bcm_sf2.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098
  1. /*
  2. * Broadcom Starfighter 2 DSA switch driver
  3. *
  4. * Copyright (C) 2014, Broadcom Corporation
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. #include <linux/list.h>
  12. #include <linux/module.h>
  13. #include <linux/netdevice.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/of.h>
  17. #include <linux/phy.h>
  18. #include <linux/phy_fixed.h>
  19. #include <linux/mii.h>
  20. #include <linux/of.h>
  21. #include <linux/of_irq.h>
  22. #include <linux/of_address.h>
  23. #include <net/dsa.h>
  24. #include <linux/ethtool.h>
  25. #include <linux/if_bridge.h>
  26. #include <linux/brcmphy.h>
  27. #include "bcm_sf2.h"
  28. #include "bcm_sf2_regs.h"
  29. /* String, offset, and register size in bytes if different from 4 bytes */
  30. static const struct bcm_sf2_hw_stats bcm_sf2_mib[] = {
  31. { "TxOctets", 0x000, 8 },
  32. { "TxDropPkts", 0x020 },
  33. { "TxQPKTQ0", 0x030 },
  34. { "TxBroadcastPkts", 0x040 },
  35. { "TxMulticastPkts", 0x050 },
  36. { "TxUnicastPKts", 0x060 },
  37. { "TxCollisions", 0x070 },
  38. { "TxSingleCollision", 0x080 },
  39. { "TxMultipleCollision", 0x090 },
  40. { "TxDeferredCollision", 0x0a0 },
  41. { "TxLateCollision", 0x0b0 },
  42. { "TxExcessiveCollision", 0x0c0 },
  43. { "TxFrameInDisc", 0x0d0 },
  44. { "TxPausePkts", 0x0e0 },
  45. { "TxQPKTQ1", 0x0f0 },
  46. { "TxQPKTQ2", 0x100 },
  47. { "TxQPKTQ3", 0x110 },
  48. { "TxQPKTQ4", 0x120 },
  49. { "TxQPKTQ5", 0x130 },
  50. { "RxOctets", 0x140, 8 },
  51. { "RxUndersizePkts", 0x160 },
  52. { "RxPausePkts", 0x170 },
  53. { "RxPkts64Octets", 0x180 },
  54. { "RxPkts65to127Octets", 0x190 },
  55. { "RxPkts128to255Octets", 0x1a0 },
  56. { "RxPkts256to511Octets", 0x1b0 },
  57. { "RxPkts512to1023Octets", 0x1c0 },
  58. { "RxPkts1024toMaxPktsOctets", 0x1d0 },
  59. { "RxOversizePkts", 0x1e0 },
  60. { "RxJabbers", 0x1f0 },
  61. { "RxAlignmentErrors", 0x200 },
  62. { "RxFCSErrors", 0x210 },
  63. { "RxGoodOctets", 0x220, 8 },
  64. { "RxDropPkts", 0x240 },
  65. { "RxUnicastPkts", 0x250 },
  66. { "RxMulticastPkts", 0x260 },
  67. { "RxBroadcastPkts", 0x270 },
  68. { "RxSAChanges", 0x280 },
  69. { "RxFragments", 0x290 },
  70. { "RxJumboPkt", 0x2a0 },
  71. { "RxSymblErr", 0x2b0 },
  72. { "InRangeErrCount", 0x2c0 },
  73. { "OutRangeErrCount", 0x2d0 },
  74. { "EEELpiEvent", 0x2e0 },
  75. { "EEELpiDuration", 0x2f0 },
  76. { "RxDiscard", 0x300, 8 },
  77. { "TxQPKTQ6", 0x320 },
  78. { "TxQPKTQ7", 0x330 },
  79. { "TxPkts64Octets", 0x340 },
  80. { "TxPkts65to127Octets", 0x350 },
  81. { "TxPkts128to255Octets", 0x360 },
  82. { "TxPkts256to511Ocets", 0x370 },
  83. { "TxPkts512to1023Ocets", 0x380 },
  84. { "TxPkts1024toMaxPktOcets", 0x390 },
  85. };
  86. #define BCM_SF2_STATS_SIZE ARRAY_SIZE(bcm_sf2_mib)
  87. static void bcm_sf2_sw_get_strings(struct dsa_switch *ds,
  88. int port, uint8_t *data)
  89. {
  90. unsigned int i;
  91. for (i = 0; i < BCM_SF2_STATS_SIZE; i++)
  92. memcpy(data + i * ETH_GSTRING_LEN,
  93. bcm_sf2_mib[i].string, ETH_GSTRING_LEN);
  94. }
  95. static void bcm_sf2_sw_get_ethtool_stats(struct dsa_switch *ds,
  96. int port, uint64_t *data)
  97. {
  98. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  99. const struct bcm_sf2_hw_stats *s;
  100. unsigned int i;
  101. u64 val = 0;
  102. u32 offset;
  103. mutex_lock(&priv->stats_mutex);
  104. /* Now fetch the per-port counters */
  105. for (i = 0; i < BCM_SF2_STATS_SIZE; i++) {
  106. s = &bcm_sf2_mib[i];
  107. /* Do a latched 64-bit read if needed */
  108. offset = s->reg + CORE_P_MIB_OFFSET(port);
  109. if (s->sizeof_stat == 8)
  110. val = core_readq(priv, offset);
  111. else
  112. val = core_readl(priv, offset);
  113. data[i] = (u64)val;
  114. }
  115. mutex_unlock(&priv->stats_mutex);
  116. }
  117. static int bcm_sf2_sw_get_sset_count(struct dsa_switch *ds)
  118. {
  119. return BCM_SF2_STATS_SIZE;
  120. }
  121. static char *bcm_sf2_sw_probe(struct device *host_dev, int sw_addr)
  122. {
  123. return "Broadcom Starfighter 2";
  124. }
  125. static void bcm_sf2_imp_vlan_setup(struct dsa_switch *ds, int cpu_port)
  126. {
  127. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  128. unsigned int i;
  129. u32 reg;
  130. /* Enable the IMP Port to be in the same VLAN as the other ports
  131. * on a per-port basis such that we only have Port i and IMP in
  132. * the same VLAN.
