bcm63xx_enet.c 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924
  1. /*
  2. * Driver for BCM963xx builtin Ethernet mac
  3. *
  4. * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/init.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/module.h>
  23. #include <linux/clk.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/slab.h>
  26. #include <linux/delay.h>
  27. #include <linux/ethtool.h>
  28. #include <linux/crc32.h>
  29. #include <linux/err.h>
  30. #include <linux/dma-mapping.h>
  31. #include <linux/platform_device.h>
  32. #include <linux/if_vlan.h>
  33. #include <bcm63xx_dev_enet.h>
  34. #include "bcm63xx_enet.h"
  35. static char bcm_enet_driver_name[] = "bcm63xx_enet";
  36. static char bcm_enet_driver_version[] = "1.0";
  37. static int copybreak __read_mostly = 128;
  38. module_param(copybreak, int, 0);
  39. MODULE_PARM_DESC(copybreak, "Receive copy threshold");
  40. /* io registers memory shared between all devices */
  41. static void __iomem *bcm_enet_shared_base[3];
  42. /*
  43. * io helpers to access mac registers
  44. */
  45. static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
  46. {
  47. return bcm_readl(priv->base + off);
  48. }
  49. static inline void enet_writel(struct bcm_enet_priv *priv,
  50. u32 val, u32 off)
  51. {
  52. bcm_writel(val, priv->base + off);
  53. }
  54. /*
  55. * io helpers to access switch registers
  56. */
  57. static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
  58. {
  59. return bcm_readl(priv->base + off);
  60. }
  61. static inline void enetsw_writel(struct bcm_enet_priv *priv,
  62. u32 val, u32 off)
  63. {
  64. bcm_writel(val, priv->base + off);
  65. }
  66. static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
  67. {
  68. return bcm_readw(priv->base + off);
  69. }
  70. static inline void enetsw_writew(struct bcm_enet_priv *priv,
  71. u16 val, u32 off)
  72. {
  73. bcm_writew(val, priv->base + off);
  74. }
  75. static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
  76. {
  77. return bcm_readb(priv->base + off);
  78. }
  79. static inline void enetsw_writeb(struct bcm_enet_priv *priv,
  80. u8 val, u32 off)
  81. {
  82. bcm_writeb(val, priv->base + off);
  83. }
  84. /* io helpers to access shared registers */
  85. static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
  86. {
  87. return bcm_readl(bcm_enet_shared_base[0] + off);
  88. }
  89. static inline void enet_dma_writel(struct bcm_enet_priv *priv,
  90. u32 val, u32 off)
  91. {
  92. bcm_writel(val, bcm_enet_shared_base[0] + off);
  93. }
  94. static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
  95. {
  96. return bcm_readl(bcm_enet_shared_base[1] +
  97. bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
  98. }
  99. static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
  100. u32 val, u32 off, int chan)
  101. {
  102. bcm_writel(val, bcm_enet_shared_base[1] +
  103. bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
  104. }
  105. static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
  106. {
  107. return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
  108. }
  109. static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
  110. u32 val, u32 off, int chan)
  111. {
  112. bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
  113. }
  114. /*
  115. * write given data into mii register and wait for transfer to end
  116. * with timeout (average measured transfer time is 25us)
  117. */
  118. static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
  119. {
  120. int limit;
  121. /* make sure mii interrupt status is cleared */
  122. enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
  123. enet_writel(priv, data, ENET_MIIDATA_REG);
  124. wmb();
  125. /* busy wait on mii interrupt bit, with timeout */
  126. limit = 1000;
  127. do {
  128. if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
  129. break;
  130. udelay(1);
  131. } while (limit-- > 0);
  132. return (limit < 0) ? 1 : 0;
  133. }
  134. /*
  135. * MII internal read callback
  136. */
  137. static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
  138. int regnum)
  139. {
  140. u32 tmp, val;
  141. tmp = regnum << ENET_MIIDATA_REG_SHIFT;
  142. tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
  143. tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
  144. tmp |= ENET_MIIDATA_OP_READ_MASK;
  145. if (do_mdio_op(priv, tmp))
  146. return -1;
  147. val = enet_readl(priv, ENET_MIIDATA_REG);
  148. val &= 0xffff;
  149. return val;
  150. }
  151. /*
  152. * MII internal write callback
  153. */
  154. static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
  155. int regnum, u16 value)
  156. {
  157. u32 tmp;
  158. tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
  159. tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
  160. tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
  161. tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
  162. tmp |= ENET_MIIDATA_OP_WRITE_MASK;
  163. (void)do_mdio_op(priv, tmp);
  164. return 0;
  165. }
  166. /*
  167. * MII read callback from phylib
  168. */
  169. static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
  170. int regnum)
  171. {
  172. return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
  173. }
  174. /*
  175. * MII write callback from phylib
  176. */
  177. static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
  178. int regnum, u16 value)
  179. {
  180. return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
  181. }
  182. /*
  183. * MII read callback from mii core
  184. */
  185. static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
  186. int regnum)
  187. {
  188. return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
  189. }
  190. /*
  191. * MII write callback from mii core
  192. */
  193. static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
  194. int regnum, int value)
  195. {
  196. bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
  197. }
  198. /*
  199. * refill rx queue
  200. */
  201. static int bcm_enet_refill_rx(struct net_device *dev)
  202. {
  203. struct bcm_enet_priv *priv;
  204. priv = netdev_priv(dev);
  205. while (priv->rx_desc_count < priv->rx_ring_size) {
  206. struct bcm_enet_desc *desc;
  207. struct sk_buff *skb;
  208. dma_addr_t p;
  209. int desc_idx;
  210. u32 len_stat;
  211. desc_idx = priv->rx_dirty_desc;
  212. desc = &priv->rx_desc_cpu[desc_idx];
  213. if (!priv->rx_skb[desc_idx]) {
  214. skb = netdev_alloc_skb(dev, priv->rx_skb_size);
  215. if (!skb)
  216. break;
  217. priv->rx_skb[desc_idx] = skb;
  218. p = dma_map_single(&priv->pdev->dev, skb->data,
  219. priv->rx_skb_size,
  220. DMA_FROM_DEVICE);
  221. desc->address = p;
  222. }
  223. len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
  224. len_stat |= DMADESC_OWNER_MASK;
  225. if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
  226. len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
  227. priv->rx_dirty_desc = 0;
  228. } else {
  229. priv->rx_dirty_desc++;
  230. }
  231. wmb();
  232. desc->len_stat = len_stat;
  233. priv->rx_desc_count++;
  234. /* tell dma engine we allocated one buffer */
  235. if (priv->dma_has_sram)
  236. enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
  237. else
  238. enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
  239. }
  240. /* If rx ring is still empty, set a timer to try allocating
  241. * again at a later time. */
  242. if (priv->rx_desc_count == 0 && netif_running(dev)) {
  243. dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
  244. priv->rx_timeout.expires = jiffies + HZ;
  245. add_timer(&priv->rx_timeout);
  246. }
  247. return 0;
  248. }
  249. /*
  250. * timer callback to defer refill rx queue in case we're OOM
  251. */
  252. static void bcm_enet_refill_rx_timer(unsigned long data)
  253. {
  254. struct net_device *dev;
  255. struct bcm_enet_priv *priv;
  256. dev = (struct net_device *)data;
  257. priv = netdev_priv(dev);
  258. spin_lock(&priv->rx_lock);
  259. bcm_enet_refill_rx((struct net_device *)data);
  260. spin_unlock(&priv->rx_lock);
  261. }
  262. /*
  263. * extract packet from rx queue
  264. */
  265. static int bcm_enet_receive_queue(struct net_device *dev, int budget)
  266. {
  267. struct bcm_enet_priv *priv;
  268. struct device *kdev;
  269. int processed;
  270. priv = netdev_priv(dev);
  271. kdev = &priv->pdev->dev;
  272. processed = 0;
  273. /* don't scan ring further than number of refilled
  274. * descriptor */
  275. if (budget > priv->rx_desc_count)
  276. budget = priv->rx_desc_count;
  277. do {
  278. struct bcm_enet_desc *desc;
  279. struct sk_buff *skb;
  280. int desc_idx;
  281. u32 len_stat;
  282. unsigned int len;
  283. desc_idx = priv->rx_curr_desc;
  284. desc = &priv->rx_desc_cpu[desc_idx];
  285. /* make sure we actually read the descriptor status at
  286. * each loop */
  287. rmb();
  288. len_stat = desc->len_stat;
  289. /* break if dma ownership belongs to hw */
  290. if (len_stat & DMADESC_OWNER_MASK)
  291. break;
  292. processed++;
  293. priv->rx_curr_desc++;
  294. if (priv->rx_curr_desc == priv->rx_ring_size)
  295. priv->rx_curr_desc = 0;
  296. priv->rx_desc_count--;
  297. /* if the packet does not have start of packet _and_
  298. * end of packet flag set, then just recycle it */
  299. if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
  300. (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
  301. dev->stats.rx_dropped++;
  302. continue;
  303. }
  304. /* recycle packet if it's marked as bad */
  305. if (!priv->enet_is_sw &&
  306. unlikely(len_stat & DMADESC_ERR_MASK)) {
  307. dev->stats.rx_errors++;
  308. if (len_stat & DMADESC_OVSIZE_MASK)
  309. dev->stats.rx_length_errors++;
  310. if (len_stat & DMADESC_CRC_MASK)
  311. dev->stats.rx_crc_errors++;
  312. if (len_stat & DMADESC_UNDER_MASK)
  313. dev->stats.rx_frame_errors++;
  314. if (len_stat & DMADESC_OV_MASK)
  315. dev->stats.rx_fifo_errors++;
  316. continue;
  317. }
  318. /* valid packet */
  319. skb = priv->rx_skb[desc_idx];
  320. len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
  321. /* don't include FCS */
  322. len -= 4;
  323. if (len < copybreak) {
  324. struct sk_buff *nskb;
  325. nskb = napi_alloc_skb(&priv->napi, len);
  326. if (!nskb) {
  327. /* forget packet, just rearm desc */
  328. dev->stats.rx_dropped++;
  329. continue;
  330. }
  331. dma_sync_single_for_cpu(kdev, desc->address,
  332. len, DMA_FROM_DEVICE);
  333. memcpy(nskb->data, skb->data, len);
  334. dma_sync_single_for_device(kdev, desc->address,
  335. len, DMA_FROM_DEVICE);
  336. skb = nskb;
  337. } else {
  338. dma_unmap_single(&priv->pdev->dev, desc->address,
  339. priv->rx_skb_size, DMA_FROM_DEVICE);
  340. priv->rx_skb[desc_idx] = NULL;
  341. }
  342. skb_put(skb, len);
  343. skb->protocol = eth_type_trans(skb, dev);
  344. dev->stats.rx_packets++;
  345. dev->stats.rx_bytes += len;
  346. netif_receive_skb(skb);
  347. } while (--budget > 0);
  348. if (processed || !priv->rx_desc_count) {
  349. bcm_enet_refill_rx(dev);
  350. /* kick rx dma */
  351. enet_dmac_writel(priv, priv->dma_chan_en_mask,
  352. ENETDMAC_CHANCFG, priv->rx_chan);
