xgene_enet_main.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517
  1. /* Applied Micro X-Gene SoC Ethernet Driver
  2. *
  3. * Copyright (c) 2014, Applied Micro Circuits Corporation
  4. * Authors: Iyappan Subramanian <isubramanian@apm.com>
  5. * Ravi Patel <rapatel@apm.com>
  6. * Keyur Chudgar <kchudgar@apm.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the
  10. * Free Software Foundation; either version 2 of the License, or (at your
  11. * option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. */
  21. #include "xgene_enet_main.h"
  22. #include "xgene_enet_hw.h"
  23. #include "xgene_enet_sgmac.h"
  24. #include "xgene_enet_xgmac.h"
  25. #define RES_ENET_CSR 0
  26. #define RES_RING_CSR 1
  27. #define RES_RING_CMD 2
  28. static const struct of_device_id xgene_enet_of_match[];
  29. static const struct acpi_device_id xgene_enet_acpi_match[];
  30. static void xgene_enet_init_bufpool(struct xgene_enet_desc_ring *buf_pool)
  31. {
  32. struct xgene_enet_raw_desc16 *raw_desc;
  33. int i;
  34. for (i = 0; i < buf_pool->slots; i++) {
  35. raw_desc = &buf_pool->raw_desc16[i];
  36. /* Hardware expects descriptor in little endian format */
  37. raw_desc->m0 = cpu_to_le64(i |
  38. SET_VAL(FPQNUM, buf_pool->dst_ring_num) |
  39. SET_VAL(STASH, 3));
  40. }
  41. }
  42. static int xgene_enet_refill_bufpool(struct xgene_enet_desc_ring *buf_pool,
  43. u32 nbuf)
  44. {
  45. struct sk_buff *skb;
  46. struct xgene_enet_raw_desc16 *raw_desc;
  47. struct xgene_enet_pdata *pdata;
  48. struct net_device *ndev;
  49. struct device *dev;
  50. dma_addr_t dma_addr;
  51. u32 tail = buf_pool->tail;
  52. u32 slots = buf_pool->slots - 1;
  53. u16 bufdatalen, len;
  54. int i;
  55. ndev = buf_pool->ndev;
  56. dev = ndev_to_dev(buf_pool->ndev);
  57. pdata = netdev_priv(ndev);
  58. bufdatalen = BUF_LEN_CODE_2K | (SKB_BUFFER_SIZE & GENMASK(11, 0));
  59. len = XGENE_ENET_MAX_MTU;
  60. for (i = 0; i < nbuf; i++) {
  61. raw_desc = &buf_pool->raw_desc16[tail];
  62. skb = netdev_alloc_skb_ip_align(ndev, len);
  63. if (unlikely(!skb))
  64. return -ENOMEM;
  65. buf_pool->rx_skb[tail] = skb;
  66. dma_addr = dma_map_single(dev, skb->data, len, DMA_FROM_DEVICE);
  67. if (dma_mapping_error(dev, dma_addr)) {
  68. netdev_err(ndev, "DMA mapping error\n");
  69. dev_kfree_skb_any(skb);
  70. return -EINVAL;
  71. }
  72. raw_desc->m1 = cpu_to_le64(SET_VAL(DATAADDR, dma_addr) |
  73. SET_VAL(BUFDATALEN, bufdatalen) |
  74. SET_BIT(COHERENT));
  75. tail = (tail + 1) & slots;
  76. }
  77. pdata->ring_ops->wr_cmd(buf_pool, nbuf);
  78. buf_pool->tail = tail;
  79. return 0;
  80. }
  81. static u16 xgene_enet_dst_ring_num(struct xgene_enet_desc_ring *ring)
  82. {
  83. struct xgene_enet_pdata *pdata = netdev_priv(ring->ndev);
  84. return ((u16)pdata->rm << 10) | ring->num;
  85. }
  86. static u8 xgene_enet_hdr_len(const void *data)
  87. {
  88. const struct ethhdr *eth = data;
  89. return (eth->h_proto == htons(ETH_P_8021Q)) ? VLAN_ETH_HLEN : ETH_HLEN;
  90. }
  91. static void xgene_enet_delete_bufpool(struct xgene_enet_desc_ring *buf_pool)
  92. {
  93. struct xgene_enet_pdata *pdata = netdev_priv(buf_pool->ndev);
  94. struct xgene_enet_raw_desc16 *raw_desc;
  95. u32 slots = buf_pool->slots - 1;
  96. u32 tail = buf_pool->tail;
  97. u32 userinfo;
  98. int i, len;
  99. len = pdata->ring_ops->len(buf_pool);
  100. for (i = 0; i < len; i++) {
  101. tail = (tail - 1) & slots;
  102. raw_desc = &buf_pool->raw_desc16[tail];
  103. /* Hardware stores descriptor in little endian format */
  104. userinfo = GET_VAL(USERINFO, le64_to_cpu(raw_desc->m0));
  105. dev_kfree_skb_any(buf_pool->rx_skb[userinfo]);
  106. }
  107. pdata->ring_ops->wr_cmd(buf_pool, -len);
  108. buf_pool->tail = tail;
  109. }
  110. static irqreturn_t xgene_enet_rx_irq(const int irq, void *data)
  111. {
  112. struct xgene_enet_desc_ring *rx_ring = data;
  113. if (napi_schedule_prep(&rx_ring->napi)) {
  114. disable_irq_nosync(irq);
  115. __napi_schedule(&rx_ring->napi);
  116. }
  117. return IRQ_HANDLED;
  118. }
  119. static int xgene_enet_tx_completion(struct xgene_enet_desc_ring *cp_ring,
  120. struct xgene_enet_raw_desc *raw_desc)
  121. {
  122. struct sk_buff *skb;
  123. struct device *dev;
  124. skb_frag_t *frag;
  125. dma_addr_t *frag_dma_addr;
  126. u16 skb_index;
  127. u8 status;
  128. int i, ret = 0;
  129. skb_index = GET_VAL(USERINFO, le64_to_cpu(raw_desc->m0));
  130. skb = cp_ring->cp_skb[skb_index];
  131. frag_dma_addr = &cp_ring->frag_dma_addr[skb_index * MAX_SKB_FRAGS];
  132. dev = ndev_to_dev(cp_ring->ndev);
  133. dma_unmap_single(dev, GET_VAL(DATAADDR, le64_to_cpu(raw_desc->m1)),
  134. skb_headlen(skb),
  135. DMA_TO_DEVICE);
  136. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  137. frag = &skb_shinfo(skb)->frags[i];
  138. dma_unmap_page(dev, frag_dma_addr[i], skb_frag_size(frag),
  139. DMA_TO_DEVICE);
  140. }
  141. /* Checking for error */
  142. status = GET_VAL(LERR, le64_to_cpu(raw_desc->m0));
  143. if (unlikely(status > 2)) {
  144. xgene_enet_parse_error(cp_ring, netdev_priv(cp_ring->ndev),
  145. status);
  146. ret = -EIO;
  147. }
  148. if (likely(skb)) {
  149. dev_kfree_skb_any(skb);
  150. } else {
  151. netdev_err(cp_ring->ndev, "completion skb is NULL\n");
  152. ret = -EIO;
  153. }
  154. return ret;
  155. }
  156. static u64 xgene_enet_work_msg(struct sk_buff *skb)
  157. {
  158. struct net_device *ndev = skb->dev;
