md.c 234 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #include "md-cluster.h"
  48. #ifndef MODULE
  49. static void autostart_arrays(int part);
  50. #endif
  51. /* pers_list is a list of registered personalities protected
  52. * by pers_lock.
  53. * pers_lock does extra service to protect accesses to
  54. * mddev->thread when the mutex cannot be held.
  55. */
  56. static LIST_HEAD(pers_list);
  57. static DEFINE_SPINLOCK(pers_lock);
  58. struct md_cluster_operations *md_cluster_ops;
  59. EXPORT_SYMBOL(md_cluster_ops);
  60. struct module *md_cluster_mod;
  61. EXPORT_SYMBOL(md_cluster_mod);
  62. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  63. static struct workqueue_struct *md_wq;
  64. static struct workqueue_struct *md_misc_wq;
  65. static int remove_and_add_spares(struct mddev *mddev,
  66. struct md_rdev *this);
  67. static void mddev_detach(struct mddev *mddev);
  68. /*
  69. * Default number of read corrections we'll attempt on an rdev
  70. * before ejecting it from the array. We divide the read error
  71. * count by 2 for every hour elapsed between read errors.
  72. */
  73. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  74. /*
  75. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  76. * is 1000 KB/sec, so the extra system load does not show up that much.
  77. * Increase it if you want to have more _guaranteed_ speed. Note that
  78. * the RAID driver will use the maximum available bandwidth if the IO
  79. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  80. * speed limit - in case reconstruction slows down your system despite
  81. * idle IO detection.
  82. *
  83. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  84. * or /sys/block/mdX/md/sync_speed_{min,max}
  85. */
  86. static int sysctl_speed_limit_min = 1000;
  87. static int sysctl_speed_limit_max = 200000;
  88. static inline int speed_min(struct mddev *mddev)
  89. {
  90. return mddev->sync_speed_min ?
  91. mddev->sync_speed_min : sysctl_speed_limit_min;
  92. }
  93. static inline int speed_max(struct mddev *mddev)
  94. {
  95. return mddev->sync_speed_max ?
  96. mddev->sync_speed_max : sysctl_speed_limit_max;
  97. }
  98. static struct ctl_table_header *raid_table_header;
  99. static struct ctl_table raid_table[] = {
  100. {
  101. .procname = "speed_limit_min",
  102. .data = &sysctl_speed_limit_min,
  103. .maxlen = sizeof(int),
  104. .mode = S_IRUGO|S_IWUSR,
  105. .proc_handler = proc_dointvec,
  106. },
  107. {
  108. .procname = "speed_limit_max",
  109. .data = &sysctl_speed_limit_max,
  110. .maxlen = sizeof(int),
  111. .mode = S_IRUGO|S_IWUSR,
  112. .proc_handler = proc_dointvec,
  113. },
  114. { }
  115. };
  116. static struct ctl_table raid_dir_table[] = {
  117. {
  118. .procname = "raid",
  119. .maxlen = 0,
  120. .mode = S_IRUGO|S_IXUGO,
  121. .child = raid_table,
  122. },
  123. { }
  124. };
  125. static struct ctl_table raid_root_table[] = {
  126. {
  127. .procname = "dev",
  128. .maxlen = 0,
  129. .mode = 0555,
  130. .child = raid_dir_table,
  131. },
  132. { }
  133. };
  134. static const struct block_device_operations md_fops;
  135. static int start_readonly;
  136. /* bio_clone_mddev
  137. * like bio_clone, but with a local bio set
  138. */
  139. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  140. struct mddev *mddev)
  141. {
  142. struct bio *b;
  143. if (!mddev || !mddev->bio_set)
  144. return bio_alloc(gfp_mask, nr_iovecs);
  145. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  146. if (!b)
  147. return NULL;
  148. return b;
  149. }
  150. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  151. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  152. struct mddev *mddev)
  153. {
  154. if (!mddev || !mddev->bio_set)
  155. return bio_clone(bio, gfp_mask);
  156. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  157. }
  158. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  159. /*
  160. * We have a system wide 'event count' that is incremented
  161. * on any 'interesting' event, and readers of /proc/mdstat
  162. * can use 'poll' or 'select' to find out when the event
  163. * count increases.
  164. *
  165. * Events are:
  166. * start array, stop array, error, add device, remove device,
  167. * start build, activate spare
  168. */
  169. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  170. static atomic_t md_event_count;
  171. void md_new_event(struct mddev *mddev)
  172. {
  173. atomic_inc(&md_event_count);
  174. wake_up(&md_event_waiters);
  175. }
  176. EXPORT_SYMBOL_GPL(md_new_event);
  177. /* Alternate version that can be called from interrupts
  178. * when calling sysfs_notify isn't needed.
  179. */
  180. static void md_new_event_inintr(struct mddev *mddev)
  181. {
  182. atomic_inc(&md_event_count);
  183. wake_up(&md_event_waiters);
  184. }
  185. /*
  186. * Enables to iterate over all existing md arrays
  187. * all_mddevs_lock protects this list.
  188. */
  189. static LIST_HEAD(all_mddevs);
  190. static DEFINE_SPINLOCK(all_mddevs_lock);
  191. /*
  192. * iterates through all used mddevs in the system.
  193. * We take care to grab the all_mddevs_lock whenever navigating
  194. * the list, and to always hold a refcount when unlocked.
  195. * Any code which breaks out of this loop while own
  196. * a reference to the current mddev and must mddev_put it.
  197. */
  198. #define for_each_mddev(_mddev,_tmp) \
  199. \
  200. for (({ spin_lock(&all_mddevs_lock); \
  201. _tmp = all_mddevs.next; \
  202. _mddev = NULL;}); \
  203. ({ if (_tmp != &all_mddevs) \
  204. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  205. spin_unlock(&all_mddevs_lock); \
  206. if (_mddev) mddev_put(_mddev); \
  207. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  208. _tmp != &all_mddevs;}); \
  209. ({ spin_lock(&all_mddevs_lock); \
  210. _tmp = _tmp->next;}) \
  211. )
  212. /* Rather than calling directly into the personality make_request function,
  213. * IO requests come here first so that we can check if the device is
  214. * being suspended pending a reconfiguration.
  215. * We hold a refcount over the call to ->make_request. By the time that
  216. * call has finished, the bio has been linked into some internal structure
  217. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  218. */
  219. static void md_make_request(struct request_queue *q, struct bio *bio)
  220. {
  221. const int rw = bio_data_dir(bio);
  222. struct mddev *mddev = q->queuedata;
  223. unsigned int sectors;
  224. int cpu;
  225. blk_queue_split(q, &bio, q->bio_split);
  226. if (mddev == NULL || mddev->pers == NULL
  227. || !mddev->ready) {
  228. bio_io_error(bio);
  229. return;
  230. }
  231. if (mddev->ro == 1 && unlikely(rw == WRITE)) {
  232. if (bio_sectors(bio) != 0)
  233. bio->bi_error = -EROFS;
  234. bio_endio(bio);
  235. return;
  236. }
  237. smp_rmb(); /* Ensure implications of 'active' are visible */
  238. rcu_read_lock();
  239. if (mddev->suspended) {
  240. DEFINE_WAIT(__wait);
  241. for (;;) {
  242. prepare_to_wait(&mddev->sb_wait, &__wait,
  243. TASK_UNINTERRUPTIBLE);
  244. if (!mddev->suspended)
  245. break;
  246. rcu_read_unlock();
  247. schedule();
  248. rcu_read_lock();
  249. }
  250. finish_wait(&mddev->sb_wait, &__wait);
  251. }
  252. atomic_inc(&mddev->active_io);
  253. rcu_read_unlock();
  254. /*
  255. * save the sectors now since our bio can
  256. * go away inside make_request
  257. */
  258. sectors = bio_sectors(bio);
  259. mddev->pers->make_request(mddev, bio);
  260. cpu = part_stat_lock();
  261. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  262. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  263. part_stat_unlock();
  264. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  265. wake_up(&mddev->sb_wait);
  266. }
  267. /* mddev_suspend makes sure no new requests are submitted
  268. * to the device, and that any requests that have been submitted
  269. * are completely handled.
  270. * Once mddev_detach() is called and completes, the module will be
  271. * completely unused.
  272. */
  273. void mddev_suspend(struct mddev *mddev)
  274. {
  275. BUG_ON(mddev->suspended);
  276. mddev->suspended = 1;
  277. synchronize_rcu();
  278. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  279. mddev->pers->quiesce(mddev, 1);
  280. del_timer_sync(&mddev->safemode_timer);
  281. }
  282. EXPORT_SYMBOL_GPL(mddev_suspend);
  283. void mddev_resume(struct mddev *mddev)
  284. {
  285. mddev->suspended = 0;
  286. wake_up(&mddev->sb_wait);
  287. mddev->pers->quiesce(mddev, 0);
  288. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  289. md_wakeup_thread(mddev->thread);
  290. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  291. }
  292. EXPORT_SYMBOL_GPL(mddev_resume);
  293. int mddev_congested(struct mddev *mddev, int bits)
  294. {
  295. struct md_personality *pers = mddev->pers;
  296. int ret = 0;
  297. rcu_read_lock();
  298. if (mddev->suspended)
  299. ret = 1;
  300. else if (pers && pers->congested)
  301. ret = pers->congested(mddev, bits);
  302. rcu_read_unlock();
  303. return ret;
  304. }
  305. EXPORT_SYMBOL_GPL(mddev_congested);
  306. static int md_congested(void *data, int bits)
  307. {
  308. struct mddev *mddev = data;
  309. return mddev_congested(mddev, bits);
  310. }
  311. /*
  312. * Generic flush handling for md
  313. */
  314. static void md_end_flush(struct bio *bio)
  315. {
  316. struct md_rdev *rdev = bio->bi_private;
  317. struct mddev *mddev = rdev->mddev;
  318. rdev_dec_pending(rdev, mddev);
  319. if (atomic_dec_and_test(&mddev->flush_pending)) {
  320. /* The pre-request flush has finished */
  321. queue_work(md_wq, &mddev->flush_work);
  322. }
  323. bio_put(bio);
  324. }
  325. static void md_submit_flush_data(struct work_struct *ws);
  326. static void submit_flushes(struct work_struct *ws)
  327. {
  328. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  329. struct md_rdev *rdev;
  330. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  331. atomic_set(&mddev->flush_pending, 1);
  332. rcu_read_lock();
  333. rdev_for_each_rcu(rdev, mddev)
  334. if (rdev->raid_disk >= 0 &&
  335. !test_bit(Faulty, &rdev->flags)) {
  336. /* Take two references, one is dropped
  337. * when request finishes, one after
  338. * we reclaim rcu_read_lock
  339. */
  340. struct bio *bi;
  341. atomic_inc(&rdev->nr_pending);
  342. atomic_inc(&rdev->nr_pending);
  343. rcu_read_unlock();
  344. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  345. bi->bi_end_io = md_end_flush;
  346. bi->bi_private = rdev;
  347. bi->bi_bdev = rdev->bdev;
  348. atomic_inc(&mddev->flush_pending);
  349. submit_bio(WRITE_FLUSH, bi);
  350. rcu_read_lock();
  351. rdev_dec_pending(rdev, mddev);
  352. }
  353. rcu_read_unlock();
  354. if (atomic_dec_and_test(&mddev->flush_pending))
  355. queue_work(md_wq, &mddev->flush_work);
  356. }
  357. static void md_submit_flush_data(struct work_struct *ws)
  358. {
  359. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  360. struct bio *bio = mddev->flush_bio;
  361. if (bio->bi_iter.bi_size == 0)
  362. /* an empty barrier - all done */
  363. bio_endio(bio);
  364. else {
  365. bio->bi_rw &= ~REQ_FLUSH;
  366. mddev->pers->make_request(mddev, bio);
  367. }
  368. mddev->flush_bio = NULL;
  369. wake_up(&mddev->sb_wait);
  370. }
  371. void md_flush_request(struct mddev *mddev, struct bio *bio)
  372. {
  373. spin_lock_irq(&mddev->lock);
  374. wait_event_lock_irq(mddev->sb_wait,
  375. !mddev->flush_bio,
  376. mddev->lock);
  377. mddev->flush_bio = bio;
  378. spin_unlock_irq(&mddev->lock);
  379. INIT_WORK(&mddev->flush_work, submit_flushes);
  380. queue_work(md_wq, &mddev->flush_work);
  381. }
  382. EXPORT_SYMBOL(md_flush_request);
  383. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  384. {
  385. struct mddev *mddev = cb->data;
  386. md_wakeup_thread(mddev->thread);
  387. kfree(cb);
  388. }
  389. EXPORT_SYMBOL(md_unplug);
  390. static inline struct mddev *mddev_get(struct mddev *mddev)
  391. {
  392. atomic_inc(&mddev->active);
  393. return mddev;
  394. }
  395. static void mddev_delayed_delete(struct work_struct *ws);
  396. static void mddev_put(struct mddev *mddev)
  397. {
  398. struct bio_set *bs = NULL;
  399. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  400. return;
  401. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  402. mddev->ctime == 0 && !mddev->hold_active) {
  403. /* Array is not configured at all, and not held active,
  404. * so destroy it */
  405. list_del_init(&mddev->all_mddevs);
  406. bs = mddev->bio_set;
  407. mddev->bio_set = NULL;
  408. if (mddev->gendisk) {
  409. /* We did a probe so need to clean up. Call
  410. * queue_work inside the spinlock so that
  411. * flush_workqueue() after mddev_find will
  412. * succeed in waiting for the work to be done.
  413. */
  414. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  415. queue_work(md_misc_wq, &mddev->del_work);
  416. } else
  417. kfree(mddev);
  418. }
  419. spin_unlock(&all_mddevs_lock);
  420. if (bs)
  421. bioset_free(bs);
  422. }
  423. static void md_safemode_timeout(unsigned long data);
  424. void mddev_init(struct mddev *mddev)
  425. {
  426. mutex_init(&mddev->open_mutex);
  427. mutex_init(&mddev->reconfig_mutex);
  428. mutex_init(&mddev->bitmap_info.mutex);
  429. INIT_LIST_HEAD(&mddev->disks);
  430. INIT_LIST_HEAD(&mddev->all_mddevs);
  431. setup_timer(&mddev->safemode_timer, md_safemode_timeout,
  432. (unsigned long) mddev);
  433. atomic_set(&mddev->active, 1);
  434. atomic_set(&mddev->openers, 0);
  435. atomic_set(&mddev->active_io, 0);
  436. spin_lock_init(&mddev->lock);
  437. atomic_set(&mddev->flush_pending, 0);
  438. init_waitqueue_head(&mddev->sb_wait);
  439. init_waitqueue_head(&mddev->recovery_wait);
  440. mddev->reshape_position = MaxSector;
  441. mddev->reshape_backwards = 0;
  442. mddev->last_sync_action = "none";
  443. mddev->resync_min = 0;
  444. mddev->resync_max = MaxSector;
  445. mddev->level = LEVEL_NONE;
  446. }
  447. EXPORT_SYMBOL_GPL(mddev_init);
  448. static struct mddev *mddev_find(dev_t unit)
  449. {
  450. struct mddev *mddev, *new = NULL;
  451. if (unit && MAJOR(unit) != MD_MAJOR)
  452. unit &= ~((1<<MdpMinorShift)-1);
  453. retry:
  454. spin_lock(&all_mddevs_lock);
  455. if (unit) {
  456. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  457. if (mddev->unit == unit) {
  458. mddev_get(mddev);
  459. spin_unlock(&all_mddevs_lock);
  460. kfree(new);
  461. return mddev;
  462. }
  463. if (new) {
  464. list_add(&new->all_mddevs, &all_mddevs);
  465. spin_unlock(&all_mddevs_lock);
  466. new->hold_active = UNTIL_IOCTL;
  467. return new;
  468. }
  469. } else if (new) {
  470. /* find an unused unit number */
  471. static int next_minor = 512;
  472. int start = next_minor;
  473. int is_free = 0;
  474. int dev = 0;
  475. while (!is_free) {
  476. dev = MKDEV(MD_MAJOR, next_minor);
  477. next_minor++;
  478. if (next_minor > MINORMASK)
  479. next_minor = 0;
  480. if (next_minor == start) {
  481. /* Oh dear, all in use. */
  482. spin_unlock(&all_mddevs_lock);
  483. kfree(new);
  484. return NULL;
  485. }
  486. is_free = 1;
  487. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  488. if (mddev->unit == dev) {
  489. is_free = 0;
  490. break;
  491. }
  492. }
  493. new->unit = dev;
  494. new->md_minor = MINOR(dev);
  495. new->hold_active = UNTIL_STOP;
  496. list_add(&new->all_mddevs, &all_mddevs);
  497. spin_unlock(&all_mddevs_lock);
  498. return new;
  499. }
  500. spin_unlock(&all_mddevs_lock);
  501. new = kzalloc(sizeof(*new), GFP_KERNEL);
  502. if (!new)
  503. return NULL;
  504. new->unit = unit;
  505. if (MAJOR(unit) == MD_MAJOR)
  506. new->md_minor = MINOR(unit);
  507. else
  508. new->md_minor = MINOR(unit) >> MdpMinorShift;
  509. mddev_init(new);
  510. goto retry;
  511. }
  512. static struct attribute_group md_redundancy_group;
  513. void mddev_unlock(struct mddev *mddev)
  514. {
  515. if (mddev->to_remove) {
  516. /* These cannot be removed under reconfig_mutex as
  517. * an access to the files will try to take reconfig_mutex
  518. * while holding the file unremovable, which leads to
  519. * a deadlock.
  520. * So hold set sysfs_active while the remove in happeing,
  521. * and anything else which might set ->to_remove or my
  522. * otherwise change the sysfs namespace will fail with
  523. * -EBUSY if sysfs_active is still set.
  524. * We set sysfs_active under reconfig_mutex and elsewhere
  525. * test it under the same mutex to ensure its correct value
  526. * is seen.
  527. */
  528. struct attribute_group *to_remove = mddev->to_remove;
  529. mddev->to_remove = NULL;
  530. mddev->sysfs_active = 1;
  531. mutex_unlock(&mddev->reconfig_mutex);
  532. if (mddev->kobj.sd) {
  533. if (to_remove != &md_redundancy_group)
  534. sysfs_remove_group(&mddev->kobj, to_remove);
  535. if (mddev->pers == NULL ||
  536. mddev->pers->sync_request == NULL) {
  537. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  538. if (mddev->sysfs_action)
  539. sysfs_put(mddev->sysfs_action);
  540. mddev->sysfs_action = NULL;
  541. }
  542. }
  543. mddev->sysfs_active = 0;
  544. } else
  545. mutex_unlock(&mddev->reconfig_mutex);
  546. /* As we've dropped the mutex we need a spinlock to
  547. * make sure the thread doesn't disappear
  548. */
  549. spin_lock(&pers_lock);
  550. md_wakeup_thread(mddev->thread);
  551. spin_unlock(&pers_lock);
  552. }
  553. EXPORT_SYMBOL_GPL(mddev_unlock);
  554. struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
  555. {
  556. struct md_rdev *rdev;
  557. rdev_for_each_rcu(rdev, mddev)
  558. if (rdev->desc_nr == nr)
  559. return rdev;
  560. return NULL;
  561. }
  562. EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
  563. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  564. {
  565. struct md_rdev *rdev;
  566. rdev_for_each(rdev, mddev)
  567. if (rdev->bdev->bd_dev == dev)
  568. return rdev;
  569. return NULL;
  570. }
  571. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  572. {
  573. struct md_rdev *rdev;
  574. rdev_for_each_rcu(rdev, mddev)
  575. if (rdev->bdev->bd_dev == dev)
  576. return rdev;
  577. return NULL;
  578. }
  579. static struct md_personality *find_pers(int level, char *clevel)
  580. {
  581. struct md_personality *pers;
  582. list_for_each_entry(pers, &pers_list, list) {
  583. if (level != LEVEL_NONE && pers->level == level)
  584. return pers;
  585. if (strcmp(pers->name, clevel)==0)
  586. return pers;
  587. }
  588. return NULL;
  589. }
  590. /* return the offset of the super block in 512byte sectors */
  591. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  592. {
  593. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  594. return MD_NEW_SIZE_SECTORS(num_sectors);
  595. }
  596. static int alloc_disk_sb(struct md_rdev *rdev)
  597. {
  598. rdev->sb_page = alloc_page(GFP_KERNEL);
  599. if (!rdev->sb_page) {
  600. printk(KERN_ALERT "md: out of memory.\n");
  601. return -ENOMEM;
  602. }
  603. return 0;
  604. }
  605. void md_rdev_clear(struct md_rdev *rdev)
  606. {
  607. if (rdev->sb_page) {
  608. put_page(rdev->sb_page);
  609. rdev->sb_loaded = 0;
  610. rdev->sb_page = NULL;
  611. rdev->sb_start = 0;
  612. rdev->sectors = 0;
  613. }
  614. if (rdev->bb_page) {
  615. put_page(rdev->bb_page);
  616. rdev->bb_page = NULL;
  617. }
  618. kfree(rdev->badblocks.page);
  619. rdev->badblocks.page = NULL;
  620. }
  621. EXPORT_SYMBOL_GPL(md_rdev_clear);
  622. static void super_written(struct bio *bio)
  623. {
  624. struct md_rdev *rdev = bio->bi_private;
  625. struct mddev *mddev = rdev->mddev;
  626. if (bio->bi_error) {
  627. printk("md: super_written gets error=%d\n", bio->bi_error);
  628. md_error(mddev, rdev);
  629. }
  630. if (atomic_dec_and_test(&mddev->pending_writes))
  631. wake_up(&mddev->sb_wait);
  632. bio_put(bio);
  633. }
  634. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  635. sector_t sector, int size, struct page *page)
  636. {
  637. /* write first size bytes of page to sector of rdev
  638. * Increment mddev->pending_writes before returning
  639. * and decrement it on completion, waking up sb_wait
  640. * if zero is reached.
  641. * If an error occurred, call md_error
  642. */
  643. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  644. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  645. bio->bi_iter.bi_sector = sector;
  646. bio_add_page(bio, page, size, 0);
  647. bio->bi_private = rdev;
  648. bio->bi_end_io = super_written;
  649. atomic_inc(&mddev->pending_writes);
  650. submit_bio(WRITE_FLUSH_FUA, bio);
  651. }
  652. void md_super_wait(struct mddev *mddev)
  653. {
  654. /* wait for all superblock writes that were scheduled to complete */
  655. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  656. }
  657. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  658. struct page *page, int rw, bool metadata_op)
  659. {
  660. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  661. int ret;
  662. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  663. rdev->meta_bdev : rdev->bdev;
  664. if (metadata_op)
  665. bio->bi_iter.bi_sector = sector + rdev->sb_start;
  666. else if (rdev->mddev->reshape_position != MaxSector &&
  667. (rdev->mddev->reshape_backwards ==
  668. (sector >= rdev->mddev->reshape_position)))
  669. bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
  670. else
  671. bio->bi_iter.bi_sector = sector + rdev->data_offset;
  672. bio_add_page(bio, page, size, 0);
  673. submit_bio_wait(rw, bio);
  674. ret = !bio->bi_error;
  675. bio_put(bio);
  676. return ret;
  677. }
  678. EXPORT_SYMBOL_GPL(sync_page_io);
  679. static int read_disk_sb(struct md_rdev *rdev, int size)
  680. {
  681. char b[BDEVNAME_SIZE];
  682. if (rdev->sb_loaded)
  683. return 0;
  684. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  685. goto fail;
  686. rdev->sb_loaded = 1;
  687. return 0;
  688. fail:
  689. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  690. bdevname(rdev->bdev,b));
  691. return -EINVAL;
  692. }
  693. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  694. {
  695. return sb1->set_uuid0 == sb2->set_uuid0 &&
  696. sb1->set_uuid1 == sb2->set_uuid1 &&
  697. sb1->set_uuid2 == sb2->set_uuid2 &&
  698. sb1->set_uuid3 == sb2->set_uuid3;
  699. }
  700. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  701. {
  702. int ret;
  703. mdp_super_t *tmp1, *tmp2;
  704. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  705. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  706. if (!tmp1 || !tmp2) {
  707. ret = 0;
  708. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  709. goto abort;
  710. }
  711. *tmp1 = *sb1;
  712. *tmp2 = *sb2;
  713. /*
  714. * nr_disks is not constant
  715. */
  716. tmp1->nr_disks = 0;
  717. tmp2->nr_disks = 0;
  718. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  719. abort:
  720. kfree(tmp1);
  721. kfree(tmp2);
  722. return ret;
  723. }
  724. static u32 md_csum_fold(u32 csum)
  725. {
  726. csum = (csum & 0xffff) + (csum >> 16);
  727. return (csum & 0xffff) + (csum >> 16);
  728. }
  729. static unsigned int calc_sb_csum(mdp_super_t *sb)
  730. {
  731. u64 newcsum = 0;
  732. u32 *sb32 = (u32*)sb;
  733. int i;
  734. unsigned int disk_csum, csum;
  735. disk_csum = sb->sb_csum;
  736. sb->sb_csum = 0;
  737. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  738. newcsum += sb32[i];
  739. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  740. #ifdef CONFIG_ALPHA
  741. /* This used to use csum_partial, which was wrong for several
  742. * reasons including that different results are returned on
  743. * different architectures. It isn't critical that we get exactly
  744. * the same return value as before (we always csum_fold before
  745. * testing, and that removes any differences). However as we
  746. * know that csum_partial always returned a 16bit value on
  747. * alphas, do a fold to maximise conformity to previous behaviour.
  748. */
  749. sb->sb_csum = md_csum_fold(disk_csum);
  750. #else
  751. sb->sb_csum = disk_csum;
  752. #endif
  753. return csum;
  754. }
  755. /*
  756. * Handle superblock details.
  757. * We want to be able to handle multiple superblock formats
  758. * so we have a common interface to them all, and an array of
  759. * different handlers.
  760. * We rely on user-space to write the initial superblock, and support
  761. * reading and updating of superblocks.
  762. * Interface methods are:
  763. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  764. * loads and validates a superblock on dev.
  765. * if refdev != NULL, compare superblocks on both devices
  766. * Return:
  767. * 0 - dev has a superblock that is compatible with refdev
  768. * 1 - dev has a superblock that is compatible and newer than refdev
  769. * so dev should be used as the refdev in future
  770. * -EINVAL superblock incompatible or invalid
  771. * -othererror e.g. -EIO
  772. *
  773. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  774. * Verify that dev is acceptable into mddev.
  775. * The first time, mddev->raid_disks will be 0, and data from
  776. * dev should be merged in. Subsequent calls check that dev
  777. * is new enough. Return 0 or -EINVAL
  778. *
  779. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  780. * Update the superblock for rdev with data in mddev
  781. * This does not write to disc.
  782. *
  783. */
  784. struct super_type {
  785. char *name;
  786. struct module *owner;
  787. int (*load_super)(struct md_rdev *rdev,
  788. struct md_rdev *refdev,
  789. int minor_version);
  790. int (*validate_super)(struct mddev *mddev,
  791. struct md_rdev *rdev);
  792. void (*sync_super)(struct mddev *mddev,
  793. struct md_rdev *rdev);
  794. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  795. sector_t num_sectors);
  796. int (*allow_new_offset)(struct md_rdev *rdev,
  797. unsigned long long new_offset);
  798. };
  799. /*
  800. * Check that the given mddev has no bitmap.
  801. *
  802. * This function is called from the run method of all personalities that do not
  803. * support bitmaps. It prints an error message and returns non-zero if mddev
  804. * has a bitmap. Otherwise, it returns 0.
  805. *
  806. */
  807. int md_check_no_bitmap(struct mddev *mddev)
  808. {
  809. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  810. return 0;
  811. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  812. mdname(mddev), mddev->pers->name);
  813. return 1;
  814. }
  815. EXPORT_SYMBOL(md_check_no_bitmap);
  816. /*
  817. * load_super for 0.90.0
  818. */
  819. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  820. {
  821. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  822. mdp_super_t *sb;
  823. int ret;
  824. /*
  825. * Calculate the position of the superblock (512byte sectors),
  826. * it's at the end of the disk.
  827. *
  828. * It also happens to be a multiple of 4Kb.
  829. */
  830. rdev->sb_start = calc_dev_sboffset(rdev);
  831. ret = read_disk_sb(rdev, MD_SB_BYTES);
  832. if (ret) return ret;
  833. ret = -EINVAL;
  834. bdevname(rdev->bdev, b);
  835. sb = page_address(rdev->sb_page);
  836. if (sb->md_magic != MD_SB_MAGIC) {
  837. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  838. b);
  839. goto abort;
  840. }
  841. if (sb->major_version != 0 ||
  842. sb->minor_version < 90 ||
  843. sb->minor_version > 91) {
  844. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  845. sb->major_version, sb->minor_version,
  846. b);
  847. goto abort;
  848. }
  849. if (sb->raid_disks <= 0)
  850. goto abort;
  851. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  852. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  853. b);
  854. goto abort;
  855. }
  856. rdev->preferred_minor = sb->md_minor;
  857. rdev->data_offset = 0;
  858. rdev->new_data_offset = 0;
  859. rdev->sb_size = MD_SB_BYTES;
  860. rdev->badblocks.shift = -1;
  861. if (sb->level == LEVEL_MULTIPATH)
  862. rdev->desc_nr = -1;
  863. else
  864. rdev->desc_nr = sb->this_disk.number;
  865. if (!refdev) {
  866. ret = 1;
  867. } else {
  868. __u64 ev1, ev2;
  869. mdp_super_t *refsb = page_address(refdev->sb_page);
  870. if (!uuid_equal(refsb, sb)) {
  871. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  872. b, bdevname(refdev->bdev,b2));
  873. goto abort;
  874. }
  875. if (!sb_equal(refsb, sb)) {
  876. printk(KERN_WARNING "md: %s has same UUID"
  877. " but different superblock to %s\n",
  878. b, bdevname(refdev->bdev, b2));
  879. goto abort;
  880. }
  881. ev1 = md_event(sb);
  882. ev2 = md_event(refsb);
  883. if (ev1 > ev2)
  884. ret = 1;
  885. else
  886. ret = 0;
  887. }
  888. rdev->sectors = rdev->sb_start;
  889. /* Limit to 4TB as metadata cannot record more than that.
  890. * (not needed for Linear and RAID0 as metadata doesn't
  891. * record this size)
  892. */
  893. if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
  894. rdev->sectors = (2ULL << 32) - 2;
  895. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  896. /* "this cannot possibly happen" ... */
  897. ret = -EINVAL;
  898. abort:
  899. return ret;
  900. }
  901. /*
  902. * validate_super for 0.90.0
  903. */
  904. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  905. {
  906. mdp_disk_t *desc;
  907. mdp_super_t *sb = page_address(rdev->sb_page);
  908. __u64 ev1 = md_event(sb);
  909. rdev->raid_disk = -1;
  910. clear_bit(Faulty, &rdev->flags);
  911. clear_bit(In_sync, &rdev->flags);
  912. clear_bit(Bitmap_sync, &rdev->flags);
  913. clear_bit(WriteMostly, &rdev->flags);
  914. if (mddev->raid_disks == 0) {
  915. mddev->major_version = 0;
  916. mddev->minor_version = sb->minor_version;
  917. mddev->patch_version = sb->patch_version;
  918. mddev->external = 0;
  919. mddev->chunk_sectors = sb->chunk_size >> 9;
  920. mddev->ctime = sb->ctime;
  921. mddev->utime = sb->utime;
  922. mddev->level = sb->level;
  923. mddev->clevel[0] = 0;
  924. mddev->layout = sb->layout;
  925. mddev->raid_disks = sb->raid_disks;
  926. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  927. mddev->events = ev1;
  928. mddev->bitmap_info.offset = 0;
  929. mddev->bitmap_info.space = 0;
  930. /* bitmap can use 60 K after the 4K superblocks */
  931. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  932. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  933. mddev->reshape_backwards = 0;
  934. if (mddev->minor_version >= 91) {
  935. mddev->reshape_position = sb->reshape_position;
  936. mddev->delta_disks = sb->delta_disks;
  937. mddev->new_level = sb->new_level;
  938. mddev->new_layout = sb->new_layout;
  939. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  940. if (mddev->delta_disks < 0)
  941. mddev->reshape_backwards = 1;
  942. } else {
  943. mddev->reshape_position = MaxSector;
  944. mddev->delta_disks = 0;
  945. mddev->new_level = mddev->level;
  946. mddev->new_layout = mddev->layout;
  947. mddev->new_chunk_sectors = mddev->chunk_sectors;
  948. }
  949. if (sb->state & (1<<MD_SB_CLEAN))
  950. mddev->recovery_cp = MaxSector;
  951. else {
  952. if (sb->events_hi == sb->cp_events_hi &&
  953. sb->events_lo == sb->cp_events_lo) {
  954. mddev->recovery_cp = sb->recovery_cp;
  955. } else
  956. mddev->recovery_cp = 0;
  957. }
  958. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  959. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  960. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  961. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  962. mddev->max_disks = MD_SB_DISKS;
  963. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  964. mddev->bitmap_info.file == NULL) {
  965. mddev->bitmap_info.offset =
  966. mddev->bitmap_info.default_offset;
  967. mddev->bitmap_info.space =
  968. mddev->bitmap_info.default_space;
  969. }
  970. } else if (mddev->pers == NULL) {
  971. /* Insist on good event counter while assembling, except
  972. * for spares (which don't need an event count) */
  973. ++ev1;
  974. if (sb->disks[rdev->desc_nr].state & (
  975. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  976. if (ev1 < mddev->events)
  977. return -EINVAL;
  978. } else if (mddev->bitmap) {
  979. /* if adding to array with a bitmap, then we can accept an
  980. * older device ... but not too old.
  981. */
  982. if (ev1 < mddev->bitmap->events_cleared)
  983. return 0;
  984. if (ev1 < mddev->events)
  985. set_bit(Bitmap_sync, &rdev->flags);
  986. } else {
  987. if (ev1 < mddev->events)
  988. /* just a hot-add of a new device, leave raid_disk at -1 */
  989. return 0;
  990. }
  991. if (mddev->level != LEVEL_MULTIPATH) {
  992. desc = sb->disks + rdev->desc_nr;
  993. if (desc->state & (1<<MD_DISK_FAULTY))
  994. set_bit(Faulty, &rdev->flags);
  995. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  996. desc->raid_disk < mddev->raid_disks */) {
  997. set_bit(In_sync, &rdev->flags);
  998. rdev->raid_disk = desc->raid_disk;
  999. rdev->saved_raid_disk = desc->raid_disk;
  1000. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1001. /* active but not in sync implies recovery up to
  1002. * reshape position. We don't know exactly where
  1003. * that is, so set to zero for now */
  1004. if (mddev->minor_version >= 91) {
  1005. rdev->recovery_offset = 0;
  1006. rdev->raid_disk = desc->raid_disk;
  1007. }
  1008. }
  1009. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1010. set_bit(WriteMostly, &rdev->flags);
  1011. } else /* MULTIPATH are always insync */
  1012. set_bit(In_sync, &rdev->flags);
  1013. return 0;
  1014. }
  1015. /*
  1016. * sync_super for 0.90.0
  1017. */
  1018. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1019. {
  1020. mdp_super_t *sb;
  1021. struct md_rdev *rdev2;
  1022. int next_spare = mddev->raid_disks;
  1023. /* make rdev->sb match mddev data..
  1024. *
  1025. * 1/ zero out disks
  1026. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1027. * 3/ any empty disks < next_spare become removed
  1028. *
  1029. * disks[0] gets initialised to REMOVED because
  1030. * we cannot be sure from other fields if it has
  1031. * been initialised or not.
