card_utils.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049
  1. /**
  2. * IBM Accelerator Family 'GenWQE'
  3. *
  4. * (C) Copyright IBM Corp. 2013
  5. *
  6. * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
  7. * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
  8. * Author: Michael Jung <mijung@gmx.net>
  9. * Author: Michael Ruettger <michael@ibmra.de>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License (version 2 only)
  13. * as published by the Free Software Foundation.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. */
  20. /*
  21. * Miscelanous functionality used in the other GenWQE driver parts.
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/sched.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/page-flags.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/hugetlb.h>
  30. #include <linux/iommu.h>
  31. #include <linux/delay.h>
  32. #include <linux/pci.h>
  33. #include <linux/dma-mapping.h>
  34. #include <linux/ctype.h>
  35. #include <linux/module.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/delay.h>
  38. #include <asm/pgtable.h>
  39. #include "genwqe_driver.h"
  40. #include "card_base.h"
  41. #include "card_ddcb.h"
  42. /**
  43. * __genwqe_writeq() - Write 64-bit register
  44. * @cd: genwqe device descriptor
  45. * @byte_offs: byte offset within BAR
  46. * @val: 64-bit value
  47. *
  48. * Return: 0 if success; < 0 if error
  49. */
  50. int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
  51. {
  52. struct pci_dev *pci_dev = cd->pci_dev;
  53. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  54. return -EIO;
  55. if (cd->mmio == NULL)
  56. return -EIO;
  57. if (pci_channel_offline(pci_dev))
  58. return -EIO;
  59. __raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
  60. return 0;
  61. }
  62. /**
  63. * __genwqe_readq() - Read 64-bit register
  64. * @cd: genwqe device descriptor
  65. * @byte_offs: offset within BAR
  66. *
  67. * Return: value from register
  68. */
  69. u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
  70. {
  71. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  72. return 0xffffffffffffffffull;
  73. if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
  74. (byte_offs == IO_SLC_CFGREG_GFIR))
  75. return 0x000000000000ffffull;
  76. if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
  77. (byte_offs == IO_SLC_CFGREG_GFIR))
  78. return 0x00000000ffff0000ull;
  79. if (cd->mmio == NULL)
  80. return 0xffffffffffffffffull;
  81. return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
  82. }
  83. /**
  84. * __genwqe_writel() - Write 32-bit register
  85. * @cd: genwqe device descriptor
  86. * @byte_offs: byte offset within BAR
  87. * @val: 32-bit value
  88. *
  89. * Return: 0 if success; < 0 if error
  90. */
  91. int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
  92. {
  93. struct pci_dev *pci_dev = cd->pci_dev;
  94. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  95. return -EIO;
  96. if (cd->mmio == NULL)
  97. return -EIO;
  98. if (pci_channel_offline(pci_dev))
  99. return -EIO;
  100. __raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
  101. return 0;
  102. }
  103. /**
  104. * __genwqe_readl() - Read 32-bit register
  105. * @cd: genwqe device descriptor
  106. * @byte_offs: offset within BAR
  107. *
  108. * Return: Value from register
  109. */
  110. u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
  111. {
  112. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  113. return 0xffffffff;
  114. if (cd->mmio == NULL)
  115. return 0xffffffff;
  116. return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
  117. }
  118. /**
  119. * genwqe_read_app_id() - Extract app_id
  120. *
  121. * app_unitcfg need to be filled with valid data first
  122. */
  123. int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
  124. {
  125. int i, j;
  126. u32 app_id = (u32)cd->app_unitcfg;
  127. memset(app_name, 0, len);
  128. for (i = 0, j = 0; j < min(len, 4); j++) {
  129. char ch = (char)((app_id >> (24 - j*8)) & 0xff);
  130. if (ch == ' ')
  131. continue;
  132. app_name[i++] = isprint(ch) ? ch : 'X';
  133. }
  134. return i;
  135. }
  136. /**
  137. * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
  138. *
  139. * Existing kernel functions seem to use a different polynom,
  140. * therefore we could not use them here.