  133. */
  134. for (i = 0; i < priv->hw_params.num_ports; i++) {
  135. if (!((1 << i) & ds->phys_port_mask))
  136. continue;
  137. reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
  138. reg |= (1 << cpu_port);
  139. core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
  140. }
  141. }
  142. static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port)
  143. {
  144. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  145. u32 reg, val;
  146. /* Enable the port memories */
  147. reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
  148. reg &= ~P_TXQ_PSM_VDD(port);
  149. core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
  150. /* Enable Broadcast, Multicast, Unicast forwarding to IMP port */
  151. reg = core_readl(priv, CORE_IMP_CTL);
  152. reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN);
  153. reg &= ~(RX_DIS | TX_DIS);
  154. core_writel(priv, reg, CORE_IMP_CTL);
  155. /* Enable forwarding */
  156. core_writel(priv, SW_FWDG_EN, CORE_SWMODE);
  157. /* Enable IMP port in dumb mode */
  158. reg = core_readl(priv, CORE_SWITCH_CTRL);
  159. reg |= MII_DUMB_FWDG_EN;
  160. core_writel(priv, reg, CORE_SWITCH_CTRL);
  161. /* Resolve which bit controls the Broadcom tag */
  162. switch (port) {
  163. case 8:
  164. val = BRCM_HDR_EN_P8;
  165. break;
  166. case 7:
  167. val = BRCM_HDR_EN_P7;
  168. break;
  169. case 5:
  170. val = BRCM_HDR_EN_P5;
  171. break;
  172. default:
  173. val = 0;
  174. break;
  175. }
  176. /* Enable Broadcom tags for IMP port */
  177. reg = core_readl(priv, CORE_BRCM_HDR_CTRL);
  178. reg |= val;
  179. core_writel(priv, reg, CORE_BRCM_HDR_CTRL);
  180. /* Enable reception Broadcom tag for CPU TX (switch RX) to
  181. * allow us to tag outgoing frames
  182. */
  183. reg = core_readl(priv, CORE_BRCM_HDR_RX_DIS);
  184. reg &= ~(1 << port);
  185. core_writel(priv, reg, CORE_BRCM_HDR_RX_DIS);
  186. /* Enable transmission of Broadcom tags from the switch (CPU RX) to
  187. * allow delivering frames to the per-port net_devices
  188. */
  189. reg = core_readl(priv, CORE_BRCM_HDR_TX_DIS);
  190. reg &= ~(1 << port);
  191. core_writel(priv, reg, CORE_BRCM_HDR_TX_DIS);
  192. /* Force link status for IMP port */
  193. reg = core_readl(priv, CORE_STS_OVERRIDE_IMP);
  194. reg |= (MII_SW_OR | LINK_STS);
  195. core_writel(priv, reg, CORE_STS_OVERRIDE_IMP);
  196. }
  197. static void bcm_sf2_eee_enable_set(struct dsa_switch *ds, int port, bool enable)
  198. {
  199. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  200. u32 reg;
  201. reg = core_readl(priv, CORE_EEE_EN_CTRL);
  202. if (enable)
  203. reg |= 1 << port;
  204. else
  205. reg &= ~(1 << port);
  206. core_writel(priv, reg, CORE_EEE_EN_CTRL);
  207. }
  208. static void bcm_sf2_gphy_enable_set(struct dsa_switch *ds, bool enable)
  209. {
  210. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  211. u32 reg;
  212. reg = reg_readl(priv, REG_SPHY_CNTRL);
  213. if (enable) {
  214. reg |= PHY_RESET;
  215. reg &= ~(EXT_PWR_DOWN | IDDQ_BIAS | CK25_DIS);
  216. reg_writel(priv, reg, REG_SPHY_CNTRL);
  217. udelay(21);
  218. reg = reg_readl(priv, REG_SPHY_CNTRL);
  219. reg &= ~PHY_RESET;
  220. } else {
  221. reg |= EXT_PWR_DOWN | IDDQ_BIAS | PHY_RESET;
  222. reg_writel(priv, reg, REG_SPHY_CNTRL);
  223. mdelay(1);
  224. reg |= CK25_DIS;
  225. }
  226. reg_writel(priv, reg, REG_SPHY_CNTRL);
  227. /* Use PHY-driven LED signaling */
  228. if (!enable) {
  229. reg = reg_readl(priv, REG_LED_CNTRL(0));
  230. reg |= SPDLNK_SRC_SEL;
  231. reg_writel(priv, reg, REG_LED_CNTRL(0));
  232. }
  233. }
  234. static int bcm_sf2_port_setup(struct dsa_switch *ds, int port,
  235. struct phy_device *phy)
  236. {
  237. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  238. s8 cpu_port = ds->dst[ds->index].cpu_port;
  239. u32 reg;
  240. /* Clear the memory power down */
  241. reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
  242. reg &= ~P_TXQ_PSM_VDD(port);
  243. core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
  244. /* Clear the Rx and Tx disable bits and set to no spanning tree */
  245. core_writel(priv, 0, CORE_G_PCTL_PORT(port));
  246. /* Re-enable the GPHY and re-apply workarounds */
  247. if (port == 0 && priv->hw_params.num_gphy == 1) {
  248. bcm_sf2_gphy_enable_set(ds, true);
  249. if (phy) {
  250. /* if phy_stop() has been called before, phy
  251. * will be in halted state, and phy_start()
  252. * will call resume.
