ems_usb.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085
  1. /*
  2. * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
  3. *
  4. * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published
  8. * by the Free Software Foundation; version 2 of the License.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along
  16. * with this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  18. */
  19. #include <linux/signal.h>
  20. #include <linux/slab.h>
  21. #include <linux/module.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/usb.h>
  24. #include <linux/can.h>
  25. #include <linux/can/dev.h>
  26. #include <linux/can/error.h>
  27. MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
  28. MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
  29. MODULE_LICENSE("GPL v2");
  30. /* Control-Values for CPC_Control() Command Subject Selection */
  31. #define CONTR_CAN_MESSAGE 0x04
  32. #define CONTR_CAN_STATE 0x0C
  33. #define CONTR_BUS_ERROR 0x1C
  34. /* Control Command Actions */
  35. #define CONTR_CONT_OFF 0
  36. #define CONTR_CONT_ON 1
  37. #define CONTR_ONCE 2
  38. /* Messages from CPC to PC */
  39. #define CPC_MSG_TYPE_CAN_FRAME 1 /* CAN data frame */
  40. #define CPC_MSG_TYPE_RTR_FRAME 8 /* CAN remote frame */
  41. #define CPC_MSG_TYPE_CAN_PARAMS 12 /* Actual CAN parameters */
  42. #define CPC_MSG_TYPE_CAN_STATE 14 /* CAN state message */
  43. #define CPC_MSG_TYPE_EXT_CAN_FRAME 16 /* Extended CAN data frame */
  44. #define CPC_MSG_TYPE_EXT_RTR_FRAME 17 /* Extended remote frame */
  45. #define CPC_MSG_TYPE_CONTROL 19 /* change interface behavior */
  46. #define CPC_MSG_TYPE_CONFIRM 20 /* command processed confirmation */
  47. #define CPC_MSG_TYPE_OVERRUN 21 /* overrun events */
  48. #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
  49. #define CPC_MSG_TYPE_ERR_COUNTER 25 /* RX/TX error counter */
  50. /* Messages from the PC to the CPC interface */
  51. #define CPC_CMD_TYPE_CAN_FRAME 1 /* CAN data frame */
  52. #define CPC_CMD_TYPE_CONTROL 3 /* control of interface behavior */
  53. #define CPC_CMD_TYPE_CAN_PARAMS 6 /* set CAN parameters */
  54. #define CPC_CMD_TYPE_RTR_FRAME 13 /* CAN remote frame */
  55. #define CPC_CMD_TYPE_CAN_STATE 14 /* CAN state message */
  56. #define CPC_CMD_TYPE_EXT_CAN_FRAME 15 /* Extended CAN data frame */
  57. #define CPC_CMD_TYPE_EXT_RTR_FRAME 16 /* Extended CAN remote frame */
  58. #define CPC_CMD_TYPE_CAN_EXIT 200 /* exit the CAN */
  59. #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
  60. #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8 /* clear CPC_MSG queue */
  61. #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
  62. #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
  63. #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
  64. /* Overrun types */
  65. #define CPC_OVR_EVENT_CAN 0x01
  66. #define CPC_OVR_EVENT_CANSTATE 0x02
  67. #define CPC_OVR_EVENT_BUSERROR 0x04
  68. /*
  69. * If the CAN controller lost a message we indicate it with the highest bit
  70. * set in the count field.
  71. */
  72. #define CPC_OVR_HW 0x80
  73. /* Size of the "struct ems_cpc_msg" without the union */
  74. #define CPC_MSG_HEADER_LEN 11
  75. #define CPC_CAN_MSG_MIN_SIZE 5
  76. /* Define these values to match your devices */
  77. #define USB_CPCUSB_VENDOR_ID 0x12D6
  78. #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
  79. /* Mode register NXP LPC2119/SJA1000 CAN Controller */
  80. #define SJA1000_MOD_NORMAL 0x00
  81. #define SJA1000_MOD_RM 0x01
  82. /* ECC register NXP LPC2119/SJA1000 CAN Controller */
  83. #define SJA1000_ECC_SEG 0x1F
  84. #define SJA1000_ECC_DIR 0x20
  85. #define SJA1000_ECC_ERR 0x06
  86. #define SJA1000_ECC_BIT 0x00
  87. #define SJA1000_ECC_FORM 0x40
  88. #define SJA1000_ECC_STUFF 0x80
  89. #define SJA1000_ECC_MASK 0xc0
  90. /* Status register content */
  91. #define SJA1000_SR_BS 0x80
  92. #define SJA1000_SR_ES 0x40
  93. #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
  94. /*
  95. * The device actually uses a 16MHz clock to generate the CAN clock
  96. * but it expects SJA1000 bit settings based on 8MHz (is internally
  97. * converted).