  159. struct xgene_enet_pdata *pdata = netdev_priv(ndev);
  160. struct iphdr *iph;
  161. u8 l3hlen = 0, l4hlen = 0;
  162. u8 ethhdr, proto = 0, csum_enable = 0;
  163. u64 hopinfo = 0;
  164. u32 hdr_len, mss = 0;
  165. u32 i, len, nr_frags;
  166. ethhdr = xgene_enet_hdr_len(skb->data);
  167. if (unlikely(skb->protocol != htons(ETH_P_IP)) &&
  168. unlikely(skb->protocol != htons(ETH_P_8021Q)))
  169. goto out;
  170. if (unlikely(!(skb->dev->features & NETIF_F_IP_CSUM)))
  171. goto out;
  172. iph = ip_hdr(skb);
  173. if (unlikely(ip_is_fragment(iph)))
  174. goto out;
  175. if (likely(iph->protocol == IPPROTO_TCP)) {
  176. l4hlen = tcp_hdrlen(skb) >> 2;
  177. csum_enable = 1;
  178. proto = TSO_IPPROTO_TCP;
  179. if (ndev->features & NETIF_F_TSO) {
  180. hdr_len = ethhdr + ip_hdrlen(skb) + tcp_hdrlen(skb);
  181. mss = skb_shinfo(skb)->gso_size;
  182. if (skb_is_nonlinear(skb)) {
  183. len = skb_headlen(skb);
  184. nr_frags = skb_shinfo(skb)->nr_frags;
  185. for (i = 0; i < 2 && i < nr_frags; i++)
  186. len += skb_shinfo(skb)->frags[i].size;
  187. /* HW requires header must reside in 3 buffer */
  188. if (unlikely(hdr_len > len)) {
  189. if (skb_linearize(skb))
  190. return 0;
  191. }
  192. }
  193. if (!mss || ((skb->len - hdr_len) <= mss))
  194. goto out;
  195. if (mss != pdata->mss) {
  196. pdata->mss = mss;
  197. pdata->mac_ops->set_mss(pdata);
  198. }
  199. hopinfo |= SET_BIT(ET);
  200. }
  201. } else if (iph->protocol == IPPROTO_UDP) {
  202. l4hlen = UDP_HDR_SIZE;
  203. csum_enable = 1;
  204. }
  205. out:
  206. l3hlen = ip_hdrlen(skb) >> 2;
  207. hopinfo |= SET_VAL(TCPHDR, l4hlen) |
  208. SET_VAL(IPHDR, l3hlen) |
  209. SET_VAL(ETHHDR, ethhdr) |
  210. SET_VAL(EC, csum_enable) |
  211. SET_VAL(IS, proto) |
  212. SET_BIT(IC) |
  213. SET_BIT(TYPE_ETH_WORK_MESSAGE);
  214. return hopinfo;
  215. }
  216. static u16 xgene_enet_encode_len(u16 len)
  217. {
  218. return (len == BUFLEN_16K) ? 0 : len;
  219. }
  220. static void xgene_set_addr_len(__le64 *desc, u32 idx, dma_addr_t addr, u32 len)
  221. {
  222. desc[idx ^ 1] = cpu_to_le64(SET_VAL(DATAADDR, addr) |
  223. SET_VAL(BUFDATALEN, len));
  224. }
  225. static __le64 *xgene_enet_get_exp_bufs(struct xgene_enet_desc_ring *ring)
  226. {
  227. __le64 *exp_bufs;
  228. exp_bufs = &ring->exp_bufs[ring->exp_buf_tail * MAX_EXP_BUFFS];
  229. memset(exp_bufs, 0, sizeof(__le64) * MAX_EXP_BUFFS);
  230. ring->exp_buf_tail = (ring->exp_buf_tail + 1) & ((ring->slots / 2) - 1);
  231. return exp_bufs;
  232. }
  233. static dma_addr_t *xgene_get_frag_dma_array(struct xgene_enet_desc_ring *ring)
  234. {
  235. return &ring->cp_ring->frag_dma_addr[ring->tail * MAX_SKB_FRAGS];
  236. }
  237. static int xgene_enet_setup_tx_desc(struct xgene_enet_desc_ring *tx_ring,
  238. struct sk_buff *skb)
  239. {
  240. struct device *dev = ndev_to_dev(tx_ring->ndev);
  241. struct xgene_enet_raw_desc *raw_desc;
  242. __le64 *exp_desc = NULL, *exp_bufs = NULL;
  243. dma_addr_t dma_addr, pbuf_addr, *frag_dma_addr;
  244. skb_frag_t *frag;
  245. u16 tail = tx_ring->tail;
  246. u64 hopinfo;
  247. u32 len, hw_len;
  248. u8 ll = 0, nv = 0, idx = 0;
  249. bool split = false;
  250. u32 size, offset, ell_bytes = 0;
  251. u32 i, fidx, nr_frags, count = 1;
  252. raw_desc = &tx_ring->raw_desc[tail];
  253. tail = (tail + 1) & (tx_ring->slots - 1);
  254. memset(raw_desc, 0, sizeof(struct xgene_enet_raw_desc));
  255. hopinfo = xgene_enet_work_msg(skb);
  256. if (!hopinfo)
  257. return -EINVAL;
  258. raw_desc->m3 = cpu_to_le64(SET_VAL(HENQNUM, tx_ring->dst_ring_num) |
  259. hopinfo);
  260. len = skb_headlen(skb);
  261. hw_len = xgene_enet_encode_len(len);
  262. dma_addr = dma_map_single(dev, skb->data, len, DMA_TO_DEVICE);
  263. if (dma_mapping_error(dev, dma_addr)) {
  264. netdev_err(tx_ring->ndev, "DMA mapping error\n");
  265. return -EINVAL;
  266. }
  267. /* Hardware expects descriptor in little endian format */
  268. raw_desc->m1 = cpu_to_le64(SET_VAL(DATAADDR, dma_addr) |
  269. SET_VAL(BUFDATALEN, hw_len) |
  270. SET_BIT(COHERENT));
  271. if (!skb_is_nonlinear(skb))
  272. goto out;
  273. /* scatter gather */
  274. nv = 1;
  275. exp_desc = (void *)&tx_ring->raw_desc[tail];
  276. tail = (tail + 1) & (tx_ring->slots - 1);
  277. memset(exp_desc, 0, sizeof(struct xgene_enet_raw_desc));
  278. nr_frags = skb_shinfo(skb)->nr_frags;
  279. for (i = nr_frags; i < 4 ; i++)
  280. exp_desc[i ^ 1] = cpu_to_le64(LAST_BUFFER);
  281. frag_dma_addr = xgene_get_frag_dma_array(tx_ring);
  282. for (i = 0, fidx = 0; split || (fidx < nr_frags); i++) {
  283. if (!split) {
  284. frag = &skb_shinfo(skb)->frags[fidx];
  285. size = skb_frag_size(frag);
  286. offset = 0;
  287. pbuf_addr = skb_frag_dma_map(dev, frag, 0, size,
  288. DMA_TO_DEVICE);
  289. if (dma_mapping_error(dev, pbuf_addr))
  290. return -EINVAL;
  291. frag_dma_addr[fidx] = pbuf_addr;
  292. fidx++;
  293. if (size > BUFLEN_16K)
  294. split = true;
  295. }
  296. if (size > BUFLEN_16K) {
  297. len = BUFLEN_16K;
  298. size -= BUFLEN_16K;
  299. } else {
  300. len = size;
  301. split = false;
  302. }
  303. dma_addr = pbuf_addr + offset;
  304. hw_len = xgene_enet_encode_len(len);
  305. switch (i) {
  306. case 0:
  307. case 1:
  308. case 2:
  309. xgene_set_addr_len(exp_desc, i, dma_addr, hw_len);
  310. break;
  311. case 3:
  312. if (split || (fidx != nr_frags)) {
  313. exp_bufs = xgene_enet_get_exp_bufs(tx_ring);
  314. xgene_set_addr_len(exp_bufs, idx, dma_addr,