  353. }
  354. return processed;
  355. }
  356. /*
  357. * try to or force reclaim of transmitted buffers
  358. */
  359. static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
  360. {
  361. struct bcm_enet_priv *priv;
  362. int released;
  363. priv = netdev_priv(dev);
  364. released = 0;
  365. while (priv->tx_desc_count < priv->tx_ring_size) {
  366. struct bcm_enet_desc *desc;
  367. struct sk_buff *skb;
  368. /* We run in a bh and fight against start_xmit, which
  369. * is called with bh disabled */
  370. spin_lock(&priv->tx_lock);
  371. desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
  372. if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
  373. spin_unlock(&priv->tx_lock);
  374. break;
  375. }
  376. /* ensure other field of the descriptor were not read
  377. * before we checked ownership */
  378. rmb();
  379. skb = priv->tx_skb[priv->tx_dirty_desc];
  380. priv->tx_skb[priv->tx_dirty_desc] = NULL;
  381. dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
  382. DMA_TO_DEVICE);
  383. priv->tx_dirty_desc++;
  384. if (priv->tx_dirty_desc == priv->tx_ring_size)
  385. priv->tx_dirty_desc = 0;
  386. priv->tx_desc_count++;
  387. spin_unlock(&priv->tx_lock);
  388. if (desc->len_stat & DMADESC_UNDER_MASK)
  389. dev->stats.tx_errors++;
  390. dev_kfree_skb(skb);
  391. released++;
  392. }
  393. if (netif_queue_stopped(dev) && released)
  394. netif_wake_queue(dev);
  395. return released;
  396. }
  397. /*
  398. * poll func, called by network core
  399. */
  400. static int bcm_enet_poll(struct napi_struct *napi, int budget)
  401. {
  402. struct bcm_enet_priv *priv;
  403. struct net_device *dev;
  404. int rx_work_done;
  405. priv = container_of(napi, struct bcm_enet_priv, napi);
  406. dev = priv->net_dev;
  407. /* ack interrupts */
  408. enet_dmac_writel(priv, priv->dma_chan_int_mask,
  409. ENETDMAC_IR, priv->rx_chan);
  410. enet_dmac_writel(priv, priv->dma_chan_int_mask,
  411. ENETDMAC_IR, priv->tx_chan);
  412. /* reclaim sent skb */
  413. bcm_enet_tx_reclaim(dev, 0);
  414. spin_lock(&priv->rx_lock);
  415. rx_work_done = bcm_enet_receive_queue(dev, budget);
  416. spin_unlock(&priv->rx_lock);
  417. if (rx_work_done >= budget) {
  418. /* rx queue is not yet empty/clean */
  419. return rx_work_done;
  420. }
  421. /* no more packet in rx/tx queue, remove device from poll
  422. * queue */
  423. napi_complete(napi);
  424. /* restore rx/tx interrupt */
  425. enet_dmac_writel(priv, priv->dma_chan_int_mask,
  426. ENETDMAC_IRMASK, priv->rx_chan);
  427. enet_dmac_writel(priv, priv->dma_chan_int_mask,
  428. ENETDMAC_IRMASK, priv->tx_chan);
  429. return rx_work_done;
  430. }
  431. /*
  432. * mac interrupt handler
  433. */
  434. static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
  435. {
  436. struct net_device *dev;
  437. struct bcm_enet_priv *priv;
  438. u32 stat;
  439. dev = dev_id;
  440. priv = netdev_priv(dev);
  441. stat = enet_readl(priv, ENET_IR_REG);
  442. if (!(stat & ENET_IR_MIB))
  443. return IRQ_NONE;
  444. /* clear & mask interrupt */
  445. enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
  446. enet_writel(priv, 0, ENET_IRMASK_REG);
  447. /* read mib registers in workqueue */
  448. schedule_work(&priv->mib_update_task);
  449. return IRQ_HANDLED;
  450. }
  451. /*
  452. * rx/tx dma interrupt handler
  453. */
  454. static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
  455. {
  456. struct net_device *dev;
  457. struct bcm_enet_priv *priv;
  458. dev = dev_id;
  459. priv = netdev_priv(dev);
  460. /* mask rx/tx interrupts */
  461. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
  462. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
  463. napi_schedule(&priv->napi);
  464. return IRQ_HANDLED;
  465. }
  466. /*
  467. * tx request callback
  468. */
  469. static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
  470. {
  471. struct bcm_enet_priv *priv;
  472. struct bcm_enet_desc *desc;
  473. u32 len_stat;
  474. int ret;
  475. priv = netdev_priv(dev);
  476. /* lock against tx reclaim */
  477. spin_lock(&priv->tx_lock);
  478. /* make sure the tx hw queue is not full, should not happen
  479. * since we stop queue before it's the case */
  480. if (unlikely(!priv->tx_desc_count)) {
  481. netif_stop_queue(dev);
  482. dev_err(&priv->pdev->dev, "xmit called with no tx desc "
  483. "available?\n");
  484. ret = NETDEV_TX_BUSY;
  485. goto out_unlock;
  486. }
  487. /* pad small packets sent on a switch device */
  488. if (priv->enet_is_sw && skb->len < 64) {
  489. int needed = 64 - skb->len;
  490. char *data;
  491. if (unlikely(skb_tailroom(skb) < needed)) {
  492. struct sk_buff *nskb;
  493. nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
  494. if (!nskb) {
  495. ret = NETDEV_TX_BUSY;
  496. goto out_unlock;
  497. }
  498. dev_kfree_skb(skb);
  499. skb = nskb;
  500. }
  501. data = skb_put(skb, needed);
  502. memset(data, 0, needed);
  503. }
  504. /* point to the next available desc */
  505. desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
  506. priv->tx_skb[priv->tx_curr_desc] = skb;
  507. /* fill descriptor */
  508. desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
  509. DMA_TO_DEVICE);
  510. len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
  511. len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
  512. DMADESC_APPEND_CRC |
  513. DMADESC_OWNER_MASK;
  514. priv->tx_curr_desc++;
  515. if (priv->tx_curr_desc == priv->tx_ring_size) {
  516. priv->tx_curr_desc = 0;
  517. len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
  518. }
  519. priv->tx_desc_count--;
  520. /* dma might be already polling, make sure we update desc
  521. * fields in correct order */
  522. wmb();
  523. desc->len_stat = len_stat;
  524. wmb();
  525. /* kick tx dma */
  526. enet_dmac_writel(priv, priv->dma_chan_en_mask,
  527. ENETDMAC_CHANCFG, priv->tx_chan);
  528. /* stop queue if no more desc available */
  529. if (!priv->tx_desc_count)
  530. netif_stop_queue(dev);
  531. dev->stats.tx_bytes += skb->len;
  532. dev->stats.tx_packets++;
  533. ret = NETDEV_TX_OK;
  534. out_unlock:
  535. spin_unlock(&priv->tx_lock);
  536. return ret;
  537. }
  538. /*
  539. * Change the interface's mac address.
  540. */
  541. static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
  542. {
  543. struct bcm_enet_priv *priv;
  544. struct sockaddr *addr = p;
  545. u32 val;
  546. priv = netdev_priv(dev);
  547. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  548. /* use perfect match register 0 to store my mac address */
  549. val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
  550. (dev->dev_addr[4] << 8) | dev->dev_addr[5];
  551. enet_writel(priv, val, ENET_PML_REG(0));
  552. val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
  553. val |= ENET_PMH_DATAVALID_MASK;
  554. enet_writel(priv, val, ENET_PMH_REG(0));
  555. return 0;
  556. }
  557. /*
  558. * Change rx mode (promiscuous/allmulti) and update multicast list
  559. */
  560. static void bcm_enet_set_multicast_list(struct net_device *dev)
  561. {
  562. struct bcm_enet_priv *priv;
  563. struct netdev_hw_addr *ha;
  564. u32 val;
  565. int i;
  566. priv = netdev_priv(dev);
  567. val = enet_readl(priv, ENET_RXCFG_REG);
  568. if (dev->flags & IFF_PROMISC)
  569. val |= ENET_RXCFG_PROMISC_MASK;
  570. else
  571. val &= ~ENET_RXCFG_PROMISC_MASK;
  572. /* only 3 perfect match registers left, first one is used for
  573. * own mac address */
  574. if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
  575. val |= ENET_RXCFG_ALLMCAST_MASK;
  576. else
  577. val &= ~ENET_RXCFG_ALLMCAST_MASK;
  578. /* no need to set perfect match registers if we catch all
  579. * multicast */
  580. if (val & ENET_RXCFG_ALLMCAST_MASK) {
  581. enet_writel(priv, val, ENET_RXCFG_REG);
  582. return;
  583. }
  584. i = 0;
  585. netdev_for_each_mc_addr(ha, dev) {
  586. u8 *dmi_addr;
  587. u32 tmp;
  588. if (i == 3)
  589. break;
  590. /* update perfect match registers */
  591. dmi_addr = ha->addr;
  592. tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
  593. (dmi_addr[4] << 8) | dmi_addr[5];
  594. enet_writel(priv, tmp, ENET_PML_REG(i + 1));
  595. tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
  596. tmp |= ENET_PMH_DATAVALID_MASK;
  597. enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
  598. }
  599. for (; i < 3; i++) {
  600. enet_writel(priv, 0, ENET_PML_REG(i + 1));
  601. enet_writel(priv, 0, ENET_PMH_REG(i + 1));
  602. }
  603. enet_writel(priv, val, ENET_RXCFG_REG);
  604. }
  605. /*
  606. * set mac duplex parameters
  607. */
  608. static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
  609. {
  610. u32 val;
  611. val = enet_readl(priv, ENET_TXCTL_REG);
  612. if (fullduplex)
  613. val |= ENET_TXCTL_FD_MASK;
  614. else
  615. val &= ~ENET_TXCTL_FD_MASK;
  616. enet_writel(priv, val, ENET_TXCTL_REG);
  617. }
  618. /*
  619. * set mac flow control parameters
  620. */
  621. static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
  622. {
  623. u32 val;
  624. /* rx flow control (pause frame handling) */
  625. val = enet_readl(priv, ENET_RXCFG_REG);
  626. if (rx_en)
  627. val |= ENET_RXCFG_ENFLOW_MASK;
  628. else
  629. val &= ~ENET_RXCFG_ENFLOW_MASK;
  630. enet_writel(priv, val, ENET_RXCFG_REG);
  631. if (!priv->dma_has_sram)
  632. return;
  633. /* tx flow control (pause frame generation) */
  634. val = enet_dma_readl(priv, ENETDMA_CFG_REG);
  635. if (tx_en)
  636. val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
  637. else
  638. val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
  639. enet_dma_writel(priv, val, ENETDMA_CFG_REG);
  640. }
  641. /*
  642. * link changed callback (from phylib)
  643. */
  644. static void bcm_enet_adjust_phy_link(struct net_device *dev)
  645. {
  646. struct bcm_enet_priv *priv;
  647. struct phy_device *phydev;
  648. int status_changed;
  649. priv = netdev_priv(dev);
  650. phydev = priv->phydev;
  651. status_changed = 0;
  652. if (priv->old_link != phydev->link) {
  653. status_changed = 1;
  654. priv->old_link = phydev->link;
  655. }
  656. /* reflect duplex change in mac configuration */
  657. if (phydev->link && phydev->duplex != priv->old_duplex) {
  658. bcm_enet_set_duplex(priv,
  659. (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
  660. status_changed = 1;
  661. priv->old_duplex = phydev->duplex;
  662. }
  663. /* enable flow control if remote advertise it (trust phylib to
  664. * check that duplex is full */
  665. if (phydev->link && phydev->pause != priv->old_pause) {
  666. int rx_pause_en, tx_pause_en;
  667. if (phydev->pause) {
  668. /* pause was advertised by lpa and us */
  669. rx_pause_en = 1;
  670. tx_pause_en = 1;
  671. } else if (!priv->pause_auto) {
  672. /* pause setting overrided by user */
  673. rx_pause_en = priv->pause_rx;
  674. tx_pause_en = priv->pause_tx;
  675. } else {
  676. rx_pause_en = 0;
  677. tx_pause_en = 0;
  678. }
  679. bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
  680. status_changed = 1;
  681. priv->old_pause = phydev->pause;
  682. }
  683. if (status_changed) {
  684. pr_info("%s: link %s", dev->name, phydev->link ?