  253. *
  254. * the resume path does not configure back
  255. * autoneg settings, and since we hard reset
  256. * the phy manually here, we need to reset the
  257. * state machine also.
  258. */
  259. phy->state = PHY_READY;
  260. phy_init_hw(phy);
  261. }
  262. }
  263. /* Enable port 7 interrupts to get notified */
  264. if (port == 7)
  265. intrl2_1_mask_clear(priv, P_IRQ_MASK(P7_IRQ_OFF));
  266. /* Set this port, and only this one to be in the default VLAN,
  267. * if member of a bridge, restore its membership prior to
  268. * bringing down this port.
  269. */
  270. reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
  271. reg &= ~PORT_VLAN_CTRL_MASK;
  272. reg |= (1 << port);
  273. reg |= priv->port_sts[port].vlan_ctl_mask;
  274. core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(port));
  275. bcm_sf2_imp_vlan_setup(ds, cpu_port);
  276. /* If EEE was enabled, restore it */
  277. if (priv->port_sts[port].eee.eee_enabled)
  278. bcm_sf2_eee_enable_set(ds, port, true);
  279. return 0;
  280. }
  281. static void bcm_sf2_port_disable(struct dsa_switch *ds, int port,
  282. struct phy_device *phy)
  283. {
  284. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  285. u32 off, reg;
  286. if (priv->wol_ports_mask & (1 << port))
  287. return;
  288. if (port == 7) {
  289. intrl2_1_mask_set(priv, P_IRQ_MASK(P7_IRQ_OFF));
  290. intrl2_1_writel(priv, P_IRQ_MASK(P7_IRQ_OFF), INTRL2_CPU_CLEAR);
  291. }
  292. if (port == 0 && priv->hw_params.num_gphy == 1)
  293. bcm_sf2_gphy_enable_set(ds, false);
  294. if (dsa_is_cpu_port(ds, port))
  295. off = CORE_IMP_CTL;
  296. else
  297. off = CORE_G_PCTL_PORT(port);
  298. reg = core_readl(priv, off);
  299. reg |= RX_DIS | TX_DIS;
  300. core_writel(priv, reg, off);
  301. /* Power down the port memory */
  302. reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
  303. reg |= P_TXQ_PSM_VDD(port);
  304. core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
  305. }
  306. /* Returns 0 if EEE was not enabled, or 1 otherwise
  307. */
  308. static int bcm_sf2_eee_init(struct dsa_switch *ds, int port,
  309. struct phy_device *phy)
  310. {
  311. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  312. struct ethtool_eee *p = &priv->port_sts[port].eee;
  313. int ret;
  314. p->supported = (SUPPORTED_1000baseT_Full | SUPPORTED_100baseT_Full);
  315. ret = phy_init_eee(phy, 0);
  316. if (ret)
  317. return 0;
  318. bcm_sf2_eee_enable_set(ds, port, true);
  319. return 1;
  320. }
  321. static int bcm_sf2_sw_get_eee(struct dsa_switch *ds, int port,
  322. struct ethtool_eee *e)
  323. {
  324. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  325. struct ethtool_eee *p = &priv->port_sts[port].eee;
  326. u32 reg;
  327. reg = core_readl(priv, CORE_EEE_LPI_INDICATE);
  328. e->eee_enabled = p->eee_enabled;
  329. e->eee_active = !!(reg & (1 << port));
  330. return 0;
  331. }
  332. static int bcm_sf2_sw_set_eee(struct dsa_switch *ds, int port,
  333. struct phy_device *phydev,
  334. struct ethtool_eee *e)
  335. {
  336. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  337. struct ethtool_eee *p = &priv->port_sts[port].eee;
  338. p->eee_enabled = e->eee_enabled;
  339. if (!p->eee_enabled) {
  340. bcm_sf2_eee_enable_set(ds, port, false);
  341. } else {
  342. p->eee_enabled = bcm_sf2_eee_init(ds, port, phydev);
  343. if (!p->eee_enabled)
  344. return -EOPNOTSUPP;
  345. }
  346. return 0;
  347. }
  348. /* Fast-ageing of ARL entries for a given port, equivalent to an ARL
  349. * flush for that port.