  315. hw_len);
  316. idx++;
  317. ell_bytes += len;
  318. } else {
  319. xgene_set_addr_len(exp_desc, i, dma_addr,
  320. hw_len);
  321. }
  322. break;
  323. default:
  324. xgene_set_addr_len(exp_bufs, idx, dma_addr, hw_len);
  325. idx++;
  326. ell_bytes += len;
  327. break;
  328. }
  329. if (split)
  330. offset += BUFLEN_16K;
  331. }
  332. count++;
  333. if (idx) {
  334. ll = 1;
  335. dma_addr = dma_map_single(dev, exp_bufs,
  336. sizeof(u64) * MAX_EXP_BUFFS,
  337. DMA_TO_DEVICE);
  338. if (dma_mapping_error(dev, dma_addr)) {
  339. dev_kfree_skb_any(skb);
  340. return -EINVAL;
  341. }
  342. i = ell_bytes >> LL_BYTES_LSB_LEN;
  343. exp_desc[2] = cpu_to_le64(SET_VAL(DATAADDR, dma_addr) |
  344. SET_VAL(LL_BYTES_MSB, i) |
  345. SET_VAL(LL_LEN, idx));
  346. raw_desc->m2 = cpu_to_le64(SET_VAL(LL_BYTES_LSB, ell_bytes));
  347. }
  348. out:
  349. raw_desc->m0 = cpu_to_le64(SET_VAL(LL, ll) | SET_VAL(NV, nv) |
  350. SET_VAL(USERINFO, tx_ring->tail));
  351. tx_ring->cp_ring->cp_skb[tx_ring->tail] = skb;
  352. tx_ring->tail = tail;
  353. return count;
  354. }
  355. static netdev_tx_t xgene_enet_start_xmit(struct sk_buff *skb,
  356. struct net_device *ndev)
  357. {
  358. struct xgene_enet_pdata *pdata = netdev_priv(ndev);
  359. struct xgene_enet_desc_ring *tx_ring = pdata->tx_ring;
  360. struct xgene_enet_desc_ring *cp_ring = tx_ring->cp_ring;
  361. u32 tx_level, cq_level;
  362. int count;
  363. tx_level = pdata->ring_ops->len(tx_ring);
  364. cq_level = pdata->ring_ops->len(cp_ring);
  365. if (unlikely(tx_level > pdata->tx_qcnt_hi ||
  366. cq_level > pdata->cp_qcnt_hi)) {
  367. netif_stop_queue(ndev);
  368. return NETDEV_TX_BUSY;
  369. }
  370. if (skb_padto(skb, XGENE_MIN_ENET_FRAME_SIZE))
  371. return NETDEV_TX_OK;
  372. count = xgene_enet_setup_tx_desc(tx_ring, skb);
  373. if (count <= 0) {
  374. dev_kfree_skb_any(skb);
  375. return NETDEV_TX_OK;
  376. }
  377. pdata->ring_ops->wr_cmd(tx_ring, count);
  378. skb_tx_timestamp(skb);
  379. pdata->stats.tx_packets++;
  380. pdata->stats.tx_bytes += skb->len;
  381. return NETDEV_TX_OK;
  382. }
  383. static void xgene_enet_skip_csum(struct sk_buff *skb)
  384. {
  385. struct iphdr *iph = ip_hdr(skb);
  386. if (!ip_is_fragment(iph) ||
  387. (iph->protocol != IPPROTO_TCP && iph->protocol != IPPROTO_UDP)) {
  388. skb->ip_summed = CHECKSUM_UNNECESSARY;
  389. }
  390. }
  391. static int xgene_enet_rx_frame(struct xgene_enet_desc_ring *rx_ring,
  392. struct xgene_enet_raw_desc *raw_desc)
  393. {
  394. struct net_device *ndev;
  395. struct xgene_enet_pdata *pdata;
  396. struct device *dev;
  397. struct xgene_enet_desc_ring *buf_pool;
  398. u32 datalen, skb_index;
  399. struct sk_buff *skb;
  400. u8 status;
  401. int ret = 0;
  402. ndev = rx_ring->ndev;
  403. pdata = netdev_priv(ndev);
  404. dev = ndev_to_dev(rx_ring->ndev);
  405. buf_pool = rx_ring->buf_pool;
  406. dma_unmap_single(dev, GET_VAL(DATAADDR, le64_to_cpu(raw_desc->m1)),
  407. XGENE_ENET_MAX_MTU, DMA_FROM_DEVICE);
  408. skb_index = GET_VAL(USERINFO, le64_to_cpu(raw_desc->m0));
  409. skb = buf_pool->rx_skb[skb_index];
  410. /* checking for error */
  411. status = GET_VAL(LERR, le64_to_cpu(raw_desc->m0));
  412. if (unlikely(status > 2)) {
  413. dev_kfree_skb_any(skb);
  414. xgene_enet_parse_error(rx_ring, netdev_priv(rx_ring->ndev),
  415. status);
  416. pdata->stats.rx_dropped++;
  417. ret = -EIO;
  418. goto out;
  419. }
  420. /* strip off CRC as HW isn't doing this */
  421. datalen = GET_VAL(BUFDATALEN, le64_to_cpu(raw_desc->m1));
  422. datalen = (datalen & DATALEN_MASK) - 4;
  423. prefetch(skb->data - NET_IP_ALIGN);
  424. skb_put(skb, datalen);
  425. skb_checksum_none_assert(skb);
  426. skb->protocol = eth_type_trans(skb, ndev);
  427. if (likely((ndev->features & NETIF_F_IP_CSUM) &&
  428. skb->protocol == htons(ETH_P_IP))) {
  429. xgene_enet_skip_csum(skb);
  430. }
  431. pdata->stats.rx_packets++;
  432. pdata->stats.rx_bytes += datalen;
  433. napi_gro_receive(&rx_ring->napi, skb);
  434. out:
  435. if (--rx_ring->nbufpool == 0) {
  436. ret = xgene_enet_refill_bufpool(buf_pool, NUM_BUFPOOL);
  437. rx_ring->nbufpool = NUM_BUFPOOL;
  438. }
  439. return ret;
  440. }
  441. static bool is_rx_desc(struct xgene_enet_raw_desc *raw_desc)
  442. {
  443. return GET_VAL(FPQNUM, le64_to_cpu(raw_desc->m0)) ? true : false;
  444. }
  445. static int xgene_enet_process_ring(struct xgene_enet_desc_ring *ring,
  446. int budget)
  447. {
  448. struct xgene_enet_pdata *pdata = netdev_priv(ring->ndev);
  449. struct xgene_enet_raw_desc *raw_desc, *exp_desc;
  450. u16 head = ring->head;
  451. u16 slots = ring->slots - 1;
  452. int ret, count = 0, processed = 0;
  453. do {
  454. raw_desc = &ring->raw_desc[head];
  455. exp_desc = NULL;
  456. if (unlikely(xgene_enet_is_desc_slot_empty(raw_desc)))
  457. break;
  458. /* read fpqnum field after dataaddr field */
  459. dma_rmb();
  460. if (GET_BIT(NV, le64_to_cpu(raw_desc->m0))) {
  461. head = (head + 1) & slots;
  462. exp_desc = &ring->raw_desc[head];
  463. if (unlikely(xgene_enet_is_desc_slot_empty(exp_desc))) {
  464. head = (head - 1) & slots;
  465. break;
  466. }
  467. dma_rmb();
  468. count++;
  469. }
  470. if (is_rx_desc(raw_desc))
  471. ret = xgene_enet_rx_frame(ring, raw_desc);
  472. else
  473. ret = xgene_enet_tx_completion(ring, raw_desc);
  474. xgene_enet_mark_desc_slot_empty(raw_desc);
  475. if (exp_desc)
  476. xgene_enet_mark_desc_slot_empty(exp_desc);