  685. "UP" : "DOWN");
  686. if (phydev->link)
  687. pr_cont(" - %d/%s - flow control %s", phydev->speed,
  688. DUPLEX_FULL == phydev->duplex ? "full" : "half",
  689. phydev->pause == 1 ? "rx&tx" : "off");
  690. pr_cont("\n");
  691. }
  692. }
  693. /*
  694. * link changed callback (if phylib is not used)
  695. */
  696. static void bcm_enet_adjust_link(struct net_device *dev)
  697. {
  698. struct bcm_enet_priv *priv;
  699. priv = netdev_priv(dev);
  700. bcm_enet_set_duplex(priv, priv->force_duplex_full);
  701. bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
  702. netif_carrier_on(dev);
  703. pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
  704. dev->name,
  705. priv->force_speed_100 ? 100 : 10,
  706. priv->force_duplex_full ? "full" : "half",
  707. priv->pause_rx ? "rx" : "off",
  708. priv->pause_tx ? "tx" : "off");
  709. }
  710. /*
  711. * open callback, allocate dma rings & buffers and start rx operation
  712. */
  713. static int bcm_enet_open(struct net_device *dev)
  714. {
  715. struct bcm_enet_priv *priv;
  716. struct sockaddr addr;
  717. struct device *kdev;
  718. struct phy_device *phydev;
  719. int i, ret;
  720. unsigned int size;
  721. char phy_id[MII_BUS_ID_SIZE + 3];
  722. void *p;
  723. u32 val;
  724. priv = netdev_priv(dev);
  725. kdev = &priv->pdev->dev;
  726. if (priv->has_phy) {
  727. /* connect to PHY */
  728. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  729. priv->mii_bus->id, priv->phy_id);
  730. phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
  731. PHY_INTERFACE_MODE_MII);
  732. if (IS_ERR(phydev)) {
  733. dev_err(kdev, "could not attach to PHY\n");
  734. return PTR_ERR(phydev);
  735. }
  736. /* mask with MAC supported features */
  737. phydev->supported &= (SUPPORTED_10baseT_Half |
  738. SUPPORTED_10baseT_Full |
  739. SUPPORTED_100baseT_Half |
  740. SUPPORTED_100baseT_Full |
  741. SUPPORTED_Autoneg |
  742. SUPPORTED_Pause |
  743. SUPPORTED_MII);
  744. phydev->advertising = phydev->supported;
  745. if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
  746. phydev->advertising |= SUPPORTED_Pause;
  747. else
  748. phydev->advertising &= ~SUPPORTED_Pause;
  749. dev_info(kdev, "attached PHY at address %d [%s]\n",
  750. phydev->addr, phydev->drv->name);
  751. priv->old_link = 0;
  752. priv->old_duplex = -1;
  753. priv->old_pause = -1;
  754. priv->phydev = phydev;
  755. }
  756. /* mask all interrupts and request them */
  757. enet_writel(priv, 0, ENET_IRMASK_REG);
  758. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
  759. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
  760. ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
  761. if (ret)
  762. goto out_phy_disconnect;
  763. ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
  764. dev->name, dev);
  765. if (ret)
  766. goto out_freeirq;
  767. ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
  768. 0, dev->name, dev);
  769. if (ret)
  770. goto out_freeirq_rx;
  771. /* initialize perfect match registers */
  772. for (i = 0; i < 4; i++) {
  773. enet_writel(priv, 0, ENET_PML_REG(i));
  774. enet_writel(priv, 0, ENET_PMH_REG(i));
  775. }
  776. /* write device mac address */
  777. memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
  778. bcm_enet_set_mac_address(dev, &addr);
  779. /* allocate rx dma ring */
  780. size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
  781. p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
  782. if (!p) {
  783. ret = -ENOMEM;
  784. goto out_freeirq_tx;
  785. }
  786. priv->rx_desc_alloc_size = size;
  787. priv->rx_desc_cpu = p;
  788. /* allocate tx dma ring */
  789. size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
  790. p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
  791. if (!p) {
  792. ret = -ENOMEM;
  793. goto out_free_rx_ring;
  794. }
  795. priv->tx_desc_alloc_size = size;
  796. priv->tx_desc_cpu = p;
  797. priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
  798. GFP_KERNEL);
  799. if (!priv->tx_skb) {
  800. ret = -ENOMEM;
  801. goto out_free_tx_ring;
  802. }
  803. priv->tx_desc_count = priv->tx_ring_size;
  804. priv->tx_dirty_desc = 0;
  805. priv->tx_curr_desc = 0;
  806. spin_lock_init(&priv->tx_lock);
  807. /* init & fill rx ring with skbs */
  808. priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
  809. GFP_KERNEL);
  810. if (!priv->rx_skb) {
  811. ret = -ENOMEM;
  812. goto out_free_tx_skb;
  813. }
  814. priv->rx_desc_count = 0;
  815. priv->rx_dirty_desc = 0;
  816. priv->rx_curr_desc = 0;
  817. /* initialize flow control buffer allocation */
  818. if (priv->dma_has_sram)
  819. enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
  820. ENETDMA_BUFALLOC_REG(priv->rx_chan));
  821. else
  822. enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
  823. ENETDMAC_BUFALLOC, priv->rx_chan);
  824. if (bcm_enet_refill_rx(dev)) {
  825. dev_err(kdev, "cannot allocate rx skb queue\n");
  826. ret = -ENOMEM;
  827. goto out;
  828. }
  829. /* write rx & tx ring addresses */
  830. if (priv->dma_has_sram) {
  831. enet_dmas_writel(priv, priv->rx_desc_dma,
  832. ENETDMAS_RSTART_REG, priv->rx_chan);
  833. enet_dmas_writel(priv, priv->tx_desc_dma,
  834. ENETDMAS_RSTART_REG, priv->tx_chan);
  835. } else {
  836. enet_dmac_writel(priv, priv->rx_desc_dma,
  837. ENETDMAC_RSTART, priv->rx_chan);
  838. enet_dmac_writel(priv, priv->tx_desc_dma,
  839. ENETDMAC_RSTART, priv->tx_chan);
  840. }
  841. /* clear remaining state ram for rx & tx channel */
  842. if (priv->dma_has_sram) {
  843. enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
  844. enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
  845. enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
  846. enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
  847. enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
  848. enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
  849. } else {
  850. enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
  851. enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
  852. }
  853. /* set max rx/tx length */
  854. enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
  855. enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
  856. /* set dma maximum burst len */
  857. enet_dmac_writel(priv, priv->dma_maxburst,
  858. ENETDMAC_MAXBURST, priv->rx_chan);
  859. enet_dmac_writel(priv, priv->dma_maxburst,
  860. ENETDMAC_MAXBURST, priv->tx_chan);
  861. /* set correct transmit fifo watermark */
  862. enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
  863. /* set flow control low/high threshold to 1/3 / 2/3 */
  864. if (priv->dma_has_sram) {
  865. val = priv->rx_ring_size / 3;
  866. enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
  867. val = (priv->rx_ring_size * 2) / 3;
  868. enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
  869. } else {
  870. enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
  871. enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
  872. enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
  873. }
  874. /* all set, enable mac and interrupts, start dma engine and
  875. * kick rx dma channel */
  876. wmb();
  877. val = enet_readl(priv, ENET_CTL_REG);
  878. val |= ENET_CTL_ENABLE_MASK;
  879. enet_writel(priv, val, ENET_CTL_REG);
  880. enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
  881. enet_dmac_writel(priv, priv->dma_chan_en_mask,
  882. ENETDMAC_CHANCFG, priv->rx_chan);
  883. /* watch "mib counters about to overflow" interrupt */
  884. enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
  885. enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
  886. /* watch "packet transferred" interrupt in rx and tx */
  887. enet_dmac_writel(priv, priv->dma_chan_int_mask,
  888. ENETDMAC_IR, priv->rx_chan);
  889. enet_dmac_writel(priv, priv->dma_chan_int_mask,
  890. ENETDMAC_IR, priv->tx_chan);
  891. /* make sure we enable napi before rx interrupt */
  892. napi_enable(&priv->napi);
  893. enet_dmac_writel(priv, priv->dma_chan_int_mask,
  894. ENETDMAC_IRMASK, priv->rx_chan);
  895. enet_dmac_writel(priv, priv->dma_chan_int_mask,
  896. ENETDMAC_IRMASK, priv->tx_chan);
  897. if (priv->has_phy)
  898. phy_start(priv->phydev);
  899. else
  900. bcm_enet_adjust_link(dev);
  901. netif_start_queue(dev);
  902. return 0;
  903. out:
  904. for (i = 0; i < priv->rx_ring_size; i++) {
  905. struct bcm_enet_desc *desc;
  906. if (!priv->rx_skb[i])
  907. continue;
  908. desc = &priv->rx_desc_cpu[i];
  909. dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
  910. DMA_FROM_DEVICE);
  911. kfree_skb(priv->rx_skb[i]);
  912. }
  913. kfree(priv->rx_skb);
  914. out_free_tx_skb:
  915. kfree(priv->tx_skb);
  916. out_free_tx_ring:
  917. dma_free_coherent(kdev, priv->tx_desc_alloc_size,
  918. priv->tx_desc_cpu, priv->tx_desc_dma);
  919. out_free_rx_ring:
  920. dma_free_coherent(kdev, priv->rx_desc_alloc_size,
  921. priv->rx_desc_cpu, priv->rx_desc_dma);
  922. out_freeirq_tx:
  923. free_irq(priv->irq_tx, dev);
  924. out_freeirq_rx:
  925. free_irq(priv->irq_rx, dev);
  926. out_freeirq:
  927. free_irq(dev->irq, dev);
  928. out_phy_disconnect:
  929. phy_disconnect(priv->phydev);
  930. return ret;
  931. }
  932. /*
  933. * disable mac
  934. */
  935. static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
  936. {
  937. int limit;
  938. u32 val;
  939. val = enet_readl(priv, ENET_CTL_REG);
  940. val |= ENET_CTL_DISABLE_MASK;
  941. enet_writel(priv, val, ENET_CTL_REG);
  942. limit = 1000;
  943. do {
  944. u32 val;
  945. val = enet_readl(priv, ENET_CTL_REG);
  946. if (!(val & ENET_CTL_DISABLE_MASK))
  947. break;
  948. udelay(1);
  949. } while (limit--);
  950. }
  951. /*
  952. * disable dma in given channel
  953. */
  954. static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
  955. {
  956. int limit;
  957. enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
  958. limit = 1000;
  959. do {
  960. u32 val;
  961. val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
  962. if (!(val & ENETDMAC_CHANCFG_EN_MASK))
  963. break;
  964. udelay(1);
  965. } while (limit--);
  966. }
  967. /*
  968. * stop callback
  969. */
  970. static int bcm_enet_stop(struct net_device *dev)
  971. {
  972. struct bcm_enet_priv *priv;
  973. struct device *kdev;
  974. int i;
  975. priv = netdev_priv(dev);
  976. kdev = &priv->pdev->dev;
  977. netif_stop_queue(dev);
  978. napi_disable(&priv->napi);
  979. if (priv->has_phy)
  980. phy_stop(priv->phydev);
  981. del_timer_sync(&priv->rx_timeout);
  982. /* mask all interrupts */
  983. enet_writel(priv, 0, ENET_IRMASK_REG);
  984. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
  985. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
  986. /* make sure no mib update is scheduled */
  987. cancel_work_sync(&priv->mib_update_task);
  988. /* disable dma & mac */
  989. bcm_enet_disable_dma(priv, priv->tx_chan);
  990. bcm_enet_disable_dma(priv, priv->rx_chan);
  991. bcm_enet_disable_mac(priv);
  992. /* force reclaim of all tx buffers */
  993. bcm_enet_tx_reclaim(dev, 1);
  994. /* free the rx skb ring */