  141. *
  142. * Genwqe's Polynomial = 0x20044009
  143. */
  144. #define CRC32_POLYNOMIAL 0x20044009
  145. static u32 crc32_tab[256]; /* crc32 lookup table */
  146. void genwqe_init_crc32(void)
  147. {
  148. int i, j;
  149. u32 crc;
  150. for (i = 0; i < 256; i++) {
  151. crc = i << 24;
  152. for (j = 0; j < 8; j++) {
  153. if (crc & 0x80000000)
  154. crc = (crc << 1) ^ CRC32_POLYNOMIAL;
  155. else
  156. crc = (crc << 1);
  157. }
  158. crc32_tab[i] = crc;
  159. }
  160. }
  161. /**
  162. * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
  163. * @buff: pointer to data buffer
  164. * @len: length of data for calculation
  165. * @init: initial crc (0xffffffff at start)
  166. *
  167. * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
  168. * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
  169. * result in a crc32 of 0xf33cb7d3.
  170. *
  171. * The existing kernel crc functions did not cover this polynom yet.
  172. *
  173. * Return: crc32 checksum.
  174. */
  175. u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
  176. {
  177. int i;
  178. u32 crc;
  179. crc = init;
  180. while (len--) {
  181. i = ((crc >> 24) ^ *buff++) & 0xFF;
  182. crc = (crc << 8) ^ crc32_tab[i];
  183. }
  184. return crc;
  185. }
  186. void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
  187. dma_addr_t *dma_handle)
  188. {
  189. if (get_order(size) > MAX_ORDER)
  190. return NULL;
  191. return pci_alloc_consistent(cd->pci_dev, size, dma_handle);
  192. }
  193. void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
  194. void *vaddr, dma_addr_t dma_handle)
  195. {
  196. if (vaddr == NULL)
  197. return;
  198. pci_free_consistent(cd->pci_dev, size, vaddr, dma_handle);
  199. }
  200. static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
  201. int num_pages)
  202. {
  203. int i;
  204. struct pci_dev *pci_dev = cd->pci_dev;
  205. for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
  206. pci_unmap_page(pci_dev, dma_list[i],
  207. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  208. dma_list[i] = 0x0;
  209. }
  210. }
  211. static int genwqe_map_pages(struct genwqe_dev *cd,
  212. struct page **page_list, int num_pages,
  213. dma_addr_t *dma_list)
  214. {
  215. int i;
  216. struct pci_dev *pci_dev = cd->pci_dev;
  217. /* establish DMA mapping for requested pages */
  218. for (i = 0; i < num_pages; i++) {
  219. dma_addr_t daddr;
  220. dma_list[i] = 0x0;
  221. daddr = pci_map_page(pci_dev, page_list[i],
  222. 0, /* map_offs */
  223. PAGE_SIZE,
  224. PCI_DMA_BIDIRECTIONAL); /* FIXME rd/rw */
  225. if (pci_dma_mapping_error(pci_dev, daddr)) {
  226. dev_err(&pci_dev->dev,
  227. "[%s] err: no dma addr daddr=%016llx!\n",
  228. __func__, (long long)daddr);
  229. goto err;
  230. }
  231. dma_list[i] = daddr;
  232. }
  233. return 0;
  234. err:
  235. genwqe_unmap_pages(cd, dma_list, num_pages);
  236. return -EIO;
  237. }
  238. static int genwqe_sgl_size(int num_pages)
  239. {
  240. int len, num_tlb = num_pages / 7;
  241. len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
  242. return roundup(len, PAGE_SIZE);
  243. }
  244. /**
  245. * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
  246. *
  247. * Allocates memory for sgl and overlapping pages. Pages which might
  248. * overlap other user-space memory blocks are being cached for DMAs,
  249. * such that we do not run into syncronization issues. Data is copied
  250. * from user-space into the cached pages.