  477. head = (head + 1) & slots;
  478. count++;
  479. processed++;
  480. if (ret)
  481. break;
  482. } while (--budget);
  483. if (likely(count)) {
  484. pdata->ring_ops->wr_cmd(ring, -count);
  485. ring->head = head;
  486. if (netif_queue_stopped(ring->ndev)) {
  487. if (pdata->ring_ops->len(ring) < pdata->cp_qcnt_low)
  488. netif_wake_queue(ring->ndev);
  489. }
  490. }
  491. return processed;
  492. }
  493. static int xgene_enet_napi(struct napi_struct *napi, const int budget)
  494. {
  495. struct xgene_enet_desc_ring *ring;
  496. int processed;
  497. ring = container_of(napi, struct xgene_enet_desc_ring, napi);
  498. processed = xgene_enet_process_ring(ring, budget);
  499. if (processed != budget) {
  500. napi_complete(napi);
  501. enable_irq(ring->irq);
  502. }
  503. return processed;
  504. }
  505. static void xgene_enet_timeout(struct net_device *ndev)
  506. {
  507. struct xgene_enet_pdata *pdata = netdev_priv(ndev);
  508. pdata->mac_ops->reset(pdata);
  509. }
  510. static int xgene_enet_register_irq(struct net_device *ndev)
  511. {
  512. struct xgene_enet_pdata *pdata = netdev_priv(ndev);
  513. struct device *dev = ndev_to_dev(ndev);
  514. struct xgene_enet_desc_ring *ring;
  515. int ret;
  516. ring = pdata->rx_ring;
  517. ret = devm_request_irq(dev, ring->irq, xgene_enet_rx_irq,
  518. IRQF_SHARED, ring->irq_name, ring);
  519. if (ret)
  520. netdev_err(ndev, "Failed to request irq %s\n", ring->irq_name);
  521. if (pdata->cq_cnt) {
  522. ring = pdata->tx_ring->cp_ring;
  523. ret = devm_request_irq(dev, ring->irq, xgene_enet_rx_irq,
  524. IRQF_SHARED, ring->irq_name, ring);
  525. if (ret) {
  526. netdev_err(ndev, "Failed to request irq %s\n",
  527. ring->irq_name);
  528. }
  529. }
  530. return ret;
  531. }
  532. static void xgene_enet_free_irq(struct net_device *ndev)
  533. {
  534. struct xgene_enet_pdata *pdata;
  535. struct device *dev;
  536. pdata = netdev_priv(ndev);
  537. dev = ndev_to_dev(ndev);
  538. devm_free_irq(dev, pdata->rx_ring->irq, pdata->rx_ring);
  539. if (pdata->cq_cnt) {
  540. devm_free_irq(dev, pdata->tx_ring->cp_ring->irq,
  541. pdata->tx_ring->cp_ring);
  542. }
  543. }
  544. static void xgene_enet_napi_enable(struct xgene_enet_pdata *pdata)
  545. {
  546. struct napi_struct *napi;
  547. napi = &pdata->rx_ring->napi;
  548. napi_enable(napi);
  549. if (pdata->cq_cnt) {
  550. napi = &pdata->tx_ring->cp_ring->napi;
  551. napi_enable(napi);
  552. }
  553. }
  554. static void xgene_enet_napi_disable(struct xgene_enet_pdata *pdata)
  555. {
  556. struct napi_struct *napi;
  557. napi = &pdata->rx_ring->napi;
  558. napi_disable(napi);
  559. if (pdata->cq_cnt) {
  560. napi = &pdata->tx_ring->cp_ring->napi;
  561. napi_disable(napi);
  562. }
  563. }
  564. static int xgene_enet_open(struct net_device *ndev)
  565. {
  566. struct xgene_enet_pdata *pdata = netdev_priv(ndev);
  567. struct xgene_mac_ops *mac_ops = pdata->mac_ops;
  568. int ret;
  569. mac_ops->tx_enable(pdata);
  570. mac_ops->rx_enable(pdata);
  571. ret = xgene_enet_register_irq(ndev);
  572. if (ret)
  573. return ret;
  574. xgene_enet_napi_enable(pdata);
  575. if (pdata->phy_mode == PHY_INTERFACE_MODE_RGMII)
  576. phy_start(pdata->phy_dev);
  577. else
  578. schedule_delayed_work(&pdata->link_work, PHY_POLL_LINK_OFF);
  579. netif_carrier_off(ndev);
  580. netif_start_queue(ndev);
  581. return ret;
  582. }
  583. static int xgene_enet_close(struct net_device *ndev)
  584. {
  585. struct xgene_enet_pdata *pdata = netdev_priv(ndev);
  586. struct xgene_mac_ops *mac_ops = pdata->mac_ops;
  587. netif_stop_queue(ndev);
  588. if (pdata->phy_mode == PHY_INTERFACE_MODE_RGMII)
  589. phy_stop(pdata->phy_dev);
  590. else
  591. cancel_delayed_work_sync(&pdata->link_work);
  592. xgene_enet_napi_disable(pdata);
  593. xgene_enet_free_irq(ndev);
  594. xgene_enet_process_ring(pdata->rx_ring, -1);
  595. mac_ops->tx_disable(pdata);
  596. mac_ops->rx_disable(pdata);
  597. return 0;
  598. }
  599. static void xgene_enet_delete_ring(struct xgene_enet_desc_ring *ring)
  600. {
  601. struct xgene_enet_pdata *pdata;
  602. struct device *dev;
  603. pdata = netdev_priv(ring->ndev);
  604. dev = ndev_to_dev(ring->ndev);
  605. pdata->ring_ops->clear(ring);
  606. dma_free_coherent(dev, ring->size, ring->desc_addr, ring->dma);
  607. }
  608. static void xgene_enet_delete_desc_rings(struct xgene_enet_pdata *pdata)
  609. {
  610. struct xgene_enet_desc_ring *buf_pool;
  611. if (pdata->tx_ring) {
  612. xgene_enet_delete_ring(pdata->tx_ring);
  613. pdata->tx_ring = NULL;
  614. }
  615. if (pdata->rx_ring) {
  616. buf_pool = pdata->rx_ring->buf_pool;
  617. xgene_enet_delete_bufpool(buf_pool);
  618. xgene_enet_delete_ring(buf_pool);
  619. xgene_enet_delete_ring(pdata->rx_ring);
  620. pdata->rx_ring = NULL;
  621. }
  622. }
  623. static int xgene_enet_get_ring_size(struct device *dev,
  624. enum xgene_enet_ring_cfgsize cfgsize)
  625. {
  626. int size = -EINVAL;
  627. switch (cfgsize) {
  628. case RING_CFGSIZE_512B:
  629. size = 0x200;
  630. break;
  631. case RING_CFGSIZE_2KB:
  632. size = 0x800;
  633. break;
  634. case RING_CFGSIZE_16KB:
  635. size = 0x4000;
  636. break;
  637. case RING_CFGSIZE_64KB:
  638. size = 0x10000;
  639. break;
  640. case RING_CFGSIZE_512KB:
  641. size = 0x80000;
  642. break;
  643. default:
  644. dev_err(dev, "Unsupported cfg ring size %d\n", cfgsize);
  645. break;