  98. */
  99. #define EMS_USB_ARM7_CLOCK 8000000
  100. /*
  101. * CAN-Message representation in a CPC_MSG. Message object type is
  102. * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
  103. * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
  104. */
  105. struct cpc_can_msg {
  106. __le32 id;
  107. u8 length;
  108. u8 msg[8];
  109. };
  110. /* Representation of the CAN parameters for the SJA1000 controller */
  111. struct cpc_sja1000_params {
  112. u8 mode;
  113. u8 acc_code0;
  114. u8 acc_code1;
  115. u8 acc_code2;
  116. u8 acc_code3;
  117. u8 acc_mask0;
  118. u8 acc_mask1;
  119. u8 acc_mask2;
  120. u8 acc_mask3;
  121. u8 btr0;
  122. u8 btr1;
  123. u8 outp_contr;
  124. };
  125. /* CAN params message representation */
  126. struct cpc_can_params {
  127. u8 cc_type;
  128. /* Will support M16C CAN controller in the future */
  129. union {
  130. struct cpc_sja1000_params sja1000;
  131. } cc_params;
  132. };
  133. /* Structure for confirmed message handling */
  134. struct cpc_confirm {
  135. u8 error; /* error code */
  136. };
  137. /* Structure for overrun conditions */
  138. struct cpc_overrun {
  139. u8 event;
  140. u8 count;
  141. };
  142. /* SJA1000 CAN errors (compatible to NXP LPC2119) */
  143. struct cpc_sja1000_can_error {
  144. u8 ecc;
  145. u8 rxerr;
  146. u8 txerr;
  147. };
  148. /* structure for CAN error conditions */
  149. struct cpc_can_error {
  150. u8 ecode;
  151. struct {
  152. u8 cc_type;
  153. /* Other controllers may also provide error code capture regs */
  154. union {
  155. struct cpc_sja1000_can_error sja1000;
  156. } regs;
  157. } cc;
  158. };
  159. /*
  160. * Structure containing RX/TX error counter. This structure is used to request
  161. * the values of the CAN controllers TX and RX error counter.
  162. */
  163. struct cpc_can_err_counter {
  164. u8 rx;
  165. u8 tx;
  166. };
  167. /* Main message type used between library and application */
  168. struct __packed ems_cpc_msg {
  169. u8 type; /* type of message */
  170. u8 length; /* length of data within union 'msg' */
  171. u8 msgid; /* confirmation handle */
  172. __le32 ts_sec; /* timestamp in seconds */
  173. __le32 ts_nsec; /* timestamp in nano seconds */
  174. union {
  175. u8 generic[64];
  176. struct cpc_can_msg can_msg;
  177. struct cpc_can_params can_params;
  178. struct cpc_confirm confirmation;
  179. struct cpc_overrun overrun;
  180. struct cpc_can_error error;
  181. struct cpc_can_err_counter err_counter;
  182. u8 can_state;
  183. } msg;
  184. };
  185. /*
  186. * Table of devices that work with this driver
  187. * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
  188. */
  189. static struct usb_device_id ems_usb_table[] = {
  190. {USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
  191. {} /* Terminating entry */
  192. };
  193. MODULE_DEVICE_TABLE(usb, ems_usb_table);
  194. #define RX_BUFFER_SIZE 64
  195. #define CPC_HEADER_SIZE 4
  196. #define INTR_IN_BUFFER_SIZE 4
  197. #define MAX_RX_URBS 10
  198. #define MAX_TX_URBS 10
  199. struct ems_usb;
  200. struct ems_tx_urb_context {
  201. struct ems_usb *dev;
  202. u32 echo_index;
  203. u8 dlc;
  204. };
  205. struct ems_usb {
  206. struct can_priv can; /* must be the first member */
  207. struct sk_buff *echo_skb[MAX_TX_URBS];
  208. struct usb_device *udev;
  209. struct net_device *netdev;
  210. atomic_t active_tx_urbs;
  211. struct usb_anchor tx_submitted;
  212. struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
  213. struct usb_anchor rx_submitted;
  214. struct urb *intr_urb;
  215. u8 *tx_msg_buffer;
  216. u8 *intr_in_buffer;
  217. unsigned int free_slots; /* remember number of available slots */