  1032. */
  1033. int i;
  1034. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1035. rdev->sb_size = MD_SB_BYTES;
  1036. sb = page_address(rdev->sb_page);
  1037. memset(sb, 0, sizeof(*sb));
  1038. sb->md_magic = MD_SB_MAGIC;
  1039. sb->major_version = mddev->major_version;
  1040. sb->patch_version = mddev->patch_version;
  1041. sb->gvalid_words = 0; /* ignored */
  1042. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1043. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1044. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1045. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1046. sb->ctime = mddev->ctime;
  1047. sb->level = mddev->level;
  1048. sb->size = mddev->dev_sectors / 2;
  1049. sb->raid_disks = mddev->raid_disks;
  1050. sb->md_minor = mddev->md_minor;
  1051. sb->not_persistent = 0;
  1052. sb->utime = mddev->utime;
  1053. sb->state = 0;
  1054. sb->events_hi = (mddev->events>>32);
  1055. sb->events_lo = (u32)mddev->events;
  1056. if (mddev->reshape_position == MaxSector)
  1057. sb->minor_version = 90;
  1058. else {
  1059. sb->minor_version = 91;
  1060. sb->reshape_position = mddev->reshape_position;
  1061. sb->new_level = mddev->new_level;
  1062. sb->delta_disks = mddev->delta_disks;
  1063. sb->new_layout = mddev->new_layout;
  1064. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1065. }
  1066. mddev->minor_version = sb->minor_version;
  1067. if (mddev->in_sync)
  1068. {
  1069. sb->recovery_cp = mddev->recovery_cp;
  1070. sb->cp_events_hi = (mddev->events>>32);
  1071. sb->cp_events_lo = (u32)mddev->events;
  1072. if (mddev->recovery_cp == MaxSector)
  1073. sb->state = (1<< MD_SB_CLEAN);
  1074. } else
  1075. sb->recovery_cp = 0;
  1076. sb->layout = mddev->layout;
  1077. sb->chunk_size = mddev->chunk_sectors << 9;
  1078. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1079. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1080. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1081. rdev_for_each(rdev2, mddev) {
  1082. mdp_disk_t *d;
  1083. int desc_nr;
  1084. int is_active = test_bit(In_sync, &rdev2->flags);
  1085. if (rdev2->raid_disk >= 0 &&
  1086. sb->minor_version >= 91)
  1087. /* we have nowhere to store the recovery_offset,
  1088. * but if it is not below the reshape_position,
  1089. * we can piggy-back on that.
  1090. */
  1091. is_active = 1;
  1092. if (rdev2->raid_disk < 0 ||
  1093. test_bit(Faulty, &rdev2->flags))
  1094. is_active = 0;
  1095. if (is_active)
  1096. desc_nr = rdev2->raid_disk;
  1097. else
  1098. desc_nr = next_spare++;
  1099. rdev2->desc_nr = desc_nr;
  1100. d = &sb->disks[rdev2->desc_nr];
  1101. nr_disks++;
  1102. d->number = rdev2->desc_nr;
  1103. d->major = MAJOR(rdev2->bdev->bd_dev);
  1104. d->minor = MINOR(rdev2->bdev->bd_dev);
  1105. if (is_active)
  1106. d->raid_disk = rdev2->raid_disk;
  1107. else
  1108. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1109. if (test_bit(Faulty, &rdev2->flags))
  1110. d->state = (1<<MD_DISK_FAULTY);
  1111. else if (is_active) {
  1112. d->state = (1<<MD_DISK_ACTIVE);
  1113. if (test_bit(In_sync, &rdev2->flags))
  1114. d->state |= (1<<MD_DISK_SYNC);
  1115. active++;
  1116. working++;
  1117. } else {
  1118. d->state = 0;
  1119. spare++;
  1120. working++;
  1121. }
  1122. if (test_bit(WriteMostly, &rdev2->flags))
  1123. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1124. }
  1125. /* now set the "removed" and "faulty" bits on any missing devices */
  1126. for (i=0 ; i < mddev->raid_disks ; i++) {
  1127. mdp_disk_t *d = &sb->disks[i];
  1128. if (d->state == 0 && d->number == 0) {
  1129. d->number = i;
  1130. d->raid_disk = i;
  1131. d->state = (1<<MD_DISK_REMOVED);
  1132. d->state |= (1<<MD_DISK_FAULTY);
  1133. failed++;
  1134. }
  1135. }
  1136. sb->nr_disks = nr_disks;
  1137. sb->active_disks = active;
  1138. sb->working_disks = working;
  1139. sb->failed_disks = failed;
  1140. sb->spare_disks = spare;
  1141. sb->this_disk = sb->disks[rdev->desc_nr];
  1142. sb->sb_csum = calc_sb_csum(sb);
  1143. }
  1144. /*
  1145. * rdev_size_change for 0.90.0
  1146. */
  1147. static unsigned long long
  1148. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1149. {
  1150. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1151. return 0; /* component must fit device */
  1152. if (rdev->mddev->bitmap_info.offset)
  1153. return 0; /* can't move bitmap */
  1154. rdev->sb_start = calc_dev_sboffset(rdev);
  1155. if (!num_sectors || num_sectors > rdev->sb_start)
  1156. num_sectors = rdev->sb_start;
  1157. /* Limit to 4TB as metadata cannot record more than that.
  1158. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1159. */
  1160. if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
  1161. num_sectors = (2ULL << 32) - 2;
  1162. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1163. rdev->sb_page);
  1164. md_super_wait(rdev->mddev);
  1165. return num_sectors;
  1166. }
  1167. static int
  1168. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1169. {
  1170. /* non-zero offset changes not possible with v0.90 */
  1171. return new_offset == 0;
  1172. }
  1173. /*
  1174. * version 1 superblock
  1175. */
  1176. static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
  1177. {
  1178. __le32 disk_csum;
  1179. u32 csum;
  1180. unsigned long long newcsum;
  1181. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1182. __le32 *isuper = (__le32*)sb;
  1183. disk_csum = sb->sb_csum;
  1184. sb->sb_csum = 0;
  1185. newcsum = 0;
  1186. for (; size >= 4; size -= 4)
  1187. newcsum += le32_to_cpu(*isuper++);
  1188. if (size == 2)
  1189. newcsum += le16_to_cpu(*(__le16*) isuper);
  1190. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1191. sb->sb_csum = disk_csum;
  1192. return cpu_to_le32(csum);
  1193. }
  1194. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1195. int acknowledged);
  1196. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1197. {
  1198. struct mdp_superblock_1 *sb;
  1199. int ret;
  1200. sector_t sb_start;
  1201. sector_t sectors;
  1202. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1203. int bmask;
  1204. /*
  1205. * Calculate the position of the superblock in 512byte sectors.
  1206. * It is always aligned to a 4K boundary and
  1207. * depeding on minor_version, it can be:
  1208. * 0: At least 8K, but less than 12K, from end of device
  1209. * 1: At start of device
  1210. * 2: 4K from start of device.
  1211. */
  1212. switch(minor_version) {
  1213. case 0:
  1214. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1215. sb_start -= 8*2;
  1216. sb_start &= ~(sector_t)(4*2-1);
  1217. break;
  1218. case 1:
  1219. sb_start = 0;
  1220. break;
  1221. case 2:
  1222. sb_start = 8;
  1223. break;
  1224. default:
  1225. return -EINVAL;
  1226. }
  1227. rdev->sb_start = sb_start;
  1228. /* superblock is rarely larger than 1K, but it can be larger,
  1229. * and it is safe to read 4k, so we do that
  1230. */
  1231. ret = read_disk_sb(rdev, 4096);
  1232. if (ret) return ret;
  1233. sb = page_address(rdev->sb_page);
  1234. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1235. sb->major_version != cpu_to_le32(1) ||
  1236. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1237. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1238. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1239. return -EINVAL;
  1240. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1241. printk("md: invalid superblock checksum on %s\n",
  1242. bdevname(rdev->bdev,b));
  1243. return -EINVAL;
  1244. }
  1245. if (le64_to_cpu(sb->data_size) < 10) {
  1246. printk("md: data_size too small on %s\n",
  1247. bdevname(rdev->bdev,b));
  1248. return -EINVAL;
  1249. }
  1250. if (sb->pad0 ||
  1251. sb->pad3[0] ||
  1252. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1253. /* Some padding is non-zero, might be a new feature */
  1254. return -EINVAL;
  1255. rdev->preferred_minor = 0xffff;
  1256. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1257. rdev->new_data_offset = rdev->data_offset;
  1258. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1259. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1260. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1261. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1262. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1263. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1264. if (rdev->sb_size & bmask)
  1265. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1266. if (minor_version
  1267. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1268. return -EINVAL;
  1269. if (minor_version
  1270. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1271. return -EINVAL;
  1272. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1273. rdev->desc_nr = -1;
  1274. else
  1275. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1276. if (!rdev->bb_page) {
  1277. rdev->bb_page = alloc_page(GFP_KERNEL);
  1278. if (!rdev->bb_page)
  1279. return -ENOMEM;
  1280. }
  1281. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1282. rdev->badblocks.count == 0) {
  1283. /* need to load the bad block list.
  1284. * Currently we limit it to one page.
  1285. */
  1286. s32 offset;
  1287. sector_t bb_sector;
  1288. u64 *bbp;
  1289. int i;
  1290. int sectors = le16_to_cpu(sb->bblog_size);
  1291. if (sectors > (PAGE_SIZE / 512))
  1292. return -EINVAL;
  1293. offset = le32_to_cpu(sb->bblog_offset);
  1294. if (offset == 0)
  1295. return -EINVAL;
  1296. bb_sector = (long long)offset;
  1297. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1298. rdev->bb_page, READ, true))
  1299. return -EIO;
  1300. bbp = (u64 *)page_address(rdev->bb_page);
  1301. rdev->badblocks.shift = sb->bblog_shift;
  1302. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1303. u64 bb = le64_to_cpu(*bbp);
  1304. int count = bb & (0x3ff);
  1305. u64 sector = bb >> 10;
  1306. sector <<= sb->bblog_shift;
  1307. count <<= sb->bblog_shift;
  1308. if (bb + 1 == 0)
  1309. break;
  1310. if (md_set_badblocks(&rdev->badblocks,
  1311. sector, count, 1) == 0)
  1312. return -EINVAL;
  1313. }
  1314. } else if (sb->bblog_offset != 0)
  1315. rdev->badblocks.shift = 0;
  1316. if (!refdev) {
  1317. ret = 1;
  1318. } else {
  1319. __u64 ev1, ev2;
  1320. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1321. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1322. sb->level != refsb->level ||
  1323. sb->layout != refsb->layout ||
  1324. sb->chunksize != refsb->chunksize) {
  1325. printk(KERN_WARNING "md: %s has strangely different"
  1326. " superblock to %s\n",
  1327. bdevname(rdev->bdev,b),
  1328. bdevname(refdev->bdev,b2));
  1329. return -EINVAL;
  1330. }
  1331. ev1 = le64_to_cpu(sb->events);
  1332. ev2 = le64_to_cpu(refsb->events);
  1333. if (ev1 > ev2)
  1334. ret = 1;
  1335. else
  1336. ret = 0;
  1337. }
  1338. if (minor_version) {
  1339. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1340. sectors -= rdev->data_offset;
  1341. } else
  1342. sectors = rdev->sb_start;
  1343. if (sectors < le64_to_cpu(sb->data_size))
  1344. return -EINVAL;
  1345. rdev->sectors = le64_to_cpu(sb->data_size);
  1346. return ret;
  1347. }
  1348. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1349. {
  1350. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1351. __u64 ev1 = le64_to_cpu(sb->events);
  1352. rdev->raid_disk = -1;
  1353. clear_bit(Faulty, &rdev->flags);
  1354. clear_bit(In_sync, &rdev->flags);
  1355. clear_bit(Bitmap_sync, &rdev->flags);
  1356. clear_bit(WriteMostly, &rdev->flags);
  1357. if (mddev->raid_disks == 0) {
  1358. mddev->major_version = 1;
  1359. mddev->patch_version = 0;
  1360. mddev->external = 0;
  1361. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1362. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1363. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1364. mddev->level = le32_to_cpu(sb->level);
  1365. mddev->clevel[0] = 0;
  1366. mddev->layout = le32_to_cpu(sb->layout);
  1367. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1368. mddev->dev_sectors = le64_to_cpu(sb->size);
  1369. mddev->events = ev1;
  1370. mddev->bitmap_info.offset = 0;
  1371. mddev->bitmap_info.space = 0;
  1372. /* Default location for bitmap is 1K after superblock
  1373. * using 3K - total of 4K
  1374. */
  1375. mddev->bitmap_info.default_offset = 1024 >> 9;
  1376. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1377. mddev->reshape_backwards = 0;
  1378. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1379. memcpy(mddev->uuid, sb->set_uuid, 16);
  1380. mddev->max_disks = (4096-256)/2;
  1381. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1382. mddev->bitmap_info.file == NULL) {
  1383. mddev->bitmap_info.offset =
  1384. (__s32)le32_to_cpu(sb->bitmap_offset);
  1385. /* Metadata doesn't record how much space is available.
  1386. * For 1.0, we assume we can use up to the superblock
  1387. * if before, else to 4K beyond superblock.
  1388. * For others, assume no change is possible.
  1389. */
  1390. if (mddev->minor_version > 0)
  1391. mddev->bitmap_info.space = 0;
  1392. else if (mddev->bitmap_info.offset > 0)
  1393. mddev->bitmap_info.space =
  1394. 8 - mddev->bitmap_info.offset;
  1395. else
  1396. mddev->bitmap_info.space =
  1397. -mddev->bitmap_info.offset;
  1398. }
  1399. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1400. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1401. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1402. mddev->new_level = le32_to_cpu(sb->new_level);
  1403. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1404. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1405. if (mddev->delta_disks < 0 ||
  1406. (mddev->delta_disks == 0 &&
  1407. (le32_to_cpu(sb->feature_map)
  1408. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1409. mddev->reshape_backwards = 1;
  1410. } else {
  1411. mddev->reshape_position = MaxSector;
  1412. mddev->delta_disks = 0;
  1413. mddev->new_level = mddev->level;
  1414. mddev->new_layout = mddev->layout;
  1415. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1416. }
  1417. } else if (mddev->pers == NULL) {
  1418. /* Insist of good event counter while assembling, except for
  1419. * spares (which don't need an event count) */
  1420. ++ev1;
  1421. if (rdev->desc_nr >= 0 &&
  1422. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1423. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1424. if (ev1 < mddev->events)
  1425. return -EINVAL;
  1426. } else if (mddev->bitmap) {
  1427. /* If adding to array with a bitmap, then we can accept an
  1428. * older device, but not too old.
  1429. */
  1430. if (ev1 < mddev->bitmap->events_cleared)
  1431. return 0;
  1432. if (ev1 < mddev->events)
  1433. set_bit(Bitmap_sync, &rdev->flags);
  1434. } else {
  1435. if (ev1 < mddev->events)
  1436. /* just a hot-add of a new device, leave raid_disk at -1 */
  1437. return 0;
  1438. }
  1439. if (mddev->level != LEVEL_MULTIPATH) {
  1440. int role;
  1441. if (rdev->desc_nr < 0 ||
  1442. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1443. role = 0xffff;
  1444. rdev->desc_nr = -1;
  1445. } else
  1446. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1447. switch(role) {
  1448. case 0xffff: /* spare */
  1449. break;
  1450. case 0xfffe: /* faulty */
  1451. set_bit(Faulty, &rdev->flags);
  1452. break;
  1453. default:
  1454. rdev->saved_raid_disk = role;
  1455. if ((le32_to_cpu(sb->feature_map) &
  1456. MD_FEATURE_RECOVERY_OFFSET)) {
  1457. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1458. if (!(le32_to_cpu(sb->feature_map) &
  1459. MD_FEATURE_RECOVERY_BITMAP))
  1460. rdev->saved_raid_disk = -1;
  1461. } else
  1462. set_bit(In_sync, &rdev->flags);
  1463. rdev->raid_disk = role;
  1464. break;
  1465. }
  1466. if (sb->devflags & WriteMostly1)
  1467. set_bit(WriteMostly, &rdev->flags);
  1468. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1469. set_bit(Replacement, &rdev->flags);
  1470. } else /* MULTIPATH are always insync */
  1471. set_bit(In_sync, &rdev->flags);
  1472. return 0;
  1473. }
  1474. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1475. {
  1476. struct mdp_superblock_1 *sb;
  1477. struct md_rdev *rdev2;
  1478. int max_dev, i;
  1479. /* make rdev->sb match mddev and rdev data. */
  1480. sb = page_address(rdev->sb_page);
  1481. sb->feature_map = 0;
  1482. sb->pad0 = 0;
  1483. sb->recovery_offset = cpu_to_le64(0);
  1484. memset(sb->pad3, 0, sizeof(sb->pad3));
  1485. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1486. sb->events = cpu_to_le64(mddev->events);
  1487. if (mddev->in_sync)
  1488. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1489. else
  1490. sb->resync_offset = cpu_to_le64(0);
  1491. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1492. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1493. sb->size = cpu_to_le64(mddev->dev_sectors);
  1494. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1495. sb->level = cpu_to_le32(mddev->level);
  1496. sb->layout = cpu_to_le32(mddev->layout);
  1497. if (test_bit(WriteMostly, &rdev->flags))
  1498. sb->devflags |= WriteMostly1;
  1499. else
  1500. sb->devflags &= ~WriteMostly1;
  1501. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1502. sb->data_size = cpu_to_le64(rdev->sectors);
  1503. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1504. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1505. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1506. }
  1507. if (rdev->raid_disk >= 0 &&
  1508. !test_bit(In_sync, &rdev->flags)) {
  1509. sb->feature_map |=
  1510. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1511. sb->recovery_offset =
  1512. cpu_to_le64(rdev->recovery_offset);
  1513. if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
  1514. sb->feature_map |=
  1515. cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
  1516. }
  1517. if (test_bit(Replacement, &rdev->flags))
  1518. sb->feature_map |=
  1519. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1520. if (mddev->reshape_position != MaxSector) {
  1521. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1522. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1523. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1524. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1525. sb->new_level = cpu_to_le32(mddev->new_level);
  1526. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1527. if (mddev->delta_disks == 0 &&
  1528. mddev->reshape_backwards)
  1529. sb->feature_map
  1530. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1531. if (rdev->new_data_offset != rdev->data_offset) {
  1532. sb->feature_map
  1533. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1534. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1535. - rdev->data_offset));
  1536. }
  1537. }
  1538. if (rdev->badblocks.count == 0)
  1539. /* Nothing to do for bad blocks*/ ;
  1540. else if (sb->bblog_offset == 0)
  1541. /* Cannot record bad blocks on this device */
  1542. md_error(mddev, rdev);
  1543. else {
  1544. struct badblocks *bb = &rdev->badblocks;
  1545. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1546. u64 *p = bb->page;
  1547. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1548. if (bb->changed) {
  1549. unsigned seq;
  1550. retry:
  1551. seq = read_seqbegin(&bb->lock);
  1552. memset(bbp, 0xff, PAGE_SIZE);
  1553. for (i = 0 ; i < bb->count ; i++) {
  1554. u64 internal_bb = p[i];
  1555. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1556. | BB_LEN(internal_bb));
  1557. bbp[i] = cpu_to_le64(store_bb);
  1558. }
  1559. bb->changed = 0;
  1560. if (read_seqretry(&bb->lock, seq))
  1561. goto retry;
  1562. bb->sector = (rdev->sb_start +
  1563. (int)le32_to_cpu(sb->bblog_offset));
  1564. bb->size = le16_to_cpu(sb->bblog_size);
  1565. }
  1566. }
  1567. max_dev = 0;
  1568. rdev_for_each(rdev2, mddev)
  1569. if (rdev2->desc_nr+1 > max_dev)
  1570. max_dev = rdev2->desc_nr+1;
  1571. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1572. int bmask;
  1573. sb->max_dev = cpu_to_le32(max_dev);
  1574. rdev->sb_size = max_dev * 2 + 256;
  1575. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1576. if (rdev->sb_size & bmask)
  1577. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1578. } else
  1579. max_dev = le32_to_cpu(sb->max_dev);
  1580. for (i=0; i<max_dev;i++)
  1581. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1582. rdev_for_each(rdev2, mddev) {
  1583. i = rdev2->desc_nr;
  1584. if (test_bit(Faulty, &rdev2->flags))
  1585. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1586. else if (test_bit(In_sync, &rdev2->flags))
  1587. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1588. else if (rdev2->raid_disk >= 0)
  1589. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1590. else
  1591. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1592. }
  1593. sb->sb_csum = calc_sb_1_csum(sb);
  1594. }
  1595. static unsigned long long
  1596. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1597. {
  1598. struct mdp_superblock_1 *sb;
  1599. sector_t max_sectors;
  1600. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1601. return 0; /* component must fit device */
  1602. if (rdev->data_offset != rdev->new_data_offset)
  1603. return 0; /* too confusing */
  1604. if (rdev->sb_start < rdev->data_offset) {
  1605. /* minor versions 1 and 2; superblock before data */
  1606. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1607. max_sectors -= rdev->data_offset;
  1608. if (!num_sectors || num_sectors > max_sectors)
  1609. num_sectors = max_sectors;
  1610. } else if (rdev->mddev->bitmap_info.offset) {
  1611. /* minor version 0 with bitmap we can't move */
  1612. return 0;
  1613. } else {
  1614. /* minor version 0; superblock after data */
  1615. sector_t sb_start;
  1616. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1617. sb_start &= ~(sector_t)(4*2 - 1);
  1618. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1619. if (!num_sectors || num_sectors > max_sectors)
  1620. num_sectors = max_sectors;
  1621. rdev->sb_start = sb_start;
  1622. }
  1623. sb = page_address(rdev->sb_page);
  1624. sb->data_size = cpu_to_le64(num_sectors);
  1625. sb->super_offset = rdev->sb_start;
  1626. sb->sb_csum = calc_sb_1_csum(sb);
  1627. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1628. rdev->sb_page);
  1629. md_super_wait(rdev->mddev);
  1630. return num_sectors;
  1631. }
  1632. static int
  1633. super_1_allow_new_offset(struct md_rdev *rdev,
  1634. unsigned long long new_offset)
  1635. {
  1636. /* All necessary checks on new >= old have been done */
  1637. struct bitmap *bitmap;
  1638. if (new_offset >= rdev->data_offset)
  1639. return 1;
  1640. /* with 1.0 metadata, there is no metadata to tread on
  1641. * so we can always move back */
  1642. if (rdev->mddev->minor_version == 0)
  1643. return 1;
  1644. /* otherwise we must be sure not to step on
  1645. * any metadata, so stay:
  1646. * 36K beyond start of superblock
  1647. * beyond end of badblocks
  1648. * beyond write-intent bitmap
  1649. */
  1650. if (rdev->sb_start + (32+4)*2 > new_offset)
  1651. return 0;
  1652. bitmap = rdev->mddev->bitmap;
  1653. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1654. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1655. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1656. return 0;
  1657. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1658. return 0;
  1659. return 1;
  1660. }
  1661. static struct super_type super_types[] = {
  1662. [0] = {
  1663. .name = "0.90.0",
  1664. .owner = THIS_MODULE,
  1665. .load_super = super_90_load,
  1666. .validate_super = super_90_validate,
  1667. .sync_super = super_90_sync,
  1668. .rdev_size_change = super_90_rdev_size_change,
  1669. .allow_new_offset = super_90_allow_new_offset,
  1670. },
  1671. [1] = {
  1672. .name = "md-1",
  1673. .owner = THIS_MODULE,
  1674. .load_super = super_1_load,
  1675. .validate_super = super_1_validate,
  1676. .sync_super = super_1_sync,
  1677. .rdev_size_change = super_1_rdev_size_change,
  1678. .allow_new_offset = super_1_allow_new_offset,
  1679. },
  1680. };
  1681. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1682. {
  1683. if (mddev->sync_super) {
  1684. mddev->sync_super(mddev, rdev);
  1685. return;
  1686. }
  1687. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1688. super_types[mddev->major_version].sync_super(mddev, rdev);
  1689. }
  1690. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1691. {
  1692. struct md_rdev *rdev, *rdev2;
  1693. rcu_read_lock();
  1694. rdev_for_each_rcu(rdev, mddev1)
  1695. rdev_for_each_rcu(rdev2, mddev2)
  1696. if (rdev->bdev->bd_contains ==
  1697. rdev2->bdev->bd_contains) {
  1698. rcu_read_unlock();
  1699. return 1;
  1700. }
  1701. rcu_read_unlock();
  1702. return 0;
  1703. }
  1704. static LIST_HEAD(pending_raid_disks);
  1705. /*
  1706. * Try to register data integrity profile for an mddev
  1707. *
  1708. * This is called when an array is started and after a disk has been kicked
  1709. * from the array. It only succeeds if all working and active component devices
  1710. * are integrity capable with matching profiles.
  1711. */
  1712. int md_integrity_register(struct mddev *mddev)
  1713. {
  1714. struct md_rdev *rdev, *reference = NULL;
  1715. if (list_empty(&mddev->disks))
  1716. return 0; /* nothing to do */
  1717. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1718. return 0; /* shouldn't register, or already is */
  1719. rdev_for_each(rdev, mddev) {
  1720. /* skip spares and non-functional disks */
  1721. if (test_bit(Faulty, &rdev->flags))
  1722. continue;
  1723. if (rdev->raid_disk < 0)
  1724. continue;
  1725. if (!reference) {
  1726. /* Use the first rdev as the reference */
  1727. reference = rdev;
  1728. continue;
  1729. }
  1730. /* does this rdev's profile match the reference profile? */
  1731. if (blk_integrity_compare(reference->bdev->bd_disk,
  1732. rdev->bdev->bd_disk) < 0)
  1733. return -EINVAL;
  1734. }
  1735. if (!reference || !bdev_get_integrity(reference->bdev))
  1736. return 0;
  1737. /*
  1738. * All component devices are integrity capable and have matching
  1739. * profiles, register the common profile for the md device.
  1740. */
  1741. if (blk_integrity_register(mddev->gendisk,
  1742. bdev_get_integrity(reference->bdev)) != 0) {
  1743. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1744. mdname(mddev));
  1745. return -EINVAL;
  1746. }
  1747. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1748. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1749. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1750. mdname(mddev));
  1751. return -EINVAL;
  1752. }
  1753. return 0;
  1754. }
  1755. EXPORT_SYMBOL(md_integrity_register);
  1756. /* Disable data integrity if non-capable/non-matching disk is being added */
  1757. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1758. {
  1759. struct blk_integrity *bi_rdev;
  1760. struct blk_integrity *bi_mddev;
  1761. if (!mddev->gendisk)
  1762. return;
  1763. bi_rdev = bdev_get_integrity(rdev->bdev);
  1764. bi_mddev = blk_get_integrity(mddev->gendisk);
  1765. if (!bi_mddev) /* nothing to do */
  1766. return;
  1767. if (rdev->raid_disk < 0) /* skip spares */
  1768. return;
  1769. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1770. rdev->bdev->bd_disk) >= 0)
  1771. return;
  1772. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1773. blk_integrity_unregister(mddev->gendisk);
  1774. }
  1775. EXPORT_SYMBOL(md_integrity_add_rdev);
  1776. static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
  1777. {
  1778. char b[BDEVNAME_SIZE];
  1779. struct kobject *ko;
  1780. int err;
  1781. /* prevent duplicates */
  1782. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1783. return -EEXIST;
  1784. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1785. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1786. rdev->sectors < mddev->dev_sectors)) {
  1787. if (mddev->pers) {
  1788. /* Cannot change size, so fail
  1789. * If mddev->level <= 0, then we don't care
  1790. * about aligning sizes (e.g. linear)
  1791. */
  1792. if (mddev->level > 0)
  1793. return -ENOSPC;
  1794. } else
  1795. mddev->dev_sectors = rdev->sectors;
  1796. }
  1797. /* Verify rdev->desc_nr is unique.
  1798. * If it is -1, assign a free number, else
  1799. * check number is not in use
  1800. */
  1801. rcu_read_lock();
  1802. if (rdev->desc_nr < 0) {
  1803. int choice = 0;
  1804. if (mddev->pers)
  1805. choice = mddev->raid_disks;
  1806. while (md_find_rdev_nr_rcu(mddev, choice))
  1807. choice++;
  1808. rdev->desc_nr = choice;
  1809. } else {
  1810. if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
  1811. rcu_read_unlock();
  1812. return -EBUSY;
  1813. }
  1814. }
  1815. rcu_read_unlock();
  1816. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1817. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1818. mdname(mddev), mddev->max_disks);
  1819. return -EBUSY;
  1820. }
  1821. bdevname(rdev->bdev,b);
  1822. strreplace(b, '/', '!');
  1823. rdev->mddev = mddev;
  1824. printk(KERN_INFO "md: bind<%s>\n", b);
  1825. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1826. goto fail;
  1827. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1828. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1829. /* failure here is OK */;
  1830. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1831. list_add_rcu(&rdev->same_set, &mddev->disks);
  1832. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1833. /* May as well allow recovery to be retried once */
  1834. mddev->recovery_disabled++;
  1835. return 0;
  1836. fail:
  1837. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1838. b, mdname(mddev));
  1839. return err;
  1840. }
  1841. static void md_delayed_delete(struct work_struct *ws)
  1842. {
  1843. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1844. kobject_del(&rdev->kobj);
  1845. kobject_put(&rdev->kobj);
  1846. }
  1847. static void unbind_rdev_from_array(struct md_rdev *rdev)
  1848. {
  1849. char b[BDEVNAME_SIZE];
  1850. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1851. list_del_rcu(&rdev->same_set);
  1852. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1853. rdev->mddev = NULL;
  1854. sysfs_remove_link(&rdev->kobj, "block");
  1855. sysfs_put(rdev->sysfs_state);
  1856. rdev->sysfs_state = NULL;
  1857. rdev->badblocks.count = 0;
  1858. /* We need to delay this, otherwise we can deadlock when
  1859. * writing to 'remove' to "dev/state". We also need
  1860. * to delay it due to rcu usage.
  1861. */
  1862. synchronize_rcu();
  1863. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1864. kobject_get(&rdev->kobj);
  1865. queue_work(md_misc_wq, &rdev->del_work);
  1866. }
  1867. /*
  1868. * prevent the device from being mounted, repartitioned or
  1869. * otherwise reused by a RAID array (or any other kernel
  1870. * subsystem), by bd_claiming the device.
  1871. */
  1872. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1873. {
  1874. int err = 0;
  1875. struct block_device *bdev;
  1876. char b[BDEVNAME_SIZE];
  1877. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1878. shared ? (struct md_rdev *)lock_rdev : rdev);
  1879. if (IS_ERR(bdev)) {
  1880. printk(KERN_ERR "md: could not open %s.\n",
  1881. __bdevname(dev, b));
  1882. return PTR_ERR(bdev);
  1883. }
  1884. rdev->bdev = bdev;
  1885. return err;
  1886. }
  1887. static void unlock_rdev(struct md_rdev *rdev)
  1888. {
  1889. struct block_device *bdev = rdev->bdev;
  1890. rdev->bdev = NULL;
  1891. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1892. }
  1893. void md_autodetect_dev(dev_t dev);
  1894. static void export_rdev(struct md_rdev *rdev)
  1895. {
  1896. char b[BDEVNAME_SIZE];
  1897. printk(KERN_INFO "md: export_rdev(%s)\n",
  1898. bdevname(rdev->bdev,b));
  1899. md_rdev_clear(rdev);
  1900. #ifndef MODULE
  1901. if (test_bit(AutoDetected, &rdev->flags))
  1902. md_autodetect_dev(rdev->bdev->bd_dev);
  1903. #endif
  1904. unlock_rdev(rdev);
  1905. kobject_put(&rdev->kobj);
  1906. }
  1907. void md_kick_rdev_from_array(struct md_rdev *rdev)
  1908. {
  1909. unbind_rdev_from_array(rdev);
  1910. export_rdev(rdev);
  1911. }
  1912. EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
  1913. static void export_array(struct mddev *mddev)
  1914. {
  1915. struct md_rdev *rdev;
  1916. while (!list_empty(&mddev->disks)) {
  1917. rdev = list_first_entry(&mddev->disks, struct md_rdev,
  1918. same_set);
  1919. md_kick_rdev_from_array(rdev);
  1920. }
  1921. mddev->raid_disks = 0;
  1922. mddev->major_version = 0;
  1923. }
  1924. static void sync_sbs(struct mddev *mddev, int nospares)
  1925. {
  1926. /* Update each superblock (in-memory image), but
  1927. * if we are allowed to, skip spares which already
  1928. * have the right event counter, or have one earlier
  1929. * (which would mean they aren't being marked as dirty
  1930. * with the rest of the array)
  1931. */
  1932. struct md_rdev *rdev;
  1933. rdev_for_each(rdev, mddev) {
  1934. if (rdev->sb_events == mddev->events ||
  1935. (nospares &&
  1936. rdev->raid_disk < 0 &&
  1937. rdev->sb_events+1 == mddev->events)) {
  1938. /* Don't update this superblock */
  1939. rdev->sb_loaded = 2;
  1940. } else {
  1941. sync_super(mddev, rdev);
  1942. rdev->sb_loaded = 1;
  1943. }
  1944. }
  1945. }
  1946. void md_update_sb(struct mddev *mddev, int force_change)
  1947. {
  1948. struct md_rdev *rdev;
  1949. int sync_req;
  1950. int nospares = 0;
  1951. int any_badblocks_changed = 0;
  1952. if (mddev->ro) {
  1953. if (force_change)
  1954. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1955. return;
  1956. }
  1957. repeat:
  1958. /* First make sure individual recovery_offsets are correct */
  1959. rdev_for_each(rdev, mddev) {
  1960. if (rdev->raid_disk >= 0 &&
  1961. mddev->delta_disks >= 0 &&
  1962. !test_bit(In_sync, &rdev->flags) &&
  1963. mddev->curr_resync_completed > rdev->recovery_offset)
  1964. rdev->recovery_offset = mddev->curr_resync_completed;
  1965. }
  1966. if (!mddev->persistent) {
  1967. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  1968. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  1969. if (!mddev->external) {
  1970. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1971. rdev_for_each(rdev, mddev) {
  1972. if (rdev->badblocks.changed) {
  1973. rdev->badblocks.changed = 0;
  1974. md_ack_all_badblocks(&rdev->badblocks);
  1975. md_error(mddev, rdev);
  1976. }
  1977. clear_bit(Blocked, &rdev->flags);
  1978. clear_bit(BlockedBadBlocks, &rdev->flags);
  1979. wake_up(&rdev->blocked_wait);
  1980. }
  1981. }
  1982. wake_up(&mddev->sb_wait);
  1983. return;
  1984. }
  1985. spin_lock(&mddev->lock);
  1986. mddev->utime = get_seconds();
  1987. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1988. force_change = 1;
  1989. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1990. /* just a clean<-> dirty transition, possibly leave spares alone,
  1991. * though if events isn't the right even/odd, we will have to do
  1992. * spares after all
  1993. */
  1994. nospares = 1;
  1995. if (force_change)
  1996. nospares = 0;
  1997. if (mddev->degraded)
  1998. /* If the array is degraded, then skipping spares is both
  1999. * dangerous and fairly pointless.
  2000. * Dangerous because a device that was removed from the array
  2001. * might have a event_count that still looks up-to-date,
  2002. * so it can be re-added without a resync.
  2003. * Pointless because if there are any spares to skip,
  2004. * then a recovery will happen and soon that array won't
  2005. * be degraded any more and the spare can go back to sleep then.
  2006. */
  2007. nospares = 0;
  2008. sync_req = mddev->in_sync;
  2009. /* If this is just a dirty<->clean transition, and the array is clean
  2010. * and 'events' is odd, we can roll back to the previous clean state */
  2011. if (nospares
  2012. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2013. && mddev->can_decrease_events
  2014. && mddev->events != 1) {
  2015. mddev->events--;
  2016. mddev->can_decrease_events = 0;
  2017. } else {
  2018. /* otherwise we have to go forward and ... */
  2019. mddev->events ++;
  2020. mddev->can_decrease_events = nospares;
  2021. }
  2022. /*
  2023. * This 64-bit counter should never wrap.
  2024. * Either we are in around ~1 trillion A.C., assuming
  2025. * 1 reboot per second, or we have a bug...