  646. }
  647. return size;
  648. }
  649. static void xgene_enet_free_desc_ring(struct xgene_enet_desc_ring *ring)
  650. {
  651. struct xgene_enet_pdata *pdata;
  652. struct device *dev;
  653. if (!ring)
  654. return;
  655. dev = ndev_to_dev(ring->ndev);
  656. pdata = netdev_priv(ring->ndev);
  657. if (ring->desc_addr) {
  658. pdata->ring_ops->clear(ring);
  659. dma_free_coherent(dev, ring->size, ring->desc_addr, ring->dma);
  660. }
  661. devm_kfree(dev, ring);
  662. }
  663. static void xgene_enet_free_desc_rings(struct xgene_enet_pdata *pdata)
  664. {
  665. struct device *dev = &pdata->pdev->dev;
  666. struct xgene_enet_desc_ring *ring;
  667. ring = pdata->tx_ring;
  668. if (ring) {
  669. if (ring->cp_ring && ring->cp_ring->cp_skb)
  670. devm_kfree(dev, ring->cp_ring->cp_skb);
  671. if (ring->cp_ring && pdata->cq_cnt)
  672. xgene_enet_free_desc_ring(ring->cp_ring);
  673. xgene_enet_free_desc_ring(ring);
  674. }
  675. ring = pdata->rx_ring;
  676. if (ring) {
  677. if (ring->buf_pool) {
  678. if (ring->buf_pool->rx_skb)
  679. devm_kfree(dev, ring->buf_pool->rx_skb);
  680. xgene_enet_free_desc_ring(ring->buf_pool);
  681. }
  682. xgene_enet_free_desc_ring(ring);
  683. }
  684. }
  685. static bool is_irq_mbox_required(struct xgene_enet_pdata *pdata,
  686. struct xgene_enet_desc_ring *ring)
  687. {
  688. if ((pdata->enet_id == XGENE_ENET2) &&
  689. (xgene_enet_ring_owner(ring->id) == RING_OWNER_CPU)) {
  690. return true;
  691. }
  692. return false;
  693. }
  694. static void __iomem *xgene_enet_ring_cmd_base(struct xgene_enet_pdata *pdata,
  695. struct xgene_enet_desc_ring *ring)
  696. {
  697. u8 num_ring_id_shift = pdata->ring_ops->num_ring_id_shift;
  698. return pdata->ring_cmd_addr + (ring->num << num_ring_id_shift);
  699. }
  700. static struct xgene_enet_desc_ring *xgene_enet_create_desc_ring(
  701. struct net_device *ndev, u32 ring_num,
  702. enum xgene_enet_ring_cfgsize cfgsize, u32 ring_id)
  703. {
  704. struct xgene_enet_desc_ring *ring;
  705. struct xgene_enet_pdata *pdata = netdev_priv(ndev);
  706. struct device *dev = ndev_to_dev(ndev);
  707. int size;
  708. size = xgene_enet_get_ring_size(dev, cfgsize);
  709. if (size < 0)
  710. return NULL;
  711. ring = devm_kzalloc(dev, sizeof(struct xgene_enet_desc_ring),
  712. GFP_KERNEL);
  713. if (!ring)
  714. return NULL;
  715. ring->ndev = ndev;
  716. ring->num = ring_num;
  717. ring->cfgsize = cfgsize;
  718. ring->id = ring_id;
  719. ring->desc_addr = dma_zalloc_coherent(dev, size, &ring->dma,
  720. GFP_KERNEL);
  721. if (!ring->desc_addr) {
  722. devm_kfree(dev, ring);
  723. return NULL;
  724. }
  725. ring->size = size;
  726. if (is_irq_mbox_required(pdata, ring)) {
  727. ring->irq_mbox_addr = dma_zalloc_coherent(dev, INTR_MBOX_SIZE,
  728. &ring->irq_mbox_dma, GFP_KERNEL);
  729. if (!ring->irq_mbox_addr) {
  730. dma_free_coherent(dev, size, ring->desc_addr,
  731. ring->dma);
  732. devm_kfree(dev, ring);
  733. return NULL;
  734. }
  735. }
  736. ring->cmd_base = xgene_enet_ring_cmd_base(pdata, ring);
  737. ring->cmd = ring->cmd_base + INC_DEC_CMD_ADDR;
  738. ring = pdata->ring_ops->setup(ring);
  739. netdev_dbg(ndev, "ring info: num=%d size=%d id=%d slots=%d\n",
  740. ring->num, ring->size, ring->id, ring->slots);
  741. return ring;
  742. }
  743. static u16 xgene_enet_get_ring_id(enum xgene_ring_owner owner, u8 bufnum)
  744. {
  745. return (owner << 6) | (bufnum & GENMASK(5, 0));
  746. }
  747. static enum xgene_ring_owner xgene_derive_ring_owner(struct xgene_enet_pdata *p)
  748. {
  749. enum xgene_ring_owner owner;
  750. if (p->enet_id == XGENE_ENET1) {
  751. switch (p->phy_mode) {
  752. case PHY_INTERFACE_MODE_SGMII:
  753. owner = RING_OWNER_ETH0;
  754. break;
  755. default:
  756. owner = (!p->port_id) ? RING_OWNER_ETH0 :
  757. RING_OWNER_ETH1;
  758. break;
  759. }
  760. } else {
  761. owner = (!p->port_id) ? RING_OWNER_ETH0 : RING_OWNER_ETH1;
  762. }
  763. return owner;
  764. }
  765. static int xgene_enet_create_desc_rings(struct net_device *ndev)
  766. {
  767. struct xgene_enet_pdata *pdata = netdev_priv(ndev);
  768. struct device *dev = ndev_to_dev(ndev);
  769. struct xgene_enet_desc_ring *rx_ring, *tx_ring, *cp_ring;
  770. struct xgene_enet_desc_ring *buf_pool = NULL;
  771. enum xgene_ring_owner owner;
  772. dma_addr_t dma_exp_bufs;
  773. u8 cpu_bufnum = pdata->cpu_bufnum;
  774. u8 eth_bufnum = pdata->eth_bufnum;
  775. u8 bp_bufnum = pdata->bp_bufnum;
  776. u16 ring_num = pdata->ring_num;
  777. u16 ring_id;
  778. int ret, size;
  779. /* allocate rx descriptor ring */
  780. owner = xgene_derive_ring_owner(pdata);
  781. ring_id = xgene_enet_get_ring_id(RING_OWNER_CPU, cpu_bufnum++);
  782. rx_ring = xgene_enet_create_desc_ring(ndev, ring_num++,
  783. RING_CFGSIZE_16KB, ring_id);
  784. if (!rx_ring) {
  785. ret = -ENOMEM;
  786. goto err;
  787. }
  788. /* allocate buffer pool for receiving packets */
  789. owner = xgene_derive_ring_owner(pdata);
  790. ring_id = xgene_enet_get_ring_id(owner, bp_bufnum++);
  791. buf_pool = xgene_enet_create_desc_ring(ndev, ring_num++,
  792. RING_CFGSIZE_2KB, ring_id);
  793. if (!buf_pool) {
  794. ret = -ENOMEM;
  795. goto err;
  796. }
  797. rx_ring->nbufpool = NUM_BUFPOOL;
  798. rx_ring->buf_pool = buf_pool;
  799. rx_ring->irq = pdata->rx_irq;
  800. if (!pdata->cq_cnt) {
  801. snprintf(rx_ring->irq_name, IRQ_ID_SIZE, "%s-rx-txc",
  802. ndev->name);
  803. } else {