  218. struct ems_cpc_msg active_params; /* active controller parameters */
  219. };
  220. static void ems_usb_read_interrupt_callback(struct urb *urb)
  221. {
  222. struct ems_usb *dev = urb->context;
  223. struct net_device *netdev = dev->netdev;
  224. int err;
  225. if (!netif_device_present(netdev))
  226. return;
  227. switch (urb->status) {
  228. case 0:
  229. dev->free_slots = dev->intr_in_buffer[1];
  230. break;
  231. case -ECONNRESET: /* unlink */
  232. case -ENOENT:
  233. case -ESHUTDOWN:
  234. return;
  235. default:
  236. netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
  237. break;
  238. }
  239. err = usb_submit_urb(urb, GFP_ATOMIC);
  240. if (err == -ENODEV)
  241. netif_device_detach(netdev);
  242. else if (err)
  243. netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
  244. }
  245. static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
  246. {
  247. struct can_frame *cf;
  248. struct sk_buff *skb;
  249. int i;
  250. struct net_device_stats *stats = &dev->netdev->stats;
  251. skb = alloc_can_skb(dev->netdev, &cf);
  252. if (skb == NULL)
  253. return;
  254. cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
  255. cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
  256. if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
  257. msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
  258. cf->can_id |= CAN_EFF_FLAG;
  259. if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
  260. msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
  261. cf->can_id |= CAN_RTR_FLAG;
  262. } else {
  263. for (i = 0; i < cf->can_dlc; i++)
  264. cf->data[i] = msg->msg.can_msg.msg[i];
  265. }
  266. stats->rx_packets++;
  267. stats->rx_bytes += cf->can_dlc;
  268. netif_rx(skb);
  269. }
  270. static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
  271. {
  272. struct can_frame *cf;
  273. struct sk_buff *skb;
  274. struct net_device_stats *stats = &dev->netdev->stats;
  275. skb = alloc_can_err_skb(dev->netdev, &cf);
  276. if (skb == NULL)
  277. return;
  278. if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
  279. u8 state = msg->msg.can_state;
  280. if (state & SJA1000_SR_BS) {
  281. dev->can.state = CAN_STATE_BUS_OFF;
  282. cf->can_id |= CAN_ERR_BUSOFF;
  283. dev->can.can_stats.bus_off++;
  284. can_bus_off(dev->netdev);
  285. } else if (state & SJA1000_SR_ES) {
  286. dev->can.state = CAN_STATE_ERROR_WARNING;
  287. dev->can.can_stats.error_warning++;
  288. } else {
  289. dev->can.state = CAN_STATE_ERROR_ACTIVE;
  290. dev->can.can_stats.error_passive++;
  291. }
  292. } else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
  293. u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
  294. u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
  295. u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
  296. /* bus error interrupt */
  297. dev->can.can_stats.bus_error++;
  298. stats->rx_errors++;
  299. cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
  300. switch (ecc & SJA1000_ECC_MASK) {
  301. case SJA1000_ECC_BIT:
  302. cf->data[2] |= CAN_ERR_PROT_BIT;
  303. break;
  304. case SJA1000_ECC_FORM:
  305. cf->data[2] |= CAN_ERR_PROT_FORM;
  306. break;
  307. case SJA1000_ECC_STUFF:
  308. cf->data[2] |= CAN_ERR_PROT_STUFF;
  309. break;
  310. default:
  311. cf->data[2] |= CAN_ERR_PROT_UNSPEC;
  312. cf->data[3] = ecc & SJA1000_ECC_SEG;
  313. break;
  314. }
  315. /* Error occurred during transmission? */
  316. if ((ecc & SJA1000_ECC_DIR) == 0)
  317. cf->data[2] |= CAN_ERR_PROT_TX;
  318. if (dev->can.state == CAN_STATE_ERROR_WARNING ||
  319. dev->can.state == CAN_STATE_ERROR_PASSIVE) {
  320. cf->data[1] = (txerr > rxerr) ?