  2026. */
  2027. WARN_ON(mddev->events == 0);
  2028. rdev_for_each(rdev, mddev) {
  2029. if (rdev->badblocks.changed)
  2030. any_badblocks_changed++;
  2031. if (test_bit(Faulty, &rdev->flags))
  2032. set_bit(FaultRecorded, &rdev->flags);
  2033. }
  2034. sync_sbs(mddev, nospares);
  2035. spin_unlock(&mddev->lock);
  2036. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2037. mdname(mddev), mddev->in_sync);
  2038. bitmap_update_sb(mddev->bitmap);
  2039. rdev_for_each(rdev, mddev) {
  2040. char b[BDEVNAME_SIZE];
  2041. if (rdev->sb_loaded != 1)
  2042. continue; /* no noise on spare devices */
  2043. if (!test_bit(Faulty, &rdev->flags)) {
  2044. md_super_write(mddev,rdev,
  2045. rdev->sb_start, rdev->sb_size,
  2046. rdev->sb_page);
  2047. pr_debug("md: (write) %s's sb offset: %llu\n",
  2048. bdevname(rdev->bdev, b),
  2049. (unsigned long long)rdev->sb_start);
  2050. rdev->sb_events = mddev->events;
  2051. if (rdev->badblocks.size) {
  2052. md_super_write(mddev, rdev,
  2053. rdev->badblocks.sector,
  2054. rdev->badblocks.size << 9,
  2055. rdev->bb_page);
  2056. rdev->badblocks.size = 0;
  2057. }
  2058. } else
  2059. pr_debug("md: %s (skipping faulty)\n",
  2060. bdevname(rdev->bdev, b));
  2061. if (mddev->level == LEVEL_MULTIPATH)
  2062. /* only need to write one superblock... */
  2063. break;
  2064. }
  2065. md_super_wait(mddev);
  2066. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2067. spin_lock(&mddev->lock);
  2068. if (mddev->in_sync != sync_req ||
  2069. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2070. /* have to write it out again */
  2071. spin_unlock(&mddev->lock);
  2072. goto repeat;
  2073. }
  2074. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2075. spin_unlock(&mddev->lock);
  2076. wake_up(&mddev->sb_wait);
  2077. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2078. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2079. rdev_for_each(rdev, mddev) {
  2080. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2081. clear_bit(Blocked, &rdev->flags);
  2082. if (any_badblocks_changed)
  2083. md_ack_all_badblocks(&rdev->badblocks);
  2084. clear_bit(BlockedBadBlocks, &rdev->flags);
  2085. wake_up(&rdev->blocked_wait);
  2086. }
  2087. }
  2088. EXPORT_SYMBOL(md_update_sb);
  2089. static int add_bound_rdev(struct md_rdev *rdev)
  2090. {
  2091. struct mddev *mddev = rdev->mddev;
  2092. int err = 0;
  2093. if (!mddev->pers->hot_remove_disk) {
  2094. /* If there is hot_add_disk but no hot_remove_disk
  2095. * then added disks for geometry changes,
  2096. * and should be added immediately.
  2097. */
  2098. super_types[mddev->major_version].
  2099. validate_super(mddev, rdev);
  2100. err = mddev->pers->hot_add_disk(mddev, rdev);
  2101. if (err) {
  2102. unbind_rdev_from_array(rdev);
  2103. export_rdev(rdev);
  2104. return err;
  2105. }
  2106. }
  2107. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2108. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2109. if (mddev->degraded)
  2110. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  2111. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2112. md_new_event(mddev);
  2113. md_wakeup_thread(mddev->thread);
  2114. return 0;
  2115. }
  2116. /* words written to sysfs files may, or may not, be \n terminated.
  2117. * We want to accept with case. For this we use cmd_match.
  2118. */
  2119. static int cmd_match(const char *cmd, const char *str)
  2120. {
  2121. /* See if cmd, written into a sysfs file, matches
  2122. * str. They must either be the same, or cmd can
  2123. * have a trailing newline
  2124. */
  2125. while (*cmd && *str && *cmd == *str) {
  2126. cmd++;
  2127. str++;
  2128. }
  2129. if (*cmd == '\n')
  2130. cmd++;
  2131. if (*str || *cmd)
  2132. return 0;
  2133. return 1;
  2134. }
  2135. struct rdev_sysfs_entry {
  2136. struct attribute attr;
  2137. ssize_t (*show)(struct md_rdev *, char *);
  2138. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2139. };
  2140. static ssize_t
  2141. state_show(struct md_rdev *rdev, char *page)
  2142. {
  2143. char *sep = "";
  2144. size_t len = 0;
  2145. unsigned long flags = ACCESS_ONCE(rdev->flags);
  2146. if (test_bit(Faulty, &flags) ||
  2147. rdev->badblocks.unacked_exist) {
  2148. len+= sprintf(page+len, "%sfaulty",sep);
  2149. sep = ",";
  2150. }
  2151. if (test_bit(In_sync, &flags)) {
  2152. len += sprintf(page+len, "%sin_sync",sep);
  2153. sep = ",";
  2154. }
  2155. if (test_bit(WriteMostly, &flags)) {
  2156. len += sprintf(page+len, "%swrite_mostly",sep);
  2157. sep = ",";
  2158. }
  2159. if (test_bit(Blocked, &flags) ||
  2160. (rdev->badblocks.unacked_exist
  2161. && !test_bit(Faulty, &flags))) {
  2162. len += sprintf(page+len, "%sblocked", sep);
  2163. sep = ",";
  2164. }
  2165. if (!test_bit(Faulty, &flags) &&
  2166. !test_bit(In_sync, &flags)) {
  2167. len += sprintf(page+len, "%sspare", sep);
  2168. sep = ",";
  2169. }
  2170. if (test_bit(WriteErrorSeen, &flags)) {
  2171. len += sprintf(page+len, "%swrite_error", sep);
  2172. sep = ",";
  2173. }
  2174. if (test_bit(WantReplacement, &flags)) {
  2175. len += sprintf(page+len, "%swant_replacement", sep);
  2176. sep = ",";
  2177. }
  2178. if (test_bit(Replacement, &flags)) {
  2179. len += sprintf(page+len, "%sreplacement", sep);
  2180. sep = ",";
  2181. }
  2182. return len+sprintf(page+len, "\n");
  2183. }
  2184. static ssize_t
  2185. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2186. {
  2187. /* can write
  2188. * faulty - simulates an error
  2189. * remove - disconnects the device
  2190. * writemostly - sets write_mostly
  2191. * -writemostly - clears write_mostly
  2192. * blocked - sets the Blocked flags
  2193. * -blocked - clears the Blocked and possibly simulates an error
  2194. * insync - sets Insync providing device isn't active
  2195. * -insync - clear Insync for a device with a slot assigned,
  2196. * so that it gets rebuilt based on bitmap
  2197. * write_error - sets WriteErrorSeen
  2198. * -write_error - clears WriteErrorSeen
  2199. */
  2200. int err = -EINVAL;
  2201. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2202. md_error(rdev->mddev, rdev);
  2203. if (test_bit(Faulty, &rdev->flags))
  2204. err = 0;
  2205. else
  2206. err = -EBUSY;
  2207. } else if (cmd_match(buf, "remove")) {
  2208. if (rdev->raid_disk >= 0)
  2209. err = -EBUSY;
  2210. else {
  2211. struct mddev *mddev = rdev->mddev;
  2212. if (mddev_is_clustered(mddev))
  2213. md_cluster_ops->remove_disk(mddev, rdev);
  2214. md_kick_rdev_from_array(rdev);
  2215. if (mddev_is_clustered(mddev))
  2216. md_cluster_ops->metadata_update_start(mddev);
  2217. if (mddev->pers)
  2218. md_update_sb(mddev, 1);
  2219. md_new_event(mddev);
  2220. if (mddev_is_clustered(mddev))
  2221. md_cluster_ops->metadata_update_finish(mddev);
  2222. err = 0;
  2223. }
  2224. } else if (cmd_match(buf, "writemostly")) {
  2225. set_bit(WriteMostly, &rdev->flags);
  2226. err = 0;
  2227. } else if (cmd_match(buf, "-writemostly")) {
  2228. clear_bit(WriteMostly, &rdev->flags);
  2229. err = 0;
  2230. } else if (cmd_match(buf, "blocked")) {
  2231. set_bit(Blocked, &rdev->flags);
  2232. err = 0;
  2233. } else if (cmd_match(buf, "-blocked")) {
  2234. if (!test_bit(Faulty, &rdev->flags) &&
  2235. rdev->badblocks.unacked_exist) {
  2236. /* metadata handler doesn't understand badblocks,
  2237. * so we need to fail the device
  2238. */
  2239. md_error(rdev->mddev, rdev);
  2240. }
  2241. clear_bit(Blocked, &rdev->flags);
  2242. clear_bit(BlockedBadBlocks, &rdev->flags);
  2243. wake_up(&rdev->blocked_wait);
  2244. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2245. md_wakeup_thread(rdev->mddev->thread);
  2246. err = 0;
  2247. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2248. set_bit(In_sync, &rdev->flags);
  2249. err = 0;
  2250. } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
  2251. if (rdev->mddev->pers == NULL) {
  2252. clear_bit(In_sync, &rdev->flags);
  2253. rdev->saved_raid_disk = rdev->raid_disk;
  2254. rdev->raid_disk = -1;
  2255. err = 0;
  2256. }
  2257. } else if (cmd_match(buf, "write_error")) {
  2258. set_bit(WriteErrorSeen, &rdev->flags);
  2259. err = 0;
  2260. } else if (cmd_match(buf, "-write_error")) {
  2261. clear_bit(WriteErrorSeen, &rdev->flags);
  2262. err = 0;
  2263. } else if (cmd_match(buf, "want_replacement")) {
  2264. /* Any non-spare device that is not a replacement can
  2265. * become want_replacement at any time, but we then need to
  2266. * check if recovery is needed.
  2267. */
  2268. if (rdev->raid_disk >= 0 &&
  2269. !test_bit(Replacement, &rdev->flags))
  2270. set_bit(WantReplacement, &rdev->flags);
  2271. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2272. md_wakeup_thread(rdev->mddev->thread);
  2273. err = 0;
  2274. } else if (cmd_match(buf, "-want_replacement")) {
  2275. /* Clearing 'want_replacement' is always allowed.
  2276. * Once replacements starts it is too late though.
  2277. */
  2278. err = 0;
  2279. clear_bit(WantReplacement, &rdev->flags);
  2280. } else if (cmd_match(buf, "replacement")) {
  2281. /* Can only set a device as a replacement when array has not
  2282. * yet been started. Once running, replacement is automatic
  2283. * from spares, or by assigning 'slot'.
  2284. */
  2285. if (rdev->mddev->pers)
  2286. err = -EBUSY;
  2287. else {
  2288. set_bit(Replacement, &rdev->flags);
  2289. err = 0;
  2290. }
  2291. } else if (cmd_match(buf, "-replacement")) {
  2292. /* Similarly, can only clear Replacement before start */
  2293. if (rdev->mddev->pers)
  2294. err = -EBUSY;
  2295. else {
  2296. clear_bit(Replacement, &rdev->flags);
  2297. err = 0;
  2298. }
  2299. } else if (cmd_match(buf, "re-add")) {
  2300. if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
  2301. /* clear_bit is performed _after_ all the devices
  2302. * have their local Faulty bit cleared. If any writes
  2303. * happen in the meantime in the local node, they
  2304. * will land in the local bitmap, which will be synced
  2305. * by this node eventually
  2306. */
  2307. if (!mddev_is_clustered(rdev->mddev) ||
  2308. (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
  2309. clear_bit(Faulty, &rdev->flags);
  2310. err = add_bound_rdev(rdev);
  2311. }
  2312. } else
  2313. err = -EBUSY;
  2314. }
  2315. if (!err)
  2316. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2317. return err ? err : len;
  2318. }
  2319. static struct rdev_sysfs_entry rdev_state =
  2320. __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2321. static ssize_t
  2322. errors_show(struct md_rdev *rdev, char *page)
  2323. {
  2324. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2325. }
  2326. static ssize_t
  2327. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2328. {
  2329. unsigned int n;
  2330. int rv;
  2331. rv = kstrtouint(buf, 10, &n);
  2332. if (rv < 0)
  2333. return rv;
  2334. atomic_set(&rdev->corrected_errors, n);
  2335. return len;
  2336. }
  2337. static struct rdev_sysfs_entry rdev_errors =
  2338. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2339. static ssize_t
  2340. slot_show(struct md_rdev *rdev, char *page)
  2341. {
  2342. if (rdev->raid_disk < 0)
  2343. return sprintf(page, "none\n");
  2344. else
  2345. return sprintf(page, "%d\n", rdev->raid_disk);
  2346. }
  2347. static ssize_t
  2348. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2349. {
  2350. int slot;
  2351. int err;
  2352. if (strncmp(buf, "none", 4)==0)
  2353. slot = -1;
  2354. else {
  2355. err = kstrtouint(buf, 10, (unsigned int *)&slot);
  2356. if (err < 0)
  2357. return err;
  2358. }
  2359. if (rdev->mddev->pers && slot == -1) {
  2360. /* Setting 'slot' on an active array requires also
  2361. * updating the 'rd%d' link, and communicating
  2362. * with the personality with ->hot_*_disk.
  2363. * For now we only support removing
  2364. * failed/spare devices. This normally happens automatically,
  2365. * but not when the metadata is externally managed.
  2366. */
  2367. if (rdev->raid_disk == -1)
  2368. return -EEXIST;
  2369. /* personality does all needed checks */
  2370. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2371. return -EINVAL;
  2372. clear_bit(Blocked, &rdev->flags);
  2373. remove_and_add_spares(rdev->mddev, rdev);
  2374. if (rdev->raid_disk >= 0)
  2375. return -EBUSY;
  2376. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2377. md_wakeup_thread(rdev->mddev->thread);
  2378. } else if (rdev->mddev->pers) {
  2379. /* Activating a spare .. or possibly reactivating
  2380. * if we ever get bitmaps working here.
  2381. */
  2382. if (rdev->raid_disk != -1)
  2383. return -EBUSY;
  2384. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2385. return -EBUSY;
  2386. if (rdev->mddev->pers->hot_add_disk == NULL)
  2387. return -EINVAL;
  2388. if (slot >= rdev->mddev->raid_disks &&
  2389. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2390. return -ENOSPC;
  2391. rdev->raid_disk = slot;
  2392. if (test_bit(In_sync, &rdev->flags))
  2393. rdev->saved_raid_disk = slot;
  2394. else
  2395. rdev->saved_raid_disk = -1;
  2396. clear_bit(In_sync, &rdev->flags);
  2397. clear_bit(Bitmap_sync, &rdev->flags);
  2398. err = rdev->mddev->pers->
  2399. hot_add_disk(rdev->mddev, rdev);
  2400. if (err) {
  2401. rdev->raid_disk = -1;
  2402. return err;
  2403. } else
  2404. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2405. if (sysfs_link_rdev(rdev->mddev, rdev))
  2406. /* failure here is OK */;
  2407. /* don't wakeup anyone, leave that to userspace. */
  2408. } else {
  2409. if (slot >= rdev->mddev->raid_disks &&
  2410. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2411. return -ENOSPC;
  2412. rdev->raid_disk = slot;
  2413. /* assume it is working */
  2414. clear_bit(Faulty, &rdev->flags);
  2415. clear_bit(WriteMostly, &rdev->flags);
  2416. set_bit(In_sync, &rdev->flags);
  2417. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2418. }
  2419. return len;
  2420. }
  2421. static struct rdev_sysfs_entry rdev_slot =
  2422. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2423. static ssize_t
  2424. offset_show(struct md_rdev *rdev, char *page)
  2425. {
  2426. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2427. }
  2428. static ssize_t
  2429. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2430. {
  2431. unsigned long long offset;
  2432. if (kstrtoull(buf, 10, &offset) < 0)
  2433. return -EINVAL;
  2434. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2435. return -EBUSY;
  2436. if (rdev->sectors && rdev->mddev->external)
  2437. /* Must set offset before size, so overlap checks
  2438. * can be sane */
  2439. return -EBUSY;
  2440. rdev->data_offset = offset;
  2441. rdev->new_data_offset = offset;
  2442. return len;
  2443. }
  2444. static struct rdev_sysfs_entry rdev_offset =
  2445. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2446. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2447. {
  2448. return sprintf(page, "%llu\n",
  2449. (unsigned long long)rdev->new_data_offset);
  2450. }
  2451. static ssize_t new_offset_store(struct md_rdev *rdev,
  2452. const char *buf, size_t len)
  2453. {
  2454. unsigned long long new_offset;
  2455. struct mddev *mddev = rdev->mddev;
  2456. if (kstrtoull(buf, 10, &new_offset) < 0)
  2457. return -EINVAL;
  2458. if (mddev->sync_thread ||
  2459. test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
  2460. return -EBUSY;
  2461. if (new_offset == rdev->data_offset)
  2462. /* reset is always permitted */
  2463. ;
  2464. else if (new_offset > rdev->data_offset) {
  2465. /* must not push array size beyond rdev_sectors */
  2466. if (new_offset - rdev->data_offset
  2467. + mddev->dev_sectors > rdev->sectors)
  2468. return -E2BIG;
  2469. }
  2470. /* Metadata worries about other space details. */
  2471. /* decreasing the offset is inconsistent with a backwards
  2472. * reshape.
  2473. */
  2474. if (new_offset < rdev->data_offset &&
  2475. mddev->reshape_backwards)
  2476. return -EINVAL;
  2477. /* Increasing offset is inconsistent with forwards
  2478. * reshape. reshape_direction should be set to
  2479. * 'backwards' first.
  2480. */
  2481. if (new_offset > rdev->data_offset &&
  2482. !mddev->reshape_backwards)
  2483. return -EINVAL;
  2484. if (mddev->pers && mddev->persistent &&
  2485. !super_types[mddev->major_version]
  2486. .allow_new_offset(rdev, new_offset))
  2487. return -E2BIG;
  2488. rdev->new_data_offset = new_offset;
  2489. if (new_offset > rdev->data_offset)
  2490. mddev->reshape_backwards = 1;
  2491. else if (new_offset < rdev->data_offset)
  2492. mddev->reshape_backwards = 0;
  2493. return len;
  2494. }
  2495. static struct rdev_sysfs_entry rdev_new_offset =
  2496. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2497. static ssize_t
  2498. rdev_size_show(struct md_rdev *rdev, char *page)
  2499. {
  2500. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2501. }
  2502. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2503. {
  2504. /* check if two start/length pairs overlap */
  2505. if (s1+l1 <= s2)
  2506. return 0;
  2507. if (s2+l2 <= s1)
  2508. return 0;
  2509. return 1;
  2510. }
  2511. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2512. {
  2513. unsigned long long blocks;
  2514. sector_t new;
  2515. if (kstrtoull(buf, 10, &blocks) < 0)
  2516. return -EINVAL;
  2517. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2518. return -EINVAL; /* sector conversion overflow */
  2519. new = blocks * 2;
  2520. if (new != blocks * 2)
  2521. return -EINVAL; /* unsigned long long to sector_t overflow */
  2522. *sectors = new;
  2523. return 0;
  2524. }
  2525. static ssize_t
  2526. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2527. {
  2528. struct mddev *my_mddev = rdev->mddev;
  2529. sector_t oldsectors = rdev->sectors;
  2530. sector_t sectors;
  2531. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2532. return -EINVAL;
  2533. if (rdev->data_offset != rdev->new_data_offset)
  2534. return -EINVAL; /* too confusing */
  2535. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2536. if (my_mddev->persistent) {
  2537. sectors = super_types[my_mddev->major_version].
  2538. rdev_size_change(rdev, sectors);
  2539. if (!sectors)
  2540. return -EBUSY;
  2541. } else if (!sectors)
  2542. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2543. rdev->data_offset;
  2544. if (!my_mddev->pers->resize)
  2545. /* Cannot change size for RAID0 or Linear etc */
  2546. return -EINVAL;
  2547. }
  2548. if (sectors < my_mddev->dev_sectors)
  2549. return -EINVAL; /* component must fit device */
  2550. rdev->sectors = sectors;
  2551. if (sectors > oldsectors && my_mddev->external) {
  2552. /* Need to check that all other rdevs with the same
  2553. * ->bdev do not overlap. 'rcu' is sufficient to walk
  2554. * the rdev lists safely.
  2555. * This check does not provide a hard guarantee, it
  2556. * just helps avoid dangerous mistakes.
  2557. */
  2558. struct mddev *mddev;
  2559. int overlap = 0;
  2560. struct list_head *tmp;
  2561. rcu_read_lock();
  2562. for_each_mddev(mddev, tmp) {
  2563. struct md_rdev *rdev2;
  2564. rdev_for_each(rdev2, mddev)
  2565. if (rdev->bdev == rdev2->bdev &&
  2566. rdev != rdev2 &&
  2567. overlaps(rdev->data_offset, rdev->sectors,
  2568. rdev2->data_offset,
  2569. rdev2->sectors)) {
  2570. overlap = 1;
  2571. break;
  2572. }
  2573. if (overlap) {
  2574. mddev_put(mddev);
  2575. break;
  2576. }
  2577. }
  2578. rcu_read_unlock();
  2579. if (overlap) {
  2580. /* Someone else could have slipped in a size
  2581. * change here, but doing so is just silly.
  2582. * We put oldsectors back because we *know* it is
  2583. * safe, and trust userspace not to race with
  2584. * itself
  2585. */
  2586. rdev->sectors = oldsectors;
  2587. return -EBUSY;
  2588. }
  2589. }
  2590. return len;
  2591. }
  2592. static struct rdev_sysfs_entry rdev_size =
  2593. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2594. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2595. {
  2596. unsigned long long recovery_start = rdev->recovery_offset;
  2597. if (test_bit(In_sync, &rdev->flags) ||
  2598. recovery_start == MaxSector)
  2599. return sprintf(page, "none\n");
  2600. return sprintf(page, "%llu\n", recovery_start);
  2601. }
  2602. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2603. {
  2604. unsigned long long recovery_start;
  2605. if (cmd_match(buf, "none"))
  2606. recovery_start = MaxSector;
  2607. else if (kstrtoull(buf, 10, &recovery_start))
  2608. return -EINVAL;
  2609. if (rdev->mddev->pers &&
  2610. rdev->raid_disk >= 0)
  2611. return -EBUSY;
  2612. rdev->recovery_offset = recovery_start;
  2613. if (recovery_start == MaxSector)
  2614. set_bit(In_sync, &rdev->flags);
  2615. else
  2616. clear_bit(In_sync, &rdev->flags);
  2617. return len;
  2618. }
  2619. static struct rdev_sysfs_entry rdev_recovery_start =
  2620. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2621. static ssize_t
  2622. badblocks_show(struct badblocks *bb, char *page, int unack);
  2623. static ssize_t
  2624. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2625. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2626. {
  2627. return badblocks_show(&rdev->badblocks, page, 0);
  2628. }
  2629. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2630. {
  2631. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2632. /* Maybe that ack was all we needed */
  2633. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2634. wake_up(&rdev->blocked_wait);
  2635. return rv;
  2636. }
  2637. static struct rdev_sysfs_entry rdev_bad_blocks =
  2638. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2639. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2640. {
  2641. return badblocks_show(&rdev->badblocks, page, 1);
  2642. }
  2643. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2644. {
  2645. return badblocks_store(&rdev->badblocks, page, len, 1);
  2646. }
  2647. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2648. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2649. static struct attribute *rdev_default_attrs[] = {
  2650. &rdev_state.attr,
  2651. &rdev_errors.attr,
  2652. &rdev_slot.attr,
  2653. &rdev_offset.attr,
  2654. &rdev_new_offset.attr,
  2655. &rdev_size.attr,
  2656. &rdev_recovery_start.attr,
  2657. &rdev_bad_blocks.attr,
  2658. &rdev_unack_bad_blocks.attr,
  2659. NULL,
  2660. };
  2661. static ssize_t
  2662. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2663. {
  2664. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2665. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2666. if (!entry->show)
  2667. return -EIO;
  2668. if (!rdev->mddev)
  2669. return -EBUSY;
  2670. return entry->show(rdev, page);
  2671. }
  2672. static ssize_t
  2673. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2674. const char *page, size_t length)
  2675. {
  2676. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2677. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2678. ssize_t rv;
  2679. struct mddev *mddev = rdev->mddev;
  2680. if (!entry->store)
  2681. return -EIO;
  2682. if (!capable(CAP_SYS_ADMIN))
  2683. return -EACCES;
  2684. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2685. if (!rv) {
  2686. if (rdev->mddev == NULL)
  2687. rv = -EBUSY;
  2688. else
  2689. rv = entry->store(rdev, page, length);
  2690. mddev_unlock(mddev);
  2691. }
  2692. return rv;
  2693. }
  2694. static void rdev_free(struct kobject *ko)
  2695. {
  2696. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2697. kfree(rdev);
  2698. }
  2699. static const struct sysfs_ops rdev_sysfs_ops = {
  2700. .show = rdev_attr_show,
  2701. .store = rdev_attr_store,
  2702. };
  2703. static struct kobj_type rdev_ktype = {
  2704. .release = rdev_free,
  2705. .sysfs_ops = &rdev_sysfs_ops,
  2706. .default_attrs = rdev_default_attrs,
  2707. };
  2708. int md_rdev_init(struct md_rdev *rdev)
  2709. {
  2710. rdev->desc_nr = -1;
  2711. rdev->saved_raid_disk = -1;
  2712. rdev->raid_disk = -1;
  2713. rdev->flags = 0;
  2714. rdev->data_offset = 0;
  2715. rdev->new_data_offset = 0;
  2716. rdev->sb_events = 0;
  2717. rdev->last_read_error.tv_sec = 0;
  2718. rdev->last_read_error.tv_nsec = 0;
  2719. rdev->sb_loaded = 0;
  2720. rdev->bb_page = NULL;
  2721. atomic_set(&rdev->nr_pending, 0);
  2722. atomic_set(&rdev->read_errors, 0);
  2723. atomic_set(&rdev->corrected_errors, 0);
  2724. INIT_LIST_HEAD(&rdev->same_set);
  2725. init_waitqueue_head(&rdev->blocked_wait);
  2726. /* Add space to store bad block list.
  2727. * This reserves the space even on arrays where it cannot
  2728. * be used - I wonder if that matters
  2729. */
  2730. rdev->badblocks.count = 0;
  2731. rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
  2732. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2733. seqlock_init(&rdev->badblocks.lock);
  2734. if (rdev->badblocks.page == NULL)
  2735. return -ENOMEM;
  2736. return 0;
  2737. }
  2738. EXPORT_SYMBOL_GPL(md_rdev_init);
  2739. /*
  2740. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2741. *
  2742. * mark the device faulty if:
  2743. *
  2744. * - the device is nonexistent (zero size)
  2745. * - the device has no valid superblock
  2746. *
  2747. * a faulty rdev _never_ has rdev->sb set.
  2748. */
  2749. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2750. {
  2751. char b[BDEVNAME_SIZE];
  2752. int err;
  2753. struct md_rdev *rdev;
  2754. sector_t size;
  2755. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2756. if (!rdev) {
  2757. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2758. return ERR_PTR(-ENOMEM);
  2759. }
  2760. err = md_rdev_init(rdev);
  2761. if (err)
  2762. goto abort_free;
  2763. err = alloc_disk_sb(rdev);
  2764. if (err)
  2765. goto abort_free;
  2766. err = lock_rdev(rdev, newdev, super_format == -2);
  2767. if (err)
  2768. goto abort_free;
  2769. kobject_init(&rdev->kobj, &rdev_ktype);
  2770. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2771. if (!size) {
  2772. printk(KERN_WARNING
  2773. "md: %s has zero or unknown size, marking faulty!\n",
  2774. bdevname(rdev->bdev,b));
  2775. err = -EINVAL;
  2776. goto abort_free;
  2777. }
  2778. if (super_format >= 0) {
  2779. err = super_types[super_format].
  2780. load_super(rdev, NULL, super_minor);
  2781. if (err == -EINVAL) {
  2782. printk(KERN_WARNING
  2783. "md: %s does not have a valid v%d.%d "
  2784. "superblock, not importing!\n",
  2785. bdevname(rdev->bdev,b),
  2786. super_format, super_minor);
  2787. goto abort_free;
  2788. }
  2789. if (err < 0) {
  2790. printk(KERN_WARNING
  2791. "md: could not read %s's sb, not importing!\n",
  2792. bdevname(rdev->bdev,b));
  2793. goto abort_free;
  2794. }
  2795. }
  2796. return rdev;
  2797. abort_free:
  2798. if (rdev->bdev)
  2799. unlock_rdev(rdev);
  2800. md_rdev_clear(rdev);
  2801. kfree(rdev);
  2802. return ERR_PTR(err);
  2803. }
  2804. /*
  2805. * Check a full RAID array for plausibility
  2806. */
  2807. static void analyze_sbs(struct mddev *mddev)
  2808. {
  2809. int i;
  2810. struct md_rdev *rdev, *freshest, *tmp;
  2811. char b[BDEVNAME_SIZE];
  2812. freshest = NULL;
  2813. rdev_for_each_safe(rdev, tmp, mddev)
  2814. switch (super_types[mddev->major_version].
  2815. load_super(rdev, freshest, mddev->minor_version)) {
  2816. case 1:
  2817. freshest = rdev;
  2818. break;
  2819. case 0:
  2820. break;
  2821. default:
  2822. printk( KERN_ERR \
  2823. "md: fatal superblock inconsistency in %s"
  2824. " -- removing from array\n",
  2825. bdevname(rdev->bdev,b));
  2826. md_kick_rdev_from_array(rdev);
  2827. }
  2828. super_types[mddev->major_version].
  2829. validate_super(mddev, freshest);
  2830. i = 0;
  2831. rdev_for_each_safe(rdev, tmp, mddev) {
  2832. if (mddev->max_disks &&
  2833. (rdev->desc_nr >= mddev->max_disks ||
  2834. i > mddev->max_disks)) {
  2835. printk(KERN_WARNING
  2836. "md: %s: %s: only %d devices permitted\n",
  2837. mdname(mddev), bdevname(rdev->bdev, b),
  2838. mddev->max_disks);
  2839. md_kick_rdev_from_array(rdev);
  2840. continue;
  2841. }
  2842. if (rdev != freshest) {
  2843. if (super_types[mddev->major_version].
  2844. validate_super(mddev, rdev)) {
  2845. printk(KERN_WARNING "md: kicking non-fresh %s"
  2846. " from array!\n",
  2847. bdevname(rdev->bdev,b));
  2848. md_kick_rdev_from_array(rdev);
  2849. continue;
  2850. }
  2851. /* No device should have a Candidate flag
  2852. * when reading devices
  2853. */
  2854. if (test_bit(Candidate, &rdev->flags)) {
  2855. pr_info("md: kicking Cluster Candidate %s from array!\n",
  2856. bdevname(rdev->bdev, b));
  2857. md_kick_rdev_from_array(rdev);
  2858. }
  2859. }
  2860. if (mddev->level == LEVEL_MULTIPATH) {
  2861. rdev->desc_nr = i++;
  2862. rdev->raid_disk = rdev->desc_nr;
  2863. set_bit(In_sync, &rdev->flags);
  2864. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2865. rdev->raid_disk = -1;
  2866. clear_bit(In_sync, &rdev->flags);
  2867. }
  2868. }
  2869. }
  2870. /* Read a fixed-point number.
  2871. * Numbers in sysfs attributes should be in "standard" units where
  2872. * possible, so time should be in seconds.
  2873. * However we internally use a a much smaller unit such as
  2874. * milliseconds or jiffies.
  2875. * This function takes a decimal number with a possible fractional
  2876. * component, and produces an integer which is the result of
  2877. * multiplying that number by 10^'scale'.
  2878. * all without any floating-point arithmetic.
  2879. */
  2880. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2881. {
  2882. unsigned long result = 0;
  2883. long decimals = -1;
  2884. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2885. if (*cp == '.')
  2886. decimals = 0;
  2887. else if (decimals < scale) {
  2888. unsigned int value;
  2889. value = *cp - '0';
  2890. result = result * 10 + value;
  2891. if (decimals >= 0)
  2892. decimals++;
  2893. }
  2894. cp++;
  2895. }
  2896. if (*cp == '\n')
  2897. cp++;
  2898. if (*cp)
  2899. return -EINVAL;
  2900. if (decimals < 0)
  2901. decimals = 0;
  2902. while (decimals < scale) {
  2903. result *= 10;
  2904. decimals ++;
  2905. }
  2906. *res = result;
  2907. return 0;
  2908. }
  2909. static ssize_t
  2910. safe_delay_show(struct mddev *mddev, char *page)
  2911. {
  2912. int msec = (mddev->safemode_delay*1000)/HZ;
  2913. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2914. }
  2915. static ssize_t
  2916. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  2917. {
  2918. unsigned long msec;
  2919. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2920. return -EINVAL;
  2921. if (msec == 0)
  2922. mddev->safemode_delay = 0;
  2923. else {
  2924. unsigned long old_delay = mddev->safemode_delay;
  2925. unsigned long new_delay = (msec*HZ)/1000;
  2926. if (new_delay == 0)
  2927. new_delay = 1;
  2928. mddev->safemode_delay = new_delay;
  2929. if (new_delay < old_delay || old_delay == 0)
  2930. mod_timer(&mddev->safemode_timer, jiffies+1);
  2931. }
  2932. return len;
  2933. }
  2934. static struct md_sysfs_entry md_safe_delay =
  2935. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2936. static ssize_t
  2937. level_show(struct mddev *mddev, char *page)
  2938. {
  2939. struct md_personality *p;
  2940. int ret;
  2941. spin_lock(&mddev->lock);
  2942. p = mddev->pers;
  2943. if (p)
  2944. ret = sprintf(page, "%s\n", p->name);
  2945. else if (mddev->clevel[0])
  2946. ret = sprintf(page, "%s\n", mddev->clevel);
  2947. else if (mddev->level != LEVEL_NONE)
  2948. ret = sprintf(page, "%d\n", mddev->level);
  2949. else
  2950. ret = 0;
  2951. spin_unlock(&mddev->lock);
  2952. return ret;
  2953. }
  2954. static ssize_t
  2955. level_store(struct mddev *mddev, const char *buf, size_t len)
  2956. {
  2957. char clevel[16];
  2958. ssize_t rv;
  2959. size_t slen = len;
  2960. struct md_personality *pers, *oldpers;
  2961. long level;
  2962. void *priv, *oldpriv;
  2963. struct md_rdev *rdev;
  2964. if (slen == 0 || slen >= sizeof(clevel))
  2965. return -EINVAL;
  2966. rv = mddev_lock(mddev);
  2967. if (rv)
  2968. return rv;
  2969. if (mddev->pers == NULL) {
  2970. strncpy(mddev->clevel, buf, slen);
  2971. if (mddev->clevel[slen-1] == '\n')
  2972. slen--;
  2973. mddev->clevel[slen] = 0;
  2974. mddev->level = LEVEL_NONE;
  2975. rv = len;
  2976. goto out_unlock;
  2977. }
  2978. rv = -EROFS;
  2979. if (mddev->ro)
  2980. goto out_unlock;
  2981. /* request to change the personality. Need to ensure:
  2982. * - array is not engaged in resync/recovery/reshape
  2983. * - old personality can be suspended
  2984. * - new personality will access other array.
  2985. */
  2986. rv = -EBUSY;
  2987. if (mddev->sync_thread ||
  2988. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2989. mddev->reshape_position != MaxSector ||
  2990. mddev->sysfs_active)
  2991. goto out_unlock;
  2992. rv = -EINVAL;
  2993. if (!mddev->pers->quiesce) {
  2994. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2995. mdname(mddev), mddev->pers->name);
  2996. goto out_unlock;
  2997. }
  2998. /* Now find the new personality */
  2999. strncpy(clevel, buf, slen);
  3000. if (clevel[slen-1] == '\n')
  3001. slen--;
  3002. clevel[slen] = 0;
  3003. if (kstrtol(clevel, 10, &level))
  3004. level = LEVEL_NONE;
  3005. if (request_module("md-%s", clevel) != 0)
  3006. request_module("md-level-%s", clevel);
  3007. spin_lock(&pers_lock);
  3008. pers = find_pers(level, clevel);
  3009. if (!pers || !try_module_get(pers->owner)) {
  3010. spin_unlock(&pers_lock);
  3011. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3012. rv = -EINVAL;
  3013. goto out_unlock;
  3014. }
  3015. spin_unlock(&pers_lock);
  3016. if (pers == mddev->pers) {
  3017. /* Nothing to do! */
  3018. module_put(pers->owner);
  3019. rv = len;
  3020. goto out_unlock;
  3021. }
  3022. if (!pers->takeover) {
  3023. module_put(pers->owner);
  3024. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3025. mdname(mddev), clevel);
  3026. rv = -EINVAL;
  3027. goto out_unlock;
  3028. }
  3029. rdev_for_each(rdev, mddev)
  3030. rdev->new_raid_disk = rdev->raid_disk;
  3031. /* ->takeover must set new_* and/or delta_disks
  3032. * if it succeeds, and may set them when it fails.