  251. */
  252. int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
  253. void __user *user_addr, size_t user_size)
  254. {
  255. int rc;
  256. struct pci_dev *pci_dev = cd->pci_dev;
  257. sgl->fpage_offs = offset_in_page((unsigned long)user_addr);
  258. sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size);
  259. sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE);
  260. sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE;
  261. dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
  262. __func__, user_addr, user_size, sgl->nr_pages,
  263. sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size);
  264. sgl->user_addr = user_addr;
  265. sgl->user_size = user_size;
  266. sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages);
  267. if (get_order(sgl->sgl_size) > MAX_ORDER) {
  268. dev_err(&pci_dev->dev,
  269. "[%s] err: too much memory requested!\n", __func__);
  270. return -ENOMEM;
  271. }
  272. sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size,
  273. &sgl->sgl_dma_addr);
  274. if (sgl->sgl == NULL) {
  275. dev_err(&pci_dev->dev,
  276. "[%s] err: no memory available!\n", __func__);
  277. return -ENOMEM;
  278. }
  279. /* Only use buffering on incomplete pages */
  280. if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) {
  281. sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
  282. &sgl->fpage_dma_addr);
  283. if (sgl->fpage == NULL)
  284. goto err_out;
  285. /* Sync with user memory */
  286. if (copy_from_user(sgl->fpage + sgl->fpage_offs,
  287. user_addr, sgl->fpage_size)) {
  288. rc = -EFAULT;
  289. goto err_out;
  290. }
  291. }
  292. if (sgl->lpage_size != 0) {
  293. sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
  294. &sgl->lpage_dma_addr);
  295. if (sgl->lpage == NULL)
  296. goto err_out1;
  297. /* Sync with user memory */
  298. if (copy_from_user(sgl->lpage, user_addr + user_size -
  299. sgl->lpage_size, sgl->lpage_size)) {
  300. rc = -EFAULT;
  301. goto err_out1;
  302. }
  303. }
  304. return 0;
  305. err_out1:
  306. __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
  307. sgl->fpage_dma_addr);
  308. err_out:
  309. __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
  310. sgl->sgl_dma_addr);
  311. return -ENOMEM;
  312. }
  313. int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
  314. dma_addr_t *dma_list)
  315. {
  316. int i = 0, j = 0, p;
  317. unsigned long dma_offs, map_offs;
  318. dma_addr_t prev_daddr = 0;
  319. struct sg_entry *s, *last_s = NULL;
  320. size_t size = sgl->user_size;
  321. dma_offs = 128; /* next block if needed/dma_offset */
  322. map_offs = sgl->fpage_offs; /* offset in first page */
  323. s = &sgl->sgl[0]; /* first set of 8 entries */
  324. p = 0; /* page */
  325. while (p < sgl->nr_pages) {
  326. dma_addr_t daddr;
  327. unsigned int size_to_map;
  328. /* always write the chaining entry, cleanup is done later */
  329. j = 0;
  330. s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs);
  331. s[j].len = cpu_to_be32(128);
  332. s[j].flags = cpu_to_be32(SG_CHAINED);
  333. j++;
  334. while (j < 8) {
  335. /* DMA mapping for requested page, offs, size */
  336. size_to_map = min(size, PAGE_SIZE - map_offs);
  337. if ((p == 0) && (sgl->fpage != NULL)) {
  338. daddr = sgl->fpage_dma_addr + map_offs;
  339. } else if ((p == sgl->nr_pages - 1) &&
  340. (sgl->lpage != NULL)) {
  341. daddr = sgl->lpage_dma_addr;
  342. } else {
  343. daddr = dma_list[p] + map_offs;
  344. }
  345. size -= size_to_map;
  346. map_offs = 0;
  347. if (prev_daddr == daddr) {
  348. u32 prev_len = be32_to_cpu(last_s->len);
  349. /* pr_info("daddr combining: "
  350. "%016llx/%08x -> %016llx\n",
  351. prev_daddr, prev_len, daddr); */
  352. last_s->len = cpu_to_be32(prev_len +
  353. size_to_map);
  354. p++; /* process next page */
  355. if (p == sgl->nr_pages)
