCTL);
  458. regs_buff[36] = rd32(E1000_MRQC);
  459. regs_buff[37] = rd32(E1000_VT_CTL);
  460. /* Transmit */
  461. regs_buff[38] = rd32(E1000_TCTL);
  462. regs_buff[39] = rd32(E1000_TCTL_EXT);
  463. regs_buff[40] = rd32(E1000_TIPG);
  464. regs_buff[41] = rd32(E1000_DTXCTL);
  465. /* Wake Up */
  466. regs_buff[42] = rd32(E1000_WUC);
  467. regs_buff[43] = rd32(E1000_WUFC);
  468. regs_buff[44] = rd32(E1000_WUS);
  469. regs_buff[45] = rd32(E1000_IPAV);
  470. regs_buff[46] = rd32(E1000_WUPL);
  471. /* MAC */
  472. regs_buff[47] = rd32(E1000_PCS_CFG0);
  473. regs_buff[48] = rd32(E1000_PCS_LCTL);
  474. regs_buff[49] = rd32(E1000_PCS_LSTAT);
  475. regs_buff[50] = rd32(E1000_PCS_ANADV);
  476. regs_buff[51] = rd32(E1000_PCS_LPAB);
  477. regs_buff[52] = rd32(E1000_PCS_NPTX);
  478. regs_buff[53] = rd32(E1000_PCS_LPABNP);
  479. /* Statistics */
  480. regs_buff[54] = adapter->stats.crcerrs;
  481. regs_buff[55] = adapter->stats.algnerrc;
  482. regs_buff[56] = adapter->stats.symerrs;
  483. regs_buff[57] = adapter->stats.rxerrc;
  484. regs_buff[58] = adapter->stats.mpc;
  485. regs_buff[59] = adapter->stats.scc;
  486. regs_buff[60] = adapter->stats.ecol;
  487. regs_buff[61] = adapter->stats.mcc;
  488. regs_buff[62] = adapter->stats.latecol;
  489. regs_buff[63] = adapter->stats.colc;
  490. regs_buff[64] = adapter->stats.dc;
  491. regs_buff[65] = adapter->stats.tncrs;
  492. regs_buff[66] = adapter->stats.sec;
  493. regs_buff[67] = adapter->stats.htdpmc;
  494. regs_buff[68] = adapter->stats.rlec;
  495. regs_buff[69] = adapter->stats.xonrxc;
  496. regs_buff[70] = adapter->stats.xontxc;
  497. regs_buff[71] = adapter->stats.xoffrxc;
  498. regs_buff[72] = adapter->stats.xofftxc;
  499. regs_buff[73] = adapter->stats.fcruc;
  500. regs_buff[74] = adapter->stats.prc64;
  501. regs_buff[75] = adapter->stats.prc127;
  502. regs_buff[76] = adapter->stats.prc255;
  503. regs_buff[77] = adapter->stats.prc511;
  504. regs_buff[78] = adapter->stats.prc1023;
  505. regs_buff[79] = adapter->stats.prc1522;
  506. regs_buff[80] = adapter->stats.gprc;
  507. regs_buff[81] = adapter->stats.bprc;
  508. regs_buff[82] = adapter->stats.mprc;
  509. regs_buff[83] = adapter->stats.gptc;
  510. regs_buff[84] = adapter->stats.gorc;
  511. regs_buff[86] = adapter->stats.gotc;
  512. regs_buff[88] = adapter->stats.rnbc;
  513. regs_buff[89] = adapter->stats.ruc;
  514. regs_buff[90] = adapter->stats.rfc;
  515. regs_buff[91] = adapter->stats.roc;
  516. regs_buff[92] = adapter->stats.rjc;
  517. regs_buff[93] = adapter->stats.mgprc;
  518. regs_buff[94] = adapter->stats.mgpdc;
  519. regs_buff[95] = adapter->stats.mgptc;
  520. regs_buff[96] = adapter->stats.tor;
  521. regs_buff[98] = adapter->stats.tot;
  522. regs_buff[100] = adapter->stats.tpr;
  523. regs_buff[101] = adapter->stats.tpt;
  524. regs_buff[102] = adapter->stats.ptc64;
  525. regs_buff[103] = adapter->stats.ptc127;
  526. regs_buff[104] = adapter->stats.ptc255;
  527. regs_buff[105] = adapter->stats.ptc511;
  528. regs_buff[106] = adapter->stats.ptc1023;
  529. regs_buff[107] = adapter->stats.ptc1522;
  530. regs_buff[108] = adapter->stats.mptc;
  531. regs_buff[109] = adapter->stats.bptc;
  532. regs_buff[110] = adapter->stats.tsctc;
  533. regs_buff[111] = adapter->stats.iac;
  534. regs_buff[112] = adapter->stats.rpthc;
  535. regs_buff[113] = adapter->stats.hgptc;
  536. regs_buff[114] = adapter->stats.hgorc;
  537. regs_buff[116] = adapter->stats.hgotc;
  538. regs_buff[118] = adapter->stats.lenerrs;
  539. regs_buff[119] = adapter->stats.scvpc;
  540. regs_buff[120] = adapter->stats.hrmpc;
  541. for (i = 0; i < 4; i++)
  542. regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
  543. for (i = 0; i < 4; i++)
  544. regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
  545. for (i = 0; i < 4; i++)
  546. regs_buff[129 + i] = rd32(E1000_RDBAL(i));
  547. for (i = 0; i < 4; i++)
  548. regs_buff[133 + i] = rd32(E1000_RDBAH(i));
  549. for (i = 0; i < 4; i++)
  550. regs_buff[137 + i] = rd32(E1000_RDLEN(i));
  551. for (i = 0; i < 4; i++)
  552. regs_buff[141 + i] = rd32(E1000_RDH(i));
  553. for (i = 0; i < 4; i++)
  554. regs_buff[145 + i] = rd32(E1000_RDT(i));
  555. for (i = 0; i < 4; i++)
  556. regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
  557. for (i = 0; i < 10; i++)
  558. regs_buff[153 + i] = rd32(E1000_EITR(i));
  559. for (i = 0; i < 8; i++)
  560. regs_buff[163 + i] = rd32(E1000_IMIR(i));
  561. for (i = 0; i < 8; i++)
  562. regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
  563. for (i = 0; i < 16; i++)
  564. regs_buff[179 + i] = rd32(E1000_RAL(i));
  565. for (i = 0; i < 16; i++)
  566. regs_buff[195 + i] = rd32(E1000_RAH(i));
  567. for (i = 0; i < 4; i++)
  568. regs_buff[211 + i] = rd32(E1000_TDBAL(i));
  569. for (i = 0; i < 4; i++)
  570. regs_buff[215 + i] = rd32(E1000_TDBAH(i));
  571. for (i = 0; i < 4; i++)
  572. regs_buff[219 + i] = rd32(E1000_TDLEN(i));
  573. for (i = 0; i < 4; i++)
  574. regs_buff[223 + i] = rd32(E1000_TDH(i));
  575. for (i = 0; i < 4; i++)
  576. regs_buff[227 + i] = rd32(E1000_TDT(i));
  577. for (i = 0; i < 4; i++)
  578. regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
  579. for (i = 0; i < 4; i++)
  580. regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
  581. for (i = 0; i < 4; i++)
  582. regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
  583. for (i = 0; i < 4; i++)
  584. regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
  585. for (i = 0; i < 4; i++)
  586. regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
  587. for (i = 0; i < 4; i++)
  588. regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
  589. for (i = 0; i < 32; i++)
  590. regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
  591. for (i = 0; i < 128; i++)
  592. regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
  593. for (i = 0; i < 128; i++)
  594. regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
  595. for (i = 0; i < 4; i++)
  596. regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
  597. regs_buff[547] = rd32(E1000_TDFH);
  598. regs_buff[548] = rd32(E1000_TDFT);
  599. regs_buff[549] = rd32(E1000_TDFHS);
  600. regs_buff[550] = rd32(E1000_TDFPC);
  601. if (hw->mac.type > e1000_82580) {
  602. regs_buff[551] = adapter->stats.o2bgptc;
  603. regs_buff[552] = adapter->stats.b2ospc;
  604. regs_buff[553] = adapter->stats.o2bspc;
  605. regs_buff[554] = adapter->stats.b2ogprc;
  606. }
  607. if (hw->mac.type != e1000_82576)
  608. return;
  609. for (i = 0; i < 12; i++)
  610. regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
  611. for (i = 0; i < 4; i++)
  612. regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
  613. for (i = 0; i < 12; i++)
  614. regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
  615. for (i = 0; i < 12; i++)
  616. regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
  617. for (i = 0; i < 12; i++)
  618. regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
  619. for (i = 0; i < 12; i++)
  620. regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
  621. for (i = 0; i < 12; i++)
  622. regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
  623. for (i = 0; i < 12; i++)
  624. regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
  625. for (i = 0; i < 12; i++)
  626. regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
  627. for (i = 0; i < 12; i++)
  628. regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
  629. for (i = 0; i < 12; i++)
  630. regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
  631. for (i = 0; i < 12; i++)
  632. regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
  633. for (i = 0; i < 12; i++)
  634. regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
  635. for (i = 0; i < 12; i++)
  636. regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
  637. for (i = 0; i < 12; i++)
  638. regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
  639. for (i = 0; i < 12; i++)
  640. regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
  641. }
  642. static int igb_get_eeprom_len(struct net_device *netdev)
  643. {
  644. struct igb_adapter *adapter = netdev_priv(netdev);
  645. return adapter->hw.nvm.word_size * 2;
  646. }
  647. static int igb_get_eeprom(struct net_device *netdev,
  648. struct ethtool_eeprom *eeprom, u8 *bytes)
  649. {
  650. struct igb_adapter *adapter = netdev_priv(netdev);