  321. CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
  322. }
  323. } else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
  324. cf->can_id |= CAN_ERR_CRTL;
  325. cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  326. stats->rx_over_errors++;
  327. stats->rx_errors++;
  328. }
  329. stats->rx_packets++;
  330. stats->rx_bytes += cf->can_dlc;
  331. netif_rx(skb);
  332. }
  333. /*
  334. * callback for bulk IN urb
  335. */
  336. static void ems_usb_read_bulk_callback(struct urb *urb)
  337. {
  338. struct ems_usb *dev = urb->context;
  339. struct net_device *netdev;
  340. int retval;
  341. netdev = dev->netdev;
  342. if (!netif_device_present(netdev))
  343. return;
  344. switch (urb->status) {
  345. case 0: /* success */
  346. break;
  347. case -ENOENT:
  348. return;
  349. default:
  350. netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
  351. goto resubmit_urb;
  352. }
  353. if (urb->actual_length > CPC_HEADER_SIZE) {
  354. struct ems_cpc_msg *msg;
  355. u8 *ibuf = urb->transfer_buffer;
  356. u8 msg_count, start;
  357. msg_count = ibuf[0] & ~0x80;
  358. start = CPC_HEADER_SIZE;
  359. while (msg_count) {
  360. msg = (struct ems_cpc_msg *)&ibuf[start];
  361. switch (msg->type) {
  362. case CPC_MSG_TYPE_CAN_STATE:
  363. /* Process CAN state changes */
  364. ems_usb_rx_err(dev, msg);
  365. break;
  366. case CPC_MSG_TYPE_CAN_FRAME:
  367. case CPC_MSG_TYPE_EXT_CAN_FRAME:
  368. case CPC_MSG_TYPE_RTR_FRAME:
  369. case CPC_MSG_TYPE_EXT_RTR_FRAME:
  370. ems_usb_rx_can_msg(dev, msg);
  371. break;
  372. case CPC_MSG_TYPE_CAN_FRAME_ERROR:
  373. /* Process errorframe */
  374. ems_usb_rx_err(dev, msg);
  375. break;
  376. case CPC_MSG_TYPE_OVERRUN:
  377. /* Message lost while receiving */
  378. ems_usb_rx_err(dev, msg);
  379. break;
  380. }
  381. start += CPC_MSG_HEADER_LEN + msg->length;
  382. msg_count--;
  383. if (start > urb->transfer_buffer_length) {
  384. netdev_err(netdev, "format error\n");
  385. break;
  386. }
  387. }
  388. }
  389. resubmit_urb:
  390. usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
  391. urb->transfer_buffer, RX_BUFFER_SIZE,
  392. ems_usb_read_bulk_callback, dev);
  393. retval = usb_submit_urb(urb, GFP_ATOMIC);
  394. if (retval == -ENODEV)
  395. netif_device_detach(netdev);
  396. else if (retval)
  397. netdev_err(netdev,
  398. "failed resubmitting read bulk urb: %d\n", retval);
  399. }
  400. /*
  401. * callback for bulk IN urb
  402. */
  403. static void ems_usb_write_bulk_callback(struct urb *urb)
  404. {
  405. struct ems_tx_urb_context *context = urb->context;
  406. struct ems_usb *dev;
  407. struct net_device *netdev;
  408. BUG_ON(!context);
  409. dev = context->dev;
  410. netdev = dev->netdev;
  411. /* free up our allocated buffer */
  412. usb_free_coherent(urb->dev, urb->transfer_buffer_length,
  413. urb->transfer_buffer, urb->transfer_dma);
  414. atomic_dec(&dev->active_tx_urbs);
  415. if (!netif_device_present(netdev))
  416. return;
  417. if (urb->status)
  418. netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
  419. netdev->trans_start = jiffies;
  420. /* transmission complete interrupt */
  421. netdev->stats.tx_packets++;
  422. netdev->stats.tx_bytes += context->dlc;
  423. can_get_echo_skb(netdev, context->echo_index);
  424. /* Release context */
  425. context->echo_index = MAX_TX_URBS;
  426. if (netif_queue_stopped(netdev))
  427. netif_wake_queue(netdev);
  428. }
  429. /*
  430. * Send the given CPC command synchronously
  431. */
  432. static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
  433. {
  434. int actual_length;
  435. /* Copy payload */
  436. memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
  437. msg->length + CPC_MSG_HEADER_LEN);
  438. /* Clear header */
  439. memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
  440. return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
  441. &dev->tx_msg_buffer[0],
  442. msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
  443. &actual_length, 1000);
  444. }
  445. /*
  446. * Change CAN controllers' mode register
  447. */
  448. static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
  449. {
  450. dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
  451. return ems_usb_command_msg(dev, &dev->active_params);
  452. }
  453. /*
  454. * Send a CPC_Control command to change behaviour when interface receives a CAN
  455. * message, bus error or CAN state changed notifications.