  356. goto fixup; /* nothing to do */
  357. prev_daddr = daddr + size_to_map;
  358. continue;
  359. }
  360. /* start new entry */
  361. s[j].target_addr = cpu_to_be64(daddr);
  362. s[j].len = cpu_to_be32(size_to_map);
  363. s[j].flags = cpu_to_be32(SG_DATA);
  364. prev_daddr = daddr + size_to_map;
  365. last_s = &s[j];
  366. j++;
  367. p++; /* process next page */
  368. if (p == sgl->nr_pages)
  369. goto fixup; /* nothing to do */
  370. }
  371. dma_offs += 128;
  372. s += 8; /* continue 8 elements further */
  373. }
  374. fixup:
  375. if (j == 1) { /* combining happend on last entry! */
  376. s -= 8; /* full shift needed on previous sgl block */
  377. j = 7; /* shift all elements */
  378. }
  379. for (i = 0; i < j; i++) /* move elements 1 up */
  380. s[i] = s[i + 1];
  381. s[i].target_addr = cpu_to_be64(0);
  382. s[i].len = cpu_to_be32(0);
  383. s[i].flags = cpu_to_be32(SG_END_LIST);
  384. return 0;
  385. }
  386. /**
  387. * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
  388. *
  389. * After the DMA transfer has been completed we free the memory for
  390. * the sgl and the cached pages. Data is being transfered from cached
  391. * pages into user-space buffers.
  392. */
  393. int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl)
  394. {
  395. int rc = 0;
  396. struct pci_dev *pci_dev = cd->pci_dev;
  397. if (sgl->fpage) {
  398. if (copy_to_user(sgl->user_addr, sgl->fpage + sgl->fpage_offs,
  399. sgl->fpage_size)) {
  400. dev_err(&pci_dev->dev, "[%s] err: copying fpage!\n",
  401. __func__);
  402. rc = -EFAULT;
  403. }
  404. __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
  405. sgl->fpage_dma_addr);
  406. sgl->fpage = NULL;
  407. sgl->fpage_dma_addr = 0;
  408. }
  409. if (sgl->lpage) {
  410. if (copy_to_user(sgl->user_addr + sgl->user_size -
  411. sgl->lpage_size, sgl->lpage,
  412. sgl->lpage_size)) {
  413. dev_err(&pci_dev->dev, "[%s] err: copying lpage!\n",
  414. __func__);
  415. rc = -EFAULT;
  416. }
  417. __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
  418. sgl->lpage_dma_addr);
  419. sgl->lpage = NULL;
  420. sgl->lpage_dma_addr = 0;
  421. }
  422. __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
  423. sgl->sgl_dma_addr);
  424. sgl->sgl = NULL;
  425. sgl->sgl_dma_addr = 0x0;
  426. sgl->sgl_size = 0;
  427. return rc;
  428. }
  429. /**
  430. * free_user_pages() - Give pinned pages back
  431. *
  432. * Documentation of get_user_pages is in mm/memory.c:
  433. *
  434. * If the page is written to, set_page_dirty (or set_page_dirty_lock,
  435. * as appropriate) must be called after the page is finished with, and
  436. * before put_page is called.
  437. *
  438. * FIXME Could be of use to others and might belong in the generic
  439. * code, if others agree. E.g.
  440. * ll_free_user_pages in drivers/staging/lustre/lustre/llite/rw26.c
  441. * ceph_put_page_vector in net/ceph/pagevec.c
  442. * maybe more?
  443. */
  444. static int free_user_pages(struct page **page_list, unsigned int nr_pages,
  445. int dirty)
  446. {
  447. unsigned int i;
  448. for (i = 0; i < nr_pages; i++) {
  449. if (page_list[i] != NULL) {
  450. if (dirty)
  451. set_page_dirty_lock(page_list[i]);
  452. put_page(page_list[i]);
  453. }
  454. }
  455. return 0;
  456. }
  457. /**
  458. * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
  459. * @cd: pointer to genwqe device
  460. * @m: mapping params
  461. * @uaddr: user virtual address
  462. * @size: size of memory to be mapped
  463. *
  464. * We need to think about how we could speed this up. Of course it is
  465. * not a good idea to do this over and over again, like we are
  466. * currently doing it. Nevertheless, I am curious where on the path
  467. * the performance is spend. Most probably within the memory
  468. * allocation functions, but maybe also in the DMA mapping code.