  804. snprintf(rx_ring->irq_name, IRQ_ID_SIZE, "%s-rx", ndev->name);
  805. }
  806. buf_pool->rx_skb = devm_kcalloc(dev, buf_pool->slots,
  807. sizeof(struct sk_buff *), GFP_KERNEL);
  808. if (!buf_pool->rx_skb) {
  809. ret = -ENOMEM;
  810. goto err;
  811. }
  812. buf_pool->dst_ring_num = xgene_enet_dst_ring_num(buf_pool);
  813. rx_ring->buf_pool = buf_pool;
  814. pdata->rx_ring = rx_ring;
  815. /* allocate tx descriptor ring */
  816. owner = xgene_derive_ring_owner(pdata);
  817. ring_id = xgene_enet_get_ring_id(owner, eth_bufnum++);
  818. tx_ring = xgene_enet_create_desc_ring(ndev, ring_num++,
  819. RING_CFGSIZE_16KB, ring_id);
  820. if (!tx_ring) {
  821. ret = -ENOMEM;
  822. goto err;
  823. }
  824. size = (tx_ring->slots / 2) * sizeof(__le64) * MAX_EXP_BUFFS;
  825. tx_ring->exp_bufs = dma_zalloc_coherent(dev, size, &dma_exp_bufs,
  826. GFP_KERNEL);
  827. if (!tx_ring->exp_bufs) {
  828. ret = -ENOMEM;
  829. goto err;
  830. }
  831. pdata->tx_ring = tx_ring;
  832. if (!pdata->cq_cnt) {
  833. cp_ring = pdata->rx_ring;
  834. } else {
  835. /* allocate tx completion descriptor ring */
  836. ring_id = xgene_enet_get_ring_id(RING_OWNER_CPU, cpu_bufnum++);
  837. cp_ring = xgene_enet_create_desc_ring(ndev, ring_num++,
  838. RING_CFGSIZE_16KB,
  839. ring_id);
  840. if (!cp_ring) {
  841. ret = -ENOMEM;
  842. goto err;
  843. }
  844. cp_ring->irq = pdata->txc_irq;
  845. snprintf(cp_ring->irq_name, IRQ_ID_SIZE, "%s-txc", ndev->name);
  846. }
  847. cp_ring->cp_skb = devm_kcalloc(dev, tx_ring->slots,
  848. sizeof(struct sk_buff *), GFP_KERNEL);
  849. if (!cp_ring->cp_skb) {
  850. ret = -ENOMEM;
  851. goto err;
  852. }
  853. size = sizeof(dma_addr_t) * MAX_SKB_FRAGS;
  854. cp_ring->frag_dma_addr = devm_kcalloc(dev, tx_ring->slots,
  855. size, GFP_KERNEL);
  856. if (!cp_ring->frag_dma_addr) {
  857. devm_kfree(dev, cp_ring->cp_skb);
  858. ret = -ENOMEM;
  859. goto err;
  860. }
  861. pdata->tx_ring->cp_ring = cp_ring;
  862. pdata->tx_ring->dst_ring_num = xgene_enet_dst_ring_num(cp_ring);
  863. pdata->tx_qcnt_hi = pdata->tx_ring->slots / 2;
  864. pdata->cp_qcnt_hi = pdata->rx_ring->slots / 2;
  865. pdata->cp_qcnt_low = pdata->cp_qcnt_hi / 2;
  866. return 0;
  867. err:
  868. xgene_enet_free_desc_rings(pdata);
  869. return ret;
  870. }
  871. static struct rtnl_link_stats64 *xgene_enet_get_stats64(
  872. struct net_device *ndev,
  873. struct rtnl_link_stats64 *storage)
  874. {
  875. struct xgene_enet_pdata *pdata = netdev_priv(ndev);
  876. struct rtnl_link_stats64 *stats = &pdata->stats;
  877. stats->rx_errors += stats->rx_length_errors +
  878. stats->rx_crc_errors +
  879. stats->rx_frame_errors +
  880. stats->rx_fifo_errors;
  881. memcpy(storage, &pdata->stats, sizeof(struct rtnl_link_stats64));
  882. return storage;
  883. }
  884. static int xgene_enet_set_mac_address(struct net_device *ndev, void *addr)
  885. {
  886. struct xgene_enet_pdata *pdata = netdev_priv(ndev);
  887. int ret;
  888. ret = eth_mac_addr(ndev, addr);
  889. if (ret)
  890. return ret;
  891. pdata->mac_ops->set_mac_addr(pdata);
  892. return ret;
  893. }
  894. static const struct net_device_ops xgene_ndev_ops = {
  895. .ndo_open = xgene_enet_open,
  896. .ndo_stop = xgene_enet_close,
  897. .ndo_start_xmit = xgene_enet_start_xmit,
  898. .ndo_tx_timeout = xgene_enet_timeout,
  899. .ndo_get_stats64 = xgene_enet_get_stats64,
  900. .ndo_change_mtu = eth_change_mtu,
  901. .ndo_set_mac_address = xgene_enet_set_mac_address,
  902. };
  903. #ifdef CONFIG_ACPI
  904. static int xgene_get_port_id_acpi(struct device *dev,
  905. struct xgene_enet_pdata *pdata)
  906. {
  907. acpi_status status;
  908. u64 temp;
  909. status = acpi_evaluate_integer(ACPI_HANDLE(dev), "_SUN", NULL, &temp);
  910. if (ACPI_FAILURE(status)) {
  911. pdata->port_id = 0;
  912. } else {
  913. pdata->port_id = temp;
  914. }
  915. return 0;
  916. }
  917. #endif
  918. static int xgene_get_port_id_dt(struct device *dev, struct xgene_enet_pdata *pdata)
  919. {
  920. u32 id = 0;
  921. int ret;
  922. ret = of_property_read_u32(dev->of_node, "port-id", &id);
  923. if (ret) {
  924. pdata->port_id = 0;
  925. ret = 0;
  926. } else {
  927. pdata->port_id = id & BIT(0);
  928. }
  929. return ret;
  930. }
  931. static int xgene_enet_get_resources(struct xgene_enet_pdata *pdata)
  932. {
  933. struct platform_device *pdev;
  934. struct net_device *ndev;
  935. struct device *dev;
  936. struct resource *res;
  937. void __iomem *base_addr;
  938. u32 offset;
  939. int ret = 0;
  940. pdev = pdata->pdev;
  941. dev = &pdev->dev;
  942. ndev = pdata->ndev;
  943. res = platform_get_resource(pdev, IORESOURCE_MEM, RES_ENET_CSR);
  944. if (!res) {
  945. dev_err(dev, "Resource enet_csr not defined\n");
  946. return -ENODEV;
  947. }
  948. pdata->base_addr = devm_ioremap(dev, res->start, resource_size(res));
  949. if (!pdata->base_addr) {
  950. dev_err(dev, "Unable to retrieve ENET Port CSR region\n");
  951. return -ENOMEM;
  952. }
  953. res = platform_get_resource(pdev, IORESOURCE_MEM, RES_RING_CSR);
  954. if (!res) {
  955. dev_err(dev, "Resource ring_csr not defined\n");
  956. return -ENODEV;
  957. }
  958. pdata->ring_csr_addr = devm_ioremap(dev, res->start,
  959. resource_size(res));
  960. if (!pdata->ring_csr_addr) {
  961. dev_err(dev, "Unable to retrieve ENET Ring CSR region\n");
  962. return -ENOMEM;
  963. }
  964. res = platform_get_resource(pdev, IORESOURCE_MEM, RES_RING_CMD);