  456. */
  457. static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
  458. {
  459. struct ems_cpc_msg cmd;
  460. cmd.type = CPC_CMD_TYPE_CONTROL;
  461. cmd.length = CPC_MSG_HEADER_LEN + 1;
  462. cmd.msgid = 0;
  463. cmd.msg.generic[0] = val;
  464. return ems_usb_command_msg(dev, &cmd);
  465. }
  466. /*
  467. * Start interface
  468. */
  469. static int ems_usb_start(struct ems_usb *dev)
  470. {
  471. struct net_device *netdev = dev->netdev;
  472. int err, i;
  473. dev->intr_in_buffer[0] = 0;
  474. dev->free_slots = 15; /* initial size */
  475. for (i = 0; i < MAX_RX_URBS; i++) {
  476. struct urb *urb = NULL;
  477. u8 *buf = NULL;
  478. /* create a URB, and a buffer for it */
  479. urb = usb_alloc_urb(0, GFP_KERNEL);
  480. if (!urb) {
  481. netdev_err(netdev, "No memory left for URBs\n");
  482. err = -ENOMEM;
  483. break;
  484. }
  485. buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
  486. &urb->transfer_dma);
  487. if (!buf) {
  488. netdev_err(netdev, "No memory left for USB buffer\n");
  489. usb_free_urb(urb);
  490. err = -ENOMEM;
  491. break;
  492. }
  493. usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
  494. buf, RX_BUFFER_SIZE,
  495. ems_usb_read_bulk_callback, dev);
  496. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  497. usb_anchor_urb(urb, &dev->rx_submitted);
  498. err = usb_submit_urb(urb, GFP_KERNEL);
  499. if (err) {
  500. usb_unanchor_urb(urb);
  501. usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
  502. urb->transfer_dma);
  503. usb_free_urb(urb);
  504. break;
  505. }
  506. /* Drop reference, USB core will take care of freeing it */
  507. usb_free_urb(urb);
  508. }
  509. /* Did we submit any URBs */
  510. if (i == 0) {
  511. netdev_warn(netdev, "couldn't setup read URBs\n");
  512. return err;
  513. }
  514. /* Warn if we've couldn't transmit all the URBs */
  515. if (i < MAX_RX_URBS)
  516. netdev_warn(netdev, "rx performance may be slow\n");
  517. /* Setup and start interrupt URB */
  518. usb_fill_int_urb(dev->intr_urb, dev->udev,
  519. usb_rcvintpipe(dev->udev, 1),
  520. dev->intr_in_buffer,
  521. INTR_IN_BUFFER_SIZE,
  522. ems_usb_read_interrupt_callback, dev, 1);
  523. err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
  524. if (err) {
  525. netdev_warn(netdev, "intr URB submit failed: %d\n", err);
  526. return err;
  527. }
  528. /* CPC-USB will transfer received message to host */
  529. err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
  530. if (err)
  531. goto failed;
  532. /* CPC-USB will transfer CAN state changes to host */
  533. err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
  534. if (err)
  535. goto failed;
  536. /* CPC-USB will transfer bus errors to host */
  537. err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
  538. if (err)
  539. goto failed;
  540. err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
  541. if (err)
  542. goto failed;
  543. dev->can.state = CAN_STATE_ERROR_ACTIVE;
  544. return 0;
  545. failed:
  546. netdev_warn(netdev, "couldn't submit control: %d\n", err);
  547. return err;
  548. }
  549. static void unlink_all_urbs(struct ems_usb *dev)
  550. {
  551. int i;
  552. usb_unlink_urb(dev->intr_urb);
  553. usb_kill_anchored_urbs(&dev->rx_submitted);
  554. usb_kill_anchored_urbs(&dev->tx_submitted);
  555. atomic_set(&dev->active_tx_urbs, 0);
  556. for (i = 0; i < MAX_TX_URBS; i++)
  557. dev->tx_contexts[i].echo_index = MAX_TX_URBS;
  558. }
  559. static int ems_usb_open(struct net_device *netdev)
  560. {
  561. struct ems_usb *dev = netdev_priv(netdev);
  562. int err;
  563. err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
  564. if (err)
  565. return err;
  566. /* common open */
  567. err = open_candev(netdev);
  568. if (err)
  569. return err;
  570. /* finally start device */
  571. err = ems_usb_start(dev);
  572. if (err) {
  573. if (err == -ENODEV)
  574. netif_device_detach(dev->netdev);
  575. netdev_warn(netdev, "couldn't start device: %d\n", err);
  576. close_candev(netdev);
  577. return err;
  578. }
  579. netif_start_queue(netdev);
  580. return 0;
  581. }
  582. static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
  583. {
  584. struct ems_usb *dev = netdev_priv(netdev);
  585. struct ems_tx_urb_context *context = NULL;
  586. struct net_device_stats *stats = &netdev->stats;
  587. struct can_frame *cf = (struct can_frame *)skb->data;
  588. struct ems_cpc_msg *msg;
  589. struct urb *urb;
  590. u8 *buf;
  591. int i, err;
  592. size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
  593. + sizeof(struct cpc_can_msg);
  594. if (can_dropped_invalid_skb(netdev, skb))
  595. return NETDEV_TX_OK;
  596. /* create a URB, and a buffer for it, and copy the data to the URB */
  597. urb = usb_alloc_urb(0, GFP_ATOMIC);
  598. if (!urb) {
  599. netdev_err(netdev, "No memory left for URBs\n");
  600. goto nomem;
  601. }
  602. buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
  603. if (!buf) {
  604. netdev_err(netdev, "No memory left for USB buffer\n");
  605. usb_free_urb(urb);
  606. goto nomem;
  607. }
  608. msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
  609. msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
  610. msg->msg.can_msg.length = cf->can_dlc;
  611. if (cf->can_id & CAN_RTR_FLAG) {
  612. msg->type = cf->can_id & CAN_EFF_FLAG ?
  613. CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
  614. msg->length = CPC_CAN_MSG_MIN_SIZE;
  615. } else {
  616. msg->type = cf->can_id & CAN_EFF_FLAG ?
  617. CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
  618. for (i = 0; i < cf->can_dlc; i++)
  619. msg->msg.can_msg.msg[i] = cf->data[i];
  620. msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
  621. }
  622. for (i = 0; i < MAX_TX_URBS; i++) {
  623. if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
  624. context = &dev->tx_contexts[i];
  625. break;
  626. }
  627. }
  628. /*
  629. * May never happen! When this happens we'd more URBs in flight as
  630. * allowed (MAX_TX_URBS).