  651. struct e1000_hw *hw = &adapter->hw;
  652. u16 *eeprom_buff;
  653. int first_word, last_word;
  654. int ret_val = 0;
  655. u16 i;
  656. if (eeprom->len == 0)
  657. return -EINVAL;
  658. eeprom->magic = hw->vendor_id | (hw->device_id << 16);
  659. first_word = eeprom->offset >> 1;
  660. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  661. eeprom_buff = kmalloc(sizeof(u16) *
  662. (last_word - first_word + 1), GFP_KERNEL);
  663. if (!eeprom_buff)
  664. return -ENOMEM;
  665. if (hw->nvm.type == e1000_nvm_eeprom_spi)
  666. ret_val = hw->nvm.ops.read(hw, first_word,
  667. last_word - first_word + 1,
  668. eeprom_buff);
  669. else {
  670. for (i = 0; i < last_word - first_word + 1; i++) {
  671. ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
  672. &eeprom_buff[i]);
  673. if (ret_val)
  674. break;
  675. }
  676. }
  677. /* Device's eeprom is always little-endian, word addressable */
  678. for (i = 0; i < last_word - first_word + 1; i++)
  679. le16_to_cpus(&eeprom_buff[i]);
  680. memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
  681. eeprom->len);
  682. kfree(eeprom_buff);
  683. return ret_val;
  684. }
  685. static int igb_set_eeprom(struct net_device *netdev,
  686. struct ethtool_eeprom *eeprom, u8 *bytes)
  687. {
  688. struct igb_adapter *adapter = netdev_priv(netdev);
  689. struct e1000_hw *hw = &adapter->hw;
  690. u16 *eeprom_buff;
  691. void *ptr;
  692. int max_len, first_word, last_word, ret_val = 0;
  693. u16 i;
  694. if (eeprom->len == 0)
  695. return -EOPNOTSUPP;
  696. if ((hw->mac.type >= e1000_i210) &&
  697. !igb_get_flash_presence_i210(hw)) {
  698. return -EOPNOTSUPP;
  699. }
  700. if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
  701. return -EFAULT;
  702. max_len = hw->nvm.word_size * 2;
  703. first_word = eeprom->offset >> 1;
  704. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  705. eeprom_buff = kmalloc(max_len, GFP_KERNEL);
  706. if (!eeprom_buff)
  707. return -ENOMEM;
  708. ptr = (void *)eeprom_buff;
  709. if (eeprom->offset & 1) {
  710. /* need read/modify/write of first changed EEPROM word
  711. * only the second byte of the word is being modified
  712. */
  713. ret_val = hw->nvm.ops.read(hw, first_word, 1,
  714. &eeprom_buff[0]);
  715. ptr++;
  716. }
  717. if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
  718. /* need read/modify/write of last changed EEPROM word
  719. * only the first byte of the word is being modified
  720. */
  721. ret_val = hw->nvm.ops.read(hw, last_word, 1,
  722. &eeprom_buff[last_word - first_word]);
  723. }
  724. /* Device's eeprom is always little-endian, word addressable */
  725. for (i = 0; i < last_word - first_word + 1; i++)
  726. le16_to_cpus(&eeprom_buff[i]);
  727. memcpy(ptr, bytes, eeprom->len);
  728. for (i = 0; i < last_word - first_word + 1; i++)
  729. eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
  730. ret_val = hw->nvm.ops.write(hw, first_word,
  731. last_word - first_word + 1, eeprom_buff);
  732. /* Update the checksum if nvm write succeeded */
  733. if (ret_val == 0)
  734. hw->nvm.ops.update(hw);
  735. igb_set_fw_version(adapter);
  736. kfree(eeprom_buff);
  737. return ret_val;
  738. }
  739. static void igb_get_drvinfo(struct net_device *netdev,
  740. struct ethtool_drvinfo *drvinfo)
  741. {
  742. struct igb_adapter *adapter = netdev_priv(netdev);
  743. strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
  744. strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
  745. /* EEPROM image version # is reported as firmware version # for
  746. * 82575 controllers
  747. */
  748. strlcpy(drvinfo->fw_version, adapter->fw_version,
  749. sizeof(drvinfo->fw_version));
  750. strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
  751. sizeof(drvinfo->bus_info));
  752. drvinfo->n_stats = IGB_STATS_LEN;
  753. drvinfo->testinfo_len = IGB_TEST_LEN;
  754. drvinfo->regdump_len = igb_get_regs_len(netdev);
  755. drvinfo->eedump_len = igb_get_eeprom_len(netdev);
  756. }
  757. static void igb_get_ringparam(struct net_device *netdev,
  758. struct ethtool_ringparam *ring)
  759. {
  760. struct igb_adapter *adapter = netdev_priv(netdev);
  761. ring->rx_max_pending = IGB_MAX_RXD;
  762. ring->tx_max_pending = IGB_MAX_TXD;
  763. ring->rx_pending = adapter->rx_ring_count;
  764. ring->tx_pending = adapter->tx_ring_count;
  765. }
  766. static int igb_set_ringparam(struct net_device *netdev,
  767. struct ethtool_ringparam *ring)
  768. {
  769. struct igb_adapter *adapter = netdev_priv(netdev);
  770. struct igb_ring *temp_ring;
  771. int i, err = 0;
  772. u16 new_rx_count, new_tx_count;
  773. if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
  774. return -EINVAL;
  775. new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
  776. new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
  777. new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
  778. new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
  779. new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
  780. new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
  781. if ((new_tx_count == adapter->tx_ring_count) &&
  782. (new_rx_count == adapter->rx_ring_count)) {
  783. /* nothing to do */
  784. return 0;
  785. }
  786. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  787. usleep_range(1000, 2000);
  788. if (!netif_running(adapter->netdev)) {
  789. for (i = 0; i < adapter->num_tx_queues; i++)
  790. adapter->tx_ring[i]->count = new_tx_count;
  791. for (i = 0; i < adapter->num_rx_queues; i++)
  792. adapter->rx_ring[i]->count = new_rx_count;
  793. adapter->tx_ring_count = new_tx_count;
  794. adapter->rx_ring_count = new_rx_count;
  795. goto clear_reset;
  796. }
  797. if (adapter->num_tx_queues > adapter->num_rx_queues)
  798. temp_ring = vmalloc(adapter->num_tx_queues *
  799. sizeof(struct igb_ring));
  800. else
  801. temp_ring = vmalloc(adapter->num_rx_queues *
  802. sizeof(struct igb_ring));
  803. if (!temp_ring) {
  804. err = -ENOMEM;
  805. goto clear_reset;
  806. }
  807. igb_down(adapter);
  808. /* We can't just free everything and then setup again,
  809. * because the ISRs in MSI-X mode get passed pointers
  810. * to the Tx and Rx ring structs.
  811. */
  812. if (new_tx_count != adapter->tx_ring_count) {
  813. for (i = 0; i < adapter->num_tx_queues; i++) {
  814. memcpy(&temp_ring[i], adapter->tx_ring[i],
  815. sizeof(struct igb_ring));
  816. temp_ring[i].count = new_tx_count;
  817. err = igb_setup_tx_resources(&temp_ring[i]);
  818. if (err) {
  819. while (i) {
  820. i--;
  821. igb_free_tx_resources(&temp_ring[i]);
  822. }
  823. goto err_setup;
  824. }
  825. }
  826. for (i = 0; i < adapter->num_tx_queues; i++) {
  827. igb_free_tx_resources(adapter->tx_ring[i]);
  828. memcpy(adapter->tx_ring[i], &temp_ring[i],
  829. sizeof(struct igb_ring));
  830. }
  831. adapter->tx_ring_count = new_tx_count;
  832. }
  833. if (new_rx_count != adapter->rx_ring_count) {
  834. for (i = 0; i < adapter->num_rx_queues; i++) {
  835. memcpy(&temp_ring[i], adapter->rx_ring[i],
  836. sizeof(struct igb_ring));
  837. temp_ring[i].count = new_rx_count;
  838. err = igb_setup_rx_resources(&temp_ring[i]);
  839. if (err) {
  840. while (i) {
  841. i--;
  842. igb_free_rx_resources(&temp_ring[i]);
  843. }
  844. goto err_setup;
  845. }
  846. }
  847. for (i = 0; i < adapter->num_rx_queues; i++) {
  848. igb_free_rx_resources(adapter->rx_ring[i]);
  849. memcpy(adapter->rx_ring[i], &temp_ring[i],
  850. sizeof(struct igb_ring));
  851. }
  852. adapter->rx_ring_count = new_rx_count;
  853. }
  854. err_setup:
  855. igb_up(adapter);
  856. vfree(temp_ring);
  857. clear_reset:
  858. clear_bit(__IGB_RESETTING, &adapter->state);
  859. return err;
  860. }
  861. /* ethtool register test data */
  862. struct igb_reg_test {
  863. u16 reg;
  864. u16 reg_offset;
  865. u16 array_len;
  866. u16 test_type;
  867. u32 mask;
  868. u32 write;
  869. };
  870. /* In the hardware, registers are laid out either singly, in arrays
  871. * spaced 0x100 bytes apart, or in contiguous tables. We assume
  872. * most tests take place on arrays or single registers (handled
  873. * as a single-element array) and special-case the tables.
  874. * Table tests are always pattern tests.
  875. *
  876. * We also make provision for some required setup steps by specifying
  877. * registers to be written without any read-back testing.