  3033. */
  3034. priv = pers->takeover(mddev);
  3035. if (IS_ERR(priv)) {
  3036. mddev->new_level = mddev->level;
  3037. mddev->new_layout = mddev->layout;
  3038. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3039. mddev->raid_disks -= mddev->delta_disks;
  3040. mddev->delta_disks = 0;
  3041. mddev->reshape_backwards = 0;
  3042. module_put(pers->owner);
  3043. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3044. mdname(mddev), clevel);
  3045. rv = PTR_ERR(priv);
  3046. goto out_unlock;
  3047. }
  3048. /* Looks like we have a winner */
  3049. mddev_suspend(mddev);
  3050. mddev_detach(mddev);
  3051. spin_lock(&mddev->lock);
  3052. oldpers = mddev->pers;
  3053. oldpriv = mddev->private;
  3054. mddev->pers = pers;
  3055. mddev->private = priv;
  3056. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3057. mddev->level = mddev->new_level;
  3058. mddev->layout = mddev->new_layout;
  3059. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3060. mddev->delta_disks = 0;
  3061. mddev->reshape_backwards = 0;
  3062. mddev->degraded = 0;
  3063. spin_unlock(&mddev->lock);
  3064. if (oldpers->sync_request == NULL &&
  3065. mddev->external) {
  3066. /* We are converting from a no-redundancy array
  3067. * to a redundancy array and metadata is managed
  3068. * externally so we need to be sure that writes
  3069. * won't block due to a need to transition
  3070. * clean->dirty
  3071. * until external management is started.
  3072. */
  3073. mddev->in_sync = 0;
  3074. mddev->safemode_delay = 0;
  3075. mddev->safemode = 0;
  3076. }
  3077. oldpers->free(mddev, oldpriv);
  3078. if (oldpers->sync_request == NULL &&
  3079. pers->sync_request != NULL) {
  3080. /* need to add the md_redundancy_group */
  3081. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3082. printk(KERN_WARNING
  3083. "md: cannot register extra attributes for %s\n",
  3084. mdname(mddev));
  3085. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  3086. }
  3087. if (oldpers->sync_request != NULL &&
  3088. pers->sync_request == NULL) {
  3089. /* need to remove the md_redundancy_group */
  3090. if (mddev->to_remove == NULL)
  3091. mddev->to_remove = &md_redundancy_group;
  3092. }
  3093. rdev_for_each(rdev, mddev) {
  3094. if (rdev->raid_disk < 0)
  3095. continue;
  3096. if (rdev->new_raid_disk >= mddev->raid_disks)
  3097. rdev->new_raid_disk = -1;
  3098. if (rdev->new_raid_disk == rdev->raid_disk)
  3099. continue;
  3100. sysfs_unlink_rdev(mddev, rdev);
  3101. }
  3102. rdev_for_each(rdev, mddev) {
  3103. if (rdev->raid_disk < 0)
  3104. continue;
  3105. if (rdev->new_raid_disk == rdev->raid_disk)
  3106. continue;
  3107. rdev->raid_disk = rdev->new_raid_disk;
  3108. if (rdev->raid_disk < 0)
  3109. clear_bit(In_sync, &rdev->flags);
  3110. else {
  3111. if (sysfs_link_rdev(mddev, rdev))
  3112. printk(KERN_WARNING "md: cannot register rd%d"
  3113. " for %s after level change\n",
  3114. rdev->raid_disk, mdname(mddev));
  3115. }
  3116. }
  3117. if (pers->sync_request == NULL) {
  3118. /* this is now an array without redundancy, so
  3119. * it must always be in_sync
  3120. */
  3121. mddev->in_sync = 1;
  3122. del_timer_sync(&mddev->safemode_timer);
  3123. }
  3124. blk_set_stacking_limits(&mddev->queue->limits);
  3125. pers->run(mddev);
  3126. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3127. mddev_resume(mddev);
  3128. if (!mddev->thread)
  3129. md_update_sb(mddev, 1);
  3130. sysfs_notify(&mddev->kobj, NULL, "level");
  3131. md_new_event(mddev);
  3132. rv = len;
  3133. out_unlock:
  3134. mddev_unlock(mddev);
  3135. return rv;
  3136. }
  3137. static struct md_sysfs_entry md_level =
  3138. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3139. static ssize_t
  3140. layout_show(struct mddev *mddev, char *page)
  3141. {
  3142. /* just a number, not meaningful for all levels */
  3143. if (mddev->reshape_position != MaxSector &&
  3144. mddev->layout != mddev->new_layout)
  3145. return sprintf(page, "%d (%d)\n",
  3146. mddev->new_layout, mddev->layout);
  3147. return sprintf(page, "%d\n", mddev->layout);
  3148. }
  3149. static ssize_t
  3150. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3151. {
  3152. unsigned int n;
  3153. int err;
  3154. err = kstrtouint(buf, 10, &n);
  3155. if (err < 0)
  3156. return err;
  3157. err = mddev_lock(mddev);
  3158. if (err)
  3159. return err;
  3160. if (mddev->pers) {
  3161. if (mddev->pers->check_reshape == NULL)
  3162. err = -EBUSY;
  3163. else if (mddev->ro)
  3164. err = -EROFS;
  3165. else {
  3166. mddev->new_layout = n;
  3167. err = mddev->pers->check_reshape(mddev);
  3168. if (err)
  3169. mddev->new_layout = mddev->layout;
  3170. }
  3171. } else {
  3172. mddev->new_layout = n;
  3173. if (mddev->reshape_position == MaxSector)
  3174. mddev->layout = n;
  3175. }
  3176. mddev_unlock(mddev);
  3177. return err ?: len;
  3178. }
  3179. static struct md_sysfs_entry md_layout =
  3180. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3181. static ssize_t
  3182. raid_disks_show(struct mddev *mddev, char *page)
  3183. {
  3184. if (mddev->raid_disks == 0)
  3185. return 0;
  3186. if (mddev->reshape_position != MaxSector &&
  3187. mddev->delta_disks != 0)
  3188. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3189. mddev->raid_disks - mddev->delta_disks);
  3190. return sprintf(page, "%d\n", mddev->raid_disks);
  3191. }
  3192. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3193. static ssize_t
  3194. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3195. {
  3196. unsigned int n;
  3197. int err;
  3198. err = kstrtouint(buf, 10, &n);
  3199. if (err < 0)
  3200. return err;
  3201. err = mddev_lock(mddev);
  3202. if (err)
  3203. return err;
  3204. if (mddev->pers)
  3205. err = update_raid_disks(mddev, n);
  3206. else if (mddev->reshape_position != MaxSector) {
  3207. struct md_rdev *rdev;
  3208. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3209. err = -EINVAL;
  3210. rdev_for_each(rdev, mddev) {
  3211. if (olddisks < n &&
  3212. rdev->data_offset < rdev->new_data_offset)
  3213. goto out_unlock;
  3214. if (olddisks > n &&
  3215. rdev->data_offset > rdev->new_data_offset)
  3216. goto out_unlock;
  3217. }
  3218. err = 0;
  3219. mddev->delta_disks = n - olddisks;
  3220. mddev->raid_disks = n;
  3221. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3222. } else
  3223. mddev->raid_disks = n;
  3224. out_unlock:
  3225. mddev_unlock(mddev);
  3226. return err ? err : len;
  3227. }
  3228. static struct md_sysfs_entry md_raid_disks =
  3229. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3230. static ssize_t
  3231. chunk_size_show(struct mddev *mddev, char *page)
  3232. {
  3233. if (mddev->reshape_position != MaxSector &&
  3234. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3235. return sprintf(page, "%d (%d)\n",
  3236. mddev->new_chunk_sectors << 9,
  3237. mddev->chunk_sectors << 9);
  3238. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3239. }
  3240. static ssize_t
  3241. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3242. {
  3243. unsigned long n;
  3244. int err;
  3245. err = kstrtoul(buf, 10, &n);
  3246. if (err < 0)
  3247. return err;
  3248. err = mddev_lock(mddev);
  3249. if (err)
  3250. return err;
  3251. if (mddev->pers) {
  3252. if (mddev->pers->check_reshape == NULL)
  3253. err = -EBUSY;
  3254. else if (mddev->ro)
  3255. err = -EROFS;
  3256. else {
  3257. mddev->new_chunk_sectors = n >> 9;
  3258. err = mddev->pers->check_reshape(mddev);
  3259. if (err)
  3260. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3261. }
  3262. } else {
  3263. mddev->new_chunk_sectors = n >> 9;
  3264. if (mddev->reshape_position == MaxSector)
  3265. mddev->chunk_sectors = n >> 9;
  3266. }
  3267. mddev_unlock(mddev);
  3268. return err ?: len;
  3269. }
  3270. static struct md_sysfs_entry md_chunk_size =
  3271. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3272. static ssize_t
  3273. resync_start_show(struct mddev *mddev, char *page)
  3274. {
  3275. if (mddev->recovery_cp == MaxSector)
  3276. return sprintf(page, "none\n");
  3277. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3278. }
  3279. static ssize_t
  3280. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3281. {
  3282. unsigned long long n;
  3283. int err;
  3284. if (cmd_match(buf, "none"))
  3285. n = MaxSector;
  3286. else {
  3287. err = kstrtoull(buf, 10, &n);
  3288. if (err < 0)
  3289. return err;
  3290. if (n != (sector_t)n)
  3291. return -EINVAL;
  3292. }
  3293. err = mddev_lock(mddev);
  3294. if (err)
  3295. return err;
  3296. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3297. err = -EBUSY;
  3298. if (!err) {
  3299. mddev->recovery_cp = n;
  3300. if (mddev->pers)
  3301. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3302. }
  3303. mddev_unlock(mddev);
  3304. return err ?: len;
  3305. }
  3306. static struct md_sysfs_entry md_resync_start =
  3307. __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
  3308. resync_start_show, resync_start_store);
  3309. /*
  3310. * The array state can be:
  3311. *
  3312. * clear
  3313. * No devices, no size, no level
  3314. * Equivalent to STOP_ARRAY ioctl
  3315. * inactive
  3316. * May have some settings, but array is not active
  3317. * all IO results in error
  3318. * When written, doesn't tear down array, but just stops it
  3319. * suspended (not supported yet)
  3320. * All IO requests will block. The array can be reconfigured.
  3321. * Writing this, if accepted, will block until array is quiescent
  3322. * readonly
  3323. * no resync can happen. no superblocks get written.
  3324. * write requests fail
  3325. * read-auto
  3326. * like readonly, but behaves like 'clean' on a write request.
  3327. *
  3328. * clean - no pending writes, but otherwise active.
  3329. * When written to inactive array, starts without resync
  3330. * If a write request arrives then
  3331. * if metadata is known, mark 'dirty' and switch to 'active'.
  3332. * if not known, block and switch to write-pending
  3333. * If written to an active array that has pending writes, then fails.
  3334. * active
  3335. * fully active: IO and resync can be happening.
  3336. * When written to inactive array, starts with resync
  3337. *
  3338. * write-pending
  3339. * clean, but writes are blocked waiting for 'active' to be written.
  3340. *
  3341. * active-idle
  3342. * like active, but no writes have been seen for a while (100msec).
  3343. *
  3344. */
  3345. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3346. write_pending, active_idle, bad_word};
  3347. static char *array_states[] = {
  3348. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3349. "write-pending", "active-idle", NULL };
  3350. static int match_word(const char *word, char **list)
  3351. {
  3352. int n;
  3353. for (n=0; list[n]; n++)
  3354. if (cmd_match(word, list[n]))
  3355. break;
  3356. return n;
  3357. }
  3358. static ssize_t
  3359. array_state_show(struct mddev *mddev, char *page)
  3360. {
  3361. enum array_state st = inactive;
  3362. if (mddev->pers)
  3363. switch(mddev->ro) {
  3364. case 1:
  3365. st = readonly;
  3366. break;
  3367. case 2:
  3368. st = read_auto;
  3369. break;
  3370. case 0:
  3371. if (mddev->in_sync)
  3372. st = clean;
  3373. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3374. st = write_pending;
  3375. else if (mddev->safemode)
  3376. st = active_idle;
  3377. else
  3378. st = active;
  3379. }
  3380. else {
  3381. if (list_empty(&mddev->disks) &&
  3382. mddev->raid_disks == 0 &&
  3383. mddev->dev_sectors == 0)
  3384. st = clear;
  3385. else
  3386. st = inactive;
  3387. }
  3388. return sprintf(page, "%s\n", array_states[st]);
  3389. }
  3390. static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
  3391. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
  3392. static int do_md_run(struct mddev *mddev);
  3393. static int restart_array(struct mddev *mddev);
  3394. static ssize_t
  3395. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3396. {
  3397. int err;
  3398. enum array_state st = match_word(buf, array_states);
  3399. if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
  3400. /* don't take reconfig_mutex when toggling between
  3401. * clean and active
  3402. */
  3403. spin_lock(&mddev->lock);
  3404. if (st == active) {
  3405. restart_array(mddev);
  3406. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3407. wake_up(&mddev->sb_wait);
  3408. err = 0;
  3409. } else /* st == clean */ {
  3410. restart_array(mddev);
  3411. if (atomic_read(&mddev->writes_pending) == 0) {
  3412. if (mddev->in_sync == 0) {
  3413. mddev->in_sync = 1;
  3414. if (mddev->safemode == 1)
  3415. mddev->safemode = 0;
  3416. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3417. }
  3418. err = 0;
  3419. } else
  3420. err = -EBUSY;
  3421. }
  3422. spin_unlock(&mddev->lock);
  3423. return err ?: len;
  3424. }
  3425. err = mddev_lock(mddev);
  3426. if (err)
  3427. return err;
  3428. err = -EINVAL;
  3429. switch(st) {
  3430. case bad_word:
  3431. break;
  3432. case clear:
  3433. /* stopping an active array */
  3434. err = do_md_stop(mddev, 0, NULL);
  3435. break;
  3436. case inactive:
  3437. /* stopping an active array */
  3438. if (mddev->pers)
  3439. err = do_md_stop(mddev, 2, NULL);
  3440. else
  3441. err = 0; /* already inactive */
  3442. break;
  3443. case suspended:
  3444. break; /* not supported yet */
  3445. case readonly:
  3446. if (mddev->pers)
  3447. err = md_set_readonly(mddev, NULL);
  3448. else {
  3449. mddev->ro = 1;
  3450. set_disk_ro(mddev->gendisk, 1);
  3451. err = do_md_run(mddev);
  3452. }
  3453. break;
  3454. case read_auto:
  3455. if (mddev->pers) {
  3456. if (mddev->ro == 0)
  3457. err = md_set_readonly(mddev, NULL);
  3458. else if (mddev->ro == 1)
  3459. err = restart_array(mddev);
  3460. if (err == 0) {
  3461. mddev->ro = 2;
  3462. set_disk_ro(mddev->gendisk, 0);
  3463. }
  3464. } else {
  3465. mddev->ro = 2;
  3466. err = do_md_run(mddev);
  3467. }
  3468. break;
  3469. case clean:
  3470. if (mddev->pers) {
  3471. restart_array(mddev);
  3472. spin_lock(&mddev->lock);
  3473. if (atomic_read(&mddev->writes_pending) == 0) {
  3474. if (mddev->in_sync == 0) {
  3475. mddev->in_sync = 1;
  3476. if (mddev->safemode == 1)
  3477. mddev->safemode = 0;
  3478. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3479. }
  3480. err = 0;
  3481. } else
  3482. err = -EBUSY;
  3483. spin_unlock(&mddev->lock);
  3484. } else
  3485. err = -EINVAL;
  3486. break;
  3487. case active:
  3488. if (mddev->pers) {
  3489. restart_array(mddev);
  3490. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3491. wake_up(&mddev->sb_wait);
  3492. err = 0;
  3493. } else {
  3494. mddev->ro = 0;
  3495. set_disk_ro(mddev->gendisk, 0);
  3496. err = do_md_run(mddev);
  3497. }
  3498. break;
  3499. case write_pending:
  3500. case active_idle:
  3501. /* these cannot be set */
  3502. break;
  3503. }
  3504. if (!err) {
  3505. if (mddev->hold_active == UNTIL_IOCTL)
  3506. mddev->hold_active = 0;
  3507. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3508. }
  3509. mddev_unlock(mddev);
  3510. return err ?: len;
  3511. }
  3512. static struct md_sysfs_entry md_array_state =
  3513. __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3514. static ssize_t
  3515. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3516. return sprintf(page, "%d\n",
  3517. atomic_read(&mddev->max_corr_read_errors));
  3518. }
  3519. static ssize_t
  3520. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3521. {
  3522. unsigned int n;
  3523. int rv;
  3524. rv = kstrtouint(buf, 10, &n);
  3525. if (rv < 0)
  3526. return rv;
  3527. atomic_set(&mddev->max_corr_read_errors, n);
  3528. return len;
  3529. }
  3530. static struct md_sysfs_entry max_corr_read_errors =
  3531. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3532. max_corrected_read_errors_store);
  3533. static ssize_t
  3534. null_show(struct mddev *mddev, char *page)
  3535. {
  3536. return -EINVAL;
  3537. }
  3538. static ssize_t
  3539. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3540. {
  3541. /* buf must be %d:%d\n? giving major and minor numbers */
  3542. /* The new device is added to the array.
  3543. * If the array has a persistent superblock, we read the
  3544. * superblock to initialise info and check validity.
  3545. * Otherwise, only checking done is that in bind_rdev_to_array,
  3546. * which mainly checks size.
  3547. */
  3548. char *e;
  3549. int major = simple_strtoul(buf, &e, 10);
  3550. int minor;
  3551. dev_t dev;
  3552. struct md_rdev *rdev;
  3553. int err;
  3554. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3555. return -EINVAL;
  3556. minor = simple_strtoul(e+1, &e, 10);
  3557. if (*e && *e != '\n')
  3558. return -EINVAL;
  3559. dev = MKDEV(major, minor);
  3560. if (major != MAJOR(dev) ||
  3561. minor != MINOR(dev))
  3562. return -EOVERFLOW;
  3563. flush_workqueue(md_misc_wq);
  3564. err = mddev_lock(mddev);
  3565. if (err)
  3566. return err;
  3567. if (mddev->persistent) {
  3568. rdev = md_import_device(dev, mddev->major_version,
  3569. mddev->minor_version);
  3570. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3571. struct md_rdev *rdev0
  3572. = list_entry(mddev->disks.next,
  3573. struct md_rdev, same_set);
  3574. err = super_types[mddev->major_version]
  3575. .load_super(rdev, rdev0, mddev->minor_version);
  3576. if (err < 0)
  3577. goto out;
  3578. }
  3579. } else if (mddev->external)
  3580. rdev = md_import_device(dev, -2, -1);
  3581. else
  3582. rdev = md_import_device(dev, -1, -1);
  3583. if (IS_ERR(rdev)) {
  3584. mddev_unlock(mddev);
  3585. return PTR_ERR(rdev);
  3586. }
  3587. err = bind_rdev_to_array(rdev, mddev);
  3588. out:
  3589. if (err)
  3590. export_rdev(rdev);
  3591. mddev_unlock(mddev);
  3592. return err ? err : len;
  3593. }
  3594. static struct md_sysfs_entry md_new_device =
  3595. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3596. static ssize_t
  3597. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3598. {
  3599. char *end;
  3600. unsigned long chunk, end_chunk;
  3601. int err;
  3602. err = mddev_lock(mddev);
  3603. if (err)
  3604. return err;
  3605. if (!mddev->bitmap)
  3606. goto out;
  3607. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3608. while (*buf) {
  3609. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3610. if (buf == end) break;
  3611. if (*end == '-') { /* range */
  3612. buf = end + 1;
  3613. end_chunk = simple_strtoul(buf, &end, 0);
  3614. if (buf == end) break;
  3615. }
  3616. if (*end && !isspace(*end)) break;
  3617. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3618. buf = skip_spaces(end);
  3619. }
  3620. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3621. out:
  3622. mddev_unlock(mddev);
  3623. return len;
  3624. }
  3625. static struct md_sysfs_entry md_bitmap =
  3626. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3627. static ssize_t
  3628. size_show(struct mddev *mddev, char *page)
  3629. {
  3630. return sprintf(page, "%llu\n",
  3631. (unsigned long long)mddev->dev_sectors / 2);
  3632. }
  3633. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3634. static ssize_t
  3635. size_store(struct mddev *mddev, const char *buf, size_t len)
  3636. {
  3637. /* If array is inactive, we can reduce the component size, but
  3638. * not increase it (except from 0).
  3639. * If array is active, we can try an on-line resize
  3640. */
  3641. sector_t sectors;
  3642. int err = strict_blocks_to_sectors(buf, &sectors);
  3643. if (err < 0)
  3644. return err;
  3645. err = mddev_lock(mddev);
  3646. if (err)
  3647. return err;
  3648. if (mddev->pers) {
  3649. if (mddev_is_clustered(mddev))
  3650. md_cluster_ops->metadata_update_start(mddev);
  3651. err = update_size(mddev, sectors);
  3652. md_update_sb(mddev, 1);
  3653. if (mddev_is_clustered(mddev))
  3654. md_cluster_ops->metadata_update_finish(mddev);
  3655. } else {
  3656. if (mddev->dev_sectors == 0 ||
  3657. mddev->dev_sectors > sectors)
  3658. mddev->dev_sectors = sectors;
  3659. else
  3660. err = -ENOSPC;
  3661. }
  3662. mddev_unlock(mddev);
  3663. return err ? err : len;
  3664. }
  3665. static struct md_sysfs_entry md_size =
  3666. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3667. /* Metadata version.
  3668. * This is one of
  3669. * 'none' for arrays with no metadata (good luck...)
  3670. * 'external' for arrays with externally managed metadata,
  3671. * or N.M for internally known formats
  3672. */
  3673. static ssize_t
  3674. metadata_show(struct mddev *mddev, char *page)
  3675. {
  3676. if (mddev->persistent)
  3677. return sprintf(page, "%d.%d\n",
  3678. mddev->major_version, mddev->minor_version);
  3679. else if (mddev->external)
  3680. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3681. else
  3682. return sprintf(page, "none\n");
  3683. }
  3684. static ssize_t
  3685. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3686. {
  3687. int major, minor;
  3688. char *e;
  3689. int err;
  3690. /* Changing the details of 'external' metadata is
  3691. * always permitted. Otherwise there must be
  3692. * no devices attached to the array.
  3693. */
  3694. err = mddev_lock(mddev);
  3695. if (err)
  3696. return err;
  3697. err = -EBUSY;
  3698. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3699. ;
  3700. else if (!list_empty(&mddev->disks))
  3701. goto out_unlock;
  3702. err = 0;
  3703. if (cmd_match(buf, "none")) {
  3704. mddev->persistent = 0;
  3705. mddev->external = 0;
  3706. mddev->major_version = 0;
  3707. mddev->minor_version = 90;
  3708. goto out_unlock;
  3709. }
  3710. if (strncmp(buf, "external:", 9) == 0) {
  3711. size_t namelen = len-9;
  3712. if (namelen >= sizeof(mddev->metadata_type))
  3713. namelen = sizeof(mddev->metadata_type)-1;
  3714. strncpy(mddev->metadata_type, buf+9, namelen);
  3715. mddev->metadata_type[namelen] = 0;
  3716. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3717. mddev->metadata_type[--namelen] = 0;
  3718. mddev->persistent = 0;
  3719. mddev->external = 1;
  3720. mddev->major_version = 0;
  3721. mddev->minor_version = 90;
  3722. goto out_unlock;
  3723. }
  3724. major = simple_strtoul(buf, &e, 10);
  3725. err = -EINVAL;
  3726. if (e==buf || *e != '.')
  3727. goto out_unlock;
  3728. buf = e+1;
  3729. minor = simple_strtoul(buf, &e, 10);
  3730. if (e==buf || (*e && *e != '\n') )
  3731. goto out_unlock;
  3732. err = -ENOENT;
  3733. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3734. goto out_unlock;
  3735. mddev->major_version = major;
  3736. mddev->minor_version = minor;
  3737. mddev->persistent = 1;
  3738. mddev->external = 0;
  3739. err = 0;
  3740. out_unlock:
  3741. mddev_unlock(mddev);
  3742. return err ?: len;
  3743. }
  3744. static struct md_sysfs_entry md_metadata =
  3745. __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3746. static ssize_t
  3747. action_show(struct mddev *mddev, char *page)
  3748. {
  3749. char *type = "idle";
  3750. unsigned long recovery = mddev->recovery;
  3751. if (test_bit(MD_RECOVERY_FROZEN, &recovery))
  3752. type = "frozen";
  3753. else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
  3754. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
  3755. if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
  3756. type = "reshape";
  3757. else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
  3758. if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
  3759. type = "resync";
  3760. else if (test_bit(MD_RECOVERY_CHECK, &recovery))
  3761. type = "check";
  3762. else
  3763. type = "repair";
  3764. } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
  3765. type = "recover";
  3766. else if (mddev->reshape_position != MaxSector)
  3767. type = "reshape";
  3768. }
  3769. return sprintf(page, "%s\n", type);
  3770. }
  3771. static ssize_t
  3772. action_store(struct mddev *mddev, const char *page, size_t len)
  3773. {
  3774. if (!mddev->pers || !mddev->pers->sync_request)
  3775. return -EINVAL;
  3776. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3777. if (cmd_match(page, "frozen"))
  3778. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3779. else
  3780. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3781. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3782. mddev_lock(mddev) == 0) {
  3783. flush_workqueue(md_misc_wq);
  3784. if (mddev->sync_thread) {
  3785. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3786. md_reap_sync_thread(mddev);
  3787. }
  3788. mddev_unlock(mddev);
  3789. }
  3790. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3791. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3792. return -EBUSY;
  3793. else if (cmd_match(page, "resync"))
  3794. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3795. else if (cmd_match(page, "recover")) {
  3796. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3797. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3798. } else if (cmd_match(page, "reshape")) {
  3799. int err;
  3800. if (mddev->pers->start_reshape == NULL)
  3801. return -EINVAL;
  3802. err = mddev_lock(mddev);
  3803. if (!err) {
  3804. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3805. err = mddev->pers->start_reshape(mddev);
  3806. mddev_unlock(mddev);
  3807. }
  3808. if (err)
  3809. return err;
  3810. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3811. } else {
  3812. if (cmd_match(page, "check"))
  3813. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3814. else if (!cmd_match(page, "repair"))
  3815. return -EINVAL;
  3816. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3817. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3818. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3819. }
  3820. if (mddev->ro == 2) {
  3821. /* A write to sync_action is enough to justify
  3822. * canceling read-auto mode
  3823. */
  3824. mddev->ro = 0;
  3825. md_wakeup_thread(mddev->sync_thread);
  3826. }
  3827. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3828. md_wakeup_thread(mddev->thread);
  3829. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3830. return len;
  3831. }
  3832. static struct md_sysfs_entry md_scan_mode =
  3833. __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3834. static ssize_t
  3835. last_sync_action_show(struct mddev *mddev, char *page)
  3836. {
  3837. return sprintf(page, "%s\n", mddev->last_sync_action);
  3838. }
  3839. static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
  3840. static ssize_t
  3841. mismatch_cnt_show(struct mddev *mddev, char *page)
  3842. {
  3843. return sprintf(page, "%llu\n",
  3844. (unsigned long long)
  3845. atomic64_read(&mddev->resync_mismatches));
  3846. }
  3847. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3848. static ssize_t
  3849. sync_min_show(struct mddev *mddev, char *page)
  3850. {
  3851. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3852. mddev->sync_speed_min ? "local": "system");
  3853. }
  3854. static ssize_t
  3855. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3856. {
  3857. unsigned int min;
  3858. int rv;
  3859. if (strncmp(buf, "system", 6)==0) {
  3860. min = 0;
  3861. } else {
  3862. rv = kstrtouint(buf, 10, &min);
  3863. if (rv < 0)
  3864. return rv;
  3865. if (min == 0)
  3866. return -EINVAL;
  3867. }
  3868. mddev->sync_speed_min = min;
  3869. return len;
  3870. }
  3871. static struct md_sysfs_entry md_sync_min =
  3872. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3873. static ssize_t
  3874. sync_max_show(struct mddev *mddev, char *page)
  3875. {
  3876. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3877. mddev->sync_speed_max ? "local": "system");
  3878. }
  3879. static ssize_t
  3880. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3881. {
  3882. unsigned int max;
  3883. int rv;
  3884. if (strncmp(buf, "system", 6)==0) {
  3885. max = 0;
  3886. } else {
  3887. rv = kstrtouint(buf, 10, &max);
  3888. if (rv < 0)
  3889. return rv;
  3890. if (max == 0)
  3891. return -EINVAL;
  3892. }
  3893. mddev->sync_speed_max = max;
  3894. return len;
  3895. }
  3896. static struct md_sysfs_entry md_sync_max =
  3897. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3898. static ssize_t
  3899. degraded_show(struct mddev *mddev, char *page)
  3900. {
  3901. return sprintf(page, "%d\n", mddev->degraded);
  3902. }
  3903. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3904. static ssize_t
  3905. sync_force_parallel_show(struct mddev *mddev, char *page)
  3906. {
  3907. return sprintf(page, "%d\n", mddev->parallel_resync);
  3908. }
  3909. static ssize_t
  3910. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3911. {
  3912. long n;
  3913. if (kstrtol(buf, 10, &n))
  3914. return -EINVAL;
  3915. if (n != 0 && n != 1)
  3916. return -EINVAL;
  3917. mddev->parallel_resync = n;
  3918. if (mddev->sync_thread)
  3919. wake_up(&resync_wait);
  3920. return len;
  3921. }
  3922. /* force parallel resync, even with shared block devices */
  3923. static struct md_sysfs_entry md_sync_force_parallel =
  3924. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3925. sync_force_parallel_show, sync_force_parallel_store);
  3926. static ssize_t
  3927. sync_speed_show(struct mddev *mddev, char *page)
  3928. {
  3929. unsigned long resync, dt, db;
  3930. if (mddev->curr_resync == 0)
  3931. return sprintf(page, "none\n");
  3932. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3933. dt = (jiffies - mddev->resync_mark) / HZ;
  3934. if (!dt) dt++;
  3935. db = resync - mddev->resync_mark_cnt;
  3936. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3937. }
  3938. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3939. static ssize_t
  3940. sync_completed_show(struct mddev *mddev, char *page)
  3941. {
  3942. unsigned long long max_sectors, resync;
  3943. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3944. return sprintf(page, "none\n");
  3945. if (mddev->curr_resync == 1 ||
  3946. mddev->curr_resync == 2)
  3947. return sprintf(page, "delayed\n");
  3948. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3949. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3950. max_sectors = mddev->resync_max_sectors;
  3951. else
  3952. max_sectors = mddev->dev_sectors;
  3953. resync = mddev->curr_resync_completed;
  3954. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3955. }
  3956. static struct md_sysfs_entry md_sync_completed =
  3957. __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
  3958. static ssize_t
  3959. min_sync_show(struct mddev *mddev, char *page)
  3960. {
  3961. return sprintf(page, "%llu\n",
  3962. (unsigned long long)mddev->resync_min);
  3963. }
  3964. static ssize_t
  3965. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3966. {
  3967. unsigned long long min;
  3968. int err;
  3969. if (kstrtoull(buf, 10, &min))
  3970. return -EINVAL;
  3971. spin_lock(&mddev->lock);
  3972. err = -EINVAL;
  3973. if (min > mddev->resync_max)
  3974. goto out_unlock;
  3975. err = -EBUSY;
  3976. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3977. goto out_unlock;
  3978. /* Round down to multiple of 4K for safety */
  3979. mddev->resync_min = round_down(min, 8);
  3980. err = 0;
  3981. out_unlock:
  3982. spin_unlock(&mddev->lock);
  3983. return err ?: len;
  3984. }
  3985. static struct md_sysfs_entry md_min_sync =
  3986. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3987. static ssize_t
  3988. max_sync_show(struct mddev *mddev, char *page)
  3989. {
  3990. if (mddev->resync_max == MaxSector)
  3991. return sprintf(page, "max\n");
  3992. else
  3993. return sprintf(page, "%llu\n",
  3994. (unsigned long long)mddev->resync_max);
  3995. }
  3996. static ssize_t
  3997. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3998. {
  3999. int err;
  4000. spin_lock(&mddev->lock);
  4001. if (strncmp(buf, "max", 3) == 0)
  4002. mddev->resync_max = MaxSector;
  4003. else {
  4004. unsigned long long max;
  4005. int chunk;
  4006. err = -EINVAL;
  4007. if (kstrtoull(buf, 10, &max))
  4008. goto out_unlock;
  4009. if (max < mddev->resync_min)
  4010. goto out_unlock;
  4011. err = -EBUSY;
  4012. if (max < mddev->resync_max &&
  4013. mddev->ro == 0 &&
  4014. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4015. goto out_unlock;
  4016. /* Must be a multiple of chunk_size */
  4017. chunk = mddev->chunk_sectors;
  4018. if (chunk) {
  4019. sector_t temp = max;
  4020. err = -EINVAL;
  4021. if (sector_div(temp, chunk))
  4022. goto out_unlock;
  4023. }
  4024. mddev->resync_max = max;
  4025. }
  4026. wake_up(&mddev->recovery_wait);
  4027. err = 0;
  4028. out_unlock:
  4029. spin_unlock(&mddev->lock);
  4030. return err ?: len;
  4031. }
  4032. static struct md_sysfs_entry md_max_sync =
  4033. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  4034. static ssize_t
  4035. suspend_lo_show(struct mddev *mddev, char *page)
  4036. {
  4037. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  4038. }
  4039. static ssize_t
  4040. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  4041. {
  4042. unsigned long long old, new;
  4043. int err;
  4044. err = kstrtoull(buf, 10, &new);
  4045. if (err < 0)
  4046. return err;
  4047. if (new != (sector_t)new)
  4048. return -EINVAL;
  4049. err = mddev_lock(mddev);
  4050. if (err)
  4051. return err;
  4052. err = -EINVAL;
  4053. if (mddev->pers == NULL ||
  4054. mddev->pers->quiesce == NULL)
  4055. goto unlock;
  4056. old = mddev->suspend_lo;
  4057. mddev->suspend_lo = new;
  4058. if (new >= old)
  4059. /* Shrinking suspended region */
  4060. mddev->pers->quiesce(mddev, 2);
  4061. else {
  4062. /* Expanding suspended region - need to wait */
  4063. mddev->pers->quiesce(mddev, 1);
  4064. mddev->pers->quiesce(mddev, 0);
  4065. }
  4066. err = 0;
  4067. unlock:
  4068. mddev_unlock(mddev);
  4069. return err ?: len;
  4070. }
  4071. static struct md_sysfs_entry md_suspend_lo =
  4072. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4073. static ssize_t
  4074. suspend_hi_show(struct mddev *mddev, char *page)
  4075. {
  4076. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4077. }
  4078. static ssize_t
  4079. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4080. {
  4081. unsigned long long old, new;
  4082. int err;
  4083. err = kstrtoull(buf, 10, &new);
  4084. if (err < 0)
  4085. return err;
  4086. if (new != (sector_t)new)
  4087. return -EINVAL;
  4088. err = mddev_lock(mddev);
  4089. if (err)
  4090. return err;
  4091. err = -EINVAL;
  4092. if (mddev->pers == NULL ||
  4093. mddev->pers->quiesce == NULL)
  4094. goto unlock;
  4095. old = mddev->suspend_hi;
  4096. mddev->suspend_hi = new;
  4097. if (new <= old)
  4098. /* Shrinking suspended region */
  4099. mddev->pers->quiesce(mddev, 2);
  4100. else {
  4101. /* Expanding suspended region - need to wait */
  4102. mddev->pers->quiesce(mddev, 1);
  4103. mddev->pers->quiesce(mddev, 0);
  4104. }
  4105. err = 0;
  4106. unlock:
  4107. mddev_unlock(mddev);
  4108. return err ?: len;
  4109. }
  4110. static struct md_sysfs_entry md_suspend_hi =
  4111. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4112. static ssize_t
  4113. reshape_position_show(struct mddev *mddev, char *page)
  4114. {
  4115. if (mddev->reshape_position != MaxSector)
  4116. return sprintf(page, "%llu\n",
  4117. (unsigned long long)mddev->reshape_position);
  4118. strcpy(page, "none\n");
  4119. return 5;
  4120. }
  4121. static ssize_t
  4122. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4123. {
  4124. struct md_rdev *rdev;
  4125. unsigned long long new;
  4126. int err;
  4127. err = kstrtoull(buf, 10, &new);
  4128. if (err < 0)
  4129. return err;
  4130. if (new != (sector_t)new)
  4131. return -EINVAL;
  4132. err = mddev_lock(mddev);
  4133. if (err)
  4134. return err;
  4135. err = -EBUSY;
  4136. if (mddev->pers)
  4137. goto unlock;
  4138. mddev->reshape_position = new;
  4139. mddev->delta_disks = 0;
  4140. mddev->reshape_backwards = 0;
  4141. mddev->new_level = mddev->level;
  4142. mddev->new_layout = mddev->layout;
  4143. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4144. rdev_for_each(rdev, mddev)
  4145. rdev->new_data_offset = rdev->data_offset;
  4146. err = 0;
  4147. unlock:
  4148. mddev_unlock(mddev);
  4149. return err ?: len;
  4150. }
  4151. static struct md_sysfs_entry md_reshape_position =
  4152. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4153. reshape_position_store);
  4154. static ssize_t
  4155. reshape_direction_show(struct mddev *mddev, char *page)
  4156. {
  4157. return sprintf(page, "%s\n",
  4158. mddev->reshape_backwards ? "backwards" : "forwards");
  4159. }
  4160. static ssize_t
  4161. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4162. {
  4163. int backwards = 0;
  4164. int err;
  4165. if (cmd_match(buf, "forwards"))
  4166. backwards = 0;
  4167. else if (cmd_match(buf, "backwards"))
  4168. backwards = 1;
  4169. else
  4170. return -EINVAL;
  4171. if (mddev->reshape_backwards == backwards)
  4172. return len;
  4173. err = mddev_lock(mddev);
  4174. if (err)
  4175. return err;
  4176. /* check if we are allowed to change */
  4177. if (mddev->delta_disks)
  4178. err = -EBUSY;
  4179. else if (mddev->persistent &&
  4180. mddev->major_version == 0)
  4181. err = -EINVAL;
  4182. else
  4183. mddev->reshape_backwards = backwards;
  4184. mddev_unlock(mddev);
  4185. return err ?: len;
  4186. }
  4187. static struct md_sysfs_entry md_reshape_direction =
  4188. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4189. reshape_direction_store);
  4190. static ssize_t
  4191. array_size_show(struct mddev *mddev, char *page)
  4192. {
  4193. if (mddev->external_size)
  4194. return sprintf(page, "%llu\n",
  4195. (unsigned long long)mddev->array_sectors/2);
  4196. else
  4197. return sprintf(page, "default\n");
  4198. }
  4199. static ssize_t
  4200. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4201. {
  4202. sector_t sectors;
  4203. int err;
  4204. err = mddev_lock(mddev);
  4205. if (err)
  4206. return err;
  4207. if (strncmp(buf, "default", 7) == 0) {
  4208. if (mddev->pers)
  4209. sectors = mddev->pers->size(mddev, 0, 0);
  4210. else
  4211. sectors = mddev->array_sectors;
  4212. mddev->external_size = 0;
  4213. } else {
  4214. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4215. err = -EINVAL;
  4216. else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4217. err = -E2BIG;
  4218. else
  4219. mddev->external_size = 1;
  4220. }
  4221. if (!err) {
  4222. mddev->array_sectors = sectors;
  4223. if (mddev->pers) {
  4224. set_capacity(mddev->gendisk, mddev->array_sectors);
  4225. revalidate_disk(mddev->gendisk);
  4226. }
  4227. }
  4228. mddev_unlock(mddev);
  4229. return err ?: len;
  4230. }
  4231. static struct md_sysfs_entry md_array_size =
  4232. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4233. array_size_store);
  4234. static struct attribute *md_default_attrs[] = {
  4235. &md_level.attr,
  4236. &md_layout.attr,
  4237. &md_raid_disks.attr,
  4238. &md_chunk_size.attr,
  4239. &md_size.attr,
  4240. &md_resync_start.attr,
  4241. &md_metadata.attr,
  4242. &md_new_device.attr,
  4243. &md_safe_delay.attr,
  4244. &md_array_state.attr,
  4245. &md_reshape_position.attr,
  4246. &md_reshape_direction.attr,
  4247. &md_array_size.attr,
  4248. &max_corr_read_errors.attr,
  4249. NULL,
  4250. };
  4251. static struct attribute *md_redundancy_attrs[] = {
  4252. &md_scan_mode.attr,
  4253. &md_last_scan_mode.attr,
  4254. &md_mismatches.attr,
  4255. &md_sync_min.attr,
  4256. &md_sync_max.attr,
  4257. &md_sync_speed.attr,
  4258. &md_sync_force_parallel.attr,
  4259. &md_sync_completed.attr,
  4260. &md_min_sync.attr,
  4261. &md_max_sync.attr,
  4262. &md_suspend_lo.attr,
  4263. &md_suspend_hi.attr,
  4264. &md_bitmap.attr,
  4265. &md_degraded.attr,
  4266. NULL,
  4267. };
  4268. static struct attribute_group md_redundancy_group = {
  4269. .name = NULL,
  4270. .attrs = md_redundancy_attrs,
  4271. };
  4272. static ssize_t
  4273. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4274. {
  4275. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4276. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4277. ssize_t rv;
  4278. if (!entry->show)
  4279. return -EIO;
  4280. spin_lock(&all_mddevs_lock);
  4281. if (list_empty(&mddev->all_mddevs)) {
  4282. spin_unlock(&all_mddevs_lock);
  4283. return -EBUSY;
  4284. }
  4285. mddev_get(mddev);
  4286. spin_unlock(&all_mddevs_lock);
  4287. rv = entry->show(mddev, page);
  4288. mddev_put(mddev);
  4289. return rv;
  4290. }
  4291. static ssize_t
  4292. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4293. const char *page, size_t length)
  4294. {
  4295. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4296. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4297. ssize_t rv;
  4298. if (!entry->store)
  4299. return -EIO;
  4300. if (!capable(CAP_SYS_ADMIN))
  4301. return -EACCES;
  4302. spin_lock(&all_mddevs_lock);
  4303. if (list_empty(&mddev->all_mddevs)) {
  4304. spin_unlock(&all_mddevs_lock);
  4305. return -EBUSY;
  4306. }
  4307. mddev_get(mddev);
  4308. spin_unlock(&all_mddevs_lock);
  4309. rv = entry->store(mddev, page, length);
  4310. mddev_put(mddev);
  4311. return rv;
  4312. }
  4313. static void md_free(struct kobject *ko)
  4314. {
  4315. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4316. if (mddev->sysfs_state)
  4317. sysfs_put(mddev->sysfs_state);
  4318. if (mddev->queue)
  4319. blk_cleanup_queue(mddev->queue);
  4320. if (mddev->gendisk) {
  4321. del_gendisk(mddev->gendisk);
  4322. put_disk(mddev->gendisk);
  4323. }
  4324. kfree(mddev);
  4325. }
  4326. static const struct sysfs_ops md_sysfs_ops = {
  4327. .show = md_attr_show,
  4328. .store = md_attr_store,
  4329. };
  4330. static struct kobj_type md_ktype = {
  4331. .release = md_free,
  4332. .sysfs_ops = &md_sysfs_ops,
  4333. .default_attrs = md_default_attrs,
  4334. };
  4335. int mdp_major = 0;
  4336. static void mddev_delayed_delete(struct work_struct *ws)
  4337. {
  4338. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4339. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4340. kobject_del(&mddev->kobj);
  4341. kobject_put(&mddev->kobj);
  4342. }
  4343. static int md_alloc(dev_t dev, char *name)
  4344. {
  4345. static DEFINE_MUTEX(disks_mutex);
  4346. struct mddev *mddev = mddev_find(dev);
  4347. struct gendisk *disk;
  4348. int partitioned;
  4349. int shift;
  4350. int unit;
  4351. int error;
  4352. if (!mddev)
  4353. return -ENODEV;
  4354. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4355. shift = partitioned ? MdpMinorShift : 0;
  4356. unit = MINOR(mddev->unit) >> shift;
  4357. /* wait for any previous instance of this device to be
  4358. * completely removed (mddev_delayed_delete).