  995. for (i = 0; i < priv->rx_ring_size; i++) {
  996. struct bcm_enet_desc *desc;
  997. if (!priv->rx_skb[i])
  998. continue;
  999. desc = &priv->rx_desc_cpu[i];
  1000. dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
  1001. DMA_FROM_DEVICE);
  1002. kfree_skb(priv->rx_skb[i]);
  1003. }
  1004. /* free remaining allocated memory */
  1005. kfree(priv->rx_skb);
  1006. kfree(priv->tx_skb);
  1007. dma_free_coherent(kdev, priv->rx_desc_alloc_size,
  1008. priv->rx_desc_cpu, priv->rx_desc_dma);
  1009. dma_free_coherent(kdev, priv->tx_desc_alloc_size,
  1010. priv->tx_desc_cpu, priv->tx_desc_dma);
  1011. free_irq(priv->irq_tx, dev);
  1012. free_irq(priv->irq_rx, dev);
  1013. free_irq(dev->irq, dev);
  1014. /* release phy */
  1015. if (priv->has_phy) {
  1016. phy_disconnect(priv->phydev);
  1017. priv->phydev = NULL;
  1018. }
  1019. return 0;
  1020. }
  1021. /*
  1022. * ethtool callbacks
  1023. */
  1024. struct bcm_enet_stats {
  1025. char stat_string[ETH_GSTRING_LEN];
  1026. int sizeof_stat;
  1027. int stat_offset;
  1028. int mib_reg;
  1029. };
  1030. #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \
  1031. offsetof(struct bcm_enet_priv, m)
  1032. #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m), \
  1033. offsetof(struct net_device_stats, m)
  1034. static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
  1035. { "rx_packets", DEV_STAT(rx_packets), -1 },
  1036. { "tx_packets", DEV_STAT(tx_packets), -1 },
  1037. { "rx_bytes", DEV_STAT(rx_bytes), -1 },
  1038. { "tx_bytes", DEV_STAT(tx_bytes), -1 },
  1039. { "rx_errors", DEV_STAT(rx_errors), -1 },
  1040. { "tx_errors", DEV_STAT(tx_errors), -1 },
  1041. { "rx_dropped", DEV_STAT(rx_dropped), -1 },
  1042. { "tx_dropped", DEV_STAT(tx_dropped), -1 },
  1043. { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
  1044. { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
  1045. { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
  1046. { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
  1047. { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
  1048. { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
  1049. { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
  1050. { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
  1051. { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
  1052. { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
  1053. { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
  1054. { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
  1055. { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
  1056. { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
  1057. { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
  1058. { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
  1059. { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
  1060. { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
  1061. { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
  1062. { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
  1063. { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
  1064. { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
  1065. { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
  1066. { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
  1067. { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
  1068. { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
  1069. { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
  1070. { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
  1071. { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
  1072. { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
  1073. { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
  1074. { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
  1075. { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
  1076. { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
  1077. { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
  1078. { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
  1079. { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
  1080. { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
  1081. { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
  1082. { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
  1083. { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
  1084. { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
  1085. { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
  1086. };
  1087. #define BCM_ENET_STATS_LEN ARRAY_SIZE(bcm_enet_gstrings_stats)
  1088. static const u32 unused_mib_regs[] = {
  1089. ETH_MIB_TX_ALL_OCTETS,
  1090. ETH_MIB_TX_ALL_PKTS,
  1091. ETH_MIB_RX_ALL_OCTETS,
  1092. ETH_MIB_RX_ALL_PKTS,
  1093. };
  1094. static void bcm_enet_get_drvinfo(struct net_device *netdev,
  1095. struct ethtool_drvinfo *drvinfo)
  1096. {
  1097. strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
  1098. strlcpy(drvinfo->version, bcm_enet_driver_version,
  1099. sizeof(drvinfo->version));
  1100. strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
  1101. strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
  1102. drvinfo->n_stats = BCM_ENET_STATS_LEN;
  1103. }
  1104. static int bcm_enet_get_sset_count(struct net_device *netdev,
  1105. int string_set)
  1106. {
  1107. switch (string_set) {
  1108. case ETH_SS_STATS:
  1109. return BCM_ENET_STATS_LEN;
  1110. default:
  1111. return -EINVAL;
  1112. }
  1113. }
  1114. static void bcm_enet_get_strings(struct net_device *netdev,
  1115. u32 stringset, u8 *data)
  1116. {
  1117. int i;
  1118. switch (stringset) {
  1119. case ETH_SS_STATS:
  1120. for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
  1121. memcpy(data + i * ETH_GSTRING_LEN,
  1122. bcm_enet_gstrings_stats[i].stat_string,
  1123. ETH_GSTRING_LEN);
  1124. }
  1125. break;
  1126. }
  1127. }
  1128. static void update_mib_counters(struct bcm_enet_priv *priv)
  1129. {
  1130. int i;
  1131. for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
  1132. const struct bcm_enet_stats *s;
  1133. u32 val;
  1134. char *p;
  1135. s = &bcm_enet_gstrings_stats[i];
  1136. if (s->mib_reg == -1)
  1137. continue;
  1138. val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
  1139. p = (char *)priv + s->stat_offset;
  1140. if (s->sizeof_stat == sizeof(u64))
  1141. *(u64 *)p += val;
  1142. else
  1143. *(u32 *)p += val;
  1144. }
  1145. /* also empty unused mib counters to make sure mib counter
  1146. * overflow interrupt is cleared */
  1147. for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
  1148. (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
  1149. }
  1150. static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
  1151. {
  1152. struct bcm_enet_priv *priv;
  1153. priv = container_of(t, struct bcm_enet_priv, mib_update_task);
  1154. mutex_lock(&priv->mib_update_lock);
  1155. update_mib_counters(priv);
  1156. mutex_unlock(&priv->mib_update_lock);
  1157. /* reenable mib interrupt */
  1158. if (netif_running(priv->net_dev))
  1159. enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
  1160. }
  1161. static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
  1162. struct ethtool_stats *stats,
  1163. u64 *data)
  1164. {
  1165. struct bcm_enet_priv *priv;
  1166. int i;
  1167. priv = netdev_priv(netdev);
  1168. mutex_lock(&priv->mib_update_lock);
  1169. update_mib_counters(priv);
  1170. for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
  1171. const struct bcm_enet_stats *s;
  1172. char *p;
  1173. s = &bcm_enet_gstrings_stats[i];
  1174. if (s->mib_reg == -1)
  1175. p = (char *)&netdev->stats;
  1176. else
  1177. p = (char *)priv;
  1178. p += s->stat_offset;
  1179. data[i] = (s->sizeof_stat == sizeof(u64)) ?
  1180. *(u64 *)p : *(u32 *)p;
  1181. }
  1182. mutex_unlock(&priv->mib_update_lock);
  1183. }
  1184. static int bcm_enet_nway_reset(struct net_device *dev)
  1185. {
  1186. struct bcm_enet_priv *priv;
  1187. priv = netdev_priv(dev);
  1188. if (priv->has_phy) {
  1189. if (!priv->phydev)
  1190. return -ENODEV;
  1191. return genphy_restart_aneg(priv->phydev);
  1192. }
  1193. return -EOPNOTSUPP;
  1194. }
  1195. static int bcm_enet_get_settings(struct net_device *dev,
  1196. struct ethtool_cmd *cmd)
  1197. {
  1198. struct bcm_enet_priv *priv;
  1199. priv = netdev_priv(dev);
  1200. cmd->maxrxpkt = 0;
  1201. cmd->maxtxpkt = 0;
  1202. if (priv->has_phy) {
  1203. if (!priv->phydev)
  1204. return -ENODEV;
  1205. return phy_ethtool_gset(priv->phydev, cmd);
  1206. } else {
  1207. cmd->autoneg = 0;
  1208. ethtool_cmd_speed_set(cmd, ((priv->force_speed_100)
  1209. ? SPEED_100 : SPEED_10));
  1210. cmd->duplex = (priv->force_duplex_full) ?
  1211. DUPLEX_FULL : DUPLEX_HALF;
  1212. cmd->supported = ADVERTISED_10baseT_Half |
  1213. ADVERTISED_10baseT_Full |
  1214. ADVERTISED_100baseT_Half |
  1215. ADVERTISED_100baseT_Full;
  1216. cmd->advertising = 0;
  1217. cmd->port = PORT_MII;
  1218. cmd->transceiver = XCVR_EXTERNAL;
  1219. }
  1220. return 0;
  1221. }
  1222. static int bcm_enet_set_settings(struct net_device *dev,
  1223. struct ethtool_cmd *cmd)
  1224. {
  1225. struct bcm_enet_priv *priv;
  1226. priv = netdev_priv(dev);
  1227. if (priv->has_phy) {
  1228. if (!priv->phydev)
  1229. return -ENODEV;
  1230. return phy_ethtool_sset(priv->phydev, cmd);
  1231. } else {
  1232. if (cmd->autoneg ||
  1233. (cmd->speed != SPEED_100 && cmd->speed != SPEED_10) ||
  1234. cmd->port != PORT_MII)
  1235. return -EINVAL;
  1236. priv->force_speed_100 = (cmd->speed == SPEED_100) ? 1 : 0;
  1237. priv->force_duplex_full = (cmd->duplex == DUPLEX_FULL) ? 1 : 0;
  1238. if (netif_running(dev))
  1239. bcm_enet_adjust_link(dev);
  1240. return 0;
  1241. }
  1242. }
  1243. static void bcm_enet_get_ringparam(struct net_device *dev,
  1244. struct ethtool_ringparam *ering)
  1245. {
  1246. struct bcm_enet_priv *priv;
  1247. priv = netdev_priv(dev);
  1248. /* rx/tx ring is actually only limited by memory */
  1249. ering->rx_max_pending = 8192;
  1250. ering->tx_max_pending = 8192;
  1251. ering->rx_pending = priv->rx_ring_size;
  1252. ering->tx_pending = priv->tx_ring_size;
  1253. }
  1254. static int bcm_enet_set_ringparam(struct net_device *dev,
  1255. struct ethtool_ringparam *ering)
  1256. {
  1257. struct bcm_enet_priv *priv;
  1258. int was_running;
  1259. priv = netdev_priv(dev);
  1260. was_running = 0;
  1261. if (netif_running(dev)) {
  1262. bcm_enet_stop(dev);
  1263. was_running = 1;
  1264. }
  1265. priv->rx_ring_size = ering->rx_pending;
  1266. priv->tx_ring_size = ering->tx_pending;
  1267. if (was_running) {
  1268. int err;
  1269. err = bcm_enet_open(dev);
  1270. if (err)
  1271. dev_close(dev);
  1272. else
  1273. bcm_enet_set_multicast_list(dev);
  1274. }
  1275. return 0;
  1276. }
  1277. static void bcm_enet_get_pauseparam(struct net_device *dev,
  1278. struct ethtool_pauseparam *ecmd)
  1279. {
  1280. struct bcm_enet_priv *priv;
  1281. priv = netdev_priv(dev);
  1282. ecmd->autoneg = priv->pause_auto;
  1283. ecmd->rx_pause = priv->pause_rx;
  1284. ecmd->tx_pause = priv->pause_tx;
  1285. }
  1286. static int bcm_enet_set_pauseparam(struct net_device *dev,