  878. */
  879. #define PATTERN_TEST 1
  880. #define SET_READ_TEST 2
  881. #define WRITE_NO_TEST 3
  882. #define TABLE32_TEST 4
  883. #define TABLE64_TEST_LO 5
  884. #define TABLE64_TEST_HI 6
  885. /* i210 reg test */
  886. static struct igb_reg_test reg_test_i210[] = {
  887. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  888. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  889. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  890. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  891. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  892. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  893. /* RDH is read-only for i210, only test RDT. */
  894. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  895. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  896. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  897. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  898. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  899. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  900. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  901. { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  902. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  903. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  904. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  905. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  906. { E1000_RA, 0, 16, TABLE64_TEST_LO,
  907. 0xFFFFFFFF, 0xFFFFFFFF },
  908. { E1000_RA, 0, 16, TABLE64_TEST_HI,
  909. 0x900FFFFF, 0xFFFFFFFF },
  910. { E1000_MTA, 0, 128, TABLE32_TEST,
  911. 0xFFFFFFFF, 0xFFFFFFFF },
  912. { 0, 0, 0, 0, 0 }
  913. };
  914. /* i350 reg test */
  915. static struct igb_reg_test reg_test_i350[] = {
  916. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  917. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  918. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  919. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
  920. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  921. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  922. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  923. { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  924. { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  925. { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  926. /* RDH is read-only for i350, only test RDT. */
  927. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  928. { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  929. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  930. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  931. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  932. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  933. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  934. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  935. { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  936. { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  937. { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  938. { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  939. { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  940. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  941. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  942. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  943. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  944. { E1000_RA, 0, 16, TABLE64_TEST_LO,
  945. 0xFFFFFFFF, 0xFFFFFFFF },
  946. { E1000_RA, 0, 16, TABLE64_TEST_HI,
  947. 0xC3FFFFFF, 0xFFFFFFFF },
  948. { E1000_RA2, 0, 16, TABLE64_TEST_LO,
  949. 0xFFFFFFFF, 0xFFFFFFFF },
  950. { E1000_RA2, 0, 16, TABLE64_TEST_HI,
  951. 0xC3FFFFFF, 0xFFFFFFFF },
  952. { E1000_MTA, 0, 128, TABLE32_TEST,
  953. 0xFFFFFFFF, 0xFFFFFFFF },
  954. { 0, 0, 0, 0 }
  955. };
  956. /* 82580 reg test */
  957. static struct igb_reg_test reg_test_82580[] = {
  958. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  959. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  960. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  961. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  962. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  963. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  964. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  965. { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  966. { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  967. { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  968. /* RDH is read-only for 82580, only test RDT. */
  969. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  970. { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  971. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  972. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  973. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  974. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  975. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  976. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  977. { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  978. { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  979. { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  980. { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  981. { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  982. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  983. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  984. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  985. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  986. { E1000_RA, 0, 16, TABLE64_TEST_LO,
  987. 0xFFFFFFFF, 0xFFFFFFFF },
  988. { E1000_RA, 0, 16, TABLE64_TEST_HI,
  989. 0x83FFFFFF, 0xFFFFFFFF },
  990. { E1000_RA2, 0, 8, TABLE64_TEST_LO,
  991. 0xFFFFFFFF, 0xFFFFFFFF },
  992. { E1000_RA2, 0, 8, TABLE64_TEST_HI,
  993. 0x83FFFFFF, 0xFFFFFFFF },
  994. { E1000_MTA, 0, 128, TABLE32_TEST,
  995. 0xFFFFFFFF, 0xFFFFFFFF },
  996. { 0, 0, 0, 0 }
  997. };
  998. /* 82576 reg test */
  999. static struct igb_reg_test reg_test_82576[] = {
  1000. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1001. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1002. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1003. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1004. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1005. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1006. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1007. { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1008. { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1009. { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1010. /* Enable all RX queues before testing. */
  1011. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
  1012. E1000_RXDCTL_QUEUE_ENABLE },
  1013. { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
  1014. E1000_RXDCTL_QUEUE_ENABLE },
  1015. /* RDH is read-only for 82576, only test RDT. */
  1016. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1017. { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1018. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
  1019. { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
  1020. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  1021. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1022. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  1023. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1024. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1025. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1026. { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1027. { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1028. { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1029. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1030. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  1031. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  1032. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1033. { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
  1034. { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
  1035. { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
  1036. { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
  1037. { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1038. { 0, 0, 0, 0 }
  1039. };
  1040. /* 82575 register test */
  1041. static struct igb_reg_test reg_test_82575[] = {
  1042. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1043. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1044. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1045. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1046. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1047. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1048. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  1049. /* Enable all four RX queues before testing. */
  1050. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
  1051. E1000_RXDCTL_QUEUE_ENABLE },
  1052. /* RDH is read-only for 82575, only test RDT. */
  1053. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1054. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
  1055. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  1056. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1057. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  1058. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1059. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1060. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  1061. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1062. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
  1063. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
  1064. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1065. { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
  1066. { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
  1067. { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
  1068. { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1069. { 0, 0, 0, 0 }
  1070. };
  1071. static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
  1072. int reg, u32 mask, u32 write)
  1073. {
  1074. struct e1000_hw *hw = &adapter->hw;
  1075. u32 pat, val;
  1076. static const u32 _test[] = {
  1077. 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
  1078. for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
  1079. wr32(reg, (_test[pat] & write));
  1080. val = rd32(reg) & mask;
  1081. if (val != (_test[pat] & write & mask)) {
  1082. dev_err(&adapter->pdev->dev,
  1083. "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
  1084. reg, val, (_test[pat] & write & mask));
  1085. *data = reg;
  1086. return true;
  1087. }
  1088. }
  1089. return false;
  1090. }
  1091. static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
  1092. int reg, u32 mask, u32 write)
  1093. {
  1094. struct e1000_hw *hw = &adapter->hw;
  1095. u32 val;
  1096. wr32(reg, write & mask);
  1097. val = rd32(reg);
  1098. if ((write & mask) != (val & mask)) {
  1099. dev_err(&adapter->pdev->dev,
  1100. "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
  1101. reg, (val & mask), (write & mask));
  1102. *data = reg;
  1103. return true;
  1104. }
  1105. return false;
  1106. }
  1107. #define REG_PATTERN_TEST(reg, mask, write) \
  1108. do { \
  1109. if (reg_pattern_test(adapter, data, reg, mask, write)) \
  1110. return 1; \
  1111. } while (0)
  1112. #define REG_SET_AND_CHECK(reg, mask, write) \
  1113. do { \
  1114. if (reg_set_and_check(adapter, data, reg, mask, write)) \
  1115. return 1; \
  1116. } while (0)
  1117. static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
  1118. {
  1119. struct e1000_hw *hw = &adapter->hw;
  1120. struct igb_reg_test *test;
  1121. u32 value, before, after;
  1122. u32 i, toggle;
  1123. switch (adapter->hw.mac.type) {
  1124. case e1000_i350:
  1125. case e1000_i354:
  1126. test = reg_test_i350;
  1127. toggle = 0x7FEFF3FF;
  1128. break;
  1129. case e1000_i210:
  1130. case e1000_i211:
  1131. test = reg_test_i210;
  1132. toggle = 0x7FEFF3FF;
  1133. break;
  1134. case e1000_82580:
  1135. test = reg_test_82580;
  1136. toggle = 0x7FEFF3FF;
  1137. break;
  1138. case e1000_82576:
  1139. test = reg_test_82576;
  1140. toggle = 0x7FFFF3FF;
  1141. break;
  1142. default:
  1143. test = reg_test_82575;
  1144. toggle = 0x7FFFF3FF;
  1145. break;
  1146. }
  1147. /* Because the status register is such a special case,
  1148. * we handle it separately from the rest of the register
  1149. * tests. Some bits are read-only, some toggle, and some
  1150. * are writable on newer MACs.
  1151. */
  1152. before = rd32(E1000_STATUS);
  1153. value = (rd32(E1000_STATUS) & toggle);
  1154. wr32(E1000_STATUS, toggle);
  1155. after = rd32(E1000_STATUS) & toggle;
  1156. if (value != after) {
  1157. dev_err(&adapter->pdev->dev,
  1158. "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
  1159. after, value);
  1160. *data = 1;
  1161. return 1;
  1162. }
  1163. /* restore previous status */
  1164. wr32(E1000_STATUS, before);
  1165. /* Perform the remainder of the register test, looping through
  1166. * the test table until we either fail or reach the null entry.
  1167. */
  1168. while (test->reg) {
  1169. for (i = 0; i < test->array_len; i++) {
  1170. switch (test->test_type) {
  1171. case PATTERN_TEST:
  1172. REG_PATTERN_TEST(test->reg +
  1173. (i * test->reg_offset),
  1174. test->mask,
  1175. test->write);
  1176. break;
  1177. case SET_READ_TEST:
  1178. REG_SET_AND_CHECK(test->reg +
  1179. (i * test->reg_offset),
  1180. test->mask,
  1181. test->write);
  1182. break;
  1183. case WRITE_NO_TEST:
  1184. writel(test->write,
  1185. (adapter->hw.hw_addr + test->reg)
  1186. + (i * test->reg_offset));
  1187. break;
  1188. case TABLE32_TEST:
  1189. REG_PATTERN_TEST(test->reg + (i * 4),
  1190. test->mask,
  1191. test->write);
  1192. break;
  1193. case TABLE64_TEST_LO:
  1194. REG_PATTERN_TEST(test->reg + (i * 8),
  1195. test->mask,
  1196. test->write);
  1197. break;
  1198. case TABLE64_TEST_HI:
  1199. REG_PATTERN_TEST((test->reg + 4) + (i * 8),
  1200. test->mask,
  1201. test->write);
  1202. break;
  1203. }
  1204. }
  1205. test++;
  1206. }
  1207. *data = 0;
  1208. return 0;
  1209. }
  1210. static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
  1211. {
  1212. struct e1000_hw *hw = &adapter->hw;
  1213. *data = 0;
  1214. /* Validate eeprom on all parts but flashless */
  1215. switch (hw->mac.type) {
  1216. case e1000_i210:
  1217. case e1000_i211:
  1218. if (igb_get_flash_presence_i210(hw)) {
  1219. if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
  1220. *data = 2;
  1221. }
  1222. break;
  1223. default:
  1224. if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
  1225. *data = 2;
  1226. break;
  1227. }
  1228. return *data;
  1229. }
  1230. static irqreturn_t igb_test_intr(int irq, void *data)
  1231. {
  1232. struct igb_adapter *adapter = (struct igb_adapter *) data;
  1233. struct e1000_hw *hw = &adapter->hw;
  1234. adapter->test_icr |= rd32(E1000_ICR);
  1235. return IRQ_HANDLED;
  1236. }
  1237. static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
  1238. {
  1239. struct e1000_hw *hw = &adapter->hw;
  1240. struct net_device *netdev = adapter->netdev;
  1241. u32 mask, ics_mask, i = 0, shared_int = true;
  1242. u32 irq = adapter->pdev->irq;
  1243. *data = 0;
  1244. /* Hook up test interrupt handler just for this test */
  1245. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1246. if (request_irq(adapter->msix_entries[0].vector,
  1247. igb_test_intr, 0, netdev->name, adapter)) {
  1248. *data = 1;
  1249. return -1;
  1250. }
  1251. } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
  1252. shared_int = false;
  1253. if (request_irq(irq,
  1254. igb_test_intr, 0, netdev->name, adapter)) {
  1255. *data = 1;
  1256. return -1;
  1257. }
  1258. } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
  1259. netdev->name, adapter)) {
  1260. shared_int = false;
  1261. } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
  1262. netdev->name, adapter)) {
  1263. *data = 1;
  1264. return -1;
  1265. }
  1266. dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
  1267. (shared_int ? "shared" : "unshared"));
  1268. /* Disable all the interrupts */
  1269. wr32(E1000_IMC, ~0);
  1270. wrfl();
  1271. usleep_range(10000, 11000);
  1272. /* Define all writable bits for ICS */
  1273. switch (hw->mac.type) {
  1274. case e1000_82575:
  1275. ics_mask = 0x37F47EDD;
  1276. break;
  1277. case e1000_82576:
  1278. ics_mask = 0x77D4FBFD;
  1279. break;
  1280. case e1000_82580:
  1281. ics_mask = 0x77DCFED5;
  1282. break;
  1283. case e1000_i350:
  1284. case e1000_i354:
  1285. case e1000_i210:
  1286. case e1000_i211:
  1287. ics_mask = 0x77DCFED5;
  1288. break;
  1289. default:
  1290. ics_mask = 0x7FFFFFFF;
  1291. break;
  1292. }
  1293. /* Test each interrupt */
  1294. for (; i < 31; i++) {
  1295. /* Interrupt to test */
  1296. mask = 1 << i;
  1297. if (!(mask & ics_mask))
  1298. continue;
  1299. if (!shared_int) {
  1300. /* Disable the interrupt to be reported in
  1301. * the cause register and then force the same
  1302. * interrupt and see if one gets posted. If
  1303. * an interrupt was posted to the bus, the
  1304. * test failed.
  1305. */
  1306. adapter->test_icr = 0;
  1307. /* Flush any pending interrupts */
  1308. wr32(E1000_ICR, ~0);
  1309. wr32(E1000_IMC, mask);
  1310. wr32(E1000_ICS, mask);
  1311. wrfl();
  1312. usleep_range(10000, 11000);
  1313. if (adapter->test_icr & mask) {
  1314. *data = 3;
  1315. break;
  1316. }
  1317. }
  1318. /* Enable the interrupt to be reported in
  1319. * the cause register and then force the same
  1320. * interrupt and see if one gets posted. If
  1321. * an interrupt was not posted to the bus, the
  1322. * test failed.