  469. *
  470. * Restrictions: The maximum size of the possible mapping currently depends
  471. * on the amount of memory we can get using kzalloc() for the
  472. * page_list and pci_alloc_consistent for the sg_list.
  473. * The sg_list is currently itself not scattered, which could
  474. * be fixed with some effort. The page_list must be split into
  475. * PAGE_SIZE chunks too. All that will make the complicated
  476. * code more complicated.
  477. *
  478. * Return: 0 if success
  479. */
  480. int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
  481. unsigned long size, struct ddcb_requ *req)
  482. {
  483. int rc = -EINVAL;
  484. unsigned long data, offs;
  485. struct pci_dev *pci_dev = cd->pci_dev;
  486. if ((uaddr == NULL) || (size == 0)) {
  487. m->size = 0; /* mark unused and not added */
  488. return -EINVAL;
  489. }
  490. m->u_vaddr = uaddr;
  491. m->size = size;
  492. /* determine space needed for page_list. */
  493. data = (unsigned long)uaddr;
  494. offs = offset_in_page(data);
  495. m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
  496. m->page_list = kcalloc(m->nr_pages,
  497. sizeof(struct page *) + sizeof(dma_addr_t),
  498. GFP_KERNEL);
  499. if (!m->page_list) {
  500. dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
  501. m->nr_pages = 0;
  502. m->u_vaddr = NULL;
  503. m->size = 0; /* mark unused and not added */
  504. return -ENOMEM;
  505. }
  506. m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
  507. /* pin user pages in memory */
  508. rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
  509. m->nr_pages,
  510. 1, /* write by caller */
  511. m->page_list); /* ptrs to pages */
  512. if (rc < 0)
  513. goto fail_get_user_pages;
  514. /* assumption: get_user_pages can be killed by signals. */
  515. if (rc < m->nr_pages) {
  516. free_user_pages(m->page_list, rc, 0);
  517. rc = -EFAULT;
  518. goto fail_get_user_pages;
  519. }
  520. rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
  521. if (rc != 0)
  522. goto fail_free_user_pages;
  523. return 0;
  524. fail_free_user_pages:
  525. free_user_pages(m->page_list, m->nr_pages, 0);
  526. fail_get_user_pages:
  527. kfree(m->page_list);
  528. m->page_list = NULL;
  529. m->dma_list = NULL;
  530. m->nr_pages = 0;
  531. m->u_vaddr = NULL;
  532. m->size = 0; /* mark unused and not added */
  533. return rc;
  534. }
  535. /**
  536. * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
  537. * memory
  538. * @cd: pointer to genwqe device
  539. * @m: mapping params
  540. */
  541. int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m,
  542. struct ddcb_requ *req)
  543. {
  544. struct pci_dev *pci_dev = cd->pci_dev;
  545. if (!dma_mapping_used(m)) {
  546. dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
  547. __func__, m);
  548. return -EINVAL;
  549. }
  550. if (m->dma_list)
  551. genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
  552. if (m->page_list) {
  553. free_user_pages(m->page_list, m->nr_pages, 1);
  554. kfree(m->page_list);
  555. m->page_list = NULL;
  556. m->dma_list = NULL;
  557. m->nr_pages = 0;
  558. }
  559. m->u_vaddr = NULL;
  560. m->size = 0; /* mark as unused and not added */
  561. return 0;
  562. }
  563. /**
  564. * genwqe_card_type() - Get chip type SLU Configuration Register
  565. * @cd: pointer to the genwqe device descriptor
  566. * Return: 0: Altera Stratix-IV 230
  567. * 1: Altera Stratix-IV 530
  568. * 2: Altera Stratix-V A4
  569. * 3: Altera Stratix-V A7
  570. */
  571. u8 genwqe_card_type(struct genwqe_dev *cd)
  572. {
  573. u64 card_type = cd->slu_unitcfg;
  574. return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
  575. }
  576. /**
  577. * genwqe_card_reset() - Reset the card
  578. * @cd: pointer to the genwqe device descriptor
  579. */
  580. int genwqe_card_reset(struct genwqe_dev *cd)
  581. {
  582. u64 softrst;
  583. struct pci_dev *pci_dev = cd->pci_dev;
  584. if (!genwqe_is_privileged(cd))
  585. return -ENODEV;
  586. /* new SL */
  587. __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
  588. msleep(1000);
  589. __genwqe_readq(cd, IO_HSU_FIR_CLR);
  590. __genwqe_readq(cd, IO_APP_FIR_CLR);
  591. __genwqe_readq(cd, IO_SLU_FIR_CLR);
  592. /*
  593. * Read-modify-write to preserve the stealth bits
  594. *
  595. * For SL >= 039, Stealth WE bit allows removing
  596. * the read-modify-wrote.