  350. */
  351. static int bcm_sf2_sw_fast_age_port(struct dsa_switch *ds, int port)
  352. {
  353. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  354. unsigned int timeout = 1000;
  355. u32 reg;
  356. core_writel(priv, port, CORE_FAST_AGE_PORT);
  357. reg = core_readl(priv, CORE_FAST_AGE_CTRL);
  358. reg |= EN_AGE_PORT | EN_AGE_DYNAMIC | FAST_AGE_STR_DONE;
  359. core_writel(priv, reg, CORE_FAST_AGE_CTRL);
  360. do {
  361. reg = core_readl(priv, CORE_FAST_AGE_CTRL);
  362. if (!(reg & FAST_AGE_STR_DONE))
  363. break;
  364. cpu_relax();
  365. } while (timeout--);
  366. if (!timeout)
  367. return -ETIMEDOUT;
  368. core_writel(priv, 0, CORE_FAST_AGE_CTRL);
  369. return 0;
  370. }
  371. static int bcm_sf2_sw_br_join(struct dsa_switch *ds, int port,
  372. u32 br_port_mask)
  373. {
  374. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  375. unsigned int i;
  376. u32 reg, p_ctl;
  377. p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
  378. for (i = 0; i < priv->hw_params.num_ports; i++) {
  379. if (!((1 << i) & br_port_mask))
  380. continue;
  381. /* Add this local port to the remote port VLAN control
  382. * membership and update the remote port bitmask
  383. */
  384. reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
  385. reg |= 1 << port;
  386. core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
  387. priv->port_sts[i].vlan_ctl_mask = reg;
  388. p_ctl |= 1 << i;
  389. }
  390. /* Configure the local port VLAN control membership to include
  391. * remote ports and update the local port bitmask
  392. */
  393. core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
  394. priv->port_sts[port].vlan_ctl_mask = p_ctl;
  395. return 0;
  396. }
  397. static int bcm_sf2_sw_br_leave(struct dsa_switch *ds, int port,
  398. u32 br_port_mask)
  399. {
  400. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  401. unsigned int i;
  402. u32 reg, p_ctl;
  403. p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
  404. for (i = 0; i < priv->hw_params.num_ports; i++) {
  405. /* Don't touch the remaining ports */
  406. if (!((1 << i) & br_port_mask))
  407. continue;
  408. reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
  409. reg &= ~(1 << port);
  410. core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
  411. priv->port_sts[port].vlan_ctl_mask = reg;
  412. /* Prevent self removal to preserve isolation */
  413. if (port != i)
  414. p_ctl &= ~(1 << i);
  415. }
  416. core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
  417. priv->port_sts[port].vlan_ctl_mask = p_ctl;
  418. return 0;
  419. }
  420. static int bcm_sf2_sw_br_set_stp_state(struct dsa_switch *ds, int port,
  421. u8 state)
  422. {
  423. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  424. u8 hw_state, cur_hw_state;
  425. int ret = 0;
  426. u32 reg;
  427. reg = core_readl(priv, CORE_G_PCTL_PORT(port));
  428. cur_hw_state = reg & (G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
  429. switch (state) {
  430. case BR_STATE_DISABLED:
  431. hw_state = G_MISTP_DIS_STATE;
  432. break;
  433. case BR_STATE_LISTENING:
  434. hw_state = G_MISTP_LISTEN_STATE;
  435. break;
  436. case BR_STATE_LEARNING:
  437. hw_state = G_MISTP_LEARN_STATE;
  438. break;
  439. case BR_STATE_FORWARDING:
  440. hw_state = G_MISTP_FWD_STATE;
  441. break;
  442. case BR_STATE_BLOCKING:
  443. hw_state = G_MISTP_BLOCK_STATE;
  444. break;
  445. default:
  446. pr_err("%s: invalid STP state: %d\n", __func__, state);
  447. return -EINVAL;
  448. }
  449. /* Fast-age ARL entries if we are moving a port from Learning or
  450. * Forwarding (cur_hw_state) state to Disabled, Blocking or Listening
  451. * state (hw_state)
  452. */
  453. if (cur_hw_state != hw_state) {
  454. if (cur_hw_state >= G_MISTP_LEARN_STATE &&
  455. hw_state <= G_MISTP_LISTEN_STATE) {
  456. ret = bcm_sf2_sw_fast_age_port(ds, port);
  457. if (ret) {
  458. pr_err("%s: fast-ageing failed\n", __func__);
  459. return ret;
  460. }
  461. }
  462. }
  463. reg = core_readl(priv, CORE_G_PCTL_PORT(port));
  464. reg &= ~(G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
  465. reg |= hw_state;
  466. core_writel(priv, reg, CORE_G_PCTL_PORT(port));
  467. return 0;
  468. }
  469. static irqreturn_t bcm_sf2_switch_0_isr(int irq, void *dev_id)
  470. {
  471. struct bcm_sf2_priv *priv = dev_id;
  472. priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
  473. ~priv->irq0_mask;