  1287. struct ethtool_pauseparam *ecmd)
  1288. {
  1289. struct bcm_enet_priv *priv;
  1290. priv = netdev_priv(dev);
  1291. if (priv->has_phy) {
  1292. if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
  1293. /* asymetric pause mode not supported,
  1294. * actually possible but integrated PHY has RO
  1295. * asym_pause bit */
  1296. return -EINVAL;
  1297. }
  1298. } else {
  1299. /* no pause autoneg on direct mii connection */
  1300. if (ecmd->autoneg)
  1301. return -EINVAL;
  1302. }
  1303. priv->pause_auto = ecmd->autoneg;
  1304. priv->pause_rx = ecmd->rx_pause;
  1305. priv->pause_tx = ecmd->tx_pause;
  1306. return 0;
  1307. }
  1308. static const struct ethtool_ops bcm_enet_ethtool_ops = {
  1309. .get_strings = bcm_enet_get_strings,
  1310. .get_sset_count = bcm_enet_get_sset_count,
  1311. .get_ethtool_stats = bcm_enet_get_ethtool_stats,
  1312. .nway_reset = bcm_enet_nway_reset,
  1313. .get_settings = bcm_enet_get_settings,
  1314. .set_settings = bcm_enet_set_settings,
  1315. .get_drvinfo = bcm_enet_get_drvinfo,
  1316. .get_link = ethtool_op_get_link,
  1317. .get_ringparam = bcm_enet_get_ringparam,
  1318. .set_ringparam = bcm_enet_set_ringparam,
  1319. .get_pauseparam = bcm_enet_get_pauseparam,
  1320. .set_pauseparam = bcm_enet_set_pauseparam,
  1321. };
  1322. static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  1323. {
  1324. struct bcm_enet_priv *priv;
  1325. priv = netdev_priv(dev);
  1326. if (priv->has_phy) {
  1327. if (!priv->phydev)
  1328. return -ENODEV;
  1329. return phy_mii_ioctl(priv->phydev, rq, cmd);
  1330. } else {
  1331. struct mii_if_info mii;
  1332. mii.dev = dev;
  1333. mii.mdio_read = bcm_enet_mdio_read_mii;
  1334. mii.mdio_write = bcm_enet_mdio_write_mii;
  1335. mii.phy_id = 0;
  1336. mii.phy_id_mask = 0x3f;
  1337. mii.reg_num_mask = 0x1f;
  1338. return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
  1339. }
  1340. }
  1341. /*
  1342. * calculate actual hardware mtu
  1343. */
  1344. static int compute_hw_mtu(struct bcm_enet_priv *priv, int mtu)
  1345. {
  1346. int actual_mtu;
  1347. actual_mtu = mtu;
  1348. /* add ethernet header + vlan tag size */
  1349. actual_mtu += VLAN_ETH_HLEN;
  1350. if (actual_mtu < 64 || actual_mtu > BCMENET_MAX_MTU)
  1351. return -EINVAL;
  1352. /*
  1353. * setup maximum size before we get overflow mark in
  1354. * descriptor, note that this will not prevent reception of
  1355. * big frames, they will be split into multiple buffers
  1356. * anyway
  1357. */
  1358. priv->hw_mtu = actual_mtu;
  1359. /*
  1360. * align rx buffer size to dma burst len, account FCS since
  1361. * it's appended
  1362. */
  1363. priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
  1364. priv->dma_maxburst * 4);
  1365. return 0;
  1366. }
  1367. /*
  1368. * adjust mtu, can't be called while device is running
  1369. */
  1370. static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
  1371. {
  1372. int ret;
  1373. if (netif_running(dev))
  1374. return -EBUSY;
  1375. ret = compute_hw_mtu(netdev_priv(dev), new_mtu);
  1376. if (ret)
  1377. return ret;
  1378. dev->mtu = new_mtu;
  1379. return 0;
  1380. }
  1381. /*
  1382. * preinit hardware to allow mii operation while device is down
  1383. */
  1384. static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
  1385. {
  1386. u32 val;
  1387. int limit;
  1388. /* make sure mac is disabled */
  1389. bcm_enet_disable_mac(priv);
  1390. /* soft reset mac */
  1391. val = ENET_CTL_SRESET_MASK;
  1392. enet_writel(priv, val, ENET_CTL_REG);
  1393. wmb();
  1394. limit = 1000;
  1395. do {
  1396. val = enet_readl(priv, ENET_CTL_REG);
  1397. if (!(val & ENET_CTL_SRESET_MASK))
  1398. break;
  1399. udelay(1);
  1400. } while (limit--);
  1401. /* select correct mii interface */
  1402. val = enet_readl(priv, ENET_CTL_REG);
  1403. if (priv->use_external_mii)
  1404. val |= ENET_CTL_EPHYSEL_MASK;
  1405. else
  1406. val &= ~ENET_CTL_EPHYSEL_MASK;
  1407. enet_writel(priv, val, ENET_CTL_REG);
  1408. /* turn on mdc clock */
  1409. enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
  1410. ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
  1411. /* set mib counters to self-clear when read */
  1412. val = enet_readl(priv, ENET_MIBCTL_REG);
  1413. val |= ENET_MIBCTL_RDCLEAR_MASK;
  1414. enet_writel(priv, val, ENET_MIBCTL_REG);
  1415. }
  1416. static const struct net_device_ops bcm_enet_ops = {
  1417. .ndo_open = bcm_enet_open,
  1418. .ndo_stop = bcm_enet_stop,
  1419. .ndo_start_xmit = bcm_enet_start_xmit,
  1420. .ndo_set_mac_address = bcm_enet_set_mac_address,
  1421. .ndo_set_rx_mode = bcm_enet_set_multicast_list,
  1422. .ndo_do_ioctl = bcm_enet_ioctl,
  1423. .ndo_change_mtu = bcm_enet_change_mtu,
  1424. };
  1425. /*
  1426. * allocate netdevice, request register memory and register device.
  1427. */
  1428. static int bcm_enet_probe(struct platform_device *pdev)
  1429. {
  1430. struct bcm_enet_priv *priv;
  1431. struct net_device *dev;
  1432. struct bcm63xx_enet_platform_data *pd;
  1433. struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
  1434. struct mii_bus *bus;
  1435. const char *clk_name;
  1436. int i, ret;
  1437. /* stop if shared driver failed, assume driver->probe will be
  1438. * called in the same order we register devices (correct ?) */
  1439. if (!bcm_enet_shared_base[0])
  1440. return -ENODEV;
  1441. res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  1442. res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
  1443. res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
  1444. if (!res_irq || !res_irq_rx || !res_irq_tx)
  1445. return -ENODEV;
  1446. ret = 0;
  1447. dev = alloc_etherdev(sizeof(*priv));
  1448. if (!dev)
  1449. return -ENOMEM;
  1450. priv = netdev_priv(dev);
  1451. priv->enet_is_sw = false;
  1452. priv->dma_maxburst = BCMENET_DMA_MAXBURST;
  1453. ret = compute_hw_mtu(priv, dev->mtu);
  1454. if (ret)
  1455. goto out;
  1456. res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1457. priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
  1458. if (IS_ERR(priv->base)) {
  1459. ret = PTR_ERR(priv->base);
  1460. goto out;
  1461. }
  1462. dev->irq = priv->irq = res_irq->start;
  1463. priv->irq_rx = res_irq_rx->start;
  1464. priv->irq_tx = res_irq_tx->start;
  1465. priv->mac_id = pdev->id;
  1466. /* get rx & tx dma channel id for this mac */
  1467. if (priv->mac_id == 0) {
  1468. priv->rx_chan = 0;
  1469. priv->tx_chan = 1;
  1470. clk_name = "enet0";
  1471. } else {
  1472. priv->rx_chan = 2;
  1473. priv->tx_chan = 3;
  1474. clk_name = "enet1";
  1475. }
  1476. priv->mac_clk = clk_get(&pdev->dev, clk_name);
  1477. if (IS_ERR(priv->mac_clk)) {
  1478. ret = PTR_ERR(priv->mac_clk);
  1479. goto out;
  1480. }
  1481. clk_prepare_enable(priv->mac_clk);
  1482. /* initialize default and fetch platform data */
  1483. priv->rx_ring_size = BCMENET_DEF_RX_DESC;
  1484. priv->tx_ring_size = BCMENET_DEF_TX_DESC;
  1485. pd = dev_get_platdata(&pdev->dev);
  1486. if (pd) {
  1487. memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
  1488. priv->has_phy = pd->has_phy;
  1489. priv->phy_id = pd->phy_id;
  1490. priv->has_phy_interrupt = pd->has_phy_interrupt;
  1491. priv->phy_interrupt = pd->phy_interrupt;
  1492. priv->use_external_mii = !pd->use_internal_phy;
  1493. priv->pause_auto = pd->pause_auto;
  1494. priv->pause_rx = pd->pause_rx;
  1495. priv->pause_tx = pd->pause_tx;
  1496. priv->force_duplex_full = pd->force_duplex_full;
  1497. priv->force_speed_100 = pd->force_speed_100;
  1498. priv->dma_chan_en_mask = pd->dma_chan_en_mask;
  1499. priv->dma_chan_int_mask = pd->dma_chan_int_mask;
  1500. priv->dma_chan_width = pd->dma_chan_width;
  1501. priv->dma_has_sram = pd->dma_has_sram;
  1502. priv->dma_desc_shift = pd->dma_desc_shift;
  1503. }
  1504. if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
  1505. /* using internal PHY, enable clock */
  1506. priv->phy_clk = clk_get(&pdev->dev, "ephy");
  1507. if (IS_ERR(priv->phy_clk)) {
  1508. ret = PTR_ERR(priv->phy_clk);
  1509. priv->phy_clk = NULL;
  1510. goto out_put_clk_mac;
  1511. }
  1512. clk_prepare_enable(priv->phy_clk);
  1513. }
  1514. /* do minimal hardware init to be able to probe mii bus */
  1515. bcm_enet_hw_preinit(priv);
  1516. /* MII bus registration */
  1517. if (priv->has_phy) {
  1518. priv->mii_bus = mdiobus_alloc();
  1519. if (!priv->mii_bus) {
  1520. ret = -ENOMEM;
  1521. goto out_uninit_hw;
  1522. }
  1523. bus = priv->mii_bus;
  1524. bus->name = "bcm63xx_enet MII bus";
  1525. bus->parent = &pdev->dev;
  1526. bus->priv = priv;
  1527. bus->read = bcm_enet_mdio_read_phylib;
  1528. bus->write = bcm_enet_mdio_write_phylib;
  1529. sprintf(bus->id, "%s-%d", pdev->name, priv->mac_id);
  1530. /* only probe bus where we think the PHY is, because
  1531. * the mdio read operation return 0 instead of 0xffff
  1532. * if a slave is not present on hw */
  1533. bus->phy_mask = ~(1 << priv->phy_id);
  1534. bus->irq = devm_kzalloc(&pdev->dev, sizeof(int) * PHY_MAX_ADDR,
  1535. GFP_KERNEL);
  1536. if (!bus->irq) {
  1537. ret = -ENOMEM;
  1538. goto out_free_mdio;
  1539. }
  1540. if (priv->has_phy_interrupt)
  1541. bus->irq[priv->phy_id] = priv->phy_interrupt;
  1542. else
  1543. bus->irq[priv->phy_id] = PHY_POLL;
  1544. ret = mdiobus_register(bus);
  1545. if (ret) {
  1546. dev_err(&pdev->dev, "unable to register mdio bus\n");
  1547. goto out_free_mdio;
  1548. }
  1549. } else {
  1550. /* run platform code to initialize PHY device */
  1551. if (pd->mii_config &&
  1552. pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
  1553. bcm_enet_mdio_write_mii)) {
  1554. dev_err(&pdev->dev, "unable to configure mdio bus\n");
  1555. goto out_uninit_hw;
  1556. }
  1557. }
  1558. spin_lock_init(&priv->rx_lock);
  1559. /* init rx timeout (used for oom) */
  1560. init_timer(&priv->rx_timeout);
  1561. priv->rx_timeout.function = bcm_enet_refill_rx_timer;
  1562. priv->rx_timeout.data = (unsigned long)dev;
  1563. /* init the mib update lock&work */
  1564. mutex_init(&priv->mib_update_lock);
  1565. INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
  1566. /* zero mib counters */
  1567. for (i = 0; i < ENET_MIB_REG_COUNT; i++)
  1568. enet_writel(priv, 0, ENET_MIB_REG(i));
  1569. /* register netdevice */
  1570. dev->netdev_ops = &bcm_enet_ops;
  1571. netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
  1572. dev->ethtool_ops = &bcm_enet_ethtool_ops;
  1573. SET_NETDEV_DEV(dev, &pdev->dev);
  1574. ret = register_netdev(dev);
  1575. if (ret)
  1576. goto out_unregister_mdio;
  1577. netif_carrier_off(dev);
  1578. platform_set_drvdata(pdev, dev);
  1579. priv->pdev = pdev;
  1580. priv->net_dev = dev;
  1581. return 0;
  1582. out_unregister_mdio:
  1583. if (priv->mii_bus)
  1584. mdiobus_unregister(priv->mii_bus);
  1585. out_free_mdio:
  1586. if (priv->mii_bus)
  1587. mdiobus_free(priv->mii_bus);
  1588. out_uninit_hw:
  1589. /* turn off mdc clock */
  1590. enet_writel(priv, 0, ENET_MIISC_REG);
  1591. if (priv->phy_clk) {
  1592. clk_disable_unprepare(priv->phy_clk);
  1593. clk_put(priv->phy_clk);
  1594. }