  4359. */
  4360. flush_workqueue(md_misc_wq);
  4361. mutex_lock(&disks_mutex);
  4362. error = -EEXIST;
  4363. if (mddev->gendisk)
  4364. goto abort;
  4365. if (name) {
  4366. /* Need to ensure that 'name' is not a duplicate.
  4367. */
  4368. struct mddev *mddev2;
  4369. spin_lock(&all_mddevs_lock);
  4370. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4371. if (mddev2->gendisk &&
  4372. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4373. spin_unlock(&all_mddevs_lock);
  4374. goto abort;
  4375. }
  4376. spin_unlock(&all_mddevs_lock);
  4377. }
  4378. error = -ENOMEM;
  4379. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4380. if (!mddev->queue)
  4381. goto abort;
  4382. mddev->queue->queuedata = mddev;
  4383. blk_queue_make_request(mddev->queue, md_make_request);
  4384. blk_set_stacking_limits(&mddev->queue->limits);
  4385. disk = alloc_disk(1 << shift);
  4386. if (!disk) {
  4387. blk_cleanup_queue(mddev->queue);
  4388. mddev->queue = NULL;
  4389. goto abort;
  4390. }
  4391. disk->major = MAJOR(mddev->unit);
  4392. disk->first_minor = unit << shift;
  4393. if (name)
  4394. strcpy(disk->disk_name, name);
  4395. else if (partitioned)
  4396. sprintf(disk->disk_name, "md_d%d", unit);
  4397. else
  4398. sprintf(disk->disk_name, "md%d", unit);
  4399. disk->fops = &md_fops;
  4400. disk->private_data = mddev;
  4401. disk->queue = mddev->queue;
  4402. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4403. /* Allow extended partitions. This makes the
  4404. * 'mdp' device redundant, but we can't really
  4405. * remove it now.
  4406. */
  4407. disk->flags |= GENHD_FL_EXT_DEVT;
  4408. mddev->gendisk = disk;
  4409. /* As soon as we call add_disk(), another thread could get
  4410. * through to md_open, so make sure it doesn't get too far
  4411. */
  4412. mutex_lock(&mddev->open_mutex);
  4413. add_disk(disk);
  4414. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4415. &disk_to_dev(disk)->kobj, "%s", "md");
  4416. if (error) {
  4417. /* This isn't possible, but as kobject_init_and_add is marked
  4418. * __must_check, we must do something with the result
  4419. */
  4420. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4421. disk->disk_name);
  4422. error = 0;
  4423. }
  4424. if (mddev->kobj.sd &&
  4425. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4426. printk(KERN_DEBUG "pointless warning\n");
  4427. mutex_unlock(&mddev->open_mutex);
  4428. abort:
  4429. mutex_unlock(&disks_mutex);
  4430. if (!error && mddev->kobj.sd) {
  4431. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4432. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4433. }
  4434. mddev_put(mddev);
  4435. return error;
  4436. }
  4437. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4438. {
  4439. md_alloc(dev, NULL);
  4440. return NULL;
  4441. }
  4442. static int add_named_array(const char *val, struct kernel_param *kp)
  4443. {
  4444. /* val must be "md_*" where * is not all digits.
  4445. * We allocate an array with a large free minor number, and
  4446. * set the name to val. val must not already be an active name.
  4447. */
  4448. int len = strlen(val);
  4449. char buf[DISK_NAME_LEN];
  4450. while (len && val[len-1] == '\n')
  4451. len--;
  4452. if (len >= DISK_NAME_LEN)
  4453. return -E2BIG;
  4454. strlcpy(buf, val, len+1);
  4455. if (strncmp(buf, "md_", 3) != 0)
  4456. return -EINVAL;
  4457. return md_alloc(0, buf);
  4458. }
  4459. static void md_safemode_timeout(unsigned long data)
  4460. {
  4461. struct mddev *mddev = (struct mddev *) data;
  4462. if (!atomic_read(&mddev->writes_pending)) {
  4463. mddev->safemode = 1;
  4464. if (mddev->external)
  4465. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4466. }
  4467. md_wakeup_thread(mddev->thread);
  4468. }
  4469. static int start_dirty_degraded;
  4470. int md_run(struct mddev *mddev)
  4471. {
  4472. int err;
  4473. struct md_rdev *rdev;
  4474. struct md_personality *pers;
  4475. if (list_empty(&mddev->disks))
  4476. /* cannot run an array with no devices.. */
  4477. return -EINVAL;
  4478. if (mddev->pers)
  4479. return -EBUSY;
  4480. /* Cannot run until previous stop completes properly */
  4481. if (mddev->sysfs_active)
  4482. return -EBUSY;
  4483. /*
  4484. * Analyze all RAID superblock(s)
  4485. */
  4486. if (!mddev->raid_disks) {
  4487. if (!mddev->persistent)
  4488. return -EINVAL;
  4489. analyze_sbs(mddev);
  4490. }
  4491. if (mddev->level != LEVEL_NONE)
  4492. request_module("md-level-%d", mddev->level);
  4493. else if (mddev->clevel[0])
  4494. request_module("md-%s", mddev->clevel);
  4495. /*
  4496. * Drop all container device buffers, from now on
  4497. * the only valid external interface is through the md
  4498. * device.
  4499. */
  4500. rdev_for_each(rdev, mddev) {
  4501. if (test_bit(Faulty, &rdev->flags))
  4502. continue;
  4503. sync_blockdev(rdev->bdev);
  4504. invalidate_bdev(rdev->bdev);
  4505. /* perform some consistency tests on the device.
  4506. * We don't want the data to overlap the metadata,
  4507. * Internal Bitmap issues have been handled elsewhere.
  4508. */
  4509. if (rdev->meta_bdev) {
  4510. /* Nothing to check */;
  4511. } else if (rdev->data_offset < rdev->sb_start) {
  4512. if (mddev->dev_sectors &&
  4513. rdev->data_offset + mddev->dev_sectors
  4514. > rdev->sb_start) {
  4515. printk("md: %s: data overlaps metadata\n",
  4516. mdname(mddev));
  4517. return -EINVAL;
  4518. }
  4519. } else {
  4520. if (rdev->sb_start + rdev->sb_size/512
  4521. > rdev->data_offset) {
  4522. printk("md: %s: metadata overlaps data\n",
  4523. mdname(mddev));
  4524. return -EINVAL;
  4525. }
  4526. }
  4527. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4528. }
  4529. if (mddev->bio_set == NULL)
  4530. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4531. spin_lock(&pers_lock);
  4532. pers = find_pers(mddev->level, mddev->clevel);
  4533. if (!pers || !try_module_get(pers->owner)) {
  4534. spin_unlock(&pers_lock);
  4535. if (mddev->level != LEVEL_NONE)
  4536. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4537. mddev->level);
  4538. else
  4539. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4540. mddev->clevel);
  4541. return -EINVAL;
  4542. }
  4543. spin_unlock(&pers_lock);
  4544. if (mddev->level != pers->level) {
  4545. mddev->level = pers->level;
  4546. mddev->new_level = pers->level;
  4547. }
  4548. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4549. if (mddev->reshape_position != MaxSector &&
  4550. pers->start_reshape == NULL) {
  4551. /* This personality cannot handle reshaping... */
  4552. module_put(pers->owner);
  4553. return -EINVAL;
  4554. }
  4555. if (pers->sync_request) {
  4556. /* Warn if this is a potentially silly
  4557. * configuration.
  4558. */
  4559. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4560. struct md_rdev *rdev2;
  4561. int warned = 0;
  4562. rdev_for_each(rdev, mddev)
  4563. rdev_for_each(rdev2, mddev) {
  4564. if (rdev < rdev2 &&
  4565. rdev->bdev->bd_contains ==
  4566. rdev2->bdev->bd_contains) {
  4567. printk(KERN_WARNING
  4568. "%s: WARNING: %s appears to be"
  4569. " on the same physical disk as"
  4570. " %s.\n",
  4571. mdname(mddev),
  4572. bdevname(rdev->bdev,b),
  4573. bdevname(rdev2->bdev,b2));
  4574. warned = 1;
  4575. }
  4576. }
  4577. if (warned)
  4578. printk(KERN_WARNING
  4579. "True protection against single-disk"
  4580. " failure might be compromised.\n");
  4581. }
  4582. mddev->recovery = 0;
  4583. /* may be over-ridden by personality */
  4584. mddev->resync_max_sectors = mddev->dev_sectors;
  4585. mddev->ok_start_degraded = start_dirty_degraded;
  4586. if (start_readonly && mddev->ro == 0)
  4587. mddev->ro = 2; /* read-only, but switch on first write */
  4588. err = pers->run(mddev);
  4589. if (err)
  4590. printk(KERN_ERR "md: pers->run() failed ...\n");
  4591. else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4592. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4593. " but 'external_size' not in effect?\n", __func__);
  4594. printk(KERN_ERR
  4595. "md: invalid array_size %llu > default size %llu\n",
  4596. (unsigned long long)mddev->array_sectors / 2,
  4597. (unsigned long long)pers->size(mddev, 0, 0) / 2);
  4598. err = -EINVAL;
  4599. }
  4600. if (err == 0 && pers->sync_request &&
  4601. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4602. struct bitmap *bitmap;
  4603. bitmap = bitmap_create(mddev, -1);
  4604. if (IS_ERR(bitmap)) {
  4605. err = PTR_ERR(bitmap);
  4606. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4607. mdname(mddev), err);
  4608. } else
  4609. mddev->bitmap = bitmap;
  4610. }
  4611. if (err) {
  4612. mddev_detach(mddev);
  4613. if (mddev->private)
  4614. pers->free(mddev, mddev->private);
  4615. mddev->private = NULL;
  4616. module_put(pers->owner);
  4617. bitmap_destroy(mddev);
  4618. return err;
  4619. }
  4620. if (mddev->queue) {
  4621. mddev->queue->backing_dev_info.congested_data = mddev;
  4622. mddev->queue->backing_dev_info.congested_fn = md_congested;
  4623. }
  4624. if (pers->sync_request) {
  4625. if (mddev->kobj.sd &&
  4626. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4627. printk(KERN_WARNING
  4628. "md: cannot register extra attributes for %s\n",
  4629. mdname(mddev));
  4630. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4631. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4632. mddev->ro = 0;
  4633. atomic_set(&mddev->writes_pending,0);
  4634. atomic_set(&mddev->max_corr_read_errors,
  4635. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4636. mddev->safemode = 0;
  4637. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4638. mddev->in_sync = 1;
  4639. smp_wmb();
  4640. spin_lock(&mddev->lock);
  4641. mddev->pers = pers;
  4642. mddev->ready = 1;
  4643. spin_unlock(&mddev->lock);
  4644. rdev_for_each(rdev, mddev)
  4645. if (rdev->raid_disk >= 0)
  4646. if (sysfs_link_rdev(mddev, rdev))
  4647. /* failure here is OK */;
  4648. if (mddev->degraded && !mddev->ro)
  4649. /* This ensures that recovering status is reported immediately
  4650. * via sysfs - until a lack of spares is confirmed.
  4651. */
  4652. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4653. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4654. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  4655. md_update_sb(mddev, 0);
  4656. md_new_event(mddev);
  4657. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4658. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4659. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4660. return 0;
  4661. }
  4662. EXPORT_SYMBOL_GPL(md_run);
  4663. static int do_md_run(struct mddev *mddev)
  4664. {
  4665. int err;
  4666. err = md_run(mddev);
  4667. if (err)
  4668. goto out;
  4669. err = bitmap_load(mddev);
  4670. if (err) {
  4671. bitmap_destroy(mddev);
  4672. goto out;
  4673. }
  4674. md_wakeup_thread(mddev->thread);
  4675. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4676. set_capacity(mddev->gendisk, mddev->array_sectors);
  4677. revalidate_disk(mddev->gendisk);
  4678. mddev->changed = 1;
  4679. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4680. out:
  4681. return err;
  4682. }
  4683. static int restart_array(struct mddev *mddev)
  4684. {
  4685. struct gendisk *disk = mddev->gendisk;
  4686. /* Complain if it has no devices */
  4687. if (list_empty(&mddev->disks))
  4688. return -ENXIO;
  4689. if (!mddev->pers)
  4690. return -EINVAL;
  4691. if (!mddev->ro)
  4692. return -EBUSY;
  4693. mddev->safemode = 0;
  4694. mddev->ro = 0;
  4695. set_disk_ro(disk, 0);
  4696. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4697. mdname(mddev));
  4698. /* Kick recovery or resync if necessary */
  4699. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4700. md_wakeup_thread(mddev->thread);
  4701. md_wakeup_thread(mddev->sync_thread);
  4702. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4703. return 0;
  4704. }
  4705. static void md_clean(struct mddev *mddev)
  4706. {
  4707. mddev->array_sectors = 0;
  4708. mddev->external_size = 0;
  4709. mddev->dev_sectors = 0;
  4710. mddev->raid_disks = 0;
  4711. mddev->recovery_cp = 0;
  4712. mddev->resync_min = 0;
  4713. mddev->resync_max = MaxSector;
  4714. mddev->reshape_position = MaxSector;
  4715. mddev->external = 0;
  4716. mddev->persistent = 0;
  4717. mddev->level = LEVEL_NONE;
  4718. mddev->clevel[0] = 0;
  4719. mddev->flags = 0;
  4720. mddev->ro = 0;
  4721. mddev->metadata_type[0] = 0;
  4722. mddev->chunk_sectors = 0;
  4723. mddev->ctime = mddev->utime = 0;
  4724. mddev->layout = 0;
  4725. mddev->max_disks = 0;
  4726. mddev->events = 0;
  4727. mddev->can_decrease_events = 0;
  4728. mddev->delta_disks = 0;
  4729. mddev->reshape_backwards = 0;
  4730. mddev->new_level = LEVEL_NONE;
  4731. mddev->new_layout = 0;
  4732. mddev->new_chunk_sectors = 0;
  4733. mddev->curr_resync = 0;
  4734. atomic64_set(&mddev->resync_mismatches, 0);
  4735. mddev->suspend_lo = mddev->suspend_hi = 0;
  4736. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4737. mddev->recovery = 0;
  4738. mddev->in_sync = 0;
  4739. mddev->changed = 0;
  4740. mddev->degraded = 0;
  4741. mddev->safemode = 0;
  4742. mddev->private = NULL;
  4743. mddev->bitmap_info.offset = 0;
  4744. mddev->bitmap_info.default_offset = 0;
  4745. mddev->bitmap_info.default_space = 0;
  4746. mddev->bitmap_info.chunksize = 0;
  4747. mddev->bitmap_info.daemon_sleep = 0;
  4748. mddev->bitmap_info.max_write_behind = 0;
  4749. }
  4750. static void __md_stop_writes(struct mddev *mddev)
  4751. {
  4752. if (mddev_is_clustered(mddev))
  4753. md_cluster_ops->metadata_update_start(mddev);
  4754. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4755. flush_workqueue(md_misc_wq);
  4756. if (mddev->sync_thread) {
  4757. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4758. md_reap_sync_thread(mddev);
  4759. }
  4760. del_timer_sync(&mddev->safemode_timer);
  4761. bitmap_flush(mddev);
  4762. md_super_wait(mddev);
  4763. if (mddev->ro == 0 &&
  4764. (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
  4765. /* mark array as shutdown cleanly */
  4766. mddev->in_sync = 1;
  4767. md_update_sb(mddev, 1);
  4768. }
  4769. if (mddev_is_clustered(mddev))
  4770. md_cluster_ops->metadata_update_finish(mddev);
  4771. }
  4772. void md_stop_writes(struct mddev *mddev)
  4773. {
  4774. mddev_lock_nointr(mddev);
  4775. __md_stop_writes(mddev);
  4776. mddev_unlock(mddev);
  4777. }
  4778. EXPORT_SYMBOL_GPL(md_stop_writes);
  4779. static void mddev_detach(struct mddev *mddev)
  4780. {
  4781. struct bitmap *bitmap = mddev->bitmap;
  4782. /* wait for behind writes to complete */
  4783. if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  4784. printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
  4785. mdname(mddev));
  4786. /* need to kick something here to make sure I/O goes? */
  4787. wait_event(bitmap->behind_wait,
  4788. atomic_read(&bitmap->behind_writes) == 0);
  4789. }
  4790. if (mddev->pers && mddev->pers->quiesce) {
  4791. mddev->pers->quiesce(mddev, 1);
  4792. mddev->pers->quiesce(mddev, 0);
  4793. }
  4794. md_unregister_thread(&mddev->thread);
  4795. if (mddev->queue)
  4796. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  4797. }
  4798. static void __md_stop(struct mddev *mddev)
  4799. {
  4800. struct md_personality *pers = mddev->pers;
  4801. mddev_detach(mddev);
  4802. /* Ensure ->event_work is done */
  4803. flush_workqueue(md_misc_wq);
  4804. spin_lock(&mddev->lock);
  4805. mddev->ready = 0;
  4806. mddev->pers = NULL;
  4807. spin_unlock(&mddev->lock);
  4808. pers->free(mddev, mddev->private);
  4809. mddev->private = NULL;
  4810. if (pers->sync_request && mddev->to_remove == NULL)
  4811. mddev->to_remove = &md_redundancy_group;
  4812. module_put(pers->owner);
  4813. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4814. }
  4815. void md_stop(struct mddev *mddev)
  4816. {
  4817. /* stop the array and free an attached data structures.
  4818. * This is called from dm-raid
  4819. */
  4820. __md_stop(mddev);
  4821. bitmap_destroy(mddev);
  4822. if (mddev->bio_set)
  4823. bioset_free(mddev->bio_set);
  4824. }
  4825. EXPORT_SYMBOL_GPL(md_stop);
  4826. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4827. {
  4828. int err = 0;
  4829. int did_freeze = 0;
  4830. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4831. did_freeze = 1;
  4832. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4833. md_wakeup_thread(mddev->thread);
  4834. }
  4835. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4836. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4837. if (mddev->sync_thread)
  4838. /* Thread might be blocked waiting for metadata update
  4839. * which will now never happen */
  4840. wake_up_process(mddev->sync_thread->tsk);
  4841. if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
  4842. return -EBUSY;
  4843. mddev_unlock(mddev);
  4844. wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
  4845. &mddev->recovery));
  4846. wait_event(mddev->sb_wait,
  4847. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  4848. mddev_lock_nointr(mddev);
  4849. mutex_lock(&mddev->open_mutex);
  4850. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4851. mddev->sync_thread ||
  4852. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4853. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4854. printk("md: %s still in use.\n",mdname(mddev));
  4855. if (did_freeze) {
  4856. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4857. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4858. md_wakeup_thread(mddev->thread);
  4859. }
  4860. err = -EBUSY;
  4861. goto out;
  4862. }
  4863. if (mddev->pers) {
  4864. __md_stop_writes(mddev);
  4865. err = -ENXIO;
  4866. if (mddev->ro==1)
  4867. goto out;
  4868. mddev->ro = 1;
  4869. set_disk_ro(mddev->gendisk, 1);
  4870. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4871. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4872. md_wakeup_thread(mddev->thread);
  4873. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4874. err = 0;
  4875. }
  4876. out:
  4877. mutex_unlock(&mddev->open_mutex);
  4878. return err;
  4879. }
  4880. /* mode:
  4881. * 0 - completely stop and dis-assemble array
  4882. * 2 - stop but do not disassemble array
  4883. */
  4884. static int do_md_stop(struct mddev *mddev, int mode,
  4885. struct block_device *bdev)
  4886. {
  4887. struct gendisk *disk = mddev->gendisk;
  4888. struct md_rdev *rdev;
  4889. int did_freeze = 0;
  4890. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4891. did_freeze = 1;
  4892. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4893. md_wakeup_thread(mddev->thread);
  4894. }
  4895. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4896. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4897. if (mddev->sync_thread)
  4898. /* Thread might be blocked waiting for metadata update
  4899. * which will now never happen */
  4900. wake_up_process(mddev->sync_thread->tsk);
  4901. mddev_unlock(mddev);
  4902. wait_event(resync_wait, (mddev->sync_thread == NULL &&
  4903. !test_bit(MD_RECOVERY_RUNNING,
  4904. &mddev->recovery)));
  4905. mddev_lock_nointr(mddev);
  4906. mutex_lock(&mddev->open_mutex);
  4907. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4908. mddev->sysfs_active ||
  4909. mddev->sync_thread ||
  4910. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4911. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4912. printk("md: %s still in use.\n",mdname(mddev));
  4913. mutex_unlock(&mddev->open_mutex);
  4914. if (did_freeze) {
  4915. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4916. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4917. md_wakeup_thread(mddev->thread);
  4918. }
  4919. return -EBUSY;
  4920. }
  4921. if (mddev->pers) {
  4922. if (mddev->ro)
  4923. set_disk_ro(disk, 0);
  4924. __md_stop_writes(mddev);
  4925. __md_stop(mddev);
  4926. mddev->queue->backing_dev_info.congested_fn = NULL;
  4927. /* tell userspace to handle 'inactive' */
  4928. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4929. rdev_for_each(rdev, mddev)
  4930. if (rdev->raid_disk >= 0)
  4931. sysfs_unlink_rdev(mddev, rdev);
  4932. set_capacity(disk, 0);
  4933. mutex_unlock(&mddev->open_mutex);
  4934. mddev->changed = 1;
  4935. revalidate_disk(disk);
  4936. if (mddev->ro)
  4937. mddev->ro = 0;
  4938. } else
  4939. mutex_unlock(&mddev->open_mutex);
  4940. /*
  4941. * Free resources if final stop
  4942. */
  4943. if (mode == 0) {
  4944. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4945. bitmap_destroy(mddev);
  4946. if (mddev->bitmap_info.file) {
  4947. struct file *f = mddev->bitmap_info.file;
  4948. spin_lock(&mddev->lock);
  4949. mddev->bitmap_info.file = NULL;
  4950. spin_unlock(&mddev->lock);
  4951. fput(f);
  4952. }
  4953. mddev->bitmap_info.offset = 0;
  4954. export_array(mddev);
  4955. md_clean(mddev);
  4956. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4957. if (mddev->hold_active == UNTIL_STOP)
  4958. mddev->hold_active = 0;
  4959. }
  4960. blk_integrity_unregister(disk);
  4961. md_new_event(mddev);
  4962. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4963. return 0;
  4964. }
  4965. #ifndef MODULE
  4966. static void autorun_array(struct mddev *mddev)
  4967. {
  4968. struct md_rdev *rdev;
  4969. int err;
  4970. if (list_empty(&mddev->disks))
  4971. return;
  4972. printk(KERN_INFO "md: running: ");
  4973. rdev_for_each(rdev, mddev) {
  4974. char b[BDEVNAME_SIZE];
  4975. printk("<%s>", bdevname(rdev->bdev,b));
  4976. }
  4977. printk("\n");
  4978. err = do_md_run(mddev);
  4979. if (err) {
  4980. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4981. do_md_stop(mddev, 0, NULL);
  4982. }
  4983. }
  4984. /*
  4985. * lets try to run arrays based on all disks that have arrived
  4986. * until now. (those are in pending_raid_disks)
  4987. *
  4988. * the method: pick the first pending disk, collect all disks with
  4989. * the same UUID, remove all from the pending list and put them into
  4990. * the 'same_array' list. Then order this list based on superblock
  4991. * update time (freshest comes first), kick out 'old' disks and
  4992. * compare superblocks. If everything's fine then run it.
  4993. *
  4994. * If "unit" is allocated, then bump its reference count
  4995. */
  4996. static void autorun_devices(int part)
  4997. {
  4998. struct md_rdev *rdev0, *rdev, *tmp;
  4999. struct mddev *mddev;
  5000. char b[BDEVNAME_SIZE];
  5001. printk(KERN_INFO "md: autorun ...\n");
  5002. while (!list_empty(&pending_raid_disks)) {
  5003. int unit;
  5004. dev_t dev;
  5005. LIST_HEAD(candidates);
  5006. rdev0 = list_entry(pending_raid_disks.next,
  5007. struct md_rdev, same_set);
  5008. printk(KERN_INFO "md: considering %s ...\n",
  5009. bdevname(rdev0->bdev,b));
  5010. INIT_LIST_HEAD(&candidates);
  5011. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  5012. if (super_90_load(rdev, rdev0, 0) >= 0) {
  5013. printk(KERN_INFO "md: adding %s ...\n",
  5014. bdevname(rdev->bdev,b));
  5015. list_move(&rdev->same_set, &candidates);
  5016. }
  5017. /*
  5018. * now we have a set of devices, with all of them having
  5019. * mostly sane superblocks. It's time to allocate the
  5020. * mddev.
  5021. */
  5022. if (part) {
  5023. dev = MKDEV(mdp_major,
  5024. rdev0->preferred_minor << MdpMinorShift);
  5025. unit = MINOR(dev) >> MdpMinorShift;
  5026. } else {
  5027. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  5028. unit = MINOR(dev);
  5029. }
  5030. if (rdev0->preferred_minor != unit) {
  5031. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  5032. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  5033. break;
  5034. }
  5035. md_probe(dev, NULL, NULL);
  5036. mddev = mddev_find(dev);
  5037. if (!mddev || !mddev->gendisk) {
  5038. if (mddev)
  5039. mddev_put(mddev);
  5040. printk(KERN_ERR
  5041. "md: cannot allocate memory for md drive.\n");
  5042. break;
  5043. }
  5044. if (mddev_lock(mddev))
  5045. printk(KERN_WARNING "md: %s locked, cannot run\n",
  5046. mdname(mddev));
  5047. else if (mddev->raid_disks || mddev->major_version
  5048. || !list_empty(&mddev->disks)) {
  5049. printk(KERN_WARNING
  5050. "md: %s already running, cannot run %s\n",
  5051. mdname(mddev), bdevname(rdev0->bdev,b));
  5052. mddev_unlock(mddev);
  5053. } else {
  5054. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  5055. mddev->persistent = 1;
  5056. rdev_for_each_list(rdev, tmp, &candidates) {
  5057. list_del_init(&rdev->same_set);
  5058. if (bind_rdev_to_array(rdev, mddev))
  5059. export_rdev(rdev);
  5060. }
  5061. autorun_array(mddev);
  5062. mddev_unlock(mddev);
  5063. }
  5064. /* on success, candidates will be empty, on error
  5065. * it won't...