  474. intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
  475. return IRQ_HANDLED;
  476. }
  477. static irqreturn_t bcm_sf2_switch_1_isr(int irq, void *dev_id)
  478. {
  479. struct bcm_sf2_priv *priv = dev_id;
  480. priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
  481. ~priv->irq1_mask;
  482. intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
  483. if (priv->irq1_stat & P_LINK_UP_IRQ(P7_IRQ_OFF))
  484. priv->port_sts[7].link = 1;
  485. if (priv->irq1_stat & P_LINK_DOWN_IRQ(P7_IRQ_OFF))
  486. priv->port_sts[7].link = 0;
  487. return IRQ_HANDLED;
  488. }
  489. static int bcm_sf2_sw_rst(struct bcm_sf2_priv *priv)
  490. {
  491. unsigned int timeout = 1000;
  492. u32 reg;
  493. reg = core_readl(priv, CORE_WATCHDOG_CTRL);
  494. reg |= SOFTWARE_RESET | EN_CHIP_RST | EN_SW_RESET;
  495. core_writel(priv, reg, CORE_WATCHDOG_CTRL);
  496. do {
  497. reg = core_readl(priv, CORE_WATCHDOG_CTRL);
  498. if (!(reg & SOFTWARE_RESET))
  499. break;
  500. usleep_range(1000, 2000);
  501. } while (timeout-- > 0);
  502. if (timeout == 0)
  503. return -ETIMEDOUT;
  504. return 0;
  505. }
  506. static void bcm_sf2_intr_disable(struct bcm_sf2_priv *priv)
  507. {
  508. intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
  509. intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
  510. intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
  511. intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
  512. intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
  513. intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
  514. }
  515. static int bcm_sf2_sw_setup(struct dsa_switch *ds)
  516. {
  517. const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME;
  518. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  519. struct device_node *dn;
  520. void __iomem **base;
  521. unsigned int port;
  522. unsigned int i;
  523. u32 reg, rev;
  524. int ret;
  525. spin_lock_init(&priv->indir_lock);
  526. mutex_init(&priv->stats_mutex);
  527. /* All the interesting properties are at the parent device_node
  528. * level
  529. */
  530. dn = ds->pd->of_node->parent;
  531. priv->irq0 = irq_of_parse_and_map(dn, 0);
  532. priv->irq1 = irq_of_parse_and_map(dn, 1);
  533. base = &priv->core;
  534. for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
  535. *base = of_iomap(dn, i);
  536. if (*base == NULL) {
  537. pr_err("unable to find register: %s\n", reg_names[i]);
  538. ret = -ENOMEM;
  539. goto out_unmap;
  540. }
  541. base++;
  542. }
  543. ret = bcm_sf2_sw_rst(priv);
  544. if (ret) {
  545. pr_err("unable to software reset switch: %d\n", ret);
  546. goto out_unmap;
  547. }
  548. /* Disable all interrupts and request them */
  549. bcm_sf2_intr_disable(priv);
  550. ret = request_irq(priv->irq0, bcm_sf2_switch_0_isr, 0,
  551. "switch_0", priv);
  552. if (ret < 0) {
  553. pr_err("failed to request switch_0 IRQ\n");
  554. goto out_unmap;
  555. }
  556. ret = request_irq(priv->irq1, bcm_sf2_switch_1_isr, 0,
  557. "switch_1", priv);
  558. if (ret < 0) {
  559. pr_err("failed to request switch_1 IRQ\n");
  560. goto out_free_irq0;
  561. }
  562. /* Reset the MIB counters */
  563. reg = core_readl(priv, CORE_GMNCFGCFG);
  564. reg |= RST_MIB_CNT;
  565. core_writel(priv, reg, CORE_GMNCFGCFG);
  566. reg &= ~RST_MIB_CNT;
  567. core_writel(priv, reg, CORE_GMNCFGCFG);
  568. /* Get the maximum number of ports for this switch */
  569. priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1;
  570. if (priv->hw_params.num_ports > DSA_MAX_PORTS)
  571. priv->hw_params.num_ports = DSA_MAX_PORTS;
  572. /* Assume a single GPHY setup if we can't read that property */
  573. if (of_property_read_u32(dn, "brcm,num-gphy",
  574. &priv->hw_params.num_gphy))
  575. priv->hw_params.num_gphy = 1;
  576. /* Enable all valid ports and disable those unused */
  577. for (port = 0; port < priv->hw_params.num_ports; port++) {
  578. /* IMP port receives special treatment */
  579. if ((1 << port) & ds->phys_port_mask)
  580. bcm_sf2_port_setup(ds, port, NULL);
  581. else if (dsa_is_cpu_port(ds, port))
  582. bcm_sf2_imp_setup(ds, port);
  583. else
  584. bcm_sf2_port_disable(ds, port, NULL);
  585. }
  586. /* Include the pseudo-PHY address and the broadcast PHY address to
  587. * divert reads towards our workaround. This is only required for
  588. * 7445D0, since 7445E0 disconnects the internal switch pseudo-PHY such
  589. * that we can use the regular SWITCH_MDIO master controller instead.