  1595. out_put_clk_mac:
  1596. clk_disable_unprepare(priv->mac_clk);
  1597. clk_put(priv->mac_clk);
  1598. out:
  1599. free_netdev(dev);
  1600. return ret;
  1601. }
  1602. /*
  1603. * exit func, stops hardware and unregisters netdevice
  1604. */
  1605. static int bcm_enet_remove(struct platform_device *pdev)
  1606. {
  1607. struct bcm_enet_priv *priv;
  1608. struct net_device *dev;
  1609. /* stop netdevice */
  1610. dev = platform_get_drvdata(pdev);
  1611. priv = netdev_priv(dev);
  1612. unregister_netdev(dev);
  1613. /* turn off mdc clock */
  1614. enet_writel(priv, 0, ENET_MIISC_REG);
  1615. if (priv->has_phy) {
  1616. mdiobus_unregister(priv->mii_bus);
  1617. mdiobus_free(priv->mii_bus);
  1618. } else {
  1619. struct bcm63xx_enet_platform_data *pd;
  1620. pd = dev_get_platdata(&pdev->dev);
  1621. if (pd && pd->mii_config)
  1622. pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
  1623. bcm_enet_mdio_write_mii);
  1624. }
  1625. /* disable hw block clocks */
  1626. if (priv->phy_clk) {
  1627. clk_disable_unprepare(priv->phy_clk);
  1628. clk_put(priv->phy_clk);
  1629. }
  1630. clk_disable_unprepare(priv->mac_clk);
  1631. clk_put(priv->mac_clk);
  1632. free_netdev(dev);
  1633. return 0;
  1634. }
  1635. struct platform_driver bcm63xx_enet_driver = {
  1636. .probe = bcm_enet_probe,
  1637. .remove = bcm_enet_remove,
  1638. .driver = {
  1639. .name = "bcm63xx_enet",
  1640. .owner = THIS_MODULE,
  1641. },
  1642. };
  1643. /*
  1644. * switch mii access callbacks
  1645. */
  1646. static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
  1647. int ext, int phy_id, int location)
  1648. {
  1649. u32 reg;
  1650. int ret;
  1651. spin_lock_bh(&priv->enetsw_mdio_lock);
  1652. enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
  1653. reg = ENETSW_MDIOC_RD_MASK |
  1654. (phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
  1655. (location << ENETSW_MDIOC_REG_SHIFT);
  1656. if (ext)
  1657. reg |= ENETSW_MDIOC_EXT_MASK;
  1658. enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
  1659. udelay(50);
  1660. ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
  1661. spin_unlock_bh(&priv->enetsw_mdio_lock);
  1662. return ret;
  1663. }
  1664. static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
  1665. int ext, int phy_id, int location,
  1666. uint16_t data)
  1667. {
  1668. u32 reg;
  1669. spin_lock_bh(&priv->enetsw_mdio_lock);
  1670. enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
  1671. reg = ENETSW_MDIOC_WR_MASK |
  1672. (phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
  1673. (location << ENETSW_MDIOC_REG_SHIFT);
  1674. if (ext)
  1675. reg |= ENETSW_MDIOC_EXT_MASK;
  1676. reg |= data;
  1677. enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
  1678. udelay(50);
  1679. spin_unlock_bh(&priv->enetsw_mdio_lock);
  1680. }
  1681. static inline int bcm_enet_port_is_rgmii(int portid)
  1682. {
  1683. return portid >= ENETSW_RGMII_PORT0;
  1684. }
  1685. /*
  1686. * enet sw PHY polling
  1687. */
  1688. static void swphy_poll_timer(unsigned long data)
  1689. {
  1690. struct bcm_enet_priv *priv = (struct bcm_enet_priv *)data;
  1691. unsigned int i;
  1692. for (i = 0; i < priv->num_ports; i++) {
  1693. struct bcm63xx_enetsw_port *port;
  1694. int val, j, up, advertise, lpa, speed, duplex, media;
  1695. int external_phy = bcm_enet_port_is_rgmii(i);
  1696. u8 override;
  1697. port = &priv->used_ports[i];
  1698. if (!port->used)
  1699. continue;
  1700. if (port->bypass_link)
  1701. continue;
  1702. /* dummy read to clear */
  1703. for (j = 0; j < 2; j++)
  1704. val = bcmenet_sw_mdio_read(priv, external_phy,
  1705. port->phy_id, MII_BMSR);
  1706. if (val == 0xffff)
  1707. continue;
  1708. up = (val & BMSR_LSTATUS) ? 1 : 0;
  1709. if (!(up ^ priv->sw_port_link[i]))
  1710. continue;
  1711. priv->sw_port_link[i] = up;
  1712. /* link changed */
  1713. if (!up) {
  1714. dev_info(&priv->pdev->dev, "link DOWN on %s\n",
  1715. port->name);
  1716. enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
  1717. ENETSW_PORTOV_REG(i));
  1718. enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
  1719. ENETSW_PTCTRL_TXDIS_MASK,
  1720. ENETSW_PTCTRL_REG(i));
  1721. continue;
  1722. }
  1723. advertise = bcmenet_sw_mdio_read(priv, external_phy,
  1724. port->phy_id, MII_ADVERTISE);
  1725. lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
  1726. MII_LPA);
  1727. /* figure out media and duplex from advertise and LPA values */
  1728. media = mii_nway_result(lpa & advertise);
  1729. duplex = (media & ADVERTISE_FULL) ? 1 : 0;
  1730. if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
  1731. speed = 100;
  1732. else
  1733. speed = 10;
  1734. if (val & BMSR_ESTATEN) {
  1735. advertise = bcmenet_sw_mdio_read(priv, external_phy,
  1736. port->phy_id, MII_CTRL1000);
  1737. lpa = bcmenet_sw_mdio_read(priv, external_phy,
  1738. port->phy_id, MII_STAT1000);
  1739. if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)
  1740. && lpa & (LPA_1000FULL | LPA_1000HALF)) {
  1741. speed = 1000;
  1742. duplex = (lpa & LPA_1000FULL);
  1743. }
  1744. }
  1745. dev_info(&priv->pdev->dev,
  1746. "link UP on %s, %dMbps, %s-duplex\n",
  1747. port->name, speed, duplex ? "full" : "half");
  1748. override = ENETSW_PORTOV_ENABLE_MASK |
  1749. ENETSW_PORTOV_LINKUP_MASK;
  1750. if (speed == 1000)
  1751. override |= ENETSW_IMPOV_1000_MASK;
  1752. else if (speed == 100)
  1753. override |= ENETSW_IMPOV_100_MASK;
  1754. if (duplex)
  1755. override |= ENETSW_IMPOV_FDX_MASK;
  1756. enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
  1757. enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
  1758. }
  1759. priv->swphy_poll.expires = jiffies + HZ;
  1760. add_timer(&priv->swphy_poll);
  1761. }
  1762. /*
  1763. * open callback, allocate dma rings & buffers and start rx operation
  1764. */
  1765. static int bcm_enetsw_open(struct net_device *dev)
  1766. {
  1767. struct bcm_enet_priv *priv;
  1768. struct device *kdev;
  1769. int i, ret;
  1770. unsigned int size;
  1771. void *p;
  1772. u32 val;
  1773. priv = netdev_priv(dev);
  1774. kdev = &priv->pdev->dev;
  1775. /* mask all interrupts and request them */
  1776. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
  1777. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
  1778. ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
  1779. 0, dev->name, dev);
  1780. if (ret)
  1781. goto out_freeirq;
  1782. if (priv->irq_tx != -1) {
  1783. ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
  1784. 0, dev->name, dev);
  1785. if (ret)
  1786. goto out_freeirq_rx;
  1787. }
  1788. /* allocate rx dma ring */
  1789. size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
  1790. p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
  1791. if (!p) {
  1792. dev_err(kdev, "cannot allocate rx ring %u\n", size);
  1793. ret = -ENOMEM;
  1794. goto out_freeirq_tx;
  1795. }
  1796. memset(p, 0, size);
  1797. priv->rx_desc_alloc_size = size;
  1798. priv->rx_desc_cpu = p;
  1799. /* allocate tx dma ring */
  1800. size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
  1801. p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
  1802. if (!p) {
  1803. dev_err(kdev, "cannot allocate tx ring\n");
  1804. ret = -ENOMEM;
  1805. goto out_free_rx_ring;
  1806. }
  1807. memset(p, 0, size);
  1808. priv->tx_desc_alloc_size = size;
  1809. priv->tx_desc_cpu = p;
  1810. priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
  1811. GFP_KERNEL);
  1812. if (!priv->tx_skb) {
  1813. dev_err(kdev, "cannot allocate rx skb queue\n");
  1814. ret = -ENOMEM;
  1815. goto out_free_tx_ring;
  1816. }
  1817. priv->tx_desc_count = priv->tx_ring_size;
  1818. priv->tx_dirty_desc = 0;
  1819. priv->tx_curr_desc = 0;
  1820. spin_lock_init(&priv->tx_lock);
  1821. /* init & fill rx ring with skbs */
  1822. priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
  1823. GFP_KERNEL);
  1824. if (!priv->rx_skb) {
  1825. dev_err(kdev, "cannot allocate rx skb queue\n");
  1826. ret = -ENOMEM;
  1827. goto out_free_tx_skb;
  1828. }
  1829. priv->rx_desc_count = 0;
  1830. priv->rx_dirty_desc = 0;
  1831. priv->rx_curr_desc = 0;
  1832. /* disable all ports */
  1833. for (i = 0; i < priv->num_ports; i++) {
  1834. enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
  1835. ENETSW_PORTOV_REG(i));
  1836. enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
  1837. ENETSW_PTCTRL_TXDIS_MASK,
  1838. ENETSW_PTCTRL_REG(i));
  1839. priv->sw_port_link[i] = 0;
  1840. }
  1841. /* reset mib */
  1842. val = enetsw_readb(priv, ENETSW_GMCR_REG);
  1843. val |= ENETSW_GMCR_RST_MIB_MASK;
  1844. enetsw_writeb(priv, val, ENETSW_GMCR_REG);
  1845. mdelay(1);
  1846. val &= ~ENETSW_GMCR_RST_MIB_MASK;
  1847. enetsw_writeb(priv, val, ENETSW_GMCR_REG);
  1848. mdelay(1);
  1849. /* force CPU port state */
  1850. val = enetsw_readb(priv, ENETSW_IMPOV_REG);
  1851. val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
  1852. enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
  1853. /* enable switch forward engine */
  1854. val = enetsw_readb(priv, ENETSW_SWMODE_REG);
  1855. val |= ENETSW_SWMODE_FWD_EN_MASK;
  1856. enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
  1857. /* enable jumbo on all ports */
  1858. enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
  1859. enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
  1860. /* initialize flow control buffer allocation */
  1861. enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
  1862. ENETDMA_BUFALLOC_REG(priv->rx_chan));
  1863. if (bcm_enet_refill_rx(dev)) {
  1864. dev_err(kdev, "cannot allocate rx skb queue\n");
  1865. ret = -ENOMEM;
  1866. goto out;
  1867. }
  1868. /* write rx & tx ring addresses */
  1869. enet_dmas_writel(priv, priv->rx_desc_dma,
  1870. ENETDMAS_RSTART_REG, priv->rx_chan);
  1871. enet_dmas_writel(priv, priv->tx_desc_dma,
  1872. ENETDMAS_RSTART_REG, priv->tx_chan);
  1873. /* clear remaining state ram for rx & tx channel */
  1874. enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
  1875. enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
  1876. enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
  1877. enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
  1878. enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
  1879. enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
  1880. /* set dma maximum burst len */
  1881. enet_dmac_writel(priv, priv->dma_maxburst,
  1882. ENETDMAC_MAXBURST, priv->rx_chan);
  1883. enet_dmac_writel(priv, priv->dma_maxburst,
  1884. ENETDMAC_MAXBURST, priv->tx_chan);
  1885. /* set flow control low/high threshold to 1/3 / 2/3 */
  1886. val = priv->rx_ring_size / 3;
  1887. enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
  1888. val = (priv->rx_ring_size * 2) / 3;
  1889. enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
  1890. /* all set, enable mac and interrupts, start dma engine and
  1891. * kick rx dma channel
  1892. */
  1893. wmb();
  1894. enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
  1895. enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
