exynos-iommu.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253
  1. /* linux/drivers/iommu/exynos_iommu.c
  2. *
  3. * Copyright (c) 2011 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
  11. #define DEBUG
  12. #endif
  13. #include <linux/clk.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/err.h>
  16. #include <linux/io.h>
  17. #include <linux/iommu.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/list.h>
  20. #include <linux/of.h>
  21. #include <linux/of_iommu.h>
  22. #include <linux/of_platform.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/pm_runtime.h>
  25. #include <linux/slab.h>
  26. #include <asm/cacheflush.h>
  27. #include <asm/dma-iommu.h>
  28. #include <asm/pgtable.h>
  29. typedef u32 sysmmu_iova_t;
  30. typedef u32 sysmmu_pte_t;
  31. /* We do not consider super section mapping (16MB) */
  32. #define SECT_ORDER 20
  33. #define LPAGE_ORDER 16
  34. #define SPAGE_ORDER 12
  35. #define SECT_SIZE (1 << SECT_ORDER)
  36. #define LPAGE_SIZE (1 << LPAGE_ORDER)
  37. #define SPAGE_SIZE (1 << SPAGE_ORDER)
  38. #define SECT_MASK (~(SECT_SIZE - 1))
  39. #define LPAGE_MASK (~(LPAGE_SIZE - 1))
  40. #define SPAGE_MASK (~(SPAGE_SIZE - 1))
  41. #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
  42. ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
  43. #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
  44. #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
  45. #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
  46. ((*(sent) & 3) == 1))
  47. #define lv1ent_section(sent) ((*(sent) & 3) == 2)
  48. #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
  49. #define lv2ent_small(pent) ((*(pent) & 2) == 2)
  50. #define lv2ent_large(pent) ((*(pent) & 3) == 1)
  51. static u32 sysmmu_page_offset(sysmmu_iova_t iova, u32 size)
  52. {
  53. return iova & (size - 1);
  54. }
  55. #define section_phys(sent) (*(sent) & SECT_MASK)
  56. #define section_offs(iova) sysmmu_page_offset((iova), SECT_SIZE)
  57. #define lpage_phys(pent) (*(pent) & LPAGE_MASK)
  58. #define lpage_offs(iova) sysmmu_page_offset((iova), LPAGE_SIZE)
  59. #define spage_phys(pent) (*(pent) & SPAGE_MASK)
  60. #define spage_offs(iova) sysmmu_page_offset((iova), SPAGE_SIZE)
  61. #define NUM_LV1ENTRIES 4096
  62. #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
  63. static u32 lv1ent_offset(sysmmu_iova_t iova)
  64. {
  65. return iova >> SECT_ORDER;
  66. }
  67. static u32 lv2ent_offset(sysmmu_iova_t iova)
  68. {
  69. return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
  70. }
  71. #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
  72. #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
  73. #define lv2table_base(sent) (*(sent) & 0xFFFFFC00)
  74. #define mk_lv1ent_sect(pa) ((pa) | 2)
  75. #define mk_lv1ent_page(pa) ((pa) | 1)
  76. #define mk_lv2ent_lpage(pa) ((pa) | 1)
  77. #define mk_lv2ent_spage(pa) ((pa) | 2)
  78. #define CTRL_ENABLE 0x5
  79. #define CTRL_BLOCK 0x7
  80. #define CTRL_DISABLE 0x0
  81. #define CFG_LRU 0x1
  82. #define CFG_QOS(n) ((n & 0xF) << 7)
  83. #define CFG_MASK 0x0150FFFF /* Selecting bit 0-15, 20, 22 and 24 */
  84. #define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */
  85. #define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */
  86. #define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */
  87. #define REG_MMU_CTRL 0x000
  88. #define REG_MMU_CFG 0x004
  89. #define REG_MMU_STATUS 0x008
  90. #define REG_MMU_FLUSH 0x00C
  91. #define REG_MMU_FLUSH_ENTRY 0x010
  92. #define REG_PT_BASE_ADDR 0x014
  93. #define REG_INT_STATUS 0x018
  94. #define REG_INT_CLEAR 0x01C
  95. #define REG_PAGE_FAULT_ADDR 0x024
  96. #define REG_AW_FAULT_ADDR 0x028
  97. #define REG_AR_FAULT_ADDR 0x02C
  98. #define REG_DEFAULT_SLAVE_ADDR 0x030
  99. #define REG_MMU_VERSION 0x034
  100. #define MMU_MAJ_VER(val) ((val) >> 7)
  101. #define MMU_MIN_VER(val) ((val) & 0x7F)
  102. #define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
  103. #define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F))
  104. #define REG_PB0_SADDR 0x04C
  105. #define REG_PB0_EADDR 0x050
  106. #define REG_PB1_SADDR 0x054
  107. #define REG_PB1_EADDR 0x058
  108. #define has_sysmmu(dev) (dev->archdata.iommu != NULL)
  109. static struct kmem_cache *lv2table