  965. if (!res) {
  966. dev_err(dev, "Resource ring_cmd not defined\n");
  967. return -ENODEV;
  968. }
  969. pdata->ring_cmd_addr = devm_ioremap(dev, res->start,
  970. resource_size(res));
  971. if (!pdata->ring_cmd_addr) {
  972. dev_err(dev, "Unable to retrieve ENET Ring command region\n");
  973. return -ENOMEM;
  974. }
  975. if (dev->of_node)
  976. ret = xgene_get_port_id_dt(dev, pdata);
  977. #ifdef CONFIG_ACPI
  978. else
  979. ret = xgene_get_port_id_acpi(dev, pdata);
  980. #endif
  981. if (ret)
  982. return ret;
  983. if (!device_get_mac_address(dev, ndev->dev_addr, ETH_ALEN))
  984. eth_hw_addr_random(ndev);
  985. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  986. pdata->phy_mode = device_get_phy_mode(dev);
  987. if (pdata->phy_mode < 0) {
  988. dev_err(dev, "Unable to get phy-connection-type\n");
  989. return pdata->phy_mode;
  990. }
  991. if (pdata->phy_mode != PHY_INTERFACE_MODE_RGMII &&
  992. pdata->phy_mode != PHY_INTERFACE_MODE_SGMII &&
  993. pdata->phy_mode != PHY_INTERFACE_MODE_XGMII) {
  994. dev_err(dev, "Incorrect phy-connection-type specified\n");
  995. return -ENODEV;
  996. }
  997. ret = platform_get_irq(pdev, 0);
  998. if (ret <= 0) {
  999. dev_err(dev, "Unable to get ENET Rx IRQ\n");
  1000. ret = ret ? : -ENXIO;
  1001. return ret;
  1002. }
  1003. pdata->rx_irq = ret;
  1004. if (pdata->phy_mode != PHY_INTERFACE_MODE_RGMII) {
  1005. ret = platform_get_irq(pdev, 1);
  1006. if (ret <= 0) {
  1007. pdata->cq_cnt = 0;
  1008. dev_info(dev, "Unable to get Tx completion IRQ,"
  1009. "using Rx IRQ instead\n");
  1010. } else {
  1011. pdata->cq_cnt = XGENE_MAX_TXC_RINGS;
  1012. pdata->txc_irq = ret;
  1013. }
  1014. }
  1015. pdata->clk = devm_clk_get(&pdev->dev, NULL);
  1016. if (IS_ERR(pdata->clk)) {
  1017. /* Firmware may have set up the clock already. */
  1018. dev_info(dev, "clocks have been setup already\n");
  1019. }
  1020. if (pdata->phy_mode != PHY_INTERFACE_MODE_XGMII)
  1021. base_addr = pdata->base_addr - (pdata->port_id * MAC_OFFSET);
  1022. else
  1023. base_addr = pdata->base_addr;
  1024. pdata->eth_csr_addr = base_addr + BLOCK_ETH_CSR_OFFSET;
  1025. pdata->eth_ring_if_addr = base_addr + BLOCK_ETH_RING_IF_OFFSET;
  1026. pdata->eth_diag_csr_addr = base_addr + BLOCK_ETH_DIAG_CSR_OFFSET;
  1027. if (pdata->phy_mode == PHY_INTERFACE_MODE_RGMII ||
  1028. pdata->phy_mode == PHY_INTERFACE_MODE_SGMII) {
  1029. pdata->mcx_mac_addr = pdata->base_addr + BLOCK_ETH_MAC_OFFSET;
  1030. offset = (pdata->enet_id == XGENE_ENET1) ?
  1031. BLOCK_ETH_MAC_CSR_OFFSET :
  1032. X2_BLOCK_ETH_MAC_CSR_OFFSET;
  1033. pdata->mcx_mac_csr_addr = base_addr + offset;
  1034. } else {
  1035. pdata->mcx_mac_addr = base_addr + BLOCK_AXG_MAC_OFFSET;
  1036. pdata->mcx_mac_csr_addr = base_addr + BLOCK_AXG_MAC_CSR_OFFSET;
  1037. }
  1038. pdata->rx_buff_cnt = NUM_PKT_BUF;
  1039. return 0;
  1040. }
  1041. static int xgene_enet_init_hw(struct xgene_enet_pdata *pdata)
  1042. {
  1043. struct net_device *ndev = pdata->ndev;
  1044. struct xgene_enet_desc_ring *buf_pool;
  1045. u16 dst_ring_num;
  1046. int ret;
  1047. ret = pdata->port_ops->reset(pdata);
  1048. if (ret)
  1049. return ret;
  1050. ret = xgene_enet_create_desc_rings(ndev);
  1051. if (ret) {
  1052. netdev_err(ndev, "Error in ring configuration\n");
  1053. return ret;
  1054. }
  1055. /* setup buffer pool */
  1056. buf_pool = pdata->rx_ring->buf_pool;
  1057. xgene_enet_init_bufpool(buf_pool);
  1058. ret = xgene_enet_refill_bufpool(buf_pool, pdata->rx_buff_cnt);
  1059. if (ret) {
  1060. xgene_enet_delete_desc_rings(pdata);
  1061. return ret;
  1062. }
  1063. dst_ring_num = xgene_enet_dst_ring_num(pdata->rx_ring);
  1064. pdata->port_ops->cle_bypass(pdata, dst_ring_num, buf_pool->id);
  1065. pdata->mac_ops->init(pdata);
  1066. return ret;
  1067. }
  1068. static void xgene_enet_setup_ops(struct xgene_enet_pdata *pdata)
  1069. {
  1070. switch (pdata->phy_mode) {
  1071. case PHY_INTERFACE_MODE_RGMII:
  1072. pdata->mac_ops = &xgene_gmac_ops;
  1073. pdata->port_ops = &xgene_gport_ops;
  1074. pdata->rm = RM3;
  1075. break;
  1076. case PHY_INTERFACE_MODE_SGMII:
  1077. pdata->mac_ops = &xgene_sgmac_ops;
  1078. pdata->port_ops = &xgene_sgport_ops;
  1079. pdata->rm = RM1;
  1080. break;
  1081. default:
  1082. pdata->mac_ops = &xgene_xgmac_ops;
  1083. pdata->port_ops = &xgene_xgport_ops;
  1084. pdata->rm = RM0;
  1085. break;
  1086. }
  1087. if (pdata->enet_id == XGENE_ENET1) {
  1088. switch (pdata->port_id) {
  1089. case 0:
  1090. pdata->cpu_bufnum = START_CPU_BUFNUM_0;
  1091. pdata->eth_bufnum = START_ETH_BUFNUM_0;
  1092. pdata->bp_bufnum = START_BP_BUFNUM_0;
  1093. pdata->ring_num = START_RING_NUM_0;
  1094. break;
  1095. case 1:
  1096. pdata->cpu_bufnum = START_CPU_BUFNUM_1;
  1097. pdata->eth_bufnum = START_ETH_BUFNUM_1;
  1098. pdata->bp_bufnum = START_BP_BUFNUM_1;
  1099. pdata->ring_num = START_RING_NUM_1;
  1100. break;
  1101. default:
  1102. break;
  1103. }
  1104. pdata->ring_ops = &xgene_ring1_ops;
  1105. } else {
  1106. switch (pdata->port_id) {
  1107. case 0:
  1108. pdata->cpu_bufnum = X2_START_CPU_BUFNUM_0;
  1109. pdata->eth_bufnum = X2_START_ETH_BUFNUM_0;
  1110. pdata->bp_bufnum = X2_START_BP_BUFNUM_0;
  1111. pdata->ring_num = X2_START_RING_NUM_0;
  1112. break;
  1113. case 1:
  1114. pdata->cpu_bufnum = X2_START_CPU_BUFNUM_1;
  1115. pdata->eth_bufnum = X2_START_ETH_BUFNUM_1;
  1116. pdata->bp_bufnum = X2_START_BP_BUFNUM_1;