  1896. ENETDMAC_CHANCFG, priv->rx_chan);
  1897. /* watch "packet transferred" interrupt in rx and tx */
  1898. enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
  1899. ENETDMAC_IR, priv->rx_chan);
  1900. enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
  1901. ENETDMAC_IR, priv->tx_chan);
  1902. /* make sure we enable napi before rx interrupt */
  1903. napi_enable(&priv->napi);
  1904. enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
  1905. ENETDMAC_IRMASK, priv->rx_chan);
  1906. enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
  1907. ENETDMAC_IRMASK, priv->tx_chan);
  1908. netif_carrier_on(dev);
  1909. netif_start_queue(dev);
  1910. /* apply override config for bypass_link ports here. */
  1911. for (i = 0; i < priv->num_ports; i++) {
  1912. struct bcm63xx_enetsw_port *port;
  1913. u8 override;
  1914. port = &priv->used_ports[i];
  1915. if (!port->used)
  1916. continue;
  1917. if (!port->bypass_link)
  1918. continue;
  1919. override = ENETSW_PORTOV_ENABLE_MASK |
  1920. ENETSW_PORTOV_LINKUP_MASK;
  1921. switch (port->force_speed) {
  1922. case 1000:
  1923. override |= ENETSW_IMPOV_1000_MASK;
  1924. break;
  1925. case 100:
  1926. override |= ENETSW_IMPOV_100_MASK;
  1927. break;
  1928. case 10:
  1929. break;
  1930. default:
  1931. pr_warn("invalid forced speed on port %s: assume 10\n",
  1932. port->name);
  1933. break;
  1934. }
  1935. if (port->force_duplex_full)
  1936. override |= ENETSW_IMPOV_FDX_MASK;
  1937. enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
  1938. enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
  1939. }
  1940. /* start phy polling timer */
  1941. init_timer(&priv->swphy_poll);
  1942. priv->swphy_poll.function = swphy_poll_timer;
  1943. priv->swphy_poll.data = (unsigned long)priv;
  1944. priv->swphy_poll.expires = jiffies;
  1945. add_timer(&priv->swphy_poll);
  1946. return 0;
  1947. out:
  1948. for (i = 0; i < priv->rx_ring_size; i++) {
  1949. struct bcm_enet_desc *desc;
  1950. if (!priv->rx_skb[i])
  1951. continue;
  1952. desc = &priv->rx_desc_cpu[i];
  1953. dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
  1954. DMA_FROM_DEVICE);
  1955. kfree_skb(priv->rx_skb[i]);
  1956. }
  1957. kfree(priv->rx_skb);
  1958. out_free_tx_skb:
  1959. kfree(priv->tx_skb);
  1960. out_free_tx_ring:
  1961. dma_free_coherent(kdev, priv->tx_desc_alloc_size,
  1962. priv->tx_desc_cpu, priv->tx_desc_dma);
  1963. out_free_rx_ring:
  1964. dma_free_coherent(kdev, priv->rx_desc_alloc_size,
  1965. priv->rx_desc_cpu, priv->rx_desc_dma);
  1966. out_freeirq_tx:
  1967. if (priv->irq_tx != -1)
  1968. free_irq(priv->irq_tx, dev);
  1969. out_freeirq_rx:
  1970. free_irq(priv->irq_rx, dev);
  1971. out_freeirq:
  1972. return ret;
  1973. }
  1974. /* stop callback */
  1975. static int bcm_enetsw_stop(struct net_device *dev)
  1976. {
  1977. struct bcm_enet_priv *priv;
  1978. struct device *kdev;
  1979. int i;
  1980. priv = netdev_priv(dev);
  1981. kdev = &priv->pdev->dev;
  1982. del_timer_sync(&priv->swphy_poll);
  1983. netif_stop_queue(dev);
  1984. napi_disable(&priv->napi);
  1985. del_timer_sync(&priv->rx_timeout);
  1986. /* mask all interrupts */
  1987. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
  1988. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
  1989. /* disable dma & mac */
  1990. bcm_enet_disable_dma(priv, priv->tx_chan);
  1991. bcm_enet_disable_dma(priv, priv->rx_chan);
  1992. /* force reclaim of all tx buffers */
  1993. bcm_enet_tx_reclaim(dev, 1);
  1994. /* free the rx skb ring */
  1995. for (i = 0; i < priv->rx_ring_size; i++) {
  1996. struct bcm_enet_desc *desc;
  1997. if (!priv->rx_skb[i])
  1998. continue;
  1999. desc = &priv->rx_desc_cpu[i];
  2000. dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
  2001. DMA_FROM_DEVICE);
  2002. kfree_skb(priv->rx_skb[i]);
  2003. }
  2004. /* free remaining allocated memory */
  2005. kfree(priv->rx_skb);
  2006. kfree(priv->tx_skb);
  2007. dma_free_coherent(kdev, priv->rx_desc_alloc_size,
  2008. priv->rx_desc_cpu, priv->rx_desc_dma);
  2009. dma_free_coherent(kdev, priv->tx_desc_alloc_size,
  2010. priv->tx_desc_cpu, priv->tx_desc_dma);
  2011. if (priv->irq_tx != -1)
  2012. free_irq(priv->irq_tx, dev);
  2013. free_irq(priv->irq_rx, dev);
  2014. return 0;
  2015. }
  2016. /* try to sort out phy external status by walking the used_port field
  2017. * in the bcm_enet_priv structure. in case the phy address is not
  2018. * assigned to any physical port on the switch, assume it is external
  2019. * (and yell at the user).
  2020. */
  2021. static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
  2022. {
  2023. int i;
  2024. for (i = 0; i < priv->num_ports; ++i) {
  2025. if (!priv->used_ports[i].used)
  2026. continue;
  2027. if (priv->used_ports[i].phy_id == phy_id)
  2028. return bcm_enet_port_is_rgmii(i);
  2029. }
  2030. printk_once(KERN_WARNING "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
  2031. phy_id);
  2032. return 1;
  2033. }
  2034. /* can't use bcmenet_sw_mdio_read directly as we need to sort out
  2035. * external/internal status of the given phy_id first.
  2036. */
  2037. static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
  2038. int location)
  2039. {
  2040. struct bcm_enet_priv *priv;
  2041. priv = netdev_priv(dev);
  2042. return bcmenet_sw_mdio_read(priv,
  2043. bcm_enetsw_phy_is_external(priv, phy_id),
  2044. phy_id, location);
  2045. }
  2046. /* can't use bcmenet_sw_mdio_write directly as we need to sort out
  2047. * external/internal status of the given phy_id first.
  2048. */
  2049. static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
  2050. int location,
  2051. int val)
  2052. {
  2053. struct bcm_enet_priv *priv;
  2054. priv = netdev_priv(dev);
  2055. bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
  2056. phy_id, location, val);
  2057. }
  2058. static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  2059. {
  2060. struct mii_if_info mii;
  2061. mii.dev = dev;
  2062. mii.mdio_read = bcm_enetsw_mii_mdio_read;
  2063. mii.mdio_write = bcm_enetsw_mii_mdio_write;
  2064. mii.phy_id = 0;
  2065. mii.phy_id_mask = 0x3f;
  2066. mii.reg_num_mask = 0x1f;
  2067. return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
  2068. }
  2069. static const struct net_device_ops bcm_enetsw_ops = {
  2070. .ndo_open = bcm_enetsw_open,
  2071. .ndo_stop = bcm_enetsw_stop,
  2072. .ndo_start_xmit = bcm_enet_start_xmit,
  2073. .ndo_change_mtu = bcm_enet_change_mtu,
  2074. .ndo_do_ioctl = bcm_enetsw_ioctl,
  2075. };
  2076. static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
  2077. { "rx_packets", DEV_STAT(rx_packets), -1 },
  2078. { "tx_packets", DEV_STAT(tx_packets), -1 },
  2079. { "rx_bytes", DEV_STAT(rx_bytes), -1 },
  2080. { "tx_bytes", DEV_STAT(tx_bytes), -1 },
  2081. { "rx_errors", DEV_STAT(rx_errors), -1 },
  2082. { "tx_errors", DEV_STAT(tx_errors), -1 },
  2083. { "rx_dropped", DEV_STAT(rx_dropped), -1 },
  2084. { "tx_dropped", DEV_STAT(tx_dropped), -1 },
  2085. { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
  2086. { "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
  2087. { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
  2088. { "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
  2089. { "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
  2090. { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
  2091. { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
  2092. { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
  2093. { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
  2094. { "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
  2095. ETHSW_MIB_RX_1024_1522 },
  2096. { "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
  2097. ETHSW_MIB_RX_1523_2047 },
  2098. { "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
  2099. ETHSW_MIB_RX_2048_4095 },
  2100. { "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
  2101. ETHSW_MIB_RX_4096_8191 },
  2102. { "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
  2103. ETHSW_MIB_RX_8192_9728 },
  2104. { "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
  2105. { "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
  2106. { "tx_dropped", GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
  2107. { "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
  2108. { "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
  2109. { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
  2110. { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
  2111. { "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
  2112. { "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
  2113. { "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
  2114. { "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
  2115. };
  2116. #define BCM_ENETSW_STATS_LEN \
  2117. (sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
  2118. static void bcm_enetsw_get_strings(struct net_device *netdev,
  2119. u32 stringset, u8 *data)
  2120. {
  2121. int i;
  2122. switch (stringset) {
  2123. case ETH_SS_STATS:
  2124. for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
  2125. memcpy(data + i * ETH_GSTRING_LEN,
  2126. bcm_enetsw_gstrings_stats[i].stat_string,
  2127. ETH_GSTRING_LEN);
  2128. }
  2129. break;
  2130. }
  2131. }
  2132. static int bcm_enetsw_get_sset_count(struct net_device *netdev,
  2133. int string_set)
  2134. {
  2135. switch (string_set) {
  2136. case ETH_SS_STATS:
  2137. return BCM_ENETSW_STATS_LEN;
  2138. default:
  2139. return -EINVAL;
  2140. }
  2141. }
  2142. static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
  2143. struct ethtool_drvinfo *drvinfo)
  2144. {
  2145. strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
  2146. strncpy(drvinfo->version, bcm_enet_driver_version, 32);
  2147. strncpy(drvinfo->fw_version, "N/A", 32);
  2148. strncpy(drvinfo->bus_info, "bcm63xx", 32);
  2149. drvinfo->n_stats = BCM_ENETSW_STATS_LEN;
  2150. }
  2151. static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
  2152. struct ethtool_stats *stats,
  2153. u64 *data)
  2154. {
  2155. struct bcm_enet_priv *priv;
  2156. int i;
  2157. priv = netdev_priv(netdev);
  2158. for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
  2159. const struct bcm_enet_stats *s;
  2160. u32 lo, hi;
  2161. char *p;
  2162. int reg;
  2163. s = &bcm_enetsw_gstrings_stats[i];
  2164. reg = s->mib_reg;
  2165. if (reg == -1)
  2166. continue;
  2167. lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
  2168. p = (char *)priv + s->stat_offset;
  2169. if (s->sizeof_stat == sizeof(u64)) {
  2170. hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
  2171. *(u64 *)p = ((u64)hi << 32 | lo);
  2172. } else {
  2173. *(u32 *)p = lo;
  2174. }
  2175. }
  2176. for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
  2177. const struct bcm_enet_stats *s;
  2178. char *p;
  2179. s = &bcm_enetsw_gstrings_stats[i];
  2180. if (s->mib_reg == -1)
  2181. p = (char *)&netdev->stats + s->stat_offset;
  2182. else
  2183. p = (char *)priv + s->stat_offset;
  2184. data[i] = (s->sizeof_stat == sizeof(u64)) ?