  597. * r-m-w may require a mask 0x3C to avoid hitting hard
  598. * reset again for error reset (should be 0, chicken).
  599. */
  600. softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
  601. __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
  602. /* give ERRORRESET some time to finish */
  603. msleep(50);
  604. if (genwqe_need_err_masking(cd)) {
  605. dev_info(&pci_dev->dev,
  606. "[%s] masking errors for old bitstreams\n", __func__);
  607. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
  608. }
  609. return 0;
  610. }
  611. int genwqe_read_softreset(struct genwqe_dev *cd)
  612. {
  613. u64 bitstream;
  614. if (!genwqe_is_privileged(cd))
  615. return -ENODEV;
  616. bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
  617. cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
  618. return 0;
  619. }
  620. /**
  621. * genwqe_set_interrupt_capability() - Configure MSI capability structure
  622. * @cd: pointer to the device
  623. * Return: 0 if no error
  624. */
  625. int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
  626. {
  627. int rc;
  628. struct pci_dev *pci_dev = cd->pci_dev;
  629. rc = pci_enable_msi_range(pci_dev, 1, count);
  630. if (rc < 0)
  631. return rc;
  632. cd->flags |= GENWQE_FLAG_MSI_ENABLED;
  633. return 0;
  634. }
  635. /**
  636. * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
  637. * @cd: pointer to the device
  638. */
  639. void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
  640. {
  641. struct pci_dev *pci_dev = cd->pci_dev;
  642. if (cd->flags & GENWQE_FLAG_MSI_ENABLED) {
  643. pci_disable_msi(pci_dev);
  644. cd->flags &= ~GENWQE_FLAG_MSI_ENABLED;
  645. }
  646. }
  647. /**
  648. * set_reg_idx() - Fill array with data. Ignore illegal offsets.