  1323. */
  1324. adapter->test_icr = 0;
  1325. /* Flush any pending interrupts */
  1326. wr32(E1000_ICR, ~0);
  1327. wr32(E1000_IMS, mask);
  1328. wr32(E1000_ICS, mask);
  1329. wrfl();
  1330. usleep_range(10000, 11000);
  1331. if (!(adapter->test_icr & mask)) {
  1332. *data = 4;
  1333. break;
  1334. }
  1335. if (!shared_int) {
  1336. /* Disable the other interrupts to be reported in
  1337. * the cause register and then force the other
  1338. * interrupts and see if any get posted. If
  1339. * an interrupt was posted to the bus, the
  1340. * test failed.
  1341. */
  1342. adapter->test_icr = 0;
  1343. /* Flush any pending interrupts */
  1344. wr32(E1000_ICR, ~0);
  1345. wr32(E1000_IMC, ~mask);
  1346. wr32(E1000_ICS, ~mask);
  1347. wrfl();
  1348. usleep_range(10000, 11000);
  1349. if (adapter->test_icr & mask) {
  1350. *data = 5;
  1351. break;
  1352. }
  1353. }
  1354. }
  1355. /* Disable all the interrupts */
  1356. wr32(E1000_IMC, ~0);
  1357. wrfl();
  1358. usleep_range(10000, 11000);
  1359. /* Unhook test interrupt handler */
  1360. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  1361. free_irq(adapter->msix_entries[0].vector, adapter);
  1362. else
  1363. free_irq(irq, adapter);
  1364. return *data;
  1365. }
  1366. static void igb_free_desc_rings(struct igb_adapter *adapter)
  1367. {
  1368. igb_free_tx_resources(&adapter->test_tx_ring);
  1369. igb_free_rx_resources(&adapter->test_rx_ring);
  1370. }
  1371. static int igb_setup_desc_rings(struct igb_adapter *adapter)
  1372. {
  1373. struct igb_ring *tx_ring = &adapter->test_tx_ring;
  1374. struct igb_ring *rx_ring = &adapter->test_rx_ring;
  1375. struct e1000_hw *hw = &adapter->hw;
  1376. int ret_val;
  1377. /* Setup Tx descriptor ring and Tx buffers */
  1378. tx_ring->count = IGB_DEFAULT_TXD;
  1379. tx_ring->dev = &adapter->pdev->dev;
  1380. tx_ring->netdev = adapter->netdev;
  1381. tx_ring->reg_idx = adapter->vfs_allocated_count;
  1382. if (igb_setup_tx_resources(tx_ring)) {
  1383. ret_val = 1;
  1384. goto err_nomem;
  1385. }
  1386. igb_setup_tctl(adapter);
  1387. igb_configure_tx_ring(adapter, tx_ring);
  1388. /* Setup Rx descriptor ring and Rx buffers */
  1389. rx_ring->count = IGB_DEFAULT_RXD;
  1390. rx_ring->dev = &adapter->pdev->dev;
  1391. rx_ring->netdev = adapter->netdev;
  1392. rx_ring->reg_idx = adapter->vfs_allocated_count;
  1393. if (igb_setup_rx_resources(rx_ring)) {
  1394. ret_val = 3;
  1395. goto err_nomem;
  1396. }
  1397. /* set the default queue to queue 0 of PF */
  1398. wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
  1399. /* enable receive ring */
  1400. igb_setup_rctl(adapter);
  1401. igb_configure_rx_ring(adapter, rx_ring);
  1402. igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
  1403. return 0;
  1404. err_nomem:
  1405. igb_free_desc_rings(adapter);
  1406. return ret_val;
  1407. }
  1408. static void igb_phy_disable_receiver(struct igb_adapter *adapter)
  1409. {
  1410. struct e1000_hw *hw = &adapter->hw;
  1411. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  1412. igb_write_phy_reg(hw, 29, 0x001F);
  1413. igb_write_phy_reg(hw, 30, 0x8FFC);
  1414. igb_write_phy_reg(hw, 29, 0x001A);
  1415. igb_write_phy_reg(hw, 30, 0x8FF0);
  1416. }
  1417. static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
  1418. {
  1419. struct e1000_hw *hw = &adapter->hw;
  1420. u32 ctrl_reg = 0;
  1421. hw->mac.autoneg = false;
  1422. if (hw->phy.type == e1000_phy_m88) {
  1423. if (hw->phy.id != I210_I_PHY_ID) {
  1424. /* Auto-MDI/MDIX Off */
  1425. igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
  1426. /* reset to update Auto-MDI/MDIX */
  1427. igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
  1428. /* autoneg off */
  1429. igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
  1430. } else {
  1431. /* force 1000, set loopback */
  1432. igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
  1433. igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
  1434. }
  1435. } else if (hw->phy.type == e1000_phy_82580) {
  1436. /* enable MII loopback */
  1437. igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
  1438. }
  1439. /* add small delay to avoid loopback test failure */
  1440. msleep(50);
  1441. /* force 1000, set loopback */
  1442. igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
  1443. /* Now set up the MAC to the same speed/duplex as the PHY. */
  1444. ctrl_reg = rd32(E1000_CTRL);
  1445. ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
  1446. ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1447. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1448. E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
  1449. E1000_CTRL_FD | /* Force Duplex to FULL */
  1450. E1000_CTRL_SLU); /* Set link up enable bit */
  1451. if (hw->phy.type == e1000_phy_m88)
  1452. ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
  1453. wr32(E1000_CTRL, ctrl_reg);
  1454. /* Disable the receiver on the PHY so when a cable is plugged in, the
  1455. * PHY does not begin to autoneg when a cable is reconnected to the NIC.
  1456. */
  1457. if (hw->phy.type == e1000_phy_m88)
  1458. igb_phy_disable_receiver(adapter);
  1459. mdelay(500);
  1460. return 0;
  1461. }
  1462. static int igb_set_phy_loopback(struct igb_adapter *adapter)
  1463. {
  1464. return igb_integrated_phy_loopback(adapter);
  1465. }
  1466. static int igb_setup_loopback_test(struct igb_adapter *adapter)
  1467. {
  1468. struct e1000_hw *hw = &adapter->hw;
  1469. u32 reg;
  1470. reg = rd32(E1000_CTRL_EXT);
  1471. /* use CTRL_EXT to identify link type as SGMII can appear as copper */
  1472. if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
  1473. if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
  1474. (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
  1475. (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
  1476. (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
  1477. (hw->device_id == E1000_DEV_ID_I354_SGMII) ||
  1478. (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
  1479. /* Enable DH89xxCC MPHY for near end loopback */
  1480. reg = rd32(E1000_MPHY_ADDR_CTL);
  1481. reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
  1482. E1000_MPHY_PCS_CLK_REG_OFFSET;
  1483. wr32(E1000_MPHY_ADDR_CTL, reg);
  1484. reg = rd32(E1000_MPHY_DATA);
  1485. reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
  1486. wr32(E1000_MPHY_DATA, reg);
  1487. }
  1488. reg = rd32(E1000_RCTL);
  1489. reg |= E1000_RCTL_LBM_TCVR;
  1490. wr32(E1000_RCTL, reg);
  1491. wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
  1492. reg = rd32(E1000_CTRL);
  1493. reg &= ~(E1000_CTRL_RFCE |
  1494. E1000_CTRL_TFCE |
  1495. E1000_CTRL_LRST);
  1496. reg |= E1000_CTRL_SLU |
  1497. E1000_CTRL_FD;
  1498. wr32(E1000_CTRL, reg);
  1499. /* Unset switch control to serdes energy detect */
  1500. reg = rd32(E1000_CONNSW);
  1501. reg &= ~E1000_CONNSW_ENRGSRC;
  1502. wr32(E1000_CONNSW, reg);
  1503. /* Unset sigdetect for SERDES loopback on
  1504. * 82580 and newer devices.
  1505. */
  1506. if (hw->mac.type >= e1000_82580) {
  1507. reg = rd32(E1000_PCS_CFG0);
  1508. reg |= E1000_PCS_CFG_IGN_SD;
  1509. wr32(E1000_PCS_CFG0, reg);
  1510. }
  1511. /* Set PCS register for forced speed */
  1512. reg = rd32(E1000_PCS_LCTL);
  1513. reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
  1514. reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
  1515. E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
  1516. E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
  1517. E1000_PCS_LCTL_FSD | /* Force Speed */
  1518. E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
  1519. wr32(E1000_PCS_LCTL, reg);
  1520. return 0;
  1521. }
  1522. return igb_set_phy_loopback(adapter);
  1523. }
  1524. static void igb_loopback_cleanup(struct igb_adapter *adapter)
  1525. {
  1526. struct e1000_hw *hw = &adapter->hw;
  1527. u32 rctl;
  1528. u16 phy_reg;
  1529. if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
  1530. (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
  1531. (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
  1532. (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
  1533. (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
  1534. u32 reg;
  1535. /* Disable near end loopback on DH89xxCC */
  1536. reg = rd32(E1000_MPHY_ADDR_CTL);
  1537. reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
  1538. E1000_MPHY_PCS_CLK_REG_OFFSET;
  1539. wr32(E1000_MPHY_ADDR_CTL, reg);
  1540. reg = rd32(E1000_MPHY_DATA);
  1541. reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
  1542. wr32(E1000_MPHY_DATA, reg);
  1543. }
  1544. rctl = rd32(E1000_RCTL);
  1545. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  1546. wr32(E1000_RCTL, rctl);
  1547. hw->mac.autoneg = true;
  1548. igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
  1549. if (phy_reg & MII_CR_LOOPBACK) {
  1550. phy_reg &= ~MII_CR_LOOPBACK;
  1551. igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
  1552. igb_phy_sw_reset(hw);
  1553. }
  1554. }
  1555. static void igb_create_lbtest_frame(struct sk_buff *skb,
  1556. unsigned int frame_size)
  1557. {
  1558. memset(skb->data, 0xFF, frame_size);
  1559. frame_size /= 2;
  1560. memset(&skb->data[frame_size], 0xAA, frame_size - 1);
  1561. memset(&skb->data[frame_size + 10], 0xBE, 1);
  1562. memset(&skb->data[frame_size + 12], 0xAF, 1);
  1563. }
  1564. static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
  1565. unsigned int frame_size)
  1566. {
  1567. unsigned char *data;
  1568. bool match = true;
  1569. frame_size >>= 1;
  1570. data = kmap(rx_buffer->page);
  1571. if (data[3] != 0xFF ||
  1572. data[frame_size + 10] != 0xBE ||
  1573. data[frame_size + 12] != 0xAF)
  1574. match = false;
  1575. kunmap(rx_buffer->page);