  5066. */
  5067. rdev_for_each_list(rdev, tmp, &candidates) {
  5068. list_del_init(&rdev->same_set);
  5069. export_rdev(rdev);
  5070. }
  5071. mddev_put(mddev);
  5072. }
  5073. printk(KERN_INFO "md: ... autorun DONE.\n");
  5074. }
  5075. #endif /* !MODULE */
  5076. static int get_version(void __user *arg)
  5077. {
  5078. mdu_version_t ver;
  5079. ver.major = MD_MAJOR_VERSION;
  5080. ver.minor = MD_MINOR_VERSION;
  5081. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  5082. if (copy_to_user(arg, &ver, sizeof(ver)))
  5083. return -EFAULT;
  5084. return 0;
  5085. }
  5086. static int get_array_info(struct mddev *mddev, void __user *arg)
  5087. {
  5088. mdu_array_info_t info;
  5089. int nr,working,insync,failed,spare;
  5090. struct md_rdev *rdev;
  5091. nr = working = insync = failed = spare = 0;
  5092. rcu_read_lock();
  5093. rdev_for_each_rcu(rdev, mddev) {
  5094. nr++;
  5095. if (test_bit(Faulty, &rdev->flags))
  5096. failed++;
  5097. else {
  5098. working++;
  5099. if (test_bit(In_sync, &rdev->flags))
  5100. insync++;
  5101. else
  5102. spare++;
  5103. }
  5104. }
  5105. rcu_read_unlock();
  5106. info.major_version = mddev->major_version;
  5107. info.minor_version = mddev->minor_version;
  5108. info.patch_version = MD_PATCHLEVEL_VERSION;
  5109. info.ctime = mddev->ctime;
  5110. info.level = mddev->level;
  5111. info.size = mddev->dev_sectors / 2;
  5112. if (info.size != mddev->dev_sectors / 2) /* overflow */
  5113. info.size = -1;
  5114. info.nr_disks = nr;
  5115. info.raid_disks = mddev->raid_disks;
  5116. info.md_minor = mddev->md_minor;
  5117. info.not_persistent= !mddev->persistent;
  5118. info.utime = mddev->utime;
  5119. info.state = 0;
  5120. if (mddev->in_sync)
  5121. info.state = (1<<MD_SB_CLEAN);
  5122. if (mddev->bitmap && mddev->bitmap_info.offset)
  5123. info.state |= (1<<MD_SB_BITMAP_PRESENT);
  5124. if (mddev_is_clustered(mddev))
  5125. info.state |= (1<<MD_SB_CLUSTERED);
  5126. info.active_disks = insync;
  5127. info.working_disks = working;
  5128. info.failed_disks = failed;
  5129. info.spare_disks = spare;
  5130. info.layout = mddev->layout;
  5131. info.chunk_size = mddev->chunk_sectors << 9;
  5132. if (copy_to_user(arg, &info, sizeof(info)))
  5133. return -EFAULT;
  5134. return 0;
  5135. }
  5136. static int get_bitmap_file(struct mddev *mddev, void __user * arg)
  5137. {
  5138. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  5139. char *ptr;
  5140. int err;
  5141. file = kzalloc(sizeof(*file), GFP_NOIO);
  5142. if (!file)
  5143. return -ENOMEM;
  5144. err = 0;
  5145. spin_lock(&mddev->lock);
  5146. /* bitmap enabled */
  5147. if (mddev->bitmap_info.file) {
  5148. ptr = file_path(mddev->bitmap_info.file, file->pathname,
  5149. sizeof(file->pathname));
  5150. if (IS_ERR(ptr))
  5151. err = PTR_ERR(ptr);
  5152. else
  5153. memmove(file->pathname, ptr,
  5154. sizeof(file->pathname)-(ptr-file->pathname));
  5155. }
  5156. spin_unlock(&mddev->lock);
  5157. if (err == 0 &&
  5158. copy_to_user(arg, file, sizeof(*file)))
  5159. err = -EFAULT;
  5160. kfree(file);
  5161. return err;
  5162. }
  5163. static int get_disk_info(struct mddev *mddev, void __user * arg)
  5164. {
  5165. mdu_disk_info_t info;
  5166. struct md_rdev *rdev;
  5167. if (copy_from_user(&info, arg, sizeof(info)))
  5168. return -EFAULT;
  5169. rcu_read_lock();
  5170. rdev = md_find_rdev_nr_rcu(mddev, info.number);
  5171. if (rdev) {
  5172. info.major = MAJOR(rdev->bdev->bd_dev);
  5173. info.minor = MINOR(rdev->bdev->bd_dev);
  5174. info.raid_disk = rdev->raid_disk;
  5175. info.state = 0;
  5176. if (test_bit(Faulty, &rdev->flags))
  5177. info.state |= (1<<MD_DISK_FAULTY);
  5178. else if (test_bit(In_sync, &rdev->flags)) {
  5179. info.state |= (1<<MD_DISK_ACTIVE);
  5180. info.state |= (1<<MD_DISK_SYNC);
  5181. }
  5182. if (test_bit(WriteMostly, &rdev->flags))
  5183. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5184. } else {
  5185. info.major = info.minor = 0;
  5186. info.raid_disk = -1;
  5187. info.state = (1<<MD_DISK_REMOVED);
  5188. }
  5189. rcu_read_unlock();
  5190. if (copy_to_user(arg, &info, sizeof(info)))
  5191. return -EFAULT;
  5192. return 0;
  5193. }
  5194. static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
  5195. {
  5196. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5197. struct md_rdev *rdev;
  5198. dev_t dev = MKDEV(info->major,info->minor);
  5199. if (mddev_is_clustered(mddev) &&
  5200. !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
  5201. pr_err("%s: Cannot add to clustered mddev.\n",
  5202. mdname(mddev));
  5203. return -EINVAL;
  5204. }
  5205. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5206. return -EOVERFLOW;
  5207. if (!mddev->raid_disks) {
  5208. int err;
  5209. /* expecting a device which has a superblock */
  5210. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5211. if (IS_ERR(rdev)) {
  5212. printk(KERN_WARNING
  5213. "md: md_import_device returned %ld\n",
  5214. PTR_ERR(rdev));
  5215. return PTR_ERR(rdev);
  5216. }
  5217. if (!list_empty(&mddev->disks)) {
  5218. struct md_rdev *rdev0
  5219. = list_entry(mddev->disks.next,
  5220. struct md_rdev, same_set);
  5221. err = super_types[mddev->major_version]
  5222. .load_super(rdev, rdev0, mddev->minor_version);
  5223. if (err < 0) {
  5224. printk(KERN_WARNING
  5225. "md: %s has different UUID to %s\n",
  5226. bdevname(rdev->bdev,b),
  5227. bdevname(rdev0->bdev,b2));
  5228. export_rdev(rdev);
  5229. return -EINVAL;
  5230. }
  5231. }
  5232. err = bind_rdev_to_array(rdev, mddev);
  5233. if (err)
  5234. export_rdev(rdev);
  5235. return err;
  5236. }
  5237. /*
  5238. * add_new_disk can be used once the array is assembled
  5239. * to add "hot spares". They must already have a superblock
  5240. * written
  5241. */
  5242. if (mddev->pers) {
  5243. int err;
  5244. if (!mddev->pers->hot_add_disk) {
  5245. printk(KERN_WARNING
  5246. "%s: personality does not support diskops!\n",
  5247. mdname(mddev));
  5248. return -EINVAL;
  5249. }
  5250. if (mddev->persistent)
  5251. rdev = md_import_device(dev, mddev->major_version,
  5252. mddev->minor_version);
  5253. else
  5254. rdev = md_import_device(dev, -1, -1);
  5255. if (IS_ERR(rdev)) {
  5256. printk(KERN_WARNING
  5257. "md: md_import_device returned %ld\n",
  5258. PTR_ERR(rdev));
  5259. return PTR_ERR(rdev);
  5260. }
  5261. /* set saved_raid_disk if appropriate */
  5262. if (!mddev->persistent) {
  5263. if (info->state & (1<<MD_DISK_SYNC) &&
  5264. info->raid_disk < mddev->raid_disks) {
  5265. rdev->raid_disk = info->raid_disk;
  5266. set_bit(In_sync, &rdev->flags);
  5267. clear_bit(Bitmap_sync, &rdev->flags);
  5268. } else
  5269. rdev->raid_disk = -1;
  5270. rdev->saved_raid_disk = rdev->raid_disk;
  5271. } else
  5272. super_types[mddev->major_version].
  5273. validate_super(mddev, rdev);
  5274. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5275. rdev->raid_disk != info->raid_disk) {
  5276. /* This was a hot-add request, but events doesn't
  5277. * match, so reject it.
  5278. */
  5279. export_rdev(rdev);
  5280. return -EINVAL;
  5281. }
  5282. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5283. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5284. set_bit(WriteMostly, &rdev->flags);
  5285. else
  5286. clear_bit(WriteMostly, &rdev->flags);
  5287. /*
  5288. * check whether the device shows up in other nodes
  5289. */
  5290. if (mddev_is_clustered(mddev)) {
  5291. if (info->state & (1 << MD_DISK_CANDIDATE)) {
  5292. /* Through --cluster-confirm */
  5293. set_bit(Candidate, &rdev->flags);
  5294. err = md_cluster_ops->new_disk_ack(mddev, true);
  5295. if (err) {
  5296. export_rdev(rdev);
  5297. return err;
  5298. }
  5299. } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
  5300. /* --add initiated by this node */
  5301. err = md_cluster_ops->add_new_disk_start(mddev, rdev);
  5302. if (err) {
  5303. md_cluster_ops->add_new_disk_finish(mddev);
  5304. export_rdev(rdev);
  5305. return err;
  5306. }
  5307. }
  5308. }
  5309. rdev->raid_disk = -1;
  5310. err = bind_rdev_to_array(rdev, mddev);
  5311. if (err)
  5312. export_rdev(rdev);
  5313. else
  5314. err = add_bound_rdev(rdev);
  5315. if (mddev_is_clustered(mddev) &&
  5316. (info->state & (1 << MD_DISK_CLUSTER_ADD)))
  5317. md_cluster_ops->add_new_disk_finish(mddev);
  5318. return err;
  5319. }
  5320. /* otherwise, add_new_disk is only allowed
  5321. * for major_version==0 superblocks
  5322. */
  5323. if (mddev->major_version != 0) {
  5324. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5325. mdname(mddev));
  5326. return -EINVAL;
  5327. }
  5328. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5329. int err;
  5330. rdev = md_import_device(dev, -1, 0);
  5331. if (IS_ERR(rdev)) {
  5332. printk(KERN_WARNING
  5333. "md: error, md_import_device() returned %ld\n",
  5334. PTR_ERR(rdev));
  5335. return PTR_ERR(rdev);
  5336. }
  5337. rdev->desc_nr = info->number;
  5338. if (info->raid_disk < mddev->raid_disks)
  5339. rdev->raid_disk = info->raid_disk;
  5340. else
  5341. rdev->raid_disk = -1;
  5342. if (rdev->raid_disk < mddev->raid_disks)
  5343. if (info->state & (1<<MD_DISK_SYNC))
  5344. set_bit(In_sync, &rdev->flags);
  5345. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5346. set_bit(WriteMostly, &rdev->flags);
  5347. if (!mddev->persistent) {
  5348. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5349. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5350. } else
  5351. rdev->sb_start = calc_dev_sboffset(rdev);
  5352. rdev->sectors = rdev->sb_start;
  5353. err = bind_rdev_to_array(rdev, mddev);
  5354. if (err) {
  5355. export_rdev(rdev);
  5356. return err;
  5357. }
  5358. }
  5359. return 0;
  5360. }
  5361. static int hot_remove_disk(struct mddev *mddev, dev_t dev)
  5362. {
  5363. char b[BDEVNAME_SIZE];
  5364. struct md_rdev *rdev;
  5365. rdev = find_rdev(mddev, dev);
  5366. if (!rdev)
  5367. return -ENXIO;
  5368. if (mddev_is_clustered(mddev))
  5369. md_cluster_ops->metadata_update_start(mddev);
  5370. clear_bit(Blocked, &rdev->flags);
  5371. remove_and_add_spares(mddev, rdev);
  5372. if (rdev->raid_disk >= 0)
  5373. goto busy;
  5374. if (mddev_is_clustered(mddev))
  5375. md_cluster_ops->remove_disk(mddev, rdev);
  5376. md_kick_rdev_from_array(rdev);
  5377. md_update_sb(mddev, 1);
  5378. md_new_event(mddev);
  5379. if (mddev_is_clustered(mddev))
  5380. md_cluster_ops->metadata_update_finish(mddev);
  5381. return 0;
  5382. busy:
  5383. if (mddev_is_clustered(mddev))
  5384. md_cluster_ops->metadata_update_cancel(mddev);
  5385. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5386. bdevname(rdev->bdev,b), mdname(mddev));
  5387. return -EBUSY;
  5388. }
  5389. static int hot_add_disk(struct mddev *mddev, dev_t dev)
  5390. {
  5391. char b[BDEVNAME_SIZE];
  5392. int err;
  5393. struct md_rdev *rdev;
  5394. if (!mddev->pers)
  5395. return -ENODEV;
  5396. if (mddev->major_version != 0) {
  5397. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5398. " version-0 superblocks.\n",
  5399. mdname(mddev));
  5400. return -EINVAL;
  5401. }
  5402. if (!mddev->pers->hot_add_disk) {
  5403. printk(KERN_WARNING
  5404. "%s: personality does not support diskops!\n",
  5405. mdname(mddev));
  5406. return -EINVAL;
  5407. }
  5408. rdev = md_import_device(dev, -1, 0);
  5409. if (IS_ERR(rdev)) {
  5410. printk(KERN_WARNING
  5411. "md: error, md_import_device() returned %ld\n",
  5412. PTR_ERR(rdev));
  5413. return -EINVAL;
  5414. }
  5415. if (mddev->persistent)
  5416. rdev->sb_start = calc_dev_sboffset(rdev);
  5417. else
  5418. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5419. rdev->sectors = rdev->sb_start;
  5420. if (test_bit(Faulty, &rdev->flags)) {
  5421. printk(KERN_WARNING
  5422. "md: can not hot-add faulty %s disk to %s!\n",
  5423. bdevname(rdev->bdev,b), mdname(mddev));
  5424. err = -EINVAL;
  5425. goto abort_export;
  5426. }
  5427. if (mddev_is_clustered(mddev))
  5428. md_cluster_ops->metadata_update_start(mddev);
  5429. clear_bit(In_sync, &rdev->flags);
  5430. rdev->desc_nr = -1;
  5431. rdev->saved_raid_disk = -1;
  5432. err = bind_rdev_to_array(rdev, mddev);
  5433. if (err)
  5434. goto abort_clustered;
  5435. /*
  5436. * The rest should better be atomic, we can have disk failures
  5437. * noticed in interrupt contexts ...
  5438. */
  5439. rdev->raid_disk = -1;
  5440. md_update_sb(mddev, 1);
  5441. if (mddev_is_clustered(mddev))
  5442. md_cluster_ops->metadata_update_finish(mddev);
  5443. /*
  5444. * Kick recovery, maybe this spare has to be added to the
  5445. * array immediately.
  5446. */
  5447. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5448. md_wakeup_thread(mddev->thread);
  5449. md_new_event(mddev);
  5450. return 0;
  5451. abort_clustered:
  5452. if (mddev_is_clustered(mddev))
  5453. md_cluster_ops->metadata_update_cancel(mddev);
  5454. abort_export:
  5455. export_rdev(rdev);
  5456. return err;
  5457. }
  5458. static int set_bitmap_file(struct mddev *mddev, int fd)
  5459. {
  5460. int err = 0;
  5461. if (mddev->pers) {
  5462. if (!mddev->pers->quiesce || !mddev->thread)
  5463. return -EBUSY;
  5464. if (mddev->recovery || mddev->sync_thread)
  5465. return -EBUSY;
  5466. /* we should be able to change the bitmap.. */
  5467. }
  5468. if (fd >= 0) {
  5469. struct inode *inode;
  5470. struct file *f;
  5471. if (mddev->bitmap || mddev->bitmap_info.file)
  5472. return -EEXIST; /* cannot add when bitmap is present */
  5473. f = fget(fd);
  5474. if (f == NULL) {
  5475. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5476. mdname(mddev));
  5477. return -EBADF;
  5478. }
  5479. inode = f->f_mapping->host;
  5480. if (!S_ISREG(inode->i_mode)) {
  5481. printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
  5482. mdname(mddev));
  5483. err = -EBADF;
  5484. } else if (!(f->f_mode & FMODE_WRITE)) {
  5485. printk(KERN_ERR "%s: error: bitmap file must open for write\n",
  5486. mdname(mddev));
  5487. err = -EBADF;
  5488. } else if (atomic_read(&inode->i_writecount) != 1) {
  5489. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5490. mdname(mddev));
  5491. err = -EBUSY;
  5492. }
  5493. if (err) {
  5494. fput(f);
  5495. return err;
  5496. }
  5497. mddev->bitmap_info.file = f;
  5498. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5499. } else if (mddev->bitmap == NULL)
  5500. return -ENOENT; /* cannot remove what isn't there */
  5501. err = 0;
  5502. if (mddev->pers) {
  5503. mddev->pers->quiesce(mddev, 1);
  5504. if (fd >= 0) {
  5505. struct bitmap *bitmap;
  5506. bitmap = bitmap_create(mddev, -1);
  5507. if (!IS_ERR(bitmap)) {
  5508. mddev->bitmap = bitmap;
  5509. err = bitmap_load(mddev);
  5510. } else
  5511. err = PTR_ERR(bitmap);
  5512. }
  5513. if (fd < 0 || err) {
  5514. bitmap_destroy(mddev);
  5515. fd = -1; /* make sure to put the file */
  5516. }
  5517. mddev->pers->quiesce(mddev, 0);
  5518. }
  5519. if (fd < 0) {
  5520. struct file *f = mddev->bitmap_info.file;
  5521. if (f) {
  5522. spin_lock(&mddev->lock);
  5523. mddev->bitmap_info.file = NULL;
  5524. spin_unlock(&mddev->lock);
  5525. fput(f);
  5526. }
  5527. }
  5528. return err;
  5529. }
  5530. /*
  5531. * set_array_info is used two different ways
  5532. * The original usage is when creating a new array.
  5533. * In this usage, raid_disks is > 0 and it together with
  5534. * level, size, not_persistent,layout,chunksize determine the
  5535. * shape of the array.
  5536. * This will always create an array with a type-0.90.0 superblock.
  5537. * The newer usage is when assembling an array.
  5538. * In this case raid_disks will be 0, and the major_version field is
  5539. * use to determine which style super-blocks are to be found on the devices.
  5540. * The minor and patch _version numbers are also kept incase the
  5541. * super_block handler wishes to interpret them.
  5542. */
  5543. static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5544. {
  5545. if (info->raid_disks == 0) {
  5546. /* just setting version number for superblock loading */
  5547. if (info->major_version < 0 ||
  5548. info->major_version >= ARRAY_SIZE(super_types) ||
  5549. super_types[info->major_version].name == NULL) {
  5550. /* maybe try to auto-load a module? */
  5551. printk(KERN_INFO
  5552. "md: superblock version %d not known\n",
  5553. info->major_version);
  5554. return -EINVAL;
  5555. }
  5556. mddev->major_version = info->major_version;
  5557. mddev->minor_version = info->minor_version;
  5558. mddev->patch_version = info->patch_version;
  5559. mddev->persistent = !info->not_persistent;
  5560. /* ensure mddev_put doesn't delete this now that there
  5561. * is some minimal configuration.
  5562. */
  5563. mddev->ctime = get_seconds();
  5564. return 0;
  5565. }
  5566. mddev->major_version = MD_MAJOR_VERSION;
  5567. mddev->minor_version = MD_MINOR_VERSION;
  5568. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5569. mddev->ctime = get_seconds();
  5570. mddev->level = info->level;
  5571. mddev->clevel[0] = 0;
  5572. mddev->dev_sectors = 2 * (sector_t)info->size;
  5573. mddev->raid_disks = info->raid_disks;
  5574. /* don't set md_minor, it is determined by which /dev/md* was
  5575. * openned
  5576. */
  5577. if (info->state & (1<<MD_SB_CLEAN))
  5578. mddev->recovery_cp = MaxSector;
  5579. else
  5580. mddev->recovery_cp = 0;
  5581. mddev->persistent = ! info->not_persistent;
  5582. mddev->external = 0;
  5583. mddev->layout = info->layout;
  5584. mddev->chunk_sectors = info->chunk_size >> 9;
  5585. mddev->max_disks = MD_SB_DISKS;
  5586. if (mddev->persistent)
  5587. mddev->flags = 0;
  5588. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5589. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5590. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5591. mddev->bitmap_info.offset = 0;
  5592. mddev->reshape_position = MaxSector;
  5593. /*
  5594. * Generate a 128 bit UUID
  5595. */
  5596. get_random_bytes(mddev->uuid, 16);
  5597. mddev->new_level = mddev->level;
  5598. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5599. mddev->new_layout = mddev->layout;
  5600. mddev->delta_disks = 0;
  5601. mddev->reshape_backwards = 0;
  5602. return 0;
  5603. }
  5604. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5605. {
  5606. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5607. if (mddev->external_size)
  5608. return;
  5609. mddev->array_sectors = array_sectors;
  5610. }
  5611. EXPORT_SYMBOL(md_set_array_sectors);
  5612. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5613. {
  5614. struct md_rdev *rdev;
  5615. int rv;
  5616. int fit = (num_sectors == 0);
  5617. if (mddev->pers->resize == NULL)
  5618. return -EINVAL;
  5619. /* The "num_sectors" is the number of sectors of each device that
  5620. * is used. This can only make sense for arrays with redundancy.
  5621. * linear and raid0 always use whatever space is available. We can only
  5622. * consider changing this number if no resync or reconstruction is
  5623. * happening, and if the new size is acceptable. It must fit before the
  5624. * sb_start or, if that is <data_offset, it must fit before the size
  5625. * of each device. If num_sectors is zero, we find the largest size
  5626. * that fits.
  5627. */
  5628. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5629. mddev->sync_thread)
  5630. return -EBUSY;
  5631. if (mddev->ro)
  5632. return -EROFS;
  5633. rdev_for_each(rdev, mddev) {
  5634. sector_t avail = rdev->sectors;
  5635. if (fit && (num_sectors == 0 || num_sectors > avail))
  5636. num_sectors = avail;
  5637. if (avail < num_sectors)
  5638. return -ENOSPC;
  5639. }
  5640. rv = mddev->pers->resize(mddev, num_sectors);
  5641. if (!rv)
  5642. revalidate_disk(mddev->gendisk);
  5643. return rv;
  5644. }
  5645. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5646. {
  5647. int rv;
  5648. struct md_rdev *rdev;
  5649. /* change the number of raid disks */
  5650. if (mddev->pers->check_reshape == NULL)
  5651. return -EINVAL;
  5652. if (mddev->ro)
  5653. return -EROFS;
  5654. if (raid_disks <= 0 ||
  5655. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5656. return -EINVAL;
  5657. if (mddev->sync_thread ||
  5658. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5659. mddev->reshape_position != MaxSector)
  5660. return -EBUSY;
  5661. rdev_for_each(rdev, mddev) {
  5662. if (mddev->raid_disks < raid_disks &&
  5663. rdev->data_offset < rdev->new_data_offset)
  5664. return -EINVAL;
  5665. if (mddev->raid_disks > raid_disks &&
  5666. rdev->data_offset > rdev->new_data_offset)
  5667. return -EINVAL;
  5668. }
  5669. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5670. if (mddev->delta_disks < 0)
  5671. mddev->reshape_backwards = 1;
  5672. else if (mddev->delta_disks > 0)
  5673. mddev->reshape_backwards = 0;
  5674. rv = mddev->pers->check_reshape(mddev);
  5675. if (rv < 0) {
  5676. mddev->delta_disks = 0;
  5677. mddev->reshape_backwards = 0;
  5678. }
  5679. return rv;
  5680. }
  5681. /*
  5682. * update_array_info is used to change the configuration of an
  5683. * on-line array.
  5684. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5685. * fields in the info are checked against the array.
  5686. * Any differences that cannot be handled will cause an error.
  5687. * Normally, only one change can be managed at a time.
  5688. */
  5689. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5690. {
  5691. int rv = 0;
  5692. int cnt = 0;
  5693. int state = 0;
  5694. /* calculate expected state,ignoring low bits */
  5695. if (mddev->bitmap && mddev->bitmap_info.offset)
  5696. state |= (1 << MD_SB_BITMAP_PRESENT);
  5697. if (mddev->major_version != info->major_version ||
  5698. mddev->minor_version != info->minor_version ||
  5699. /* mddev->patch_version != info->patch_version || */
  5700. mddev->ctime != info->ctime ||
  5701. mddev->level != info->level ||
  5702. /* mddev->layout != info->layout || */
  5703. mddev->persistent != !info->not_persistent ||
  5704. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5705. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5706. ((state^info->state) & 0xfffffe00)
  5707. )
  5708. return -EINVAL;
  5709. /* Check there is only one change */
  5710. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5711. cnt++;
  5712. if (mddev->raid_disks != info->raid_disks)
  5713. cnt++;
  5714. if (mddev->layout != info->layout)
  5715. cnt++;
  5716. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5717. cnt++;
  5718. if (cnt == 0)
  5719. return 0;
  5720. if (cnt > 1)
  5721. return -EINVAL;
  5722. if (mddev->layout != info->layout) {
  5723. /* Change layout
  5724. * we don't need to do anything at the md level, the
  5725. * personality will take care of it all.
  5726. */
  5727. if (mddev->pers->check_reshape == NULL)
  5728. return -EINVAL;
  5729. else {
  5730. mddev->new_layout = info->layout;
  5731. rv = mddev->pers->check_reshape(mddev);
  5732. if (rv)
  5733. mddev->new_layout = mddev->layout;
  5734. return rv;
  5735. }
  5736. }
  5737. if (mddev_is_clustered(mddev))
  5738. md_cluster_ops->metadata_update_start(mddev);
  5739. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5740. rv = update_size(mddev, (sector_t)info->size * 2);
  5741. if (mddev->raid_disks != info->raid_disks)
  5742. rv = update_raid_disks(mddev, info->raid_disks);
  5743. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5744. if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
  5745. rv = -EINVAL;
  5746. goto err;
  5747. }
  5748. if (mddev->recovery || mddev->sync_thread) {
  5749. rv = -EBUSY;
  5750. goto err;
  5751. }
  5752. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5753. struct bitmap *bitmap;
  5754. /* add the bitmap */
  5755. if (mddev->bitmap) {
  5756. rv = -EEXIST;
  5757. goto err;
  5758. }
  5759. if (mddev->bitmap_info.default_offset == 0) {
  5760. rv = -EINVAL;
  5761. goto err;
  5762. }
  5763. mddev->bitmap_info.offset =
  5764. mddev->bitmap_info.default_offset;
  5765. mddev->bitmap_info.space =
  5766. mddev->bitmap_info.default_space;
  5767. mddev->pers->quiesce(mddev, 1);
  5768. bitmap = bitmap_create(mddev, -1);
  5769. if (!IS_ERR(bitmap)) {
  5770. mddev->bitmap = bitmap;
  5771. rv = bitmap_load(mddev);
  5772. } else
  5773. rv = PTR_ERR(bitmap);
  5774. if (rv)
  5775. bitmap_destroy(mddev);
  5776. mddev->pers->quiesce(mddev, 0);
  5777. } else {
  5778. /* remove the bitmap */
  5779. if (!mddev->bitmap) {
  5780. rv = -ENOENT;
  5781. goto err;
  5782. }
  5783. if (mddev->bitmap->storage.file) {
  5784. rv = -EINVAL;
  5785. goto err;
  5786. }
  5787. mddev->pers->quiesce(mddev, 1);
  5788. bitmap_destroy(mddev);
  5789. mddev->pers->quiesce(mddev, 0);
  5790. mddev->bitmap_info.offset = 0;
  5791. }
  5792. }
  5793. md_update_sb(mddev, 1);
  5794. if (mddev_is_clustered(mddev))
  5795. md_cluster_ops->metadata_update_finish(mddev);
  5796. return rv;
  5797. err:
  5798. if (mddev_is_clustered(mddev))
  5799. md_cluster_ops->metadata_update_cancel(mddev);
  5800. return rv;
  5801. }
  5802. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5803. {
  5804. struct md_rdev *rdev;
  5805. int err = 0;
  5806. if (mddev->pers == NULL)
  5807. return -ENODEV;
  5808. rcu_read_lock();
  5809. rdev = find_rdev_rcu(mddev, dev);
  5810. if (!rdev)
  5811. err = -ENODEV;
  5812. else {
  5813. md_error(mddev, rdev);
  5814. if (!test_bit(Faulty, &rdev->flags))
  5815. err = -EBUSY;
  5816. }
  5817. rcu_read_unlock();
  5818. return err;
  5819. }
  5820. /*
  5821. * We have a problem here : there is no easy way to give a CHS
  5822. * virtual geometry. We currently pretend that we have a 2 heads
  5823. * 4 sectors (with a BIG number of cylinders...). This drives
  5824. * dosfs just mad... ;-)
  5825. */
  5826. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5827. {
  5828. struct mddev *mddev = bdev->bd_disk->private_data;
  5829. geo->heads = 2;
  5830. geo->sectors = 4;
  5831. geo->cylinders = mddev->array_sectors / 8;
  5832. return 0;
  5833. }
  5834. static inline bool md_ioctl_valid(unsigned int cmd)
  5835. {
  5836. switch (cmd) {
  5837. case ADD_NEW_DISK:
  5838. case BLKROSET:
  5839. case GET_ARRAY_INFO:
  5840. case GET_BITMAP_FILE:
  5841. case GET_DISK_INFO:
  5842. case HOT_ADD_DISK:
  5843. case HOT_REMOVE_DISK:
  5844. case RAID_AUTORUN:
  5845. case RAID_VERSION:
  5846. case RESTART_ARRAY_RW:
  5847. case RUN_ARRAY:
  5848. case SET_ARRAY_INFO:
  5849. case SET_BITMAP_FILE:
  5850. case SET_DISK_FAULTY:
  5851. case STOP_ARRAY:
  5852. case STOP_ARRAY_RO:
  5853. case CLUSTERED_DISK_NACK:
  5854. return true;
  5855. default:
  5856. return false;
  5857. }
  5858. }
  5859. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5860. unsigned int cmd, unsigned long arg)
  5861. {
  5862. int err = 0;
  5863. void __user *argp = (void __user *)arg;
  5864. struct mddev *mddev = NULL;
  5865. int ro;
  5866. if (!md_ioctl_valid(cmd))
  5867. return -ENOTTY;
  5868. switch (cmd) {
  5869. case RAID_VERSION:
  5870. case GET_ARRAY_INFO:
  5871. case GET_DISK_INFO:
  5872. break;
  5873. default:
  5874. if (!capable(CAP_SYS_ADMIN))
  5875. return -EACCES;
  5876. }
  5877. /*
  5878. * Commands dealing with the RAID driver but not any
  5879. * particular array:
  5880. */
  5881. switch (cmd) {
  5882. case RAID_VERSION:
  5883. err = get_version(argp);
  5884. goto out;
  5885. #ifndef MODULE
  5886. case RAID_AUTORUN:
  5887. err = 0;
  5888. autostart_arrays(arg);
  5889. goto out;
  5890. #endif
  5891. default:;
  5892. }
  5893. /*
  5894. * Commands creating/starting a new array:
  5895. */
  5896. mddev = bdev->bd_disk->private_data;
  5897. if (!mddev) {
  5898. BUG();
  5899. goto out;
  5900. }
  5901. /* Some actions do not requires the mutex */
  5902. switch (cmd) {
  5903. case GET_ARRAY_INFO:
  5904. if (!mddev->raid_disks && !mddev->external)
  5905. err = -ENODEV;
  5906. else
  5907. err = get_array_info(mddev, argp);
  5908. goto out;
  5909. case GET_DISK_INFO:
  5910. if (!mddev->raid_disks && !mddev->external)
  5911. err = -ENODEV;
  5912. else
  5913. err = get_disk_info(mddev, argp);
  5914. goto out;
  5915. case SET_DISK_FAULTY:
  5916. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5917. goto out;
  5918. case GET_BITMAP_FILE:
  5919. err = get_bitmap_file(mddev, argp);
  5920. goto out;
  5921. }
  5922. if (cmd == ADD_NEW_DISK)
  5923. /* need to ensure md_delayed_delete() has completed */
  5924. flush_workqueue(md_misc_wq);
  5925. if (cmd == HOT_REMOVE_DISK)
  5926. /* need to ensure recovery thread has run */
  5927. wait_event_interruptible_timeout(mddev->sb_wait,
  5928. !test_bit(MD_RECOVERY_NEEDED,
  5929. &mddev->flags),
  5930. msecs_to_jiffies(5000));
  5931. if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
  5932. /* Need to flush page cache, and ensure no-one else opens
  5933. * and writes
  5934. */
  5935. mutex_lock(&mddev->open_mutex);
  5936. if (mddev->pers && atomic_read(&mddev->openers) > 1) {
  5937. mutex_unlock(&mddev->open_mutex);
  5938. err = -EBUSY;
  5939. goto out;
  5940. }
  5941. set_bit(MD_STILL_CLOSED, &mddev->flags);
  5942. mutex_unlock(&mddev->open_mutex);
  5943. sync_blockdev(bdev);
  5944. }
  5945. err = mddev_lock(mddev);
  5946. if (err) {
  5947. printk(KERN_INFO
  5948. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5949. err, cmd);
  5950. goto out;
  5951. }
  5952. if (cmd == SET_ARRAY_INFO) {
  5953. mdu_array_info_t info;
  5954. if (!arg)
  5955. memset(&info, 0, sizeof(info));
  5956. else if (copy_from_user(&info, argp, sizeof(info))) {
  5957. err = -EFAULT;
  5958. goto unlock;
  5959. }
  5960. if (mddev->pers) {
  5961. err = update_array_info(mddev, &info);
  5962. if (err) {
  5963. printk(KERN_WARNING "md: couldn't update"
  5964. " array info. %d\n", err);
  5965. goto unlock;
  5966. }
  5967. goto unlock;
  5968. }
  5969. if (!list_empty(&mddev->disks)) {
  5970. printk(KERN_WARNING
  5971. "md: array %s already has disks!\n",
  5972. mdname(mddev));
  5973. err = -EBUSY;
  5974. goto unlock;
  5975. }
  5976. if (mddev->raid_disks) {
  5977. printk(KERN_WARNING
  5978. "md: array %s already initialised!\n",
  5979. mdname(mddev));
  5980. err = -EBUSY;
  5981. goto unlock;
  5982. }
  5983. err = set_array_info(mddev, &info);
  5984. if (err) {
  5985. printk(KERN_WARNING "md: couldn't set"
  5986. " array info. %d\n", err);
  5987. goto unlock;
  5988. }
  5989. goto unlock;
  5990. }
  5991. /*
  5992. * Commands querying/configuring an existing array:
  5993. */
  5994. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5995. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5996. if ((!mddev->raid_disks && !mddev->external)
  5997. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5998. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5999. && cmd != GET_BITMAP_FILE) {
  6000. err = -ENODEV;
  6001. goto unlock;
  6002. }
  6003. /*
  6004. * Commands even a read-only array can execute:
  6005. */
  6006. switch (cmd) {
  6007. case RESTART_ARRAY_RW:
  6008. err = restart_array(mddev);
  6009. goto unlock;
  6010. case STOP_ARRAY:
  6011. err = do_md_stop(mddev, 0, bdev);
  6012. goto unlock;
  6013. case STOP_ARRAY_RO:
  6014. err = md_set_readonly(mddev, bdev);
  6015. goto unlock;
  6016. case HOT_REMOVE_DISK:
  6017. err = hot_remove_disk(mddev, new_decode_dev(arg));
  6018. goto unlock;
  6019. case ADD_NEW_DISK:
  6020. /* We can support ADD_NEW_DISK on read-only arrays
  6021. * on if we are re-adding a preexisting device.
  6022. * So require mddev->pers and MD_DISK_SYNC.
  6023. */
  6024. if (mddev->pers) {
  6025. mdu_disk_info_t info;
  6026. if (copy_from_user(&info, argp, sizeof(info)))
  6027. err = -EFAULT;
  6028. else if (!(info.state & (1<<MD_DISK_SYNC)))
  6029. /* Need to clear read-only for this */
  6030. break;
  6031. else
  6032. err = add_new_disk(mddev, &info);
  6033. goto unlock;
  6034. }
  6035. break;
  6036. case BLKROSET:
  6037. if (get_user(ro, (int __user *)(arg))) {
  6038. err = -EFAULT;
  6039. goto unlock;
  6040. }
  6041. err = -EINVAL;
  6042. /* if the bdev is going readonly the value of mddev->ro
  6043. * does not matter, no writes are coming
  6044. */
  6045. if (ro)
  6046. goto unlock;
  6047. /* are we are already prepared for writes? */
  6048. if (mddev->ro != 1)
  6049. goto unlock;
  6050. /* transitioning to readauto need only happen for
  6051. * arrays that call md_write_start
  6052. */
  6053. if (mddev->pers) {
  6054. err = restart_array(mddev);
  6055. if (err == 0) {
  6056. mddev->ro = 2;
  6057. set_disk_ro(mddev->gendisk, 0);
  6058. }
  6059. }
  6060. goto unlock;
  6061. }
  6062. /*
  6063. * The remaining ioctls are changing the state of the
  6064. * superblock, so we do not allow them on read-only arrays.
  6065. */
  6066. if (mddev->ro && mddev->pers) {
  6067. if (mddev->ro == 2) {
  6068. mddev->ro = 0;
  6069. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6070. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6071. /* mddev_unlock will wake thread */
  6072. /* If a device failed while we were read-only, we
  6073. * need to make sure the metadata is updated now.