  1117. pdata->ring_num = X2_START_RING_NUM_1;
  1118. break;
  1119. default:
  1120. break;
  1121. }
  1122. pdata->rm = RM0;
  1123. pdata->ring_ops = &xgene_ring2_ops;
  1124. }
  1125. }
  1126. static void xgene_enet_napi_add(struct xgene_enet_pdata *pdata)
  1127. {
  1128. struct napi_struct *napi;
  1129. napi = &pdata->rx_ring->napi;
  1130. netif_napi_add(pdata->ndev, napi, xgene_enet_napi, NAPI_POLL_WEIGHT);
  1131. if (pdata->cq_cnt) {
  1132. napi = &pdata->tx_ring->cp_ring->napi;
  1133. netif_napi_add(pdata->ndev, napi, xgene_enet_napi,
  1134. NAPI_POLL_WEIGHT);
  1135. }
  1136. }
  1137. static void xgene_enet_napi_del(struct xgene_enet_pdata *pdata)
  1138. {
  1139. struct napi_struct *napi;
  1140. napi = &pdata->rx_ring->napi;
  1141. netif_napi_del(napi);
  1142. if (pdata->cq_cnt) {
  1143. napi = &pdata->tx_ring->cp_ring->napi;
  1144. netif_napi_del(napi);
  1145. }
  1146. }
  1147. static int xgene_enet_probe(struct platform_device *pdev)
  1148. {
  1149. struct net_device *ndev;
  1150. struct xgene_enet_pdata *pdata;
  1151. struct device *dev = &pdev->dev;
  1152. struct xgene_mac_ops *mac_ops;
  1153. const struct of_device_id *of_id;
  1154. int ret;
  1155. ndev = alloc_etherdev(sizeof(struct xgene_enet_pdata));
  1156. if (!ndev)
  1157. return -ENOMEM;
  1158. pdata = netdev_priv(ndev);
  1159. pdata->pdev = pdev;
  1160. pdata->ndev = ndev;
  1161. SET_NETDEV_DEV(ndev, dev);
  1162. platform_set_drvdata(pdev, pdata);
  1163. ndev->netdev_ops = &xgene_ndev_ops;
  1164. xgene_enet_set_ethtool_ops(ndev);
  1165. ndev->features |= NETIF_F_IP_CSUM |
  1166. NETIF_F_GSO |
  1167. NETIF_F_GRO |
  1168. NETIF_F_SG;
  1169. of_id = of_match_device(xgene_enet_of_match, &pdev->dev);
  1170. if (of_id) {
  1171. pdata->enet_id = (enum xgene_enet_id)of_id->data;
  1172. }
  1173. #ifdef CONFIG_ACPI
  1174. else {
  1175. const struct acpi_device_id *acpi_id;
  1176. acpi_id = acpi_match_device(xgene_enet_acpi_match, &pdev->dev);
  1177. if (acpi_id)
  1178. pdata->enet_id = (enum xgene_enet_id) acpi_id->driver_data;
  1179. }
  1180. #endif
  1181. if (!pdata->enet_id) {
  1182. free_netdev(ndev);
  1183. return -ENODEV;
  1184. }
  1185. ret = xgene_enet_get_resources(pdata);
  1186. if (ret)
  1187. goto err;
  1188. xgene_enet_setup_ops(pdata);
  1189. if (pdata->phy_mode == PHY_INTERFACE_MODE_XGMII) {
  1190. ndev->features |= NETIF_F_TSO;
  1191. pdata->mss = XGENE_ENET_MSS;
  1192. }
  1193. ndev->hw_features = ndev->features;
  1194. ret = register_netdev(ndev);
  1195. if (ret) {
  1196. netdev_err(ndev, "Failed to register netdev\n");
  1197. goto err;
  1198. }
  1199. ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(64));
  1200. if (ret) {
  1201. netdev_err(ndev, "No usable DMA configuration\n");
  1202. goto err;
  1203. }
  1204. ret = xgene_enet_init_hw(pdata);
  1205. if (ret)
  1206. goto err;
  1207. xgene_enet_napi_add(pdata);
  1208. mac_ops = pdata->mac_ops;
  1209. if (pdata->phy_mode == PHY_INTERFACE_MODE_RGMII)
  1210. ret = xgene_enet_mdio_config(pdata);
  1211. else
  1212. INIT_DELAYED_WORK(&pdata->link_work, mac_ops->link_state);
  1213. return ret;
  1214. err:
  1215. unregister_netdev(ndev);
  1216. free_netdev(ndev);
  1217. return ret;
  1218. }
  1219. static int xgene_enet_remove(struct platform_device *pdev)
  1220. {
  1221. struct xgene_enet_pdata *pdata;
  1222. struct xgene_mac_ops *mac_ops;
  1223. struct net_device *ndev;
  1224. pdata = platform_get_drvdata(pdev);
  1225. mac_ops = pdata->mac_ops;
  1226. ndev = pdata->ndev;
  1227. mac_ops->rx_disable(pdata);
  1228. mac_ops->tx_disable(pdata);
  1229. xgene_enet_napi_del(pdata);
  1230. if (pdata->phy_mode == PHY_INTERFACE_MODE_RGMII)
  1231. xgene_enet_mdio_remove(pdata);
  1232. unregister_netdev(ndev);
  1233. xgene_enet_delete_desc_rings(pdata);
  1234. pdata->port_ops->shutdown(pdata);
  1235. free_netdev(ndev);
  1236. return 0;
  1237. }
  1238. #ifdef CONFIG_ACPI
  1239. static const struct acpi_device_id xgene_enet_acpi_match[] = {
  1240. { "APMC0D05", XGENE_ENET1},
  1241. { "APMC0D30", XGENE_ENET1},
  1242. { "APMC0D31", XGENE_ENET1},
  1243. { "APMC0D26", XGENE_ENET2},
  1244. { "APMC0D25", XGENE_ENET2},
  1245. { }
  1246. };
  1247. MODULE_DEVICE_TABLE(acpi, xgene_enet_acpi_match);
  1248. #endif
  1249. #ifdef CONFIG_OF
  1250. static const struct of_device_id xgene_enet_of_match[] = {
  1251. {.compatible = "apm,xgene-enet", .data = (void *)XGENE_ENET1},
  1252. {.compatible = "apm,xgene1-sgenet", .data = (void *)XGENE_ENET1},
  1253. {.compatible = "apm,xgene1-xgenet", .data = (void *)XGENE_ENET1},
  1254. {.compatible = "apm,xgene2-sgenet", .data = (void *)XGENE_ENET2},
  1255. {.compatible = "apm,xgene2-xgenet", .data = (void *)XGENE_ENET2},
  1256. {},
  1257. };
  1258. MODULE_DEVICE_TABLE(of, xgene_enet_of_match);
  1259. #endif
  1260. static struct platform_driver xgene_enet_driver = {
  1261. .driver = {
  1262. .name = "xgene-enet",
  1263. .of_match_table = of_match_ptr(xgene_enet_of_match),
  1264. .acpi_match_table = ACPI_PTR(xgene_enet_acpi_match),
  1265. },
  1266. .probe = xgene_enet_probe,
  1267. .remove = xgene_enet_remove,
  1268. };
  1269. module_platform_driver(xgene_enet_driver);
  1270. MODULE_DESCRIPTION("APM X-Gene SoC Ethernet driver");
  1271. MODULE_VERSION(XGENE_DRV_VERSION);
  1272. MODULE_AUTHOR("Iyappan Subramanian <isubramanian@apm.com>");
  1273. MODULE_AUTHOR("Keyur Chudgar <kchudgar@apm.com>");
  1274. MODULE_LICENSE("GPL");