  1576. return match;
  1577. }
  1578. static int igb_clean_test_rings(struct igb_ring *rx_ring,
  1579. struct igb_ring *tx_ring,
  1580. unsigned int size)
  1581. {
  1582. union e1000_adv_rx_desc *rx_desc;
  1583. struct igb_rx_buffer *rx_buffer_info;
  1584. struct igb_tx_buffer *tx_buffer_info;
  1585. u16 rx_ntc, tx_ntc, count = 0;
  1586. /* initialize next to clean and descriptor values */
  1587. rx_ntc = rx_ring->next_to_clean;
  1588. tx_ntc = tx_ring->next_to_clean;
  1589. rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
  1590. while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
  1591. /* check Rx buffer */
  1592. rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
  1593. /* sync Rx buffer for CPU read */
  1594. dma_sync_single_for_cpu(rx_ring->dev,
  1595. rx_buffer_info->dma,
  1596. IGB_RX_BUFSZ,
  1597. DMA_FROM_DEVICE);
  1598. /* verify contents of skb */
  1599. if (igb_check_lbtest_frame(rx_buffer_info, size))
  1600. count++;
  1601. /* sync Rx buffer for device write */
  1602. dma_sync_single_for_device(rx_ring->dev,
  1603. rx_buffer_info->dma,
  1604. IGB_RX_BUFSZ,
  1605. DMA_FROM_DEVICE);
  1606. /* unmap buffer on Tx side */
  1607. tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
  1608. igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
  1609. /* increment Rx/Tx next to clean counters */
  1610. rx_ntc++;
  1611. if (rx_ntc == rx_ring->count)
  1612. rx_ntc = 0;
  1613. tx_ntc++;
  1614. if (tx_ntc == tx_ring->count)
  1615. tx_ntc = 0;
  1616. /* fetch next descriptor */
  1617. rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
  1618. }
  1619. netdev_tx_reset_queue(txring_txq(tx_ring));
  1620. /* re-map buffers to ring, store next to clean values */
  1621. igb_alloc_rx_buffers(rx_ring, count);
  1622. rx_ring->next_to_clean = rx_ntc;
  1623. tx_ring->next_to_clean = tx_ntc;
  1624. return count;
  1625. }
  1626. static int igb_run_loopback_test(struct igb_adapter *adapter)
  1627. {
  1628. struct igb_ring *tx_ring = &adapter->test_tx_ring;
  1629. struct igb_ring *rx_ring = &adapter->test_rx_ring;
  1630. u16 i, j, lc, good_cnt;
  1631. int ret_val = 0;
  1632. unsigned int size = IGB_RX_HDR_LEN;
  1633. netdev_tx_t tx_ret_val;
  1634. struct sk_buff *skb;
  1635. /* allocate test skb */
  1636. skb = alloc_skb(size, GFP_KERNEL);
  1637. if (!skb)
  1638. return 11;
  1639. /* place data into test skb */
  1640. igb_create_lbtest_frame(skb, size);
  1641. skb_put(skb, size);
  1642. /* Calculate the loop count based on the largest descriptor ring
  1643. * The idea is to wrap the largest ring a number of times using 64
  1644. * send/receive pairs during each loop
  1645. */
  1646. if (rx_ring->count <= tx_ring->count)
  1647. lc = ((tx_ring->count / 64) * 2) + 1;
  1648. else
  1649. lc = ((rx_ring->count / 64) * 2) + 1;
  1650. for (j = 0; j <= lc; j++) { /* loop count loop */
  1651. /* reset count of good packets */
  1652. good_cnt = 0;
  1653. /* place 64 packets on the transmit queue*/
  1654. for (i = 0; i < 64; i++) {
  1655. skb_get(skb);
  1656. tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
  1657. if (tx_ret_val == NETDEV_TX_OK)
  1658. good_cnt++;
  1659. }
  1660. if (good_cnt != 64) {
  1661. ret_val = 12;
  1662. break;
  1663. }
  1664. /* allow 200 milliseconds for packets to go from Tx to Rx */
  1665. msleep(200);
  1666. good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
  1667. if (good_cnt != 64) {
  1668. ret_val = 13;
  1669. break;
  1670. }
  1671. } /* end loop count loop */
  1672. /* free the original skb */
  1673. kfree_skb(skb);
  1674. return ret_val;
  1675. }
  1676. static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
  1677. {
  1678. /* PHY loopback cannot be performed if SoL/IDER
  1679. * sessions are active
  1680. */
  1681. if (igb_check_reset_block(&adapter->hw)) {
  1682. dev_err(&adapter->pdev->dev,
  1683. "Cannot do PHY loopback test when SoL/IDER is active.\n");
  1684. *data = 0;
  1685. goto out;
  1686. }
  1687. if (adapter->hw.mac.type == e1000_i354) {
  1688. dev_info(&adapter->pdev->dev,
  1689. "Loopback test not supported on i354.\n");
  1690. *data = 0;
  1691. goto out;
  1692. }
  1693. *data = igb_setup_desc_rings(adapter);
  1694. if (*data)
  1695. goto out;
  1696. *data = igb_setup_loopback_test(adapter);
  1697. if (*data)
  1698. goto err_loopback;
  1699. *data = igb_run_loopback_test(adapter);
  1700. igb_loopback_cleanup(adapter);
  1701. err_loopback:
  1702. igb_free_desc_rings(adapter);
  1703. out:
  1704. return *data;
  1705. }
  1706. static int igb_link_test(struct igb_adapter *adapter, u64 *data)
  1707. {
  1708. struct e1000_hw *hw = &adapter->hw;
  1709. *data = 0;
  1710. if (hw->phy.media_type == e1000_media_type_internal_serdes) {
  1711. int i = 0;
  1712. hw->mac.serdes_has_link = false;
  1713. /* On some blade server designs, link establishment
  1714. * could take as long as 2-3 minutes
  1715. */
  1716. do {
  1717. hw->mac.ops.check_for_link(&adapter->hw);
  1718. if (hw->mac.serdes_has_link)
  1719. return *data;
  1720. msleep(20);
  1721. } while (i++ < 3750);
  1722. *data = 1;
  1723. } else {
  1724. hw->mac.ops.check_for_link(&adapter->hw);
  1725. if (hw->mac.autoneg)
  1726. msleep(5000);
  1727. if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
  1728. *data = 1;
  1729. }
  1730. return *data;
  1731. }
  1732. static void igb_diag_test(struct net_device *netdev,
  1733. struct ethtool_test *eth_test, u64 *data)
  1734. {
  1735. struct igb_adapter *adapter = netdev_priv(netdev);
  1736. u16 autoneg_advertised;
  1737. u8 forced_speed_duplex, autoneg;
  1738. bool if_running = netif_running(netdev);
  1739. set_bit(__IGB_TESTING, &adapter->state);
  1740. /* can't do offline tests on media switching devices */
  1741. if (adapter->hw.dev_spec._82575.mas_capable)
  1742. eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
  1743. if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
  1744. /* Offline tests */
  1745. /* save speed, duplex, autoneg settings */
  1746. autoneg_advertised = adapter->hw.phy.autoneg_advertised;
  1747. forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
  1748. autoneg = adapter->hw.mac.autoneg;
  1749. dev_info(&adapter->pdev->dev, "offline testing starting\n");
  1750. /* power up link for link test */
  1751. igb_power_up_link(adapter);
  1752. /* Link test performed before hardware reset so autoneg doesn't
  1753. * interfere with test result
  1754. */
  1755. if (igb_link_test(adapter, &data[4]))
  1756. eth_test->flags |= ETH_TEST_FL_FAILED;
  1757. if (if_running)
  1758. /* indicate we're in test mode */
  1759. dev_close(netdev);
  1760. else
  1761. igb_reset(adapter);
  1762. if (igb_reg_test(adapter, &data[0]))
  1763. eth_test->flags |= ETH_TEST_FL_FAILED;
  1764. igb_reset(adapter);
  1765. if (igb_eeprom_test(adapter, &data[1]))
  1766. eth_test->flags |= ETH_TEST_FL_FAILED;
  1767. igb_reset(adapter);
  1768. if (igb_intr_test(adapter, &data[2]))
  1769. eth_test->flags |= ETH_TEST_FL_FAILED;
  1770. igb_reset(adapter);
  1771. /* power up link for loopback test */
  1772. igb_power_up_link(adapter);
  1773. if (igb_loopback_test(adapter, &data[3]))
  1774. eth_test->flags |= ETH_TEST_FL_FAILED;
  1775. /* restore speed, duplex, autoneg settings */
  1776. adapter->hw.phy.autoneg_advertised = autoneg_advertised;
  1777. adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
  1778. adapter->hw.mac.autoneg = autoneg;
  1779. /* force this routine to wait until autoneg complete/timeout */
  1780. adapter->hw.phy.autoneg_wait_to_complete = true;
  1781. igb_reset(adapter);
  1782. adapter->hw.phy.autoneg_wait_to_complete = false;
  1783. clear_bit(__IGB_TESTING, &adapter->state);
  1784. if (if_running)
  1785. dev_open(netdev);
  1786. } else {
  1787. dev_info(&adapter->pdev->dev, "online testing starting\n");
  1788. /* PHY is powered down when interface is down */
  1789. if (if_running && igb_link_test(adapter, &data[4]))
  1790. eth_test->flags |= ETH_TEST_FL_FAILED;
  1791. else
  1792. data[4] = 0;
  1793. /* Online tests aren't run; pass by default */
  1794. data[0] = 0;
  1795. data[1] = 0;
  1796. data[2] = 0;
  1797. data[3] = 0;
  1798. clear_bit(__IGB_TESTING, &adapter->state);
  1799. }
  1800. msleep_interruptible(4 * 1000);
  1801. }
  1802. static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1803. {
  1804. struct igb_adapter *adapter = netdev_priv(netdev);
  1805. wol->wolopts = 0;
  1806. if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
  1807. return;
  1808. wol->supported = WAKE_UCAST | WAKE_MCAST |
  1809. WAKE_BCAST | WAKE_MAGIC |
  1810. WAKE_PHY;
  1811. /* apply any specific unsupported masks here */
  1812. switch (adapter->hw.device_id) {
  1813. default:
  1814. break;
  1815. }
  1816. if (adapter->wol & E1000_WUFC_EX)
  1817. wol->wolopts |= WAKE_UCAST;
  1818. if (adapter->wol & E1000_WUFC_MC)
  1819. wol->wolopts |= WAKE_MCAST;
  1820. if (adapter->wol & E1000_WUFC_BC)
  1821. wol->wolopts |= WAKE_BCAST;
  1822. if (adapter->wol & E1000_WUFC_MAG)
  1823. wol->wolopts |= WAKE_MAGIC;
  1824. if (adapter->wol & E1000_WUFC_LNKC)
  1825. wol->wolopts |= WAKE_PHY;
  1826. }
  1827. static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1828. {
  1829. struct igb_adapter *adapter = netdev_priv(netdev);
  1830. if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
  1831. return -EOPNOTSUPP;
  1832. if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
  1833. return wol->wolopts ? -EOPNOTSUPP : 0;
  1834. /* these settings will always override what we currently have */
  1835. adapter->wol = 0;
  1836. if (wol->wolopts & WAKE_UCAST)
  1837. adapter->wol |= E1000_WUFC_EX;
  1838. if (wol->wolopts & WAKE_MCAST)
  1839. adapter->wol |= E1000_WUFC_MC;
  1840. if (wol->wolopts & WAKE_BCAST)