  6074. */
  6075. if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  6076. mddev_unlock(mddev);
  6077. wait_event(mddev->sb_wait,
  6078. !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
  6079. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6080. mddev_lock_nointr(mddev);
  6081. }
  6082. } else {
  6083. err = -EROFS;
  6084. goto unlock;
  6085. }
  6086. }
  6087. switch (cmd) {
  6088. case ADD_NEW_DISK:
  6089. {
  6090. mdu_disk_info_t info;
  6091. if (copy_from_user(&info, argp, sizeof(info)))
  6092. err = -EFAULT;
  6093. else
  6094. err = add_new_disk(mddev, &info);
  6095. goto unlock;
  6096. }
  6097. case CLUSTERED_DISK_NACK:
  6098. if (mddev_is_clustered(mddev))
  6099. md_cluster_ops->new_disk_ack(mddev, false);
  6100. else
  6101. err = -EINVAL;
  6102. goto unlock;
  6103. case HOT_ADD_DISK:
  6104. err = hot_add_disk(mddev, new_decode_dev(arg));
  6105. goto unlock;
  6106. case RUN_ARRAY:
  6107. err = do_md_run(mddev);
  6108. goto unlock;
  6109. case SET_BITMAP_FILE:
  6110. err = set_bitmap_file(mddev, (int)arg);
  6111. goto unlock;
  6112. default:
  6113. err = -EINVAL;
  6114. goto unlock;
  6115. }
  6116. unlock:
  6117. if (mddev->hold_active == UNTIL_IOCTL &&
  6118. err != -EINVAL)
  6119. mddev->hold_active = 0;
  6120. mddev_unlock(mddev);
  6121. out:
  6122. return err;
  6123. }
  6124. #ifdef CONFIG_COMPAT
  6125. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  6126. unsigned int cmd, unsigned long arg)
  6127. {
  6128. switch (cmd) {
  6129. case HOT_REMOVE_DISK:
  6130. case HOT_ADD_DISK:
  6131. case SET_DISK_FAULTY:
  6132. case SET_BITMAP_FILE:
  6133. /* These take in integer arg, do not convert */
  6134. break;
  6135. default:
  6136. arg = (unsigned long)compat_ptr(arg);
  6137. break;
  6138. }
  6139. return md_ioctl(bdev, mode, cmd, arg);
  6140. }
  6141. #endif /* CONFIG_COMPAT */
  6142. static int md_open(struct block_device *bdev, fmode_t mode)
  6143. {
  6144. /*
  6145. * Succeed if we can lock the mddev, which confirms that
  6146. * it isn't being stopped right now.
  6147. */
  6148. struct mddev *mddev = mddev_find(bdev->bd_dev);
  6149. int err;
  6150. if (!mddev)
  6151. return -ENODEV;
  6152. if (mddev->gendisk != bdev->bd_disk) {
  6153. /* we are racing with mddev_put which is discarding this
  6154. * bd_disk.
  6155. */
  6156. mddev_put(mddev);
  6157. /* Wait until bdev->bd_disk is definitely gone */
  6158. flush_workqueue(md_misc_wq);
  6159. /* Then retry the open from the top */
  6160. return -ERESTARTSYS;
  6161. }
  6162. BUG_ON(mddev != bdev->bd_disk->private_data);
  6163. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  6164. goto out;
  6165. err = 0;
  6166. atomic_inc(&mddev->openers);
  6167. clear_bit(MD_STILL_CLOSED, &mddev->flags);
  6168. mutex_unlock(&mddev->open_mutex);
  6169. check_disk_change(bdev);
  6170. out:
  6171. return err;
  6172. }
  6173. static void md_release(struct gendisk *disk, fmode_t mode)
  6174. {
  6175. struct mddev *mddev = disk->private_data;
  6176. BUG_ON(!mddev);
  6177. atomic_dec(&mddev->openers);
  6178. mddev_put(mddev);
  6179. }
  6180. static int md_media_changed(struct gendisk *disk)
  6181. {
  6182. struct mddev *mddev = disk->private_data;
  6183. return mddev->changed;
  6184. }
  6185. static int md_revalidate(struct gendisk *disk)
  6186. {
  6187. struct mddev *mddev = disk->private_data;
  6188. mddev->changed = 0;
  6189. return 0;
  6190. }
  6191. static const struct block_device_operations md_fops =
  6192. {
  6193. .owner = THIS_MODULE,
  6194. .open = md_open,
  6195. .release = md_release,
  6196. .ioctl = md_ioctl,
  6197. #ifdef CONFIG_COMPAT
  6198. .compat_ioctl = md_compat_ioctl,
  6199. #endif
  6200. .getgeo = md_getgeo,
  6201. .media_changed = md_media_changed,
  6202. .revalidate_disk= md_revalidate,
  6203. };
  6204. static int md_thread(void *arg)
  6205. {
  6206. struct md_thread *thread = arg;
  6207. /*
  6208. * md_thread is a 'system-thread', it's priority should be very
  6209. * high. We avoid resource deadlocks individually in each
  6210. * raid personality. (RAID5 does preallocation) We also use RR and
  6211. * the very same RT priority as kswapd, thus we will never get
  6212. * into a priority inversion deadlock.
  6213. *
  6214. * we definitely have to have equal or higher priority than
  6215. * bdflush, otherwise bdflush will deadlock if there are too
  6216. * many dirty RAID5 blocks.
  6217. */
  6218. allow_signal(SIGKILL);
  6219. while (!kthread_should_stop()) {
  6220. /* We need to wait INTERRUPTIBLE so that
  6221. * we don't add to the load-average.
  6222. * That means we need to be sure no signals are
  6223. * pending
  6224. */
  6225. if (signal_pending(current))
  6226. flush_signals(current);
  6227. wait_event_interruptible_timeout
  6228. (thread->wqueue,
  6229. test_bit(THREAD_WAKEUP, &thread->flags)
  6230. || kthread_should_stop(),
  6231. thread->timeout);
  6232. clear_bit(THREAD_WAKEUP, &thread->flags);
  6233. if (!kthread_should_stop())
  6234. thread->run(thread);
  6235. }
  6236. return 0;
  6237. }
  6238. void md_wakeup_thread(struct md_thread *thread)
  6239. {
  6240. if (thread) {
  6241. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  6242. set_bit(THREAD_WAKEUP, &thread->flags);
  6243. wake_up(&thread->wqueue);
  6244. }
  6245. }
  6246. EXPORT_SYMBOL(md_wakeup_thread);
  6247. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  6248. struct mddev *mddev, const char *name)
  6249. {
  6250. struct md_thread *thread;
  6251. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  6252. if (!thread)
  6253. return NULL;
  6254. init_waitqueue_head(&thread->wqueue);
  6255. thread->run = run;
  6256. thread->mddev = mddev;
  6257. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  6258. thread->tsk = kthread_run(md_thread, thread,
  6259. "%s_%s",
  6260. mdname(thread->mddev),
  6261. name);
  6262. if (IS_ERR(thread->tsk)) {
  6263. kfree(thread);
  6264. return NULL;
  6265. }
  6266. return thread;
  6267. }
  6268. EXPORT_SYMBOL(md_register_thread);
  6269. void md_unregister_thread(struct md_thread **threadp)
  6270. {
  6271. struct md_thread *thread = *threadp;
  6272. if (!thread)
  6273. return;
  6274. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  6275. /* Locking ensures that mddev_unlock does not wake_up a
  6276. * non-existent thread
  6277. */
  6278. spin_lock(&pers_lock);
  6279. *threadp = NULL;
  6280. spin_unlock(&pers_lock);
  6281. kthread_stop(thread->tsk);
  6282. kfree(thread);
  6283. }
  6284. EXPORT_SYMBOL(md_unregister_thread);
  6285. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  6286. {
  6287. if (!rdev || test_bit(Faulty, &rdev->flags))
  6288. return;
  6289. if (!mddev->pers || !mddev->pers->error_handler)
  6290. return;
  6291. mddev->pers->error_handler(mddev,rdev);
  6292. if (mddev->degraded)
  6293. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6294. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6295. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6296. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6297. md_wakeup_thread(mddev->thread);
  6298. if (mddev->event_work.func)
  6299. queue_work(md_misc_wq, &mddev->event_work);
  6300. md_new_event_inintr(mddev);
  6301. }
  6302. EXPORT_SYMBOL(md_error);
  6303. /* seq_file implementation /proc/mdstat */
  6304. static void status_unused(struct seq_file *seq)
  6305. {
  6306. int i = 0;
  6307. struct md_rdev *rdev;
  6308. seq_printf(seq, "unused devices: ");
  6309. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6310. char b[BDEVNAME_SIZE];
  6311. i++;
  6312. seq_printf(seq, "%s ",
  6313. bdevname(rdev->bdev,b));
  6314. }
  6315. if (!i)
  6316. seq_printf(seq, "<none>");
  6317. seq_printf(seq, "\n");
  6318. }
  6319. static int status_resync(struct seq_file *seq, struct mddev *mddev)
  6320. {
  6321. sector_t max_sectors, resync, res;
  6322. unsigned long dt, db;
  6323. sector_t rt;
  6324. int scale;
  6325. unsigned int per_milli;
  6326. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6327. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6328. max_sectors = mddev->resync_max_sectors;
  6329. else
  6330. max_sectors = mddev->dev_sectors;
  6331. resync = mddev->curr_resync;
  6332. if (resync <= 3) {
  6333. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6334. /* Still cleaning up */
  6335. resync = max_sectors;
  6336. } else
  6337. resync -= atomic_read(&mddev->recovery_active);
  6338. if (resync == 0) {
  6339. if (mddev->recovery_cp < MaxSector) {
  6340. seq_printf(seq, "\tresync=PENDING");
  6341. return 1;
  6342. }
  6343. return 0;
  6344. }
  6345. if (resync < 3) {
  6346. seq_printf(seq, "\tresync=DELAYED");
  6347. return 1;
  6348. }
  6349. WARN_ON(max_sectors == 0);
  6350. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6351. * in a sector_t, and (max_sectors>>scale) will fit in a
  6352. * u32, as those are the requirements for sector_div.
  6353. * Thus 'scale' must be at least 10
  6354. */
  6355. scale = 10;
  6356. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6357. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6358. scale++;
  6359. }
  6360. res = (resync>>scale)*1000;
  6361. sector_div(res, (u32)((max_sectors>>scale)+1));
  6362. per_milli = res;
  6363. {
  6364. int i, x = per_milli/50, y = 20-x;
  6365. seq_printf(seq, "[");
  6366. for (i = 0; i < x; i++)
  6367. seq_printf(seq, "=");
  6368. seq_printf(seq, ">");
  6369. for (i = 0; i < y; i++)
  6370. seq_printf(seq, ".");
  6371. seq_printf(seq, "] ");
  6372. }
  6373. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6374. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6375. "reshape" :
  6376. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6377. "check" :
  6378. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6379. "resync" : "recovery"))),
  6380. per_milli/10, per_milli % 10,
  6381. (unsigned long long) resync/2,
  6382. (unsigned long long) max_sectors/2);
  6383. /*
  6384. * dt: time from mark until now
  6385. * db: blocks written from mark until now
  6386. * rt: remaining time
  6387. *
  6388. * rt is a sector_t, so could be 32bit or 64bit.
  6389. * So we divide before multiply in case it is 32bit and close
  6390. * to the limit.
  6391. * We scale the divisor (db) by 32 to avoid losing precision
  6392. * near the end of resync when the number of remaining sectors
  6393. * is close to 'db'.
  6394. * We then divide rt by 32 after multiplying by db to compensate.
  6395. * The '+1' avoids division by zero if db is very small.
  6396. */
  6397. dt = ((jiffies - mddev->resync_mark) / HZ);
  6398. if (!dt) dt++;
  6399. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6400. - mddev->resync_mark_cnt;
  6401. rt = max_sectors - resync; /* number of remaining sectors */
  6402. sector_div(rt, db/32+1);
  6403. rt *= dt;
  6404. rt >>= 5;
  6405. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6406. ((unsigned long)rt % 60)/6);
  6407. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6408. return 1;
  6409. }
  6410. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6411. {
  6412. struct list_head *tmp;
  6413. loff_t l = *pos;
  6414. struct mddev *mddev;
  6415. if (l >= 0x10000)
  6416. return NULL;
  6417. if (!l--)
  6418. /* header */
  6419. return (void*)1;
  6420. spin_lock(&all_mddevs_lock);
  6421. list_for_each(tmp,&all_mddevs)
  6422. if (!l--) {
  6423. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6424. mddev_get(mddev);
  6425. spin_unlock(&all_mddevs_lock);
  6426. return mddev;
  6427. }
  6428. spin_unlock(&all_mddevs_lock);
  6429. if (!l--)
  6430. return (void*)2;/* tail */
  6431. return NULL;
  6432. }
  6433. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6434. {
  6435. struct list_head *tmp;
  6436. struct mddev *next_mddev, *mddev = v;
  6437. ++*pos;
  6438. if (v == (void*)2)
  6439. return NULL;
  6440. spin_lock(&all_mddevs_lock);
  6441. if (v == (void*)1)
  6442. tmp = all_mddevs.next;
  6443. else
  6444. tmp = mddev->all_mddevs.next;
  6445. if (tmp != &all_mddevs)
  6446. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6447. else {
  6448. next_mddev = (void*)2;
  6449. *pos = 0x10000;
  6450. }
  6451. spin_unlock(&all_mddevs_lock);
  6452. if (v != (void*)1)
  6453. mddev_put(mddev);
  6454. return next_mddev;
  6455. }
  6456. static void md_seq_stop(struct seq_file *seq, void *v)
  6457. {
  6458. struct mddev *mddev = v;
  6459. if (mddev && v != (void*)1 && v != (void*)2)
  6460. mddev_put(mddev);
  6461. }
  6462. static int md_seq_show(struct seq_file *seq, void *v)
  6463. {
  6464. struct mddev *mddev = v;
  6465. sector_t sectors;
  6466. struct md_rdev *rdev;
  6467. if (v == (void*)1) {
  6468. struct md_personality *pers;
  6469. seq_printf(seq, "Personalities : ");
  6470. spin_lock(&pers_lock);
  6471. list_for_each_entry(pers, &pers_list, list)
  6472. seq_printf(seq, "[%s] ", pers->name);
  6473. spin_unlock(&pers_lock);
  6474. seq_printf(seq, "\n");
  6475. seq->poll_event = atomic_read(&md_event_count);
  6476. return 0;
  6477. }
  6478. if (v == (void*)2) {
  6479. status_unused(seq);
  6480. return 0;
  6481. }
  6482. spin_lock(&mddev->lock);
  6483. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6484. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6485. mddev->pers ? "" : "in");
  6486. if (mddev->pers) {
  6487. if (mddev->ro==1)
  6488. seq_printf(seq, " (read-only)");
  6489. if (mddev->ro==2)
  6490. seq_printf(seq, " (auto-read-only)");
  6491. seq_printf(seq, " %s", mddev->pers->name);
  6492. }
  6493. sectors = 0;
  6494. rcu_read_lock();
  6495. rdev_for_each_rcu(rdev, mddev) {
  6496. char b[BDEVNAME_SIZE];
  6497. seq_printf(seq, " %s[%d]",
  6498. bdevname(rdev->bdev,b), rdev->desc_nr);
  6499. if (test_bit(WriteMostly, &rdev->flags))
  6500. seq_printf(seq, "(W)");
  6501. if (test_bit(Faulty, &rdev->flags)) {
  6502. seq_printf(seq, "(F)");
  6503. continue;
  6504. }
  6505. if (rdev->raid_disk < 0)
  6506. seq_printf(seq, "(S)"); /* spare */
  6507. if (test_bit(Replacement, &rdev->flags))
  6508. seq_printf(seq, "(R)");
  6509. sectors += rdev->sectors;
  6510. }
  6511. rcu_read_unlock();
  6512. if (!list_empty(&mddev->disks)) {
  6513. if (mddev->pers)
  6514. seq_printf(seq, "\n %llu blocks",
  6515. (unsigned long long)
  6516. mddev->array_sectors / 2);
  6517. else
  6518. seq_printf(seq, "\n %llu blocks",
  6519. (unsigned long long)sectors / 2);
  6520. }
  6521. if (mddev->persistent) {
  6522. if (mddev->major_version != 0 ||
  6523. mddev->minor_version != 90) {
  6524. seq_printf(seq," super %d.%d",
  6525. mddev->major_version,
  6526. mddev->minor_version);
  6527. }
  6528. } else if (mddev->external)
  6529. seq_printf(seq, " super external:%s",
  6530. mddev->metadata_type);
  6531. else
  6532. seq_printf(seq, " super non-persistent");
  6533. if (mddev->pers) {
  6534. mddev->pers->status(seq, mddev);
  6535. seq_printf(seq, "\n ");
  6536. if (mddev->pers->sync_request) {
  6537. if (status_resync(seq, mddev))
  6538. seq_printf(seq, "\n ");
  6539. }
  6540. } else
  6541. seq_printf(seq, "\n ");
  6542. bitmap_status(seq, mddev->bitmap);
  6543. seq_printf(seq, "\n");
  6544. }
  6545. spin_unlock(&mddev->lock);
  6546. return 0;
  6547. }
  6548. static const struct seq_operations md_seq_ops = {
  6549. .start = md_seq_start,
  6550. .next = md_seq_next,
  6551. .stop = md_seq_stop,
  6552. .show = md_seq_show,
  6553. };
  6554. static int md_seq_open(struct inode *inode, struct file *file)
  6555. {
  6556. struct seq_file *seq;
  6557. int error;
  6558. error = seq_open(file, &md_seq_ops);
  6559. if (error)
  6560. return error;
  6561. seq = file->private_data;
  6562. seq->poll_event = atomic_read(&md_event_count);
  6563. return error;
  6564. }
  6565. static int md_unloading;
  6566. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6567. {
  6568. struct seq_file *seq = filp->private_data;
  6569. int mask;
  6570. if (md_unloading)
  6571. return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
  6572. poll_wait(filp, &md_event_waiters, wait);
  6573. /* always allow read */
  6574. mask = POLLIN | POLLRDNORM;
  6575. if (seq->poll_event != atomic_read(&md_event_count))
  6576. mask |= POLLERR | POLLPRI;
  6577. return mask;
  6578. }
  6579. static const struct file_operations md_seq_fops = {
  6580. .owner = THIS_MODULE,
  6581. .open = md_seq_open,
  6582. .read = seq_read,
  6583. .llseek = seq_lseek,
  6584. .release = seq_release_private,
  6585. .poll = mdstat_poll,
  6586. };
  6587. int register_md_personality(struct md_personality *p)
  6588. {
  6589. printk(KERN_INFO "md: %s personality registered for level %d\n",
  6590. p->name, p->level);
  6591. spin_lock(&pers_lock);
  6592. list_add_tail(&p->list, &pers_list);
  6593. spin_unlock(&pers_lock);
  6594. return 0;
  6595. }
  6596. EXPORT_SYMBOL(register_md_personality);
  6597. int unregister_md_personality(struct md_personality *p)
  6598. {
  6599. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6600. spin_lock(&pers_lock);
  6601. list_del_init(&p->list);
  6602. spin_unlock(&pers_lock);
  6603. return 0;
  6604. }
  6605. EXPORT_SYMBOL(unregister_md_personality);
  6606. int register_md_cluster_operations(struct md_cluster_operations *ops,
  6607. struct module *module)
  6608. {
  6609. int ret = 0;
  6610. spin_lock(&pers_lock);
  6611. if (md_cluster_ops != NULL)
  6612. ret = -EALREADY;
  6613. else {
  6614. md_cluster_ops = ops;
  6615. md_cluster_mod = module;
  6616. }
  6617. spin_unlock(&pers_lock);
  6618. return ret;
  6619. }
  6620. EXPORT_SYMBOL(register_md_cluster_operations);
  6621. int unregister_md_cluster_operations(void)
  6622. {
  6623. spin_lock(&pers_lock);
  6624. md_cluster_ops = NULL;
  6625. spin_unlock(&pers_lock);
  6626. return 0;
  6627. }
  6628. EXPORT_SYMBOL(unregister_md_cluster_operations);
  6629. int md_setup_cluster(struct mddev *mddev, int nodes)
  6630. {
  6631. int err;
  6632. err = request_module("md-cluster");
  6633. if (err) {
  6634. pr_err("md-cluster module not found.\n");
  6635. return -ENOENT;
  6636. }
  6637. spin_lock(&pers_lock);
  6638. if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
  6639. spin_unlock(&pers_lock);
  6640. return -ENOENT;
  6641. }
  6642. spin_unlock(&pers_lock);
  6643. return md_cluster_ops->join(mddev, nodes);
  6644. }
  6645. void md_cluster_stop(struct mddev *mddev)
  6646. {
  6647. if (!md_cluster_ops)
  6648. return;
  6649. md_cluster_ops->leave(mddev);
  6650. module_put(md_cluster_mod);
  6651. }
  6652. static int is_mddev_idle(struct mddev *mddev, int init)
  6653. {
  6654. struct md_rdev *rdev;
  6655. int idle;
  6656. int curr_events;
  6657. idle = 1;
  6658. rcu_read_lock();
  6659. rdev_for_each_rcu(rdev, mddev) {
  6660. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6661. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6662. (int)part_stat_read(&disk->part0, sectors[1]) -
  6663. atomic_read(&disk->sync_io);
  6664. /* sync IO will cause sync_io to increase before the disk_stats
  6665. * as sync_io is counted when a request starts, and
  6666. * disk_stats is counted when it completes.
  6667. * So resync activity will cause curr_events to be smaller than
  6668. * when there was no such activity.
  6669. * non-sync IO will cause disk_stat to increase without
  6670. * increasing sync_io so curr_events will (eventually)
  6671. * be larger than it was before. Once it becomes
  6672. * substantially larger, the test below will cause
  6673. * the array to appear non-idle, and resync will slow
  6674. * down.
  6675. * If there is a lot of outstanding resync activity when
  6676. * we set last_event to curr_events, then all that activity
  6677. * completing might cause the array to appear non-idle
  6678. * and resync will be slowed down even though there might
  6679. * not have been non-resync activity. This will only
  6680. * happen once though. 'last_events' will soon reflect
  6681. * the state where there is little or no outstanding
  6682. * resync requests, and further resync activity will
  6683. * always make curr_events less than last_events.
  6684. *
  6685. */
  6686. if (init || curr_events - rdev->last_events > 64) {
  6687. rdev->last_events = curr_events;
  6688. idle = 0;
  6689. }
  6690. }
  6691. rcu_read_unlock();
  6692. return idle;
  6693. }
  6694. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6695. {
  6696. /* another "blocks" (512byte) blocks have been synced */
  6697. atomic_sub(blocks, &mddev->recovery_active);
  6698. wake_up(&mddev->recovery_wait);
  6699. if (!ok) {
  6700. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6701. set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
  6702. md_wakeup_thread(mddev->thread);
  6703. // stop recovery, signal do_sync ....
  6704. }
  6705. }
  6706. EXPORT_SYMBOL(md_done_sync);
  6707. /* md_write_start(mddev, bi)
  6708. * If we need to update some array metadata (e.g. 'active' flag
  6709. * in superblock) before writing, schedule a superblock update
  6710. * and wait for it to complete.
  6711. */
  6712. void md_write_start(struct mddev *mddev, struct bio *bi)
  6713. {
  6714. int did_change = 0;
  6715. if (bio_data_dir(bi) != WRITE)
  6716. return;
  6717. BUG_ON(mddev->ro == 1);
  6718. if (mddev->ro == 2) {
  6719. /* need to switch to read/write */
  6720. mddev->ro = 0;
  6721. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6722. md_wakeup_thread(mddev->thread);
  6723. md_wakeup_thread(mddev->sync_thread);
  6724. did_change = 1;
  6725. }
  6726. atomic_inc(&mddev->writes_pending);
  6727. if (mddev->safemode == 1)
  6728. mddev->safemode = 0;
  6729. if (mddev->in_sync) {
  6730. spin_lock(&mddev->lock);
  6731. if (mddev->in_sync) {
  6732. mddev->in_sync = 0;
  6733. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6734. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6735. md_wakeup_thread(mddev->thread);
  6736. did_change = 1;
  6737. }
  6738. spin_unlock(&mddev->lock);
  6739. }
  6740. if (did_change)
  6741. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6742. wait_event(mddev->sb_wait,
  6743. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6744. }
  6745. EXPORT_SYMBOL(md_write_start);
  6746. void md_write_end(struct mddev *mddev)
  6747. {
  6748. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6749. if (mddev->safemode == 2)
  6750. md_wakeup_thread(mddev->thread);
  6751. else if (mddev->safemode_delay)
  6752. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6753. }
  6754. }
  6755. EXPORT_SYMBOL(md_write_end);
  6756. /* md_allow_write(mddev)
  6757. * Calling this ensures that the array is marked 'active' so that writes
  6758. * may proceed without blocking. It is important to call this before
  6759. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6760. * Must be called with mddev_lock held.
  6761. *
  6762. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6763. * is dropped, so return -EAGAIN after notifying userspace.
  6764. */
  6765. int md_allow_write(struct mddev *mddev)
  6766. {
  6767. if (!mddev->pers)
  6768. return 0;
  6769. if (mddev->ro)
  6770. return 0;
  6771. if (!mddev->pers->sync_request)
  6772. return 0;
  6773. spin_lock(&mddev->lock);
  6774. if (mddev->in_sync) {
  6775. mddev->in_sync = 0;
  6776. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6777. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6778. if (mddev->safemode_delay &&
  6779. mddev->safemode == 0)
  6780. mddev->safemode = 1;
  6781. spin_unlock(&mddev->lock);
  6782. if (mddev_is_clustered(mddev))
  6783. md_cluster_ops->metadata_update_start(mddev);
  6784. md_update_sb(mddev, 0);
  6785. if (mddev_is_clustered(mddev))
  6786. md_cluster_ops->metadata_update_finish(mddev);
  6787. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6788. } else
  6789. spin_unlock(&mddev->lock);
  6790. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6791. return -EAGAIN;
  6792. else
  6793. return 0;
  6794. }
  6795. EXPORT_SYMBOL_GPL(md_allow_write);
  6796. #define SYNC_MARKS 10
  6797. #define SYNC_MARK_STEP (3*HZ)
  6798. #define UPDATE_FREQUENCY (5*60*HZ)
  6799. void md_do_sync(struct md_thread *thread)
  6800. {
  6801. struct mddev *mddev = thread->mddev;
  6802. struct mddev *mddev2;
  6803. unsigned int currspeed = 0,
  6804. window;
  6805. sector_t max_sectors,j, io_sectors, recovery_done;
  6806. unsigned long mark[SYNC_MARKS];
  6807. unsigned long update_time;
  6808. sector_t mark_cnt[SYNC_MARKS];
  6809. int last_mark,m;
  6810. struct list_head *tmp;
  6811. sector_t last_check;
  6812. int skipped = 0;
  6813. struct md_rdev *rdev;
  6814. char *desc, *action = NULL;
  6815. struct blk_plug plug;
  6816. /* just incase thread restarts... */
  6817. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6818. return;
  6819. if (mddev->ro) {/* never try to sync a read-only array */
  6820. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6821. return;
  6822. }
  6823. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6824. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
  6825. desc = "data-check";
  6826. action = "check";
  6827. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6828. desc = "requested-resync";
  6829. action = "repair";
  6830. } else
  6831. desc = "resync";
  6832. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6833. desc = "reshape";
  6834. else
  6835. desc = "recovery";
  6836. mddev->last_sync_action = action ?: desc;
  6837. /* we overload curr_resync somewhat here.
  6838. * 0 == not engaged in resync at all
  6839. * 2 == checking that there is no conflict with another sync
  6840. * 1 == like 2, but have yielded to allow conflicting resync to
  6841. * commense
  6842. * other == active in resync - this many blocks
  6843. *
  6844. * Before starting a resync we must have set curr_resync to
  6845. * 2, and then checked that every "conflicting" array has curr_resync
  6846. * less than ours. When we find one that is the same or higher
  6847. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6848. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6849. * This will mean we have to start checking from the beginning again.
  6850. *
  6851. */
  6852. do {
  6853. mddev->curr_resync = 2;
  6854. try_again:
  6855. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6856. goto skip;
  6857. for_each_mddev(mddev2, tmp) {
  6858. if (mddev2 == mddev)
  6859. continue;
  6860. if (!mddev->parallel_resync
  6861. && mddev2->curr_resync
  6862. && match_mddev_units(mddev, mddev2)) {
  6863. DEFINE_WAIT(wq);
  6864. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6865. /* arbitrarily yield */
  6866. mddev->curr_resync = 1;
  6867. wake_up(&resync_wait);
  6868. }
  6869. if (mddev > mddev2 && mddev->curr_resync == 1)
  6870. /* no need to wait here, we can wait the next
  6871. * time 'round when curr_resync == 2
  6872. */
  6873. continue;
  6874. /* We need to wait 'interruptible' so as not to
  6875. * contribute to the load average, and not to
  6876. * be caught by 'softlockup'
  6877. */
  6878. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6879. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6880. mddev2->curr_resync >= mddev->curr_resync) {
  6881. printk(KERN_INFO "md: delaying %s of %s"
  6882. " until %s has finished (they"
  6883. " share one or more physical units)\n",
  6884. desc, mdname(mddev), mdname(mddev2));
  6885. mddev_put(mddev2);
  6886. if (signal_pending(current))
  6887. flush_signals(current);
  6888. schedule();
  6889. finish_wait(&resync_wait, &wq);
  6890. goto try_again;
  6891. }
  6892. finish_wait(&resync_wait, &wq);
  6893. }
  6894. }
  6895. } while (mddev->curr_resync < 2);
  6896. j = 0;
  6897. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6898. /* resync follows the size requested by the personality,
  6899. * which defaults to physical size, but can be virtual size
  6900. */
  6901. max_sectors = mddev->resync_max_sectors;
  6902. atomic64_set(&mddev->resync_mismatches, 0);
  6903. /* we don't use the checkpoint if there's a bitmap */
  6904. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6905. j = mddev->resync_min;
  6906. else if (!mddev->bitmap)
  6907. j = mddev->recovery_cp;
  6908. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6909. max_sectors = mddev->resync_max_sectors;
  6910. else {
  6911. /* recovery follows the physical size of devices */
  6912. max_sectors = mddev->dev_sectors;
  6913. j = MaxSector;
  6914. rcu_read_lock();
  6915. rdev_for_each_rcu(rdev, mddev)
  6916. if (rdev->raid_disk >= 0 &&
  6917. !test_bit(Faulty, &rdev->flags) &&
  6918. !test_bit(In_sync, &rdev->flags) &&
  6919. rdev->recovery_offset < j)
  6920. j = rdev->recovery_offset;
  6921. rcu_read_unlock();
  6922. /* If there is a bitmap, we need to make sure all
  6923. * writes that started before we added a spare
  6924. * complete before we start doing a recovery.
  6925. * Otherwise the write might complete and (via
  6926. * bitmap_endwrite) set a bit in the bitmap after the
  6927. * recovery has checked that bit and skipped that
  6928. * region.
  6929. */
  6930. if (mddev->bitmap) {
  6931. mddev->pers->quiesce(mddev, 1);
  6932. mddev->pers->quiesce(mddev, 0);
  6933. }
  6934. }
  6935. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6936. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6937. " %d KB/sec/disk.\n", speed_min(mddev));
  6938. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6939. "(but not more than %d KB/sec) for %s.\n",
  6940. speed_max(mddev), desc);
  6941. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6942. io_sectors = 0;
  6943. for (m = 0; m < SYNC_MARKS; m++) {
  6944. mark[m] = jiffies;
  6945. mark_cnt[m] = io_sectors;
  6946. }
  6947. last_mark = 0;
  6948. mddev->resync_mark = mark[last_mark];
  6949. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6950. /*
  6951. * Tune reconstruction:
  6952. */
  6953. window = 32*(PAGE_SIZE/512);
  6954. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6955. window/2, (unsigned long long)max_sectors/2);
  6956. atomic_set(&mddev->recovery_active, 0);
  6957. last_check = 0;
  6958. if (j>2) {
  6959. printk(KERN_INFO
  6960. "md: resuming %s of %s from checkpoint.\n",
  6961. desc, mdname(mddev));
  6962. mddev->curr_resync = j;
  6963. } else
  6964. mddev->curr_resync = 3; /* no longer delayed */
  6965. mddev->curr_resync_completed = j;
  6966. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6967. md_new_event(mddev);
  6968. update_time = jiffies;
  6969. if (mddev_is_clustered(mddev))
  6970. md_cluster_ops->resync_start(mddev, j, max_sectors);
  6971. blk_start_plug(&plug);
  6972. while (j < max_sectors) {
  6973. sector_t sectors;
  6974. skipped = 0;
  6975. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6976. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6977. (mddev->curr_resync - mddev->curr_resync_completed)
  6978. > (max_sectors >> 4)) ||
  6979. time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
  6980. (j - mddev->curr_resync_completed)*2
  6981. >= mddev->resync_max - mddev->curr_resync_completed ||
  6982. mddev->curr_resync_completed > mddev->resync_max
  6983. )) {
  6984. /* time to update curr_resync_completed */
  6985. wait_event(mddev->recovery_wait,
  6986. atomic_read(&mddev->recovery_active) == 0);
  6987. mddev->curr_resync_completed = j;
  6988. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  6989. j > mddev->recovery_cp)
  6990. mddev->recovery_cp = j;
  6991. update_time = jiffies;
  6992. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6993. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6994. }
  6995. while (j >= mddev->resync_max &&
  6996. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6997. /* As this condition is controlled by user-space,
  6998. * we can block indefinitely, so use '_interruptible'
  6999. * to avoid triggering warnings.
  7000. */
  7001. flush_signals(current); /* just in case */
  7002. wait_event_interruptible(mddev->recovery_wait,
  7003. mddev->resync_max > j
  7004. || test_bit(MD_RECOVERY_INTR,
  7005. &mddev->recovery));
  7006. }
  7007. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7008. break;
  7009. sectors = mddev->pers->sync_request(mddev, j, &skipped);
  7010. if (sectors == 0) {
  7011. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7012. break;
  7013. }
  7014. if (!skipped) { /* actual IO requested */
  7015. io_sectors += sectors;
  7016. atomic_add(sectors, &mddev->recovery_active);
  7017. }
  7018. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7019. break;
  7020. j += sectors;
  7021. if (j > max_sectors)
  7022. /* when skipping, extra large numbers can be returned. */
  7023. j = max_sectors;
  7024. if (j > 2)
  7025. mddev->curr_resync = j;
  7026. if (mddev_is_clustered(mddev))
  7027. md_cluster_ops->resync_info_update(mddev, j, max_sectors);
  7028. mddev->curr_mark_cnt = io_sectors;
  7029. if (last_check == 0)
  7030. /* this is the earliest that rebuild will be
  7031. * visible in /proc/mdstat
  7032. */
  7033. md_new_event(mddev);
  7034. if (last_check + window > io_sectors || j == max_sectors)
  7035. continue;
  7036. last_check = io_sectors;
  7037. repeat:
  7038. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  7039. /* step marks */
  7040. int next = (last_mark+1) % SYNC_MARKS;
  7041. mddev->resync_mark = mark[next];
  7042. mddev->resync_mark_cnt = mark_cnt[next];
  7043. mark[next] = jiffies;
  7044. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  7045. last_mark = next;
  7046. }
  7047. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7048. break;
  7049. /*
  7050. * this loop exits only if either when we are slower than
  7051. * the 'hard' speed limit, or the system was IO-idle for
  7052. * a jiffy.
  7053. * the system might be non-idle CPU-wise, but we only care
  7054. * about not overloading the IO subsystem. (things like an
  7055. * e2fsck being done on the RAID array should execute fast)
  7056. */
  7057. cond_resched();
  7058. recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
  7059. currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
  7060. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  7061. if (currspeed > speed_min(mddev)) {
  7062. if (currspeed > speed_max(mddev)) {
  7063. msleep(500);
  7064. goto repeat;
  7065. }
  7066. if (!is_mddev_idle(mddev, 0)) {
  7067. /*
  7068. * Give other IO more of a chance.
  7069. * The faster the devices, the less we wait.