  649. * @cd: card device
  650. * @r: debug register array
  651. * @i: index to desired entry
  652. * @m: maximum possible entries
  653. * @addr: addr which is read
  654. * @index: index in debug array
  655. * @val: read value
  656. */
  657. static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
  658. unsigned int *i, unsigned int m, u32 addr, u32 idx,
  659. u64 val)
  660. {
  661. if (WARN_ON_ONCE(*i >= m))
  662. return -EFAULT;
  663. r[*i].addr = addr;
  664. r[*i].idx = idx;
  665. r[*i].val = val;
  666. ++*i;
  667. return 0;
  668. }
  669. static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
  670. unsigned int *i, unsigned int m, u32 addr, u64 val)
  671. {
  672. return set_reg_idx(cd, r, i, m, addr, 0, val);
  673. }
  674. int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
  675. unsigned int max_regs, int all)
  676. {
  677. unsigned int i, j, idx = 0;
  678. u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
  679. u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
  680. /* Global FIR */
  681. gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
  682. set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
  683. /* UnitCfg for SLU */
  684. sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
  685. set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
  686. /* UnitCfg for APP */
  687. appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
  688. set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
  689. /* Check all chip Units */
  690. for (i = 0; i < GENWQE_MAX_UNITS; i++) {
  691. /* Unit FIR */
  692. ufir_addr = (i << 24) | 0x008;
  693. ufir = __genwqe_readq(cd, ufir_addr);
  694. set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
  695. /* Unit FEC */
  696. ufec_addr = (i << 24) | 0x018;
  697. ufec = __genwqe_readq(cd, ufec_addr);
  698. set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
  699. for (j = 0; j < 64; j++) {
  700. /* wherever there is a primary 1, read the 2ndary */
  701. if (!all && (!(ufir & (1ull << j))))
  702. continue;
  703. sfir_addr = (i << 24) | (0x100 + 8 * j);
  704. sfir = __genwqe_readq(cd, sfir_addr);
  705. set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
  706. sfec_addr = (i << 24) | (0x300 + 8 * j);
  707. sfec = __genwqe_readq(cd, sfec_addr);
  708. set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
  709. }
  710. }
  711. /* fill with invalid data until end */
  712. for (i = idx; i < max_regs; i++) {
  713. regs[i].addr = 0xffffffff;
  714. regs[i].val = 0xffffffffffffffffull;
  715. }
  716. return idx;
  717. }
  718. /**
  719. * genwqe_ffdc_buff_size() - Calculates the number of dump registers
  720. */
  721. int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
  722. {
  723. int entries = 0, ring, traps, traces, trace_entries;
  724. u32 eevptr_addr, l_addr, d_len, d_type;
  725. u64 eevptr, val, addr;
  726. eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
  727. eevptr = __genwqe_readq(cd, eevptr_addr);
  728. if ((eevptr != 0x0) && (eevptr != -1ull)) {
  729. l_addr = GENWQE_UID_OFFS(uid) | eevptr;
  730. while (1) {
  731. val = __genwqe_readq(cd, l_addr);
  732. if ((val == 0x0) || (val == -1ull))
  733. break;
  734. /* 38:24 */
  735. d_len = (val & 0x0000007fff000000ull) >> 24;
  736. /* 39 */
  737. d_type = (val & 0x0000008000000000ull) >> 36;
  738. if (d_type) { /* repeat */
  739. entries += d_len;
  740. } else { /* size in bytes! */
  741. entries += d_len >> 3;
  742. }
  743. l_addr += 8;
  744. }
  745. }
  746. for (ring = 0; ring < 8; ring++) {
  747. addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
  748. val = __genwqe_readq(cd, addr);
  749. if ((val == 0x0ull) || (val == -1ull))
  750. continue;
  751. traps = (val >> 24) & 0xff;
  752. traces = (val >> 16) & 0xff;
  753. trace_entries = val & 0xffff;
  754. entries += traps + (traces * trace_entries);
  755. }
  756. return entries;
  757. }
  758. /**
  759. * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
  760. */
  761. int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
  762. struct genwqe_reg *regs, unsigned int max_regs)
  763. {
  764. int i, traps, traces, trace, trace_entries, trace_entry, ring;
  765. unsigned int idx = 0;
  766. u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
  767. u64 eevptr, e, val, addr;
  768. eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
  769. eevptr = __genwqe_readq(cd, eevptr_addr);
  770. if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
  771. l_addr = GENWQE_UID_OFFS(uid) | eevptr;
  772. while (1) {
  773. e = __genwqe_readq(cd, l_addr);
  774. if ((e == 0x0) || (e == 0xffffffffffffffffull))
  775. break;
  776. d_addr = (e & 0x0000000000ffffffull); /* 23:0 */
  777. d_len = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
  778. d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
  779. d_addr |= GENWQE_UID_OFFS(uid);
  780. if (d_type) {
  781. for (i = 0; i < (int)d_len; i++) {
  782. val = __genwqe_readq(cd, d_addr);
  783. set_reg_idx(cd, regs, &idx, max_regs,
  784. d_addr, i, val);
  785. }
  786. } else {
  787. d_len >>= 3; /* Size in bytes! */
  788. for (i = 0; i < (int)d_len; i++, d_addr += 8) {
  789. val = __genwqe_readq(cd, d_addr);
  790. set_reg_idx(cd, regs, &idx, max_regs,
  791. d_addr, 0, val);
  792. }
  793. }
  794. l_addr += 8;
  795. }
  796. }
  797. /*
  798. * To save time, there are only 6 traces poplulated on Uid=2,
  799. * Ring=1. each with iters=512.