  631. */
  632. if (!context) {
  633. usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
  634. usb_free_urb(urb);
  635. netdev_warn(netdev, "couldn't find free context\n");
  636. return NETDEV_TX_BUSY;
  637. }
  638. context->dev = dev;
  639. context->echo_index = i;
  640. context->dlc = cf->can_dlc;
  641. usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
  642. size, ems_usb_write_bulk_callback, context);
  643. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  644. usb_anchor_urb(urb, &dev->tx_submitted);
  645. can_put_echo_skb(skb, netdev, context->echo_index);
  646. atomic_inc(&dev->active_tx_urbs);
  647. err = usb_submit_urb(urb, GFP_ATOMIC);
  648. if (unlikely(err)) {
  649. can_free_echo_skb(netdev, context->echo_index);
  650. usb_unanchor_urb(urb);
  651. usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
  652. dev_kfree_skb(skb);
  653. atomic_dec(&dev->active_tx_urbs);
  654. if (err == -ENODEV) {
  655. netif_device_detach(netdev);
  656. } else {
  657. netdev_warn(netdev, "failed tx_urb %d\n", err);
  658. stats->tx_dropped++;
  659. }
  660. } else {
  661. netdev->trans_start = jiffies;
  662. /* Slow down tx path */
  663. if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
  664. dev->free_slots < 5) {
  665. netif_stop_queue(netdev);
  666. }
  667. }
  668. /*
  669. * Release our reference to this URB, the USB core will eventually free
  670. * it entirely.
  671. */
  672. usb_free_urb(urb);
  673. return NETDEV_TX_OK;
  674. nomem:
  675. dev_kfree_skb(skb);
  676. stats->tx_dropped++;
  677. return NETDEV_TX_OK;
  678. }
  679. static int ems_usb_close(struct net_device *netdev)
  680. {
  681. struct ems_usb *dev = netdev_priv(netdev);
  682. /* Stop polling */
  683. unlink_all_urbs(dev);
  684. netif_stop_queue(netdev);
  685. /* Set CAN controller to reset mode */
  686. if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
  687. netdev_warn(netdev, "couldn't stop device");
  688. close_candev(netdev);
  689. return 0;
  690. }
  691. static const struct net_device_ops ems_usb_netdev_ops = {
  692. .ndo_open = ems_usb_open,
  693. .ndo_stop = ems_usb_close,
  694. .ndo_start_xmit = ems_usb_start_xmit,
  695. .ndo_change_mtu = can_change_mtu,
  696. };
  697. static const struct can_bittiming_const ems_usb_bittiming_const = {
  698. .name = "ems_usb",
  699. .tseg1_min = 1,
  700. .tseg1_max = 16,
  701. .tseg2_min = 1,
  702. .tseg2_max = 8,
  703. .sjw_max = 4,
  704. .brp_min = 1,
  705. .brp_max = 64,
  706. .brp_inc = 1,
  707. };
  708. static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
  709. {
  710. struct ems_usb *dev = netdev_priv(netdev);
  711. switch (mode) {
  712. case CAN_MODE_START:
  713. if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
  714. netdev_warn(netdev, "couldn't start device");
  715. if (netif_queue_stopped(netdev))
  716. netif_wake_queue(netdev);
  717. break;
  718. default:
  719. return -EOPNOTSUPP;
  720. }
  721. return 0;
  722. }
  723. static int ems_usb_set_bittiming(struct net_device *netdev)
  724. {
  725. struct ems_usb *dev = netdev_priv(netdev);
  726. struct can_bittiming *bt = &dev->can.bittiming;
  727. u8 btr0, btr1;
  728. btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
  729. btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
  730. (((bt->phase_seg2 - 1) & 0x7) << 4);
  731. if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
  732. btr1 |= 0x80;
  733. netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
  734. dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
  735. dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
  736. return ems_usb_command_msg(dev, &dev->active_params);
  737. }
  738. static void init_params_sja1000(struct ems_cpc_msg *msg)
  739. {
  740. struct cpc_sja1000_params *sja1000 =
  741. &msg->msg.can_params.cc_params.sja1000;
  742. msg->type = CPC_CMD_TYPE_CAN_PARAMS;