  2185. *(u64 *)p : *(u32 *)p;
  2186. }
  2187. }
  2188. static void bcm_enetsw_get_ringparam(struct net_device *dev,
  2189. struct ethtool_ringparam *ering)
  2190. {
  2191. struct bcm_enet_priv *priv;
  2192. priv = netdev_priv(dev);
  2193. /* rx/tx ring is actually only limited by memory */
  2194. ering->rx_max_pending = 8192;
  2195. ering->tx_max_pending = 8192;
  2196. ering->rx_mini_max_pending = 0;
  2197. ering->rx_jumbo_max_pending = 0;
  2198. ering->rx_pending = priv->rx_ring_size;
  2199. ering->tx_pending = priv->tx_ring_size;
  2200. }
  2201. static int bcm_enetsw_set_ringparam(struct net_device *dev,
  2202. struct ethtool_ringparam *ering)
  2203. {
  2204. struct bcm_enet_priv *priv;
  2205. int was_running;
  2206. priv = netdev_priv(dev);
  2207. was_running = 0;
  2208. if (netif_running(dev)) {
  2209. bcm_enetsw_stop(dev);
  2210. was_running = 1;
  2211. }
  2212. priv->rx_ring_size = ering->rx_pending;
  2213. priv->tx_ring_size = ering->tx_pending;
  2214. if (was_running) {
  2215. int err;
  2216. err = bcm_enetsw_open(dev);
  2217. if (err)
  2218. dev_close(dev);
  2219. }
  2220. return 0;
  2221. }
  2222. static struct ethtool_ops bcm_enetsw_ethtool_ops = {
  2223. .get_strings = bcm_enetsw_get_strings,
  2224. .get_sset_count = bcm_enetsw_get_sset_count,
  2225. .get_ethtool_stats = bcm_enetsw_get_ethtool_stats,
  2226. .get_drvinfo = bcm_enetsw_get_drvinfo,
  2227. .get_ringparam = bcm_enetsw_get_ringparam,
  2228. .set_ringparam = bcm_enetsw_set_ringparam,
  2229. };
  2230. /* allocate netdevice, request register memory and register device. */
  2231. static int bcm_enetsw_probe(struct platform_device *pdev)
  2232. {
  2233. struct bcm_enet_priv *priv;
  2234. struct net_device *dev;
  2235. struct bcm63xx_enetsw_platform_data *pd;
  2236. struct resource *res_mem;
  2237. int ret, irq_rx, irq_tx;
  2238. /* stop if shared driver failed, assume driver->probe will be
  2239. * called in the same order we register devices (correct ?)
  2240. */
  2241. if (!bcm_enet_shared_base[0])
  2242. return -ENODEV;
  2243. res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2244. irq_rx = platform_get_irq(pdev, 0);
  2245. irq_tx = platform_get_irq(pdev, 1);
  2246. if (!res_mem || irq_rx < 0)
  2247. return -ENODEV;
  2248. ret = 0;
  2249. dev = alloc_etherdev(sizeof(*priv));
  2250. if (!dev)
  2251. return -ENOMEM;
  2252. priv = netdev_priv(dev);
  2253. memset(priv, 0, sizeof(*priv));
  2254. /* initialize default and fetch platform data */
  2255. priv->enet_is_sw = true;
  2256. priv->irq_rx = irq_rx;
  2257. priv->irq_tx = irq_tx;
  2258. priv->rx_ring_size = BCMENET_DEF_RX_DESC;
  2259. priv->tx_ring_size = BCMENET_DEF_TX_DESC;
  2260. priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
  2261. pd = dev_get_platdata(&pdev->dev);
  2262. if (pd) {
  2263. memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
  2264. memcpy(priv->used_ports, pd->used_ports,
  2265. sizeof(pd->used_ports));
  2266. priv->num_ports = pd->num_ports;
  2267. priv->dma_has_sram = pd->dma_has_sram;
  2268. priv->dma_chan_en_mask = pd->dma_chan_en_mask;
  2269. priv->dma_chan_int_mask = pd->dma_chan_int_mask;
  2270. priv->dma_chan_width = pd->dma_chan_width;
  2271. }
  2272. ret = compute_hw_mtu(priv, dev->mtu);
  2273. if (ret)
  2274. goto out;
  2275. if (!request_mem_region(res_mem->start, resource_size(res_mem),
  2276. "bcm63xx_enetsw")) {
  2277. ret = -EBUSY;
  2278. goto out;
  2279. }
  2280. priv->base = ioremap(res_mem->start, resource_size(res_mem));
  2281. if (priv->base == NULL) {
  2282. ret = -ENOMEM;
  2283. goto out_release_mem;
  2284. }
  2285. priv->mac_clk = clk_get(&pdev->dev, "enetsw");
  2286. if (IS_ERR(priv->mac_clk)) {
  2287. ret = PTR_ERR(priv->mac_clk);
  2288. goto out_unmap;
  2289. }
  2290. clk_enable(priv->mac_clk);
  2291. priv->rx_chan = 0;
  2292. priv->tx_chan = 1;
  2293. spin_lock_init(&priv->rx_lock);
  2294. /* init rx timeout (used for oom) */
  2295. init_timer(&priv->rx_timeout);
  2296. priv->rx_timeout.function = bcm_enet_refill_rx_timer;
  2297. priv->rx_timeout.data = (unsigned long)dev;
  2298. /* register netdevice */
  2299. dev->netdev_ops = &bcm_enetsw_ops;
  2300. netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
  2301. dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
  2302. SET_NETDEV_DEV(dev, &pdev->dev);
  2303. spin_lock_init(&priv->enetsw_mdio_lock);
  2304. ret = register_netdev(dev);
  2305. if (ret)
  2306. goto out_put_clk;
  2307. netif_carrier_off(dev);
  2308. platform_set_drvdata(pdev, dev);
  2309. priv->pdev = pdev;
  2310. priv->net_dev = dev;
  2311. return 0;
  2312. out_put_clk:
  2313. clk_put(priv->mac_clk);
  2314. out_unmap:
  2315. iounmap(priv->base);
  2316. out_release_mem:
  2317. release_mem_region(res_mem->start, resource_size(res_mem));
  2318. out:
  2319. free_netdev(dev);
  2320. return ret;
  2321. }
  2322. /* exit func, stops hardware and unregisters netdevice */
  2323. static int bcm_enetsw_remove(struct platform_device *pdev)
  2324. {
  2325. struct bcm_enet_priv *priv;
  2326. struct net_device *dev;
  2327. struct resource *res;
  2328. /* stop netdevice */
  2329. dev = platform_get_drvdata(pdev);
  2330. priv = netdev_priv(dev);
  2331. unregister_netdev(dev);
  2332. /* release device resources */
  2333. iounmap(priv->base);
  2334. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2335. release_mem_region(res->start, resource_size(res));
  2336. free_netdev(dev);
  2337. return 0;
  2338. }
  2339. struct platform_driver bcm63xx_enetsw_driver = {
  2340. .probe = bcm_enetsw_probe,
  2341. .remove = bcm_enetsw_remove,
  2342. .driver = {
  2343. .name = "bcm63xx_enetsw",
  2344. .owner = THIS_MODULE,
  2345. },
  2346. };
  2347. /* reserve & remap memory space shared between all macs */
  2348. static int bcm_enet_shared_probe(struct platform_device *pdev)
  2349. {
  2350. struct resource *res;
  2351. void __iomem *p[3];
  2352. unsigned int i;
  2353. memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
  2354. for (i = 0; i < 3; i++) {
  2355. res = platform_get_resource(pdev, IORESOURCE_MEM, i);
  2356. p[i] = devm_ioremap_resource(&pdev->dev, res);
  2357. if (IS_ERR(p[i]))
  2358. return PTR_ERR(p[i]);
  2359. }
  2360. memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
  2361. return 0;
  2362. }
  2363. static int bcm_enet_shared_remove(struct platform_device *pdev)
  2364. {
  2365. return 0;
  2366. }
  2367. /* this "shared" driver is needed because both macs share a single
  2368. * address space
  2369. */
  2370. struct platform_driver bcm63xx_enet_shared_driver = {
  2371. .probe = bcm_enet_shared_probe,
  2372. .remove = bcm_enet_shared_remove,
  2373. .driver = {
  2374. .name = "bcm63xx_enet_shared",
  2375. .owner = THIS_MODULE,
  2376. },
  2377. };
  2378. /* entry point */
  2379. static int __init bcm_enet_init(void)
  2380. {
  2381. int ret;
  2382. ret = platform_driver_register(&bcm63xx_enet_shared_driver);
  2383. if (ret)
  2384. return ret;
  2385. ret = platform_driver_register(&bcm63xx_enet_driver);
  2386. if (ret)
  2387. platform_driver_unregister(&bcm63xx_enet_shared_driver);
  2388. ret = platform_driver_register(&bcm63xx_enetsw_driver);
  2389. if (ret) {
  2390. platform_driver_unregister(&bcm63xx_enet_driver);
  2391. platform_driver_unregister(&bcm63xx_enet_shared_driver);
  2392. }
  2393. return ret;
  2394. }
  2395. static void __exit bcm_enet_exit(void)
  2396. {
  2397. platform_driver_unregister(&bcm63xx_enet_driver);
  2398. platform_driver_unregister(&bcm63xx_enetsw_driver);
  2399. platform_driver_unregister(&bcm63xx_enet_shared_driver);
  2400. }
  2401. module_init(bcm_enet_init);
  2402. module_exit(bcm_enet_exit);
  2403. MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
  2404. MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
  2405. MODULE_LICENSE("GPL");