  7070. */
  7071. wait_event(mddev->recovery_wait,
  7072. !atomic_read(&mddev->recovery_active));
  7073. }
  7074. }
  7075. }
  7076. printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
  7077. test_bit(MD_RECOVERY_INTR, &mddev->recovery)
  7078. ? "interrupted" : "done");
  7079. /*
  7080. * this also signals 'finished resyncing' to md_stop
  7081. */
  7082. blk_finish_plug(&plug);
  7083. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  7084. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  7085. !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7086. mddev->curr_resync > 2) {
  7087. mddev->curr_resync_completed = mddev->curr_resync;
  7088. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  7089. }
  7090. /* tell personality that we are finished */
  7091. mddev->pers->sync_request(mddev, max_sectors, &skipped);
  7092. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  7093. mddev->curr_resync > 2) {
  7094. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  7095. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  7096. if (mddev->curr_resync >= mddev->recovery_cp) {
  7097. printk(KERN_INFO
  7098. "md: checkpointing %s of %s.\n",
  7099. desc, mdname(mddev));
  7100. if (test_bit(MD_RECOVERY_ERROR,
  7101. &mddev->recovery))
  7102. mddev->recovery_cp =
  7103. mddev->curr_resync_completed;
  7104. else
  7105. mddev->recovery_cp =
  7106. mddev->curr_resync;
  7107. }
  7108. } else
  7109. mddev->recovery_cp = MaxSector;
  7110. } else {
  7111. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7112. mddev->curr_resync = MaxSector;
  7113. rcu_read_lock();
  7114. rdev_for_each_rcu(rdev, mddev)
  7115. if (rdev->raid_disk >= 0 &&
  7116. mddev->delta_disks >= 0 &&
  7117. !test_bit(Faulty, &rdev->flags) &&
  7118. !test_bit(In_sync, &rdev->flags) &&
  7119. rdev->recovery_offset < mddev->curr_resync)
  7120. rdev->recovery_offset = mddev->curr_resync;
  7121. rcu_read_unlock();
  7122. }
  7123. }
  7124. skip:
  7125. if (mddev_is_clustered(mddev))
  7126. md_cluster_ops->resync_finish(mddev);
  7127. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7128. spin_lock(&mddev->lock);
  7129. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  7130. /* We completed so min/max setting can be forgotten if used. */
  7131. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  7132. mddev->resync_min = 0;
  7133. mddev->resync_max = MaxSector;
  7134. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  7135. mddev->resync_min = mddev->curr_resync_completed;
  7136. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7137. mddev->curr_resync = 0;
  7138. spin_unlock(&mddev->lock);
  7139. wake_up(&resync_wait);
  7140. md_wakeup_thread(mddev->thread);
  7141. return;
  7142. }
  7143. EXPORT_SYMBOL_GPL(md_do_sync);
  7144. static int remove_and_add_spares(struct mddev *mddev,
  7145. struct md_rdev *this)
  7146. {
  7147. struct md_rdev *rdev;
  7148. int spares = 0;
  7149. int removed = 0;
  7150. rdev_for_each(rdev, mddev)
  7151. if ((this == NULL || rdev == this) &&
  7152. rdev->raid_disk >= 0 &&
  7153. !test_bit(Blocked, &rdev->flags) &&
  7154. (test_bit(Faulty, &rdev->flags) ||
  7155. ! test_bit(In_sync, &rdev->flags)) &&
  7156. atomic_read(&rdev->nr_pending)==0) {
  7157. if (mddev->pers->hot_remove_disk(
  7158. mddev, rdev) == 0) {
  7159. sysfs_unlink_rdev(mddev, rdev);
  7160. rdev->raid_disk = -1;
  7161. removed++;
  7162. }
  7163. }
  7164. if (removed && mddev->kobj.sd)
  7165. sysfs_notify(&mddev->kobj, NULL, "degraded");
  7166. if (this)
  7167. goto no_add;
  7168. rdev_for_each(rdev, mddev) {
  7169. if (rdev->raid_disk >= 0 &&
  7170. !test_bit(In_sync, &rdev->flags) &&
  7171. !test_bit(Faulty, &rdev->flags))
  7172. spares++;
  7173. if (rdev->raid_disk >= 0)
  7174. continue;
  7175. if (test_bit(Faulty, &rdev->flags))
  7176. continue;
  7177. if (mddev->ro &&
  7178. ! (rdev->saved_raid_disk >= 0 &&
  7179. !test_bit(Bitmap_sync, &rdev->flags)))
  7180. continue;
  7181. rdev->recovery_offset = 0;
  7182. if (mddev->pers->
  7183. hot_add_disk(mddev, rdev) == 0) {
  7184. if (sysfs_link_rdev(mddev, rdev))
  7185. /* failure here is OK */;
  7186. spares++;
  7187. md_new_event(mddev);
  7188. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7189. }
  7190. }
  7191. no_add:
  7192. if (removed)
  7193. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7194. return spares;
  7195. }
  7196. static void md_start_sync(struct work_struct *ws)
  7197. {
  7198. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  7199. mddev->sync_thread = md_register_thread(md_do_sync,
  7200. mddev,
  7201. "resync");
  7202. if (!mddev->sync_thread) {
  7203. printk(KERN_ERR "%s: could not start resync"
  7204. " thread...\n",
  7205. mdname(mddev));
  7206. /* leave the spares where they are, it shouldn't hurt */
  7207. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7208. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7209. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7210. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7211. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7212. wake_up(&resync_wait);
  7213. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7214. &mddev->recovery))
  7215. if (mddev->sysfs_action)
  7216. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7217. } else
  7218. md_wakeup_thread(mddev->sync_thread);
  7219. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7220. md_new_event(mddev);
  7221. }
  7222. /*
  7223. * This routine is regularly called by all per-raid-array threads to
  7224. * deal with generic issues like resync and super-block update.
  7225. * Raid personalities that don't have a thread (linear/raid0) do not
  7226. * need this as they never do any recovery or update the superblock.
  7227. *
  7228. * It does not do any resync itself, but rather "forks" off other threads
  7229. * to do that as needed.
  7230. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  7231. * "->recovery" and create a thread at ->sync_thread.
  7232. * When the thread finishes it sets MD_RECOVERY_DONE
  7233. * and wakeups up this thread which will reap the thread and finish up.
  7234. * This thread also removes any faulty devices (with nr_pending == 0).
  7235. *
  7236. * The overall approach is:
  7237. * 1/ if the superblock needs updating, update it.
  7238. * 2/ If a recovery thread is running, don't do anything else.
  7239. * 3/ If recovery has finished, clean up, possibly marking spares active.
  7240. * 4/ If there are any faulty devices, remove them.
  7241. * 5/ If array is degraded, try to add spares devices
  7242. * 6/ If array has spares or is not in-sync, start a resync thread.
  7243. */
  7244. void md_check_recovery(struct mddev *mddev)
  7245. {
  7246. if (mddev->suspended)
  7247. return;
  7248. if (mddev->bitmap)
  7249. bitmap_daemon_work(mddev);
  7250. if (signal_pending(current)) {
  7251. if (mddev->pers->sync_request && !mddev->external) {
  7252. printk(KERN_INFO "md: %s in immediate safe mode\n",
  7253. mdname(mddev));
  7254. mddev->safemode = 2;
  7255. }
  7256. flush_signals(current);
  7257. }
  7258. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  7259. return;
  7260. if ( ! (
  7261. (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
  7262. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7263. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  7264. (mddev->external == 0 && mddev->safemode == 1) ||
  7265. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  7266. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  7267. ))
  7268. return;
  7269. if (mddev_trylock(mddev)) {
  7270. int spares = 0;
  7271. if (mddev->ro) {
  7272. struct md_rdev *rdev;
  7273. if (!mddev->external && mddev->in_sync)
  7274. /* 'Blocked' flag not needed as failed devices
  7275. * will be recorded if array switched to read/write.
  7276. * Leaving it set will prevent the device
  7277. * from being removed.
  7278. */
  7279. rdev_for_each(rdev, mddev)
  7280. clear_bit(Blocked, &rdev->flags);
  7281. /* On a read-only array we can:
  7282. * - remove failed devices
  7283. * - add already-in_sync devices if the array itself
  7284. * is in-sync.
  7285. * As we only add devices that are already in-sync,
  7286. * we can activate the spares immediately.
  7287. */
  7288. remove_and_add_spares(mddev, NULL);
  7289. /* There is no thread, but we need to call
  7290. * ->spare_active and clear saved_raid_disk
  7291. */
  7292. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7293. md_reap_sync_thread(mddev);
  7294. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7295. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7296. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  7297. goto unlock;
  7298. }
  7299. if (!mddev->external) {
  7300. int did_change = 0;
  7301. spin_lock(&mddev->lock);
  7302. if (mddev->safemode &&
  7303. !atomic_read(&mddev->writes_pending) &&
  7304. !mddev->in_sync &&
  7305. mddev->recovery_cp == MaxSector) {
  7306. mddev->in_sync = 1;
  7307. did_change = 1;
  7308. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  7309. }
  7310. if (mddev->safemode == 1)
  7311. mddev->safemode = 0;
  7312. spin_unlock(&mddev->lock);
  7313. if (did_change)
  7314. sysfs_notify_dirent_safe(mddev->sysfs_state);
  7315. }
  7316. if (mddev->flags & MD_UPDATE_SB_FLAGS) {
  7317. if (mddev_is_clustered(mddev))
  7318. md_cluster_ops->metadata_update_start(mddev);
  7319. md_update_sb(mddev, 0);
  7320. if (mddev_is_clustered(mddev))
  7321. md_cluster_ops->metadata_update_finish(mddev);
  7322. }
  7323. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  7324. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  7325. /* resync/recovery still happening */
  7326. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7327. goto unlock;
  7328. }
  7329. if (mddev->sync_thread) {
  7330. md_reap_sync_thread(mddev);
  7331. goto unlock;
  7332. }
  7333. /* Set RUNNING before clearing NEEDED to avoid
  7334. * any transients in the value of "sync_action".
  7335. */
  7336. mddev->curr_resync_completed = 0;
  7337. spin_lock(&mddev->lock);
  7338. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7339. spin_unlock(&mddev->lock);
  7340. /* Clear some bits that don't mean anything, but
  7341. * might be left set
  7342. */
  7343. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7344. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7345. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7346. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  7347. goto not_running;
  7348. /* no recovery is running.
  7349. * remove any failed drives, then
  7350. * add spares if possible.
  7351. * Spares are also removed and re-added, to allow
  7352. * the personality to fail the re-add.
  7353. */
  7354. if (mddev->reshape_position != MaxSector) {
  7355. if (mddev->pers->check_reshape == NULL ||
  7356. mddev->pers->check_reshape(mddev) != 0)
  7357. /* Cannot proceed */
  7358. goto not_running;
  7359. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7360. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7361. } else if ((spares = remove_and_add_spares(mddev, NULL))) {
  7362. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7363. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7364. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7365. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7366. } else if (mddev->recovery_cp < MaxSector) {
  7367. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7368. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7369. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  7370. /* nothing to be done ... */
  7371. goto not_running;
  7372. if (mddev->pers->sync_request) {
  7373. if (spares) {
  7374. /* We are adding a device or devices to an array
  7375. * which has the bitmap stored on all devices.
  7376. * So make sure all bitmap pages get written
  7377. */
  7378. bitmap_write_all(mddev->bitmap);
  7379. }
  7380. INIT_WORK(&mddev->del_work, md_start_sync);
  7381. queue_work(md_misc_wq, &mddev->del_work);
  7382. goto unlock;
  7383. }
  7384. not_running:
  7385. if (!mddev->sync_thread) {
  7386. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7387. wake_up(&resync_wait);
  7388. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7389. &mddev->recovery))
  7390. if (mddev->sysfs_action)
  7391. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7392. }
  7393. unlock:
  7394. wake_up(&mddev->sb_wait);
  7395. mddev_unlock(mddev);
  7396. }
  7397. }
  7398. EXPORT_SYMBOL(md_check_recovery);
  7399. void md_reap_sync_thread(struct mddev *mddev)
  7400. {
  7401. struct md_rdev *rdev;
  7402. /* resync has finished, collect result */
  7403. md_unregister_thread(&mddev->sync_thread);
  7404. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7405. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  7406. /* success...*/
  7407. /* activate any spares */
  7408. if (mddev->pers->spare_active(mddev)) {
  7409. sysfs_notify(&mddev->kobj, NULL,
  7410. "degraded");
  7411. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7412. }
  7413. }
  7414. if (mddev_is_clustered(mddev))
  7415. md_cluster_ops->metadata_update_start(mddev);
  7416. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  7417. mddev->pers->finish_reshape)
  7418. mddev->pers->finish_reshape(mddev);
  7419. /* If array is no-longer degraded, then any saved_raid_disk
  7420. * information must be scrapped.
  7421. */
  7422. if (!mddev->degraded)
  7423. rdev_for_each(rdev, mddev)
  7424. rdev->saved_raid_disk = -1;
  7425. md_update_sb(mddev, 1);
  7426. if (mddev_is_clustered(mddev))
  7427. md_cluster_ops->metadata_update_finish(mddev);
  7428. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7429. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7430. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7431. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7432. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7433. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7434. wake_up(&resync_wait);
  7435. /* flag recovery needed just to double check */
  7436. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7437. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7438. md_new_event(mddev);
  7439. if (mddev->event_work.func)
  7440. queue_work(md_misc_wq, &mddev->event_work);
  7441. }
  7442. EXPORT_SYMBOL(md_reap_sync_thread);
  7443. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  7444. {
  7445. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7446. wait_event_timeout(rdev->blocked_wait,
  7447. !test_bit(Blocked, &rdev->flags) &&
  7448. !test_bit(BlockedBadBlocks, &rdev->flags),
  7449. msecs_to_jiffies(5000));
  7450. rdev_dec_pending(rdev, mddev);
  7451. }
  7452. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7453. void md_finish_reshape(struct mddev *mddev)
  7454. {
  7455. /* called be personality module when reshape completes. */
  7456. struct md_rdev *rdev;
  7457. rdev_for_each(rdev, mddev) {
  7458. if (rdev->data_offset > rdev->new_data_offset)
  7459. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7460. else
  7461. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7462. rdev->data_offset = rdev->new_data_offset;
  7463. }
  7464. }
  7465. EXPORT_SYMBOL(md_finish_reshape);
  7466. /* Bad block management.
  7467. * We can record which blocks on each device are 'bad' and so just
  7468. * fail those blocks, or that stripe, rather than the whole device.
  7469. * Entries in the bad-block table are 64bits wide. This comprises:
  7470. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7471. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7472. * A 'shift' can be set so that larger blocks are tracked and
  7473. * consequently larger devices can be covered.
  7474. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7475. *
  7476. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7477. * might need to retry if it is very unlucky.
  7478. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7479. * so we use the write_seqlock_irq variant.
  7480. *
  7481. * When looking for a bad block we specify a range and want to
  7482. * know if any block in the range is bad. So we binary-search
  7483. * to the last range that starts at-or-before the given endpoint,
  7484. * (or "before the sector after the target range")
  7485. * then see if it ends after the given start.
  7486. * We return
  7487. * 0 if there are no known bad blocks in the range
  7488. * 1 if there are known bad block which are all acknowledged
  7489. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7490. * plus the start/length of the first bad section we overlap.
  7491. */
  7492. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7493. sector_t *first_bad, int *bad_sectors)
  7494. {
  7495. int hi;
  7496. int lo;
  7497. u64 *p = bb->page;
  7498. int rv;
  7499. sector_t target = s + sectors;
  7500. unsigned seq;
  7501. if (bb->shift > 0) {
  7502. /* round the start down, and the end up */
  7503. s >>= bb->shift;
  7504. target += (1<<bb->shift) - 1;
  7505. target >>= bb->shift;
  7506. sectors = target - s;
  7507. }
  7508. /* 'target' is now the first block after the bad range */
  7509. retry:
  7510. seq = read_seqbegin(&bb->lock);
  7511. lo = 0;
  7512. rv = 0;
  7513. hi = bb->count;
  7514. /* Binary search between lo and hi for 'target'
  7515. * i.e. for the last range that starts before 'target'
  7516. */
  7517. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7518. * are known not to be the last range before target.
  7519. * VARIANT: hi-lo is the number of possible
  7520. * ranges, and decreases until it reaches 1
  7521. */
  7522. while (hi - lo > 1) {
  7523. int mid = (lo + hi) / 2;
  7524. sector_t a = BB_OFFSET(p[mid]);
  7525. if (a < target)
  7526. /* This could still be the one, earlier ranges
  7527. * could not. */
  7528. lo = mid;
  7529. else
  7530. /* This and later ranges are definitely out. */
  7531. hi = mid;
  7532. }
  7533. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7534. if (hi > lo) {
  7535. /* need to check all range that end after 's' to see if
  7536. * any are unacknowledged.
  7537. */
  7538. while (lo >= 0 &&
  7539. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7540. if (BB_OFFSET(p[lo]) < target) {
  7541. /* starts before the end, and finishes after
  7542. * the start, so they must overlap
  7543. */
  7544. if (rv != -1 && BB_ACK(p[lo]))
  7545. rv = 1;
  7546. else
  7547. rv = -1;
  7548. *first_bad = BB_OFFSET(p[lo]);
  7549. *bad_sectors = BB_LEN(p[lo]);
  7550. }
  7551. lo--;
  7552. }
  7553. }
  7554. if (read_seqretry(&bb->lock, seq))
  7555. goto retry;
  7556. return rv;
  7557. }
  7558. EXPORT_SYMBOL_GPL(md_is_badblock);
  7559. /*
  7560. * Add a range of bad blocks to the table.
  7561. * This might extend the table, or might contract it
  7562. * if two adjacent ranges can be merged.
  7563. * We binary-search to find the 'insertion' point, then
  7564. * decide how best to handle it.
  7565. */
  7566. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7567. int acknowledged)
  7568. {
  7569. u64 *p;
  7570. int lo, hi;
  7571. int rv = 1;
  7572. unsigned long flags;
  7573. if (bb->shift < 0)
  7574. /* badblocks are disabled */
  7575. return 0;
  7576. if (bb->shift) {
  7577. /* round the start down, and the end up */
  7578. sector_t next = s + sectors;
  7579. s >>= bb->shift;
  7580. next += (1<<bb->shift) - 1;
  7581. next >>= bb->shift;
  7582. sectors = next - s;
  7583. }
  7584. write_seqlock_irqsave(&bb->lock, flags);
  7585. p = bb->page;
  7586. lo = 0;
  7587. hi = bb->count;
  7588. /* Find the last range that starts at-or-before 's' */
  7589. while (hi - lo > 1) {
  7590. int mid = (lo + hi) / 2;
  7591. sector_t a = BB_OFFSET(p[mid]);
  7592. if (a <= s)
  7593. lo = mid;
  7594. else
  7595. hi = mid;
  7596. }
  7597. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7598. hi = lo;
  7599. if (hi > lo) {
  7600. /* we found a range that might merge with the start
  7601. * of our new range
  7602. */
  7603. sector_t a = BB_OFFSET(p[lo]);
  7604. sector_t e = a + BB_LEN(p[lo]);
  7605. int ack = BB_ACK(p[lo]);
  7606. if (e >= s) {
  7607. /* Yes, we can merge with a previous range */
  7608. if (s == a && s + sectors >= e)
  7609. /* new range covers old */
  7610. ack = acknowledged;
  7611. else
  7612. ack = ack && acknowledged;
  7613. if (e < s + sectors)
  7614. e = s + sectors;
  7615. if (e - a <= BB_MAX_LEN) {
  7616. p[lo] = BB_MAKE(a, e-a, ack);
  7617. s = e;
  7618. } else {
  7619. /* does not all fit in one range,
  7620. * make p[lo] maximal
  7621. */
  7622. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7623. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7624. s = a + BB_MAX_LEN;
  7625. }
  7626. sectors = e - s;
  7627. }
  7628. }
  7629. if (sectors && hi < bb->count) {
  7630. /* 'hi' points to the first range that starts after 's'.
  7631. * Maybe we can merge with the start of that range */
  7632. sector_t a = BB_OFFSET(p[hi]);
  7633. sector_t e = a + BB_LEN(p[hi]);
  7634. int ack = BB_ACK(p[hi]);
  7635. if (a <= s + sectors) {
  7636. /* merging is possible */
  7637. if (e <= s + sectors) {
  7638. /* full overlap */
  7639. e = s + sectors;
  7640. ack = acknowledged;
  7641. } else
  7642. ack = ack && acknowledged;
  7643. a = s;
  7644. if (e - a <= BB_MAX_LEN) {
  7645. p[hi] = BB_MAKE(a, e-a, ack);
  7646. s = e;
  7647. } else {
  7648. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7649. s = a + BB_MAX_LEN;
  7650. }
  7651. sectors = e - s;
  7652. lo = hi;
  7653. hi++;
  7654. }
  7655. }
  7656. if (sectors == 0 && hi < bb->count) {
  7657. /* we might be able to combine lo and hi */
  7658. /* Note: 's' is at the end of 'lo' */
  7659. sector_t a = BB_OFFSET(p[hi]);
  7660. int lolen = BB_LEN(p[lo]);
  7661. int hilen = BB_LEN(p[hi]);
  7662. int newlen = lolen + hilen - (s - a);
  7663. if (s >= a && newlen < BB_MAX_LEN) {
  7664. /* yes, we can combine them */
  7665. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7666. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7667. memmove(p + hi, p + hi + 1,
  7668. (bb->count - hi - 1) * 8);
  7669. bb->count--;
  7670. }
  7671. }
  7672. while (sectors) {
  7673. /* didn't merge (it all).
  7674. * Need to add a range just before 'hi' */
  7675. if (bb->count >= MD_MAX_BADBLOCKS) {
  7676. /* No room for more */
  7677. rv = 0;
  7678. break;
  7679. } else {
  7680. int this_sectors = sectors;
  7681. memmove(p + hi + 1, p + hi,
  7682. (bb->count - hi) * 8);
  7683. bb->count++;
  7684. if (this_sectors > BB_MAX_LEN)
  7685. this_sectors = BB_MAX_LEN;
  7686. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7687. sectors -= this_sectors;
  7688. s += this_sectors;
  7689. }
  7690. }
  7691. bb->changed = 1;
  7692. if (!acknowledged)
  7693. bb->unacked_exist = 1;
  7694. write_sequnlock_irqrestore(&bb->lock, flags);
  7695. return rv;
  7696. }
  7697. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7698. int is_new)
  7699. {
  7700. int rv;
  7701. if (is_new)
  7702. s += rdev->new_data_offset;
  7703. else
  7704. s += rdev->data_offset;
  7705. rv = md_set_badblocks(&rdev->badblocks,
  7706. s, sectors, 0);
  7707. if (rv) {
  7708. /* Make sure they get written out promptly */
  7709. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7710. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7711. set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
  7712. md_wakeup_thread(rdev->mddev->thread);
  7713. }
  7714. return rv;
  7715. }
  7716. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7717. /*
  7718. * Remove a range of bad blocks from the table.
  7719. * This may involve extending the table if we spilt a region,
  7720. * but it must not fail. So if the table becomes full, we just
  7721. * drop the remove request.
  7722. */
  7723. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7724. {
  7725. u64 *p;
  7726. int lo, hi;
  7727. sector_t target = s + sectors;
  7728. int rv = 0;
  7729. if (bb->shift > 0) {
  7730. /* When clearing we round the start up and the end down.
  7731. * This should not matter as the shift should align with
  7732. * the block size and no rounding should ever be needed.
  7733. * However it is better the think a block is bad when it
  7734. * isn't than to think a block is not bad when it is.
  7735. */
  7736. s += (1<<bb->shift) - 1;
  7737. s >>= bb->shift;
  7738. target >>= bb->shift;
  7739. sectors = target - s;
  7740. }
  7741. write_seqlock_irq(&bb->lock);
  7742. p = bb->page;
  7743. lo = 0;
  7744. hi = bb->count;
  7745. /* Find the last range that starts before 'target' */
  7746. while (hi - lo > 1) {
  7747. int mid = (lo + hi) / 2;
  7748. sector_t a = BB_OFFSET(p[mid]);
  7749. if (a < target)
  7750. lo = mid;
  7751. else
  7752. hi = mid;
  7753. }
  7754. if (hi > lo) {
  7755. /* p[lo] is the last range that could overlap the
  7756. * current range. Earlier ranges could also overlap,
  7757. * but only this one can overlap the end of the range.
  7758. */
  7759. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7760. /* Partial overlap, leave the tail of this range */
  7761. int ack = BB_ACK(p[lo]);
  7762. sector_t a = BB_OFFSET(p[lo]);
  7763. sector_t end = a + BB_LEN(p[lo]);
  7764. if (a < s) {
  7765. /* we need to split this range */
  7766. if (bb->count >= MD_MAX_BADBLOCKS) {
  7767. rv = -ENOSPC;
  7768. goto out;
  7769. }
  7770. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7771. bb->count++;
  7772. p[lo] = BB_MAKE(a, s-a, ack);
  7773. lo++;
  7774. }
  7775. p[lo] = BB_MAKE(target, end - target, ack);
  7776. /* there is no longer an overlap */
  7777. hi = lo;
  7778. lo--;
  7779. }
  7780. while (lo >= 0 &&
  7781. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7782. /* This range does overlap */
  7783. if (BB_OFFSET(p[lo]) < s) {
  7784. /* Keep the early parts of this range. */
  7785. int ack = BB_ACK(p[lo]);
  7786. sector_t start = BB_OFFSET(p[lo]);
  7787. p[lo] = BB_MAKE(start, s - start, ack);
  7788. /* now low doesn't overlap, so.. */
  7789. break;
  7790. }
  7791. lo--;
  7792. }
  7793. /* 'lo' is strictly before, 'hi' is strictly after,
  7794. * anything between needs to be discarded
  7795. */
  7796. if (hi - lo > 1) {
  7797. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7798. bb->count -= (hi - lo - 1);
  7799. }
  7800. }
  7801. bb->changed = 1;
  7802. out:
  7803. write_sequnlock_irq(&bb->lock);
  7804. return rv;
  7805. }
  7806. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7807. int is_new)
  7808. {
  7809. if (is_new)
  7810. s += rdev->new_data_offset;
  7811. else
  7812. s += rdev->data_offset;
  7813. return md_clear_badblocks(&rdev->badblocks,
  7814. s, sectors);
  7815. }
  7816. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7817. /*
  7818. * Acknowledge all bad blocks in a list.
  7819. * This only succeeds if ->changed is clear. It is used by
  7820. * in-kernel metadata updates
  7821. */
  7822. void md_ack_all_badblocks(struct badblocks *bb)
  7823. {
  7824. if (bb->page == NULL || bb->changed)
  7825. /* no point even trying */
  7826. return;
  7827. write_seqlock_irq(&bb->lock);
  7828. if (bb->changed == 0 && bb->unacked_exist) {
  7829. u64 *p = bb->page;
  7830. int i;
  7831. for (i = 0; i < bb->count ; i++) {
  7832. if (!BB_ACK(p[i])) {
  7833. sector_t start = BB_OFFSET(p[i]);
  7834. int len = BB_LEN(p[i]);
  7835. p[i] = BB_MAKE(start, len, 1);
  7836. }
  7837. }
  7838. bb->unacked_exist = 0;
  7839. }
  7840. write_sequnlock_irq(&bb->lock);
  7841. }
  7842. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7843. /* sysfs access to bad-blocks list.
  7844. * We present two files.
  7845. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7846. * are recorded as bad. The list is truncated to fit within
  7847. * the one-page limit of sysfs.
  7848. * Writing "sector length" to this file adds an acknowledged
  7849. * bad block list.
  7850. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7851. * been acknowledged. Writing to this file adds bad blocks
  7852. * without acknowledging them. This is largely for testing.
  7853. */
  7854. static ssize_t
  7855. badblocks_show(struct badblocks *bb, char *page, int unack)
  7856. {
  7857. size_t len;
  7858. int i;
  7859. u64 *p = bb->page;
  7860. unsigned seq;
  7861. if (bb->shift < 0)
  7862. return 0;
  7863. retry:
  7864. seq = read_seqbegin(&bb->lock);
  7865. len = 0;
  7866. i = 0;
  7867. while (len < PAGE_SIZE && i < bb->count) {
  7868. sector_t s = BB_OFFSET(p[i]);
  7869. unsigned int length = BB_LEN(p[i]);
  7870. int ack = BB_ACK(p[i]);
  7871. i++;
  7872. if (unack && ack)
  7873. continue;
  7874. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7875. (unsigned long long)s << bb->shift,
  7876. length << bb->shift);
  7877. }
  7878. if (unack && len == 0)
  7879. bb->unacked_exist = 0;
  7880. if (read_seqretry(&bb->lock, seq))
  7881. goto retry;
  7882. return len;
  7883. }
  7884. #define DO_DEBUG 1
  7885. static ssize_t
  7886. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7887. {
  7888. unsigned long long sector;
  7889. int length;
  7890. char newline;
  7891. #ifdef DO_DEBUG
  7892. /* Allow clearing via sysfs *only* for testing/debugging.
  7893. * Normally only a successful write may clear a badblock
  7894. */
  7895. int clear = 0;
  7896. if (page[0] == '-') {
  7897. clear = 1;
  7898. page++;
  7899. }
  7900. #endif /* DO_DEBUG */
  7901. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7902. case 3:
  7903. if (newline != '\n')
  7904. return -EINVAL;
  7905. case 2:
  7906. if (length <= 0)
  7907. return -EINVAL;
  7908. break;
  7909. default:
  7910. return -EINVAL;
  7911. }
  7912. #ifdef DO_DEBUG
  7913. if (clear) {
  7914. md_clear_badblocks(bb, sector, length);
  7915. return len;
  7916. }
  7917. #endif /* DO_DEBUG */
  7918. if (md_set_badblocks(bb, sector, length, !unack))
  7919. return len;
  7920. else
  7921. return -ENOSPC;
  7922. }
  7923. static int md_notify_reboot(struct notifier_block *this,
  7924. unsigned long code, void *x)
  7925. {
  7926. struct list_head *tmp;
  7927. struct mddev *mddev;
  7928. int need_delay = 0;
  7929. for_each_mddev(mddev, tmp) {
  7930. if (mddev_trylock(mddev)) {
  7931. if (mddev->pers)
  7932. __md_stop_writes(mddev);
  7933. if (mddev->persistent)
  7934. mddev->safemode = 2;
  7935. mddev_unlock(mddev);
  7936. }
  7937. need_delay = 1;
  7938. }
  7939. /*
  7940. * certain more exotic SCSI devices are known to be
  7941. * volatile wrt too early system reboots. While the
  7942. * right place to handle this issue is the given
  7943. * driver, we do want to have a safe RAID driver ...
  7944. */
  7945. if (need_delay)
  7946. mdelay(1000*1);
  7947. return NOTIFY_DONE;
  7948. }
  7949. static struct notifier_block md_notifier = {
  7950. .notifier_call = md_notify_reboot,
  7951. .next = NULL,
  7952. .priority = INT_MAX, /* before any real devices */
  7953. };
  7954. static void md_geninit(void)
  7955. {
  7956. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7957. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7958. }
  7959. static int __init md_init(void)
  7960. {
  7961. int ret = -ENOMEM;
  7962. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7963. if (!md_wq)
  7964. goto err_wq;
  7965. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7966. if (!md_misc_wq)
  7967. goto err_misc_wq;
  7968. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7969. goto err_md;
  7970. if ((ret = register_blkdev(0, "mdp")) < 0)
  7971. goto err_mdp;
  7972. mdp_major = ret;
  7973. blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
  7974. md_probe, NULL, NULL);
  7975. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7976. md_probe, NULL, NULL);
  7977. register_reboot_notifier(&md_notifier);
  7978. raid_table_header = register_sysctl_table(raid_root_table);
  7979. md_geninit();
  7980. return 0;
  7981. err_mdp:
  7982. unregister_blkdev(MD_MAJOR, "md");
  7983. err_md:
  7984. destroy_workqueue(md_misc_wq);
  7985. err_misc_wq:
  7986. destroy_workqueue(md_wq);
  7987. err_wq:
  7988. return ret;
  7989. }
  7990. void md_reload_sb(struct mddev *mddev)
  7991. {
  7992. struct md_rdev *rdev, *tmp;
  7993. rdev_for_each_safe(rdev, tmp, mddev) {
  7994. rdev->sb_loaded = 0;
  7995. ClearPageUptodate(rdev->sb_page);
  7996. }
  7997. mddev->raid_disks = 0;
  7998. analyze_sbs(mddev);
  7999. rdev_for_each_safe(rdev, tmp, mddev) {
  8000. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  8001. /* since we don't write to faulty devices, we figure out if the
  8002. * disk is faulty by comparing events
  8003. */
  8004. if (mddev->events > sb->events)
  8005. set_bit(Faulty, &rdev->flags);
  8006. }
  8007. }
  8008. EXPORT_SYMBOL(md_reload_sb);
  8009. #ifndef MODULE
  8010. /*
  8011. * Searches all registered partitions for autorun RAID arrays
  8012. * at boot time.
  8013. */
  8014. static LIST_HEAD(all_detected_devices);
  8015. struct detected_devices_node {
  8016. struct list_head list;
  8017. dev_t dev;
  8018. };
  8019. void md_autodetect_dev(dev_t dev)
  8020. {
  8021. struct detected_devices_node *node_detected_dev;
  8022. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  8023. if (node_detected_dev) {
  8024. node_detected_dev->dev = dev;
  8025. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  8026. } else {
  8027. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  8028. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  8029. }
  8030. }
  8031. static void autostart_arrays(int part)
  8032. {
  8033. struct md_rdev *rdev;
  8034. struct detected_devices_node *node_detected_dev;
  8035. dev_t dev;
  8036. int i_scanned, i_passed;
  8037. i_scanned = 0;
  8038. i_passed = 0;
  8039. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  8040. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  8041. i_scanned++;
  8042. node_detected_dev = list_entry(all_detected_devices.next,
  8043. struct detected_devices_node, list);
  8044. list_del(&node_detected_dev->list);
  8045. dev = node_detected_dev->dev;
  8046. kfree(node_detected_dev);
  8047. rdev = md_import_device(dev,0, 90);
  8048. if (IS_ERR(rdev))
  8049. continue;
  8050. if (test_bit(Faulty, &rdev->flags))
  8051. continue;
  8052. set_bit(AutoDetected, &rdev->flags);
  8053. list_add(&rdev->same_set, &pending_raid_disks);
  8054. i_passed++;
  8055. }
  8056. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  8057. i_scanned, i_passed);
  8058. autorun_devices(part);
  8059. }
  8060. #endif /* !MODULE */
  8061. static __exit void md_exit(void)
  8062. {
  8063. struct mddev *mddev;
  8064. struct list_head *tmp;
  8065. int delay = 1;
  8066. blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
  8067. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  8068. unregister_blkdev(MD_MAJOR,"md");
  8069. unregister_blkdev(mdp_major, "mdp");
  8070. unregister_reboot_notifier(&md_notifier);
  8071. unregister_sysctl_table(raid_table_header);
  8072. /* We cannot unload the modules while some process is
  8073. * waiting for us in select() or poll() - wake them up
  8074. */
  8075. md_unloading = 1;
  8076. while (waitqueue_active(&md_event_waiters)) {
  8077. /* not safe to leave yet */
  8078. wake_up(&md_event_waiters);
  8079. msleep(delay);
  8080. delay += delay;
  8081. }
  8082. remove_proc_entry("mdstat", NULL);
  8083. for_each_mddev(mddev, tmp) {
  8084. export_array(mddev);
  8085. mddev->hold_active = 0;
  8086. }
  8087. destroy_workqueue(md_misc_wq);
  8088. destroy_workqueue(md_wq);
  8089. }
  8090. subsys_initcall(md_init);
  8091. module_exit(md_exit)
  8092. static int get_ro(char *buffer, struct kernel_param *kp)
  8093. {
  8094. return sprintf(buffer, "%d", start_readonly);
  8095. }
  8096. static int set_ro(const char *val, struct kernel_param *kp)
  8097. {
  8098. return kstrtouint(val, 10, (unsigned int *)&start_readonly);
  8099. }
  8100. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  8101. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  8102. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  8103. MODULE_LICENSE("GPL");
  8104. MODULE_DESCRIPTION("MD RAID framework");
  8105. MODULE_ALIAS("md");
  8106. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);