  1841. adapter->wol |= E1000_WUFC_BC;
  1842. if (wol->wolopts & WAKE_MAGIC)
  1843. adapter->wol |= E1000_WUFC_MAG;
  1844. if (wol->wolopts & WAKE_PHY)
  1845. adapter->wol |= E1000_WUFC_LNKC;
  1846. device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
  1847. return 0;
  1848. }
  1849. /* bit defines for adapter->led_status */
  1850. #define IGB_LED_ON 0
  1851. static int igb_set_phys_id(struct net_device *netdev,
  1852. enum ethtool_phys_id_state state)
  1853. {
  1854. struct igb_adapter *adapter = netdev_priv(netdev);
  1855. struct e1000_hw *hw = &adapter->hw;
  1856. switch (state) {
  1857. case ETHTOOL_ID_ACTIVE:
  1858. igb_blink_led(hw);
  1859. return 2;
  1860. case ETHTOOL_ID_ON:
  1861. igb_blink_led(hw);
  1862. break;
  1863. case ETHTOOL_ID_OFF:
  1864. igb_led_off(hw);
  1865. break;
  1866. case ETHTOOL_ID_INACTIVE:
  1867. igb_led_off(hw);
  1868. clear_bit(IGB_LED_ON, &adapter->led_status);
  1869. igb_cleanup_led(hw);
  1870. break;
  1871. }
  1872. return 0;
  1873. }
  1874. static int igb_set_coalesce(struct net_device *netdev,
  1875. struct ethtool_coalesce *ec)
  1876. {
  1877. struct igb_adapter *adapter = netdev_priv(netdev);
  1878. int i;
  1879. if (ec->rx_max_coalesced_frames ||
  1880. ec->rx_coalesce_usecs_irq ||
  1881. ec->rx_max_coalesced_frames_irq ||
  1882. ec->tx_max_coalesced_frames ||
  1883. ec->tx_coalesce_usecs_irq ||
  1884. ec->stats_block_coalesce_usecs ||
  1885. ec->use_adaptive_rx_coalesce ||
  1886. ec->use_adaptive_tx_coalesce ||
  1887. ec->pkt_rate_low ||
  1888. ec->rx_coalesce_usecs_low ||
  1889. ec->rx_max_coalesced_frames_low ||
  1890. ec->tx_coalesce_usecs_low ||
  1891. ec->tx_max_coalesced_frames_low ||
  1892. ec->pkt_rate_high ||
  1893. ec->rx_coalesce_usecs_high ||
  1894. ec->rx_max_coalesced_frames_high ||
  1895. ec->tx_coalesce_usecs_high ||
  1896. ec->tx_max_coalesced_frames_high ||
  1897. ec->rate_sample_interval)
  1898. return -ENOTSUPP;
  1899. if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
  1900. ((ec->rx_coalesce_usecs > 3) &&
  1901. (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
  1902. (ec->rx_coalesce_usecs == 2))
  1903. return -EINVAL;
  1904. if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
  1905. ((ec->tx_coalesce_usecs > 3) &&
  1906. (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
  1907. (ec->tx_coalesce_usecs == 2))
  1908. return -EINVAL;
  1909. if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
  1910. return -EINVAL;
  1911. /* If ITR is disabled, disable DMAC */
  1912. if (ec->rx_coalesce_usecs == 0) {
  1913. if (adapter->flags & IGB_FLAG_DMAC)
  1914. adapter->flags &= ~IGB_FLAG_DMAC;
  1915. }
  1916. /* convert to rate of irq's per second */
  1917. if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
  1918. adapter->rx_itr_setting = ec->rx_coalesce_usecs;
  1919. else
  1920. adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
  1921. /* convert to rate of irq's per second */
  1922. if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
  1923. adapter->tx_itr_setting = adapter->rx_itr_setting;
  1924. else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
  1925. adapter->tx_itr_setting = ec->tx_coalesce_usecs;
  1926. else
  1927. adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
  1928. for (i = 0; i < adapter->num_q_vectors; i++) {
  1929. struct igb_q_vector *q_vector = adapter->q_vector[i];
  1930. q_vector->tx.work_limit = adapter->tx_work_limit;
  1931. if (q_vector->rx.ring)
  1932. q_vector->itr_val = adapter->rx_itr_setting;
  1933. else
  1934. q_vector->itr_val = adapter->tx_itr_setting;
  1935. if (q_vector->itr_val && q_vector->itr_val <= 3)
  1936. q_vector->itr_val = IGB_START_ITR;
  1937. q_vector->set_itr = 1;
  1938. }
  1939. return 0;
  1940. }
  1941. static int igb_get_coalesce(struct net_device *netdev,
  1942. struct ethtool_coalesce *ec)
  1943. {
  1944. struct igb_adapter *adapter = netdev_priv(netdev);
  1945. if (adapter->rx_itr_setting <= 3)
  1946. ec->rx_coalesce_usecs = adapter->rx_itr_setting;
  1947. else
  1948. ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
  1949. if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
  1950. if (adapter->tx_itr_setting <= 3)
  1951. ec->tx_coalesce_usecs = adapter->tx_itr_setting;
  1952. else
  1953. ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
  1954. }
  1955. return 0;
  1956. }
  1957. static int igb_nway_reset(struct net_device *netdev)
  1958. {
  1959. struct igb_adapter *adapter = netdev_priv(netdev);
  1960. if (netif_running(netdev))
  1961. igb_reinit_locked(adapter);
  1962. return 0;
  1963. }
  1964. static int igb_get_sset_count(struct net_device *netdev, int sset)
  1965. {
  1966. switch (sset) {
  1967. case ETH_SS_STATS:
  1968. return IGB_STATS_LEN;
  1969. case ETH_SS_TEST:
  1970. return IGB_TEST_LEN;
  1971. default:
  1972. return -ENOTSUPP;
  1973. }
  1974. }
  1975. static void igb_get_ethtool_stats(struct net_device *netdev,
  1976. struct ethtool_stats *stats, u64 *data)
  1977. {
  1978. struct igb_adapter *adapter = netdev_priv(netdev);
  1979. struct rtnl_link_stats64 *net_stats = &adapter->stats64;
  1980. unsigned int start;
  1981. struct igb_ring *ring;
  1982. int i, j;
  1983. char *p;
  1984. spin_lock(&adapter->stats64_lock);
  1985. igb_update_stats(adapter, net_stats);
  1986. for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
  1987. p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
  1988. data[i] = (igb_gstrings_stats[i].sizeof_stat ==
  1989. sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
  1990. }
  1991. for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
  1992. p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
  1993. data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
  1994. sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
  1995. }
  1996. for (j = 0; j < adapter->num_tx_queues; j++) {
  1997. u64 restart2;
  1998. ring = adapter->tx_ring[j];
  1999. do {
  2000. start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
  2001. data[i] = ring->tx_stats.packets;
  2002. data[i+1] = ring->tx_stats.bytes;
  2003. data[i+2] = ring->tx_stats.restart_queue;
  2004. } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
  2005. do {
  2006. start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
  2007. restart2 = ring->tx_stats.restart_queue2;
  2008. } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
  2009. data[i+2] += restart2;
  2010. i += IGB_TX_QUEUE_STATS_LEN;
  2011. }
  2012. for (j = 0; j < adapter->num_rx_queues; j++) {
  2013. ring = adapter->rx_ring[j];
  2014. do {
  2015. start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
  2016. data[i] = ring->rx_stats.packets;
  2017. data[i+1] = ring->rx_stats.bytes;
  2018. data[i+2] = ring->rx_stats.drops;
  2019. data[i+3] = ring->rx_stats.csum_err;
  2020. data[i+4] = ring->rx_stats.alloc_failed;
  2021. } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
  2022. i += IGB_RX_QUEUE_STATS_LEN;
  2023. }
  2024. spin_unlock(&adapter->stats64_lock);
  2025. }
  2026. static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
  2027. {
  2028. struct igb_adapter *adapter = netdev_priv(netdev);
  2029. u8 *p = data;
  2030. int i;
  2031. switch (stringset) {
  2032. case ETH_SS_TEST:
  2033. memcpy(data, *igb_gstrings_test,
  2034. IGB_TEST_LEN*ETH_GSTRING_LEN);
  2035. break;
  2036. case ETH_SS_STATS:
  2037. for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
  2038. memcpy(p, igb_gstrings_stats[i].stat_string,
  2039. ETH_GSTRING_LEN);
  2040. p += ETH_GSTRING_LEN;
  2041. }
  2042. for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
  2043. memcpy(p, igb_gstrings_net_stats[i].stat_string,
  2044. ETH_GSTRING_LEN);
  2045. p += ETH_GSTRING_LEN;
  2046. }
  2047. for (i = 0; i < adapter->num_tx_queues; i++) {
  2048. sprintf(p, "tx_queue_%u_packets", i);
  2049. p += ETH_GSTRING_LEN;
  2050. sprintf(p, "tx_queue_%u_bytes", i);
  2051. p += ETH_GSTRING_LEN;
  2052. sprintf(p, "tx_queue_%u_restart", i);
  2053. p += ETH_GSTRING_LEN;
  2054. }
  2055. for (i = 0; i < adapter->num_rx_queues; i++) {
  2056. sprintf(p, "rx_queue_%u_packets", i);
  2057. p += ETH_GSTRING_LEN;
  2058. sprintf(p, "rx_queue_%u_bytes", i);
  2059. p += ETH_GSTRING_LEN;
  2060. sprintf(p, "rx_queue_%u_drops", i);
  2061. p += ETH_GSTRING_LEN;
  2062. sprintf(p, "rx_queue_%u_csum_err", i);
  2063. p += ETH_GSTRING_LEN;
  2064. sprintf(p, "rx_queue_%u_alloc_failed", i);
  2065. p += ETH_GSTRING_LEN;
  2066. }
  2067. /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
  2068. break;
  2069. }
  2070. }
  2071. static int igb_get_ts_info(struct net_device *dev,
  2072. struct ethtool_ts_info *info)
  2073. {
  2074. struct igb_adapter *adapter = netdev_priv(dev);
  2075. if (adapter->ptp_clock)
  2076. info->phc_index = ptp_clock_index(adapter->ptp_clock);
  2077. else
  2078. info->phc_index = -1;
  2079. switch (adapter->hw.mac.type) {
  2080. case e1000_82575:
  2081. info->so_timestamping =
  2082. SOF_TIMESTAMPING_TX_SOFTWARE |
  2083. SOF_TIMESTAMPING_RX_SOFTWARE |
  2084. SOF_TIMESTAMPING_SOFTWARE;
  2085. return 0;
  2086. case e1000_82576:
  2087. case e1000_82580:
  2088. case e1000_i350:
  2089. case e1000_i354:
  2090. case e1000_i210:
  2091. case e1000_i211:
  2092. info->so_timestamping =
  2093. SOF_TIMESTAMPING_TX_SOFTWARE |
  2094. SOF_TIMESTAMPING_RX_SOFTWARE |
  2095. SOF_TIMESTAMPING_SOFTWARE |
  2096. SOF_TIMESTAMPING_TX_HARDWARE |
  2097. SOF_TIMESTAMPING_RX_HARDWARE |
  2098. SOF_TIMESTAMPING_RAW_HARDWARE;
  2099. info->tx_types =
  2100. (1 << HWTSTAMP_TX_OFF) |
  2101. (1 << HWTSTAMP_TX_ON);
  2102. info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
  2103. /* 82576 does not support timestamping all packets. */
  2104. if (adapter->hw.mac.type >= e1000_82580)