  800. */
  801. for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
  802. 2...7 are ASI rings */
  803. addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
  804. val = __genwqe_readq(cd, addr);
  805. if ((val == 0x0ull) || (val == -1ull))
  806. continue;
  807. traps = (val >> 24) & 0xff; /* Number of Traps */
  808. traces = (val >> 16) & 0xff; /* Number of Traces */
  809. trace_entries = val & 0xffff; /* Entries per trace */
  810. /* Note: This is a combined loop that dumps both the traps */
  811. /* (for the trace == 0 case) as well as the traces 1 to */
  812. /* 'traces'. */
  813. for (trace = 0; trace <= traces; trace++) {
  814. u32 diag_sel =
  815. GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
  816. addr = (GENWQE_UID_OFFS(uid) |
  817. IO_EXTENDED_DIAG_SELECTOR);
  818. __genwqe_writeq(cd, addr, diag_sel);
  819. for (trace_entry = 0;
  820. trace_entry < (trace ? trace_entries : traps);
  821. trace_entry++) {
  822. addr = (GENWQE_UID_OFFS(uid) |
  823. IO_EXTENDED_DIAG_READ_MBX);
  824. val = __genwqe_readq(cd, addr);
  825. set_reg_idx(cd, regs, &idx, max_regs, addr,
  826. (diag_sel<<16) | trace_entry, val);
  827. }
  828. }
  829. }
  830. return 0;
  831. }
  832. /**
  833. * genwqe_write_vreg() - Write register in virtual window
  834. *
  835. * Note, these registers are only accessible to the PF through the
  836. * VF-window. It is not intended for the VF to access.
  837. */
  838. int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
  839. {
  840. __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
  841. __genwqe_writeq(cd, reg, val);
  842. return 0;
  843. }
  844. /**
  845. * genwqe_read_vreg() - Read register in virtual window
  846. *
  847. * Note, these registers are only accessible to the PF through the
  848. * VF-window. It is not intended for the VF to access.
  849. */
  850. u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
  851. {
  852. __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
  853. return __genwqe_readq(cd, reg);
  854. }
  855. /**
  856. * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
  857. *
  858. * Note: From a design perspective it turned out to be a bad idea to
  859. * use codes here to specifiy the frequency/speed values. An old
  860. * driver cannot understand new codes and is therefore always a
  861. * problem. Better is to measure out the value or put the
  862. * speed/frequency directly into a register which is always a valid
  863. * value for old as well as for new software.
  864. *
  865. * Return: Card clock in MHz
  866. */
  867. int genwqe_base_clock_frequency(struct genwqe_dev *cd)
  868. {
  869. u16 speed; /* MHz MHz MHz MHz */
  870. static const int speed_grade[] = { 250, 200, 166, 175 };
  871. speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
  872. if (speed >= ARRAY_SIZE(speed_grade))
  873. return 0; /* illegal value */
  874. return speed_grade[speed];
  875. }
  876. /**
  877. * genwqe_stop_traps() - Stop traps
  878. *
  879. * Before reading out the analysis data, we need to stop the traps.
  880. */
  881. void genwqe_stop_traps(struct genwqe_dev *cd)
  882. {
  883. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
  884. }
  885. /**
  886. * genwqe_start_traps() - Start traps
  887. *
  888. * After having read the data, we can/must enable the traps again.
  889. */
  890. void genwqe_start_traps(struct genwqe_dev *cd)
  891. {
  892. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
  893. if (genwqe_need_err_masking(cd))
  894. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
  895. }