  590. *
  591. * By default, DSA initializes ds->phys_mii_mask to ds->phys_port_mask
  592. * to have a 1:1 mapping between Port address and PHY address in order
  593. * to utilize the slave_mii_bus instance to read from Port PHYs. This is
  594. * not what we want here, so we initialize phys_mii_mask 0 to always
  595. * utilize the "master" MDIO bus backed by the "mdio-unimac" driver.
  596. */
  597. if (of_machine_is_compatible("brcm,bcm7445d0"))
  598. ds->phys_mii_mask |= ((1 << BRCM_PSEUDO_PHY_ADDR) | (1 << 0));
  599. else
  600. ds->phys_mii_mask = 0;
  601. rev = reg_readl(priv, REG_SWITCH_REVISION);
  602. priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) &
  603. SWITCH_TOP_REV_MASK;
  604. priv->hw_params.core_rev = (rev & SF2_REV_MASK);
  605. rev = reg_readl(priv, REG_PHY_REVISION);
  606. priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK;
  607. pr_info("Starfighter 2 top: %x.%02x, core: %x.%02x base: 0x%p, IRQs: %d, %d\n",
  608. priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff,
  609. priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff,
  610. priv->core, priv->irq0, priv->irq1);
  611. return 0;
  612. out_free_irq0:
  613. free_irq(priv->irq0, priv);
  614. out_unmap:
  615. base = &priv->core;
  616. for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
  617. if (*base)
  618. iounmap(*base);
  619. base++;
  620. }
  621. return ret;
  622. }
  623. static int bcm_sf2_sw_set_addr(struct dsa_switch *ds, u8 *addr)
  624. {
  625. return 0;
  626. }
  627. static u32 bcm_sf2_sw_get_phy_flags(struct dsa_switch *ds, int port)
  628. {
  629. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  630. /* The BCM7xxx PHY driver expects to find the integrated PHY revision
  631. * in bits 15:8 and the patch level in bits 7:0 which is exactly what
  632. * the REG_PHY_REVISION register layout is.
  633. */
  634. return priv->hw_params.gphy_rev;
  635. }
  636. static int bcm_sf2_sw_indir_rw(struct dsa_switch *ds, int op, int addr,
  637. int regnum, u16 val)
  638. {
  639. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  640. int ret = 0;
  641. u32 reg;
  642. reg = reg_readl(priv, REG_SWITCH_CNTRL);
  643. reg |= MDIO_MASTER_SEL;
  644. reg_writel(priv, reg, REG_SWITCH_CNTRL);
  645. /* Page << 8 | offset */
  646. reg = 0x70;
  647. reg <<= 2;
  648. core_writel(priv, addr, reg);
  649. /* Page << 8 | offset */
  650. reg = 0x80 << 8 | regnum << 1;
  651. reg <<= 2;
  652. if (op)
  653. ret = core_readl(priv, reg);
  654. else
  655. core_writel(priv, val, reg);
  656. reg = reg_readl(priv, REG_SWITCH_CNTRL);
  657. reg &= ~MDIO_MASTER_SEL;
  658. reg_writel(priv, reg, REG_SWITCH_CNTRL);
  659. return ret & 0xffff;
  660. }
  661. static int bcm_sf2_sw_phy_read(struct dsa_switch *ds, int addr, int regnum)
  662. {
  663. /* Intercept reads from the MDIO broadcast address or Broadcom
  664. * pseudo-PHY address
  665. */
  666. switch (addr) {
  667. case 0:
  668. case BRCM_PSEUDO_PHY_ADDR:
  669. return bcm_sf2_sw_indir_rw(ds, 1, addr, regnum, 0);
  670. default:
  671. return 0xffff;
  672. }
  673. }
  674. static int bcm_sf2_sw_phy_write(struct dsa_switch *ds, int addr, int regnum,
  675. u16 val)
  676. {
  677. /* Intercept writes to the MDIO broadcast address or Broadcom
  678. * pseudo-PHY address
  679. */
  680. switch (addr) {
  681. case 0:
  682. case BRCM_PSEUDO_PHY_ADDR:
  683. bcm_sf2_sw_indir_rw(ds, 0, addr, regnum, val);
  684. break;
  685. }
  686. return 0;
  687. }
  688. static void bcm_sf2_sw_adjust_link(struct dsa_switch *ds, int port,
  689. struct phy_device *phydev)
  690. {
  691. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  692. u32 id_mode_dis = 0, port_mode;
  693. const char *str = NULL;
  694. u32 reg;
  695. switch (phydev->interface) {
  696. case PHY_INTERFACE_MODE_RGMII:
  697. str = "RGMII (no delay)";
  698. id_mode_dis = 1;
  699. case PHY_INTERFACE_MODE_RGMII_TXID:
  700. if (!str)
  701. str = "RGMII (TX delay)";
  702. port_mode = EXT_GPHY;
  703. break;
  704. case PHY_INTERFACE_MODE_MII:
  705. str = "MII";
  706. port_mode = EXT_EPHY;
  707. break;
  708. case PHY_INTERFACE_MODE_REVMII:
  709. str = "Reverse MII";
  710. port_mode = EXT_REVMII;
  711. break;
  712. default:
  713. /* All other PHYs: internal and MoCA */
  714. goto force_link;
  715. }
  716. /* If the link is down, just disable the interface to conserve power */
  717. if (!phydev->link) {
  718. reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
  719. reg &= ~RGMII_MODE_EN;
  720. reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
  721. goto force_link;
  722. }
  723. /* Clear id_mode_dis bit, and the existing port mode, but
  724. * make sure we enable the RGMII block for data to pass
  725. */
  726. reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
  727. reg &= ~ID_MODE_DIS;
  728. reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT);
  729. reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN);
  730. reg |= port_mode | RGMII_MODE_EN;
  731. if (id_mode_dis)
  732. reg |= ID_MODE_DIS;
  733. if (phydev->pause) {
  734. if (phydev->asym_pause)
  735. reg |= TX_PAUSE_EN;
  736. reg |= RX_PAUSE_EN;
  737. }
  738. reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
  739. pr_info("Port %d configured for %s\n", port, str);
  740. force_link:
  741. /* Force link settings detected from the PHY */
  742. reg = SW_OVERRIDE;
  743. switch (phydev->speed) {
  744. case SPEED_1000:
  745. reg |= SPDSTS_1000 << SPEED_SHIFT;
  746. break;
  747. case SPEED_100:
  748. reg |= SPDSTS_100 << SPEED_SHIFT;
  749. break;
  750. }
  751. if (phydev->link)
  752. reg |= LINK_STS;
  753. if (phydev->duplex == DUPLEX_FULL)
  754. reg |= DUPLX_MODE;
  755. core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
  756. }
  757. static void bcm_sf2_sw_fixed_link_update(struct dsa_switch *ds, int port,
  758. struct fixed_phy_status *status)
  759. {
  760. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  761. u32 duplex, pause;
  762. u32 reg;
  763. duplex = core_readl(priv, CORE_DUPSTS);
  764. pause = core_readl(priv, CORE_PAUSESTS);
  765. status->link = 0;
  766. /* Port 7 is special as we do not get link status from CORE_LNKSTS,
  767. * which means that we need to force the link at the port override
  768. * level to get the data to flow. We do use what the interrupt handler
  769. * did determine before.
  770. *
  771. * For the other ports, we just force the link status, since this is
  772. * a fixed PHY device.
  773. */
  774. if (port == 7) {
  775. status->link = priv->port_sts[port].link;
  776. /* For MoCA interfaces, also force a link down notification
  777. * since some version of the user-space daemon (mocad) use
  778. * cmd->autoneg to force the link, which messes up the PHY
  779. * state machine and make it go in PHY_FORCING state instead.
  780. */
  781. if (!status->link)
  782. netif_carrier_off(ds->ports[port]);
  783. status->duplex = 1;
  784. } else {
  785. status->link = 1;
  786. status->duplex = !!(duplex & (1 << port));
  787. }
  788. reg = core_readl(priv, CORE_STS_OVERRIDE_GMIIP_PORT(port));
  789. reg |= SW_OVERRIDE;
  790. if (status->link)
  791. reg |= LINK_STS;
  792. else
  793. reg &= ~LINK_STS;
  794. core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
  795. if ((pause & (1 << port)) &&
  796. (pause & (1 << (port + PAUSESTS_TX_PAUSE_SHIFT)))) {
  797. status->asym_pause = 1;
  798. status->pause = 1;
  799. }
  800. if (pause & (1 << port))
  801. status->pause = 1;
  802. }
  803. static int bcm_sf2_sw_suspend(struct dsa_switch *ds)
  804. {
  805. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  806. unsigned int port;
  807. bcm_sf2_intr_disable(priv);
  808. /* Disable all ports physically present including the IMP
  809. * port, the other ones have already been disabled during
  810. * bcm_sf2_sw_setup
  811. */
  812. for (port = 0; port < DSA_MAX_PORTS; port++) {
  813. if ((1 << port) & ds->phys_port_mask ||
  814. dsa_is_cpu_port(ds, port))
  815. bcm_sf2_port_disable(ds, port, NULL);
  816. }
  817. return 0;
  818. }
  819. static int bcm_sf2_sw_resume(struct dsa_switch *ds)
  820. {
  821. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  822. unsigned int port;
  823. int ret;
  824. ret = bcm_sf2_sw_rst(priv);
  825. if (ret) {
  826. pr_err("%s: failed to software reset switch\n", __func__);
  827. return ret;
  828. }
  829. if (priv->hw_params.num_gphy == 1)
  830. bcm_sf2_gphy_enable_set(ds, true);
  831. for (port = 0; port < DSA_MAX_PORTS; port++) {
  832. if ((1 << port) & ds->phys_port_mask)
  833. bcm_sf2_port_setup(ds, port, NULL);
  834. else if (dsa_is_cpu_port(ds, port))
  835. bcm_sf2_imp_setup(ds, port);
  836. }
  837. return 0;
  838. }
  839. static void bcm_sf2_sw_get_wol(struct dsa_switch *ds, int port,
  840. struct ethtool_wolinfo *wol)
  841. {
  842. struct net_device *p = ds->dst[ds->index].master_netdev;
  843. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  844. struct ethtool_wolinfo pwol;
  845. /* Get the parent device WoL settings */
  846. p->ethtool_ops->get_wol(p, &pwol);
  847. /* Advertise the parent device supported settings */
  848. wol->supported = pwol.supported;
  849. memset(&wol->sopass, 0, sizeof(wol->sopass));
  850. if (pwol.wolopts & WAKE_MAGICSECURE)
  851. memcpy(&wol->sopass, pwol.sopass, sizeof(wol->sopass));
  852. if (priv->wol_ports_mask & (1 << port))
  853. wol->wolopts = pwol.wolopts;
  854. else
  855. wol->wolopts = 0;
  856. }
  857. static int bcm_sf2_sw_set_wol(struct dsa_switch *ds, int port,
  858. struct ethtool_wolinfo *wol)
  859. {
  860. struct net_device *p = ds->dst[ds->index].master_netdev;
  861. struct bcm_sf2_priv *priv = ds_to_priv(ds);
  862. s8 cpu_port = ds->dst[ds->index].cpu_port;
  863. struct ethtool_wolinfo pwol;
  864. p->ethtool_ops->get_wol(p, &pwol);
  865. if (wol->wolopts & ~pwol.supported)
  866. return -EINVAL;
  867. if (wol->wolopts)
  868. priv->wol_ports_mask |= (1 << port);
  869. else
  870. priv->wol_ports_mask &= ~(1 << port);
  871. /* If we have at least one port enabled, make sure the CPU port
  872. * is also enabled. If the CPU port is the last one enabled, we disable
  873. * it since this configuration does not make sense.
  874. */
  875. if (priv->wol_ports_mask && priv->wol_ports_mask != (1 << cpu_port))
  876. priv->wol_ports_mask |= (1 << cpu_port);
  877. else
  878. priv->wol_ports_mask &= ~(1 << cpu_port);
  879. return p->ethtool_ops->set_wol(p, wol);
  880. }
  881. static struct dsa_switch_driver bcm_sf2_switch_driver = {
  882. .tag_protocol = DSA_TAG_PROTO_BRCM,
  883. .priv_size = sizeof(struct bcm_sf2_priv),
  884. .probe = bcm_sf2_sw_probe,
  885. .setup = bcm_sf2_sw_setup,
  886. .set_addr = bcm_sf2_sw_set_addr,
  887. .get_phy_flags = bcm_sf2_sw_get_phy_flags,
  888. .phy_read = bcm_sf2_sw_phy_read,
  889. .phy_write = bcm_sf2_sw_phy_write,
  890. .get_strings = bcm_sf2_sw_get_strings,
  891. .get_ethtool_stats = bcm_sf2_sw_get_ethtool_stats,
  892. .get_sset_count = bcm_sf2_sw_get_sset_count,
  893. .adjust_link = bcm_sf2_sw_adjust_link,
  894. .fixed_link_update = bcm_sf2_sw_fixed_link_update,
  895. .suspend = bcm_sf2_sw_suspend,
  896. .resume = bcm_sf2_sw_resume,
  897. .get_wol = bcm_sf2_sw_get_wol,
  898. .set_wol = bcm_sf2_sw_set_wol,
  899. .port_enable = bcm_sf2_port_setup,
  900. .port_disable = bcm_sf2_port_disable,
  901. .get_eee = bcm_sf2_sw_get_eee,
  902. .set_eee = bcm_sf2_sw_set_eee,
  903. .port_join_bridge = bcm_sf2_sw_br_join,
  904. .port_leave_bridge = bcm_sf2_sw_br_leave,
  905. .port_stp_update = bcm_sf2_sw_br_set_stp_state,
  906. };
  907. static int __init bcm_sf2_init(void)
  908. {
  909. register_switch_driver(&bcm_sf2_switch_driver);
  910. return 0;
  911. }
  912. module_init(bcm_sf2_init);
  913. static void __exit bcm_sf2_exit(void)
  914. {
  915. unregister_switch_driver(&bcm_sf2_switch_driver);
  916. }
  917. module_exit(bcm_sf2_exit);
  918. MODULE_AUTHOR("Broadcom Corporation");
  919. MODULE_DESCRIPTION("Driver for Broadcom Starfighter 2 ethernet switch chip");
  920. MODULE_LICENSE("GPL");
  921. MODULE_ALIAS("platform:brcm-sf2");