  2105. info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
  2106. else
  2107. info->rx_filters |=
  2108. (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
  2109. (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
  2110. (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
  2111. return 0;
  2112. default:
  2113. return -EOPNOTSUPP;
  2114. }
  2115. }
  2116. static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
  2117. struct ethtool_rxnfc *cmd)
  2118. {
  2119. cmd->data = 0;
  2120. /* Report default options for RSS on igb */
  2121. switch (cmd->flow_type) {
  2122. case TCP_V4_FLOW:
  2123. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2124. /* Fall through */
  2125. case UDP_V4_FLOW:
  2126. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
  2127. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2128. /* Fall through */
  2129. case SCTP_V4_FLOW:
  2130. case AH_ESP_V4_FLOW:
  2131. case AH_V4_FLOW:
  2132. case ESP_V4_FLOW:
  2133. case IPV4_FLOW:
  2134. cmd->data |= RXH_IP_SRC | RXH_IP_DST;
  2135. break;
  2136. case TCP_V6_FLOW:
  2137. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2138. /* Fall through */
  2139. case UDP_V6_FLOW:
  2140. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2141. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2142. /* Fall through */
  2143. case SCTP_V6_FLOW:
  2144. case AH_ESP_V6_FLOW:
  2145. case AH_V6_FLOW:
  2146. case ESP_V6_FLOW:
  2147. case IPV6_FLOW:
  2148. cmd->data |= RXH_IP_SRC | RXH_IP_DST;
  2149. break;
  2150. default:
  2151. return -EINVAL;
  2152. }
  2153. return 0;
  2154. }
  2155. static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  2156. u32 *rule_locs)
  2157. {
  2158. struct igb_adapter *adapter = netdev_priv(dev);
  2159. int ret = -EOPNOTSUPP;
  2160. switch (cmd->cmd) {
  2161. case ETHTOOL_GRXRINGS:
  2162. cmd->data = adapter->num_rx_queues;
  2163. ret = 0;
  2164. break;
  2165. case ETHTOOL_GRXFH:
  2166. ret = igb_get_rss_hash_opts(adapter, cmd);
  2167. break;
  2168. default:
  2169. break;
  2170. }
  2171. return ret;
  2172. }
  2173. #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
  2174. IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2175. static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
  2176. struct ethtool_rxnfc *nfc)
  2177. {
  2178. u32 flags = adapter->flags;
  2179. /* RSS does not support anything other than hashing
  2180. * to queues on src and dst IPs and ports
  2181. */
  2182. if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
  2183. RXH_L4_B_0_1 | RXH_L4_B_2_3))
  2184. return -EINVAL;
  2185. switch (nfc->flow_type) {
  2186. case TCP_V4_FLOW:
  2187. case TCP_V6_FLOW:
  2188. if (!(nfc->data & RXH_IP_SRC) ||
  2189. !(nfc->data & RXH_IP_DST) ||
  2190. !(nfc->data & RXH_L4_B_0_1) ||
  2191. !(nfc->data & RXH_L4_B_2_3))
  2192. return -EINVAL;
  2193. break;
  2194. case UDP_V4_FLOW:
  2195. if (!(nfc->data & RXH_IP_SRC) ||
  2196. !(nfc->data & RXH_IP_DST))
  2197. return -EINVAL;
  2198. switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
  2199. case 0:
  2200. flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
  2201. break;
  2202. case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
  2203. flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
  2204. break;
  2205. default:
  2206. return -EINVAL;
  2207. }
  2208. break;
  2209. case UDP_V6_FLOW:
  2210. if (!(nfc->data & RXH_IP_SRC) ||
  2211. !(nfc->data & RXH_IP_DST))
  2212. return -EINVAL;
  2213. switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
  2214. case 0:
  2215. flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
  2216. break;
  2217. case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
  2218. flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
  2219. break;
  2220. default:
  2221. return -EINVAL;
  2222. }
  2223. break;
  2224. case AH_ESP_V4_FLOW:
  2225. case AH_V4_FLOW:
  2226. case ESP_V4_FLOW:
  2227. case SCTP_V4_FLOW:
  2228. case AH_ESP_V6_FLOW:
  2229. case AH_V6_FLOW:
  2230. case ESP_V6_FLOW:
  2231. case SCTP_V6_FLOW:
  2232. if (!(nfc->data & RXH_IP_SRC) ||
  2233. !(nfc->data & RXH_IP_DST) ||
  2234. (nfc->data & RXH_L4_B_0_1) ||
  2235. (nfc->data & RXH_L4_B_2_3))
  2236. return -EINVAL;
  2237. break;
  2238. default:
  2239. return -EINVAL;
  2240. }
  2241. /* if we changed something we need to update flags */
  2242. if (flags != adapter->flags) {
  2243. struct e1000_hw *hw = &adapter->hw;
  2244. u32 mrqc = rd32(E1000_MRQC);
  2245. if ((flags & UDP_RSS_FLAGS) &&
  2246. !(adapter->flags & UDP_RSS_FLAGS))
  2247. dev_err(&adapter->pdev->dev,
  2248. "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
  2249. adapter->flags = flags;
  2250. /* Perform hash on these packet types */
  2251. mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
  2252. E1000_MRQC_RSS_FIELD_IPV4_TCP |
  2253. E1000_MRQC_RSS_FIELD_IPV6 |
  2254. E1000_MRQC_RSS_FIELD_IPV6_TCP;
  2255. mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
  2256. E1000_MRQC_RSS_FIELD_IPV6_UDP);
  2257. if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
  2258. mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
  2259. if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2260. mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
  2261. wr32(E1000_MRQC, mrqc);
  2262. }
  2263. return 0;
  2264. }
  2265. static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  2266. {
  2267. struct igb_adapter *adapter = netdev_priv(dev);
  2268. int ret = -EOPNOTSUPP;
  2269. switch (cmd->cmd) {
  2270. case ETHTOOL_SRXFH:
  2271. ret = igb_set_rss_hash_opt(adapter, cmd);
  2272. break;
  2273. default:
  2274. break;
  2275. }
  2276. return ret;
  2277. }
  2278. static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
  2279. {
  2280. struct igb_adapter *adapter = netdev_priv(netdev);
  2281. struct e1000_hw *hw = &adapter->hw;
  2282. u32 ret_val;
  2283. u16 phy_data;
  2284. if ((hw->mac.type < e1000_i350) ||
  2285. (hw->phy.media_type != e1000_media_type_copper))
  2286. return -EOPNOTSUPP;
  2287. edata->supported = (SUPPORTED_1000baseT_Full |
  2288. SUPPORTED_100baseT_Full);
  2289. if (!hw->dev_spec._82575.eee_disable)
  2290. edata->advertised =
  2291. mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
  2292. /* The IPCNFG and EEER registers are not supported on I354. */
  2293. if (hw->mac.type == e1000_i354) {
  2294. igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
  2295. } else {
  2296. u32 eeer;
  2297. eeer = rd32(E1000_EEER);
  2298. /* EEE status on negotiated link */
  2299. if (eeer & E1000_EEER_EEE_NEG)
  2300. edata->eee_active = true;
  2301. if (eeer & E1000_EEER_TX_LPI_EN)
  2302. edata->tx_lpi_enabled = true;
  2303. }
  2304. /* EEE Link Partner Advertised */
  2305. switch (hw->mac.type) {
  2306. case e1000_i350:
  2307. ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
  2308. &phy_data);
  2309. if (ret_val)
  2310. return -ENODATA;
  2311. edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
  2312. break;
  2313. case e1000_i354:
  2314. case e1000_i210:
  2315. case e1000_i211:
  2316. ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
  2317. E1000_EEE_LP_ADV_DEV_I210,
  2318. &phy_data);
  2319. if (ret_val)
  2320. return -ENODATA;
  2321. edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
  2322. break;
  2323. default:
  2324. break;
  2325. }
  2326. edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
  2327. if ((hw->mac.type == e1000_i354) &&
  2328. (edata->eee_enabled))
  2329. edata->tx_lpi_enabled = true;
  2330. /* Report correct negotiated EEE status for devices that
  2331. * wrongly report EEE at half-duplex
  2332. */
  2333. if (adapter->link_duplex == HALF_DUPLEX) {
  2334. edata->eee_enabled = false;
  2335. edata->eee_active = false;
  2336. edata->tx_lpi_enabled = false;
  2337. edata->advertised &= ~edata->advertised;
  2338. }
  2339. return 0;
  2340. }
  2341. static int igb_set_eee(struct net_device *netdev,
  2342. struct ethtool_eee *edata)
  2343. {
  2344. struct igb_adapter *adapter = netdev_priv(netdev);
  2345. struct e1000_hw *hw = &adapter->hw;
  2346. struct ethtool_eee eee_curr;
  2347. bool adv1g_eee = true, adv100m_eee = true;
  2348. s32 ret_val;
  2349. if ((hw->mac.type < e1000_i350) ||
  2350. (hw->phy.media_type != e1000_media_type_copper))
  2351. return -EOPNOTSUPP;
  2352. memset(&eee_curr, 0, sizeof(struct ethtool_eee));
  2353. ret_val = igb_get_eee(netdev, &eee_curr);
  2354. if (ret_val)
  2355. return ret_val;
  2356. if (eee_curr.eee_enabled) {
  2357. if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
  2358. dev_err(&adapter->pdev->dev,
  2359. "Setting EEE tx-lpi is not supported\n");
  2360. return -EINVAL;
  2361. }
  2362. /* Tx LPI timer is not implemented currently */
  2363. if (edata->tx_lpi_timer) {
  2364. dev_err(&adapter->pdev->dev,
  2365. "Setting EEE Tx LPI timer is not supported\n");
  2366. return -EINVAL;
  2367. }
  2368. if (!edata->advertised || (edata->advertised &
  2369. ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
  2370. dev_err(&adapter->pdev->dev,
  2371. "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
  2372. return -EINVAL;
  2373. }
  2374. adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
  2375. adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
  2376. } else if (!edata->eee_enabled) {
  2377. dev_err(&adapter->pdev->dev,
  2378. "Setting EEE options are not supported with EEE disabled\n");
  2379. return -EINVAL;
  2380. }
  2381. adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
  2382. if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
  2383. hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
  2384. adapter->flags |= IGB_FLAG_EEE;
  2385. /* reset link */
  2386. if (netif_running(netdev))