  743. msg->length = sizeof(struct cpc_can_params);
  744. msg->msgid = 0;
  745. msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
  746. /* Acceptance filter open */
  747. sja1000->acc_code0 = 0x00;
  748. sja1000->acc_code1 = 0x00;
  749. sja1000->acc_code2 = 0x00;
  750. sja1000->acc_code3 = 0x00;
  751. /* Acceptance filter open */
  752. sja1000->acc_mask0 = 0xFF;
  753. sja1000->acc_mask1 = 0xFF;
  754. sja1000->acc_mask2 = 0xFF;
  755. sja1000->acc_mask3 = 0xFF;
  756. sja1000->btr0 = 0;
  757. sja1000->btr1 = 0;
  758. sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
  759. sja1000->mode = SJA1000_MOD_RM;
  760. }
  761. /*
  762. * probe function for new CPC-USB devices
  763. */
  764. static int ems_usb_probe(struct usb_interface *intf,
  765. const struct usb_device_id *id)
  766. {
  767. struct net_device *netdev;
  768. struct ems_usb *dev;
  769. int i, err = -ENOMEM;
  770. netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
  771. if (!netdev) {
  772. dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
  773. return -ENOMEM;
  774. }
  775. dev = netdev_priv(netdev);
  776. dev->udev = interface_to_usbdev(intf);
  777. dev->netdev = netdev;
  778. dev->can.state = CAN_STATE_STOPPED;
  779. dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
  780. dev->can.bittiming_const = &ems_usb_bittiming_const;
  781. dev->can.do_set_bittiming = ems_usb_set_bittiming;
  782. dev->can.do_set_mode = ems_usb_set_mode;
  783. dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
  784. netdev->netdev_ops = &ems_usb_netdev_ops;
  785. netdev->flags |= IFF_ECHO; /* we support local echo */
  786. init_usb_anchor(&dev->rx_submitted);
  787. init_usb_anchor(&dev->tx_submitted);
  788. atomic_set(&dev->active_tx_urbs, 0);
  789. for (i = 0; i < MAX_TX_URBS; i++)
  790. dev->tx_contexts[i].echo_index = MAX_TX_URBS;
  791. dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
  792. if (!dev->intr_urb) {
  793. dev_err(&intf->dev, "Couldn't alloc intr URB\n");
  794. goto cleanup_candev;
  795. }
  796. dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
  797. if (!dev->intr_in_buffer)
  798. goto cleanup_intr_urb;
  799. dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
  800. sizeof(struct ems_cpc_msg), GFP_KERNEL);
  801. if (!dev->tx_msg_buffer)
  802. goto cleanup_intr_in_buffer;
  803. usb_set_intfdata(intf, dev);
  804. SET_NETDEV_DEV(netdev, &intf->dev);
  805. init_params_sja1000(&dev->active_params);
  806. err = ems_usb_command_msg(dev, &dev->active_params);
  807. if (err) {
  808. netdev_err(netdev, "couldn't initialize controller: %d\n", err);
  809. goto cleanup_tx_msg_buffer;
  810. }
  811. err = register_candev(netdev);
  812. if (err) {
  813. netdev_err(netdev, "couldn't register CAN device: %d\n", err);
  814. goto cleanup_tx_msg_buffer;
  815. }
  816. return 0;
  817. cleanup_tx_msg_buffer:
  818. kfree(dev->tx_msg_buffer);
  819. cleanup_intr_in_buffer:
  820. kfree(dev->intr_in_buffer);
  821. cleanup_intr_urb:
  822. usb_free_urb(dev->intr_urb);
  823. cleanup_candev:
  824. free_candev(netdev);
  825. return err;
  826. }
  827. /*
  828. * called by the usb core when the device is removed from the system
  829. */
  830. static void ems_usb_disconnect(struct usb_interface *intf)
  831. {
  832. struct ems_usb *dev = usb_get_intfdata(intf);
  833. usb_set_intfdata(intf, NULL);
  834. if (dev) {
  835. unregister_netdev(dev->netdev);
  836. free_candev(dev->netdev);
  837. unlink_all_urbs(dev);
  838. usb_free_urb(dev->intr_urb);
  839. kfree(dev->intr_in_buffer);
  840. }
  841. }
  842. /* usb specific object needed to register this driver with the usb subsystem */
  843. static struct usb_driver ems_usb_driver = {
  844. .name = "ems_usb",
  845. .probe = ems_usb_probe,
  846. .disconnect = ems_usb_disconnect,
  847. .id_table = ems_usb_table,
  848. };
  849. module_usb_driver(ems_usb_driver);