  2387. igb_reinit_locked(adapter);
  2388. else
  2389. igb_reset(adapter);
  2390. }
  2391. if (hw->mac.type == e1000_i354)
  2392. ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
  2393. else
  2394. ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
  2395. if (ret_val) {
  2396. dev_err(&adapter->pdev->dev,
  2397. "Problem setting EEE advertisement options\n");
  2398. return -EINVAL;
  2399. }
  2400. return 0;
  2401. }
  2402. static int igb_get_module_info(struct net_device *netdev,
  2403. struct ethtool_modinfo *modinfo)
  2404. {
  2405. struct igb_adapter *adapter = netdev_priv(netdev);
  2406. struct e1000_hw *hw = &adapter->hw;
  2407. u32 status = 0;
  2408. u16 sff8472_rev, addr_mode;
  2409. bool page_swap = false;
  2410. if ((hw->phy.media_type == e1000_media_type_copper) ||
  2411. (hw->phy.media_type == e1000_media_type_unknown))
  2412. return -EOPNOTSUPP;
  2413. /* Check whether we support SFF-8472 or not */
  2414. status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
  2415. if (status)
  2416. return -EIO;
  2417. /* addressing mode is not supported */
  2418. status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
  2419. if (status)
  2420. return -EIO;
  2421. /* addressing mode is not supported */
  2422. if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
  2423. hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
  2424. page_swap = true;
  2425. }
  2426. if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
  2427. /* We have an SFP, but it does not support SFF-8472 */
  2428. modinfo->type = ETH_MODULE_SFF_8079;
  2429. modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
  2430. } else {
  2431. /* We have an SFP which supports a revision of SFF-8472 */
  2432. modinfo->type = ETH_MODULE_SFF_8472;
  2433. modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
  2434. }
  2435. return 0;
  2436. }
  2437. static int igb_get_module_eeprom(struct net_device *netdev,
  2438. struct ethtool_eeprom *ee, u8 *data)
  2439. {
  2440. struct igb_adapter *adapter = netdev_priv(netdev);
  2441. struct e1000_hw *hw = &adapter->hw;
  2442. u32 status = 0;
  2443. u16 *dataword;
  2444. u16 first_word, last_word;
  2445. int i = 0;
  2446. if (ee->len == 0)
  2447. return -EINVAL;
  2448. first_word = ee->offset >> 1;
  2449. last_word = (ee->offset + ee->len - 1) >> 1;
  2450. dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
  2451. GFP_KERNEL);
  2452. if (!dataword)
  2453. return -ENOMEM;
  2454. /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
  2455. for (i = 0; i < last_word - first_word + 1; i++) {
  2456. status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
  2457. if (status) {
  2458. /* Error occurred while reading module */
  2459. kfree(dataword);
  2460. return -EIO;
  2461. }
  2462. be16_to_cpus(&dataword[i]);
  2463. }
  2464. memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
  2465. kfree(dataword);
  2466. return 0;
  2467. }
  2468. static int igb_ethtool_begin(struct net_device *netdev)
  2469. {
  2470. struct igb_adapter *adapter = netdev_priv(netdev);
  2471. pm_runtime_get_sync(&adapter->pdev->dev);
  2472. return 0;
  2473. }
  2474. static void igb_ethtool_complete(struct net_device *netdev)
  2475. {
  2476. struct igb_adapter *adapter = netdev_priv(netdev);
  2477. pm_runtime_put(&adapter->pdev->dev);
  2478. }
  2479. static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
  2480. {
  2481. return IGB_RETA_SIZE;
  2482. }
  2483. static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
  2484. u8 *hfunc)
  2485. {
  2486. struct igb_adapter *adapter = netdev_priv(netdev);
  2487. int i;
  2488. if (hfunc)
  2489. *hfunc = ETH_RSS_HASH_TOP;
  2490. if (!indir)
  2491. return 0;
  2492. for (i = 0; i < IGB_RETA_SIZE; i++)
  2493. indir[i] = adapter->rss_indir_tbl[i];
  2494. return 0;
  2495. }
  2496. void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
  2497. {
  2498. struct e1000_hw *hw = &adapter->hw;
  2499. u32 reg = E1000_RETA(0);
  2500. u32 shift = 0;
  2501. int i = 0;
  2502. switch (hw->mac.type) {
  2503. case e1000_82575:
  2504. shift = 6;
  2505. break;
  2506. case e1000_82576:
  2507. /* 82576 supports 2 RSS queues for SR-IOV */
  2508. if (adapter->vfs_allocated_count)
  2509. shift = 3;
  2510. break;
  2511. default:
  2512. break;
  2513. }
  2514. while (i < IGB_RETA_SIZE) {
  2515. u32 val = 0;
  2516. int j;
  2517. for (j = 3; j >= 0; j--) {
  2518. val <<= 8;
  2519. val |= adapter->rss_indir_tbl[i + j];
  2520. }
  2521. wr32(reg, val << shift);
  2522. reg += 4;
  2523. i += 4;
  2524. }
  2525. }
  2526. static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
  2527. const u8 *key, const u8 hfunc)
  2528. {
  2529. struct igb_adapter *adapter = netdev_priv(netdev);
  2530. struct e1000_hw *hw = &adapter->hw;
  2531. int i;
  2532. u32 num_queues;
  2533. /* We do not allow change in unsupported parameters */
  2534. if (key ||
  2535. (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
  2536. return -EOPNOTSUPP;
  2537. if (!indir)
  2538. return 0;
  2539. num_queues = adapter->rss_queues;
  2540. switch (hw->mac.type) {
  2541. case e1000_82576:
  2542. /* 82576 supports 2 RSS queues for SR-IOV */
  2543. if (adapter->vfs_allocated_count)
  2544. num_queues = 2;
  2545. break;
  2546. default:
  2547. break;
  2548. }
  2549. /* Verify user input. */
  2550. for (i = 0; i < IGB_RETA_SIZE; i++)
  2551. if (indir[i] >= num_queues)
  2552. return -EINVAL;
  2553. for (i = 0; i < IGB_RETA_SIZE; i++)
  2554. adapter->rss_indir_tbl[i] = indir[i];
  2555. igb_write_rss_indir_tbl(adapter);
  2556. return 0;
  2557. }
  2558. static unsigned int igb_max_channels(struct igb_adapter *adapter)
  2559. {
  2560. struct e1000_hw *hw = &adapter->hw;
  2561. unsigned int max_combined = 0;
  2562. switch (hw->mac.type) {
  2563. case e1000_i211:
  2564. max_combined = IGB_MAX_RX_QUEUES_I211;
  2565. break;
  2566. case e1000_82575:
  2567. case e1000_i210:
  2568. max_combined = IGB_MAX_RX_QUEUES_82575;
  2569. break;
  2570. case e1000_i350:
  2571. if (!!adapter->vfs_allocated_count) {
  2572. max_combined = 1;
  2573. break;
  2574. }
  2575. /* fall through */
  2576. case e1000_82576:
  2577. if (!!adapter->vfs_allocated_count) {
  2578. max_combined = 2;
  2579. break;
  2580. }
  2581. /* fall through */
  2582. case e1000_82580:
  2583. case e1000_i354:
  2584. default:
  2585. max_combined = IGB_MAX_RX_QUEUES;
  2586. break;
  2587. }
  2588. return max_combined;
  2589. }
  2590. static void igb_get_channels(struct net_device *netdev,
  2591. struct ethtool_channels *ch)
  2592. {
  2593. struct igb_adapter *adapter = netdev_priv(netdev);
  2594. /* Report maximum channels */
  2595. ch->max_combined = igb_max_channels(adapter);
  2596. /* Report info for other vector */
  2597. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  2598. ch->max_other = NON_Q_VECTORS;
  2599. ch->other_count = NON_Q_VECTORS;
  2600. }
  2601. ch->combined_count = adapter->rss_queues;
  2602. }
  2603. static int igb_set_channels(struct net_device *netdev,
  2604. struct ethtool_channels *ch)
  2605. {
  2606. struct igb_adapter *adapter = netdev_priv(netdev);
  2607. unsigned int count = ch->combined_count;
  2608. unsigned int max_combined = 0;
  2609. /* Verify they are not requesting separate vectors */
  2610. if (!count || ch->rx_count || ch->tx_count)
  2611. return -EINVAL;
  2612. /* Verify other_count is valid and has not been changed */
  2613. if (ch->other_count != NON_Q_VECTORS)
  2614. return -EINVAL;
  2615. /* Verify the number of channels doesn't exceed hw limits */
  2616. max_combined = igb_max_channels(adapter);
  2617. if (count > max_combined)
  2618. return -EINVAL;
  2619. if (count != adapter->rss_queues) {
  2620. adapter->rss_queues = count;
  2621. igb_set_flag_queue_pairs(adapter, max_combined);
  2622. /* Hardware has to reinitialize queues and interrupts to
  2623. * match the new configuration.
  2624. */
  2625. return igb_reinit_queues(adapter);
  2626. }
  2627. return 0;
  2628. }
  2629. static const struct ethtool_ops igb_ethtool_ops = {
  2630. .get_settings = igb_get_settings,
  2631. .set_settings = igb_set_settings,
  2632. .get_drvinfo = igb_get_drvinfo,
  2633. .get_regs_len = igb_get_regs_len,
  2634. .get_regs = igb_get_regs,
  2635. .get_wol = igb_get_wol,
  2636. .set_wol = igb_set_wol,
  2637. .get_msglevel = igb_get_msglevel,
  2638. .set_msglevel = igb_set_msglevel,
  2639. .nway_reset = igb_nway_reset,
  2640. .get_link = igb_get_link,
  2641. .get_eeprom_len = igb_get_eeprom_len,
  2642. .get_eeprom = igb_get_eeprom,
  2643. .set_eeprom = igb_set_eeprom,
  2644. .get_ringparam = igb_get_ringparam,
  2645. .set_ringparam = igb_set_ringparam,
  2646. .get_pauseparam = igb_get_pauseparam,
  2647. .set_pauseparam = igb_set_pauseparam,
  2648. .self_test = igb_diag_test,
  2649. .get_strings = igb_get_strings,
  2650. .set_phys_id = igb_set_phys_id,
  2651. .get_sset_count = igb_get_sset_count,
  2652. .get_ethtool_stats = igb_get_ethtool_stats,
  2653. .get_coalesce = igb_get_coalesce,
  2654. .set_coalesce = igb_set_coalesce,
  2655. .get_ts_info = igb_get_ts_info,
  2656. .get_rxnfc = igb_get_rxnfc,
  2657. .set_rxnfc = igb_set_rxnfc,
  2658. .get_eee = igb_get_eee,
  2659. .set_eee = igb_set_eee,
  2660. .get_module_info = igb_get_module_info,
  2661. .get_module_eeprom = igb_get_module_eeprom,
  2662. .get_rxfh_indir_size = igb_get_rxfh_indir_size,
  2663. .get_rxfh = igb_get_rxfh,
  2664. .set_rxfh = igb_set_rxfh,
  2665. .get_channels = igb_get_channels,
  2666. .set_channels = igb_set_channels,
  2667. .begin = igb_ethtool_begin,
  2668. .complete = igb_ethtool_complete,
  2669. };
  2670. void igb_set_ethtool_ops(struct net_device *netdev)
  2671. {
  2672. netdev->ethtool_ops = &igb_ethtool_ops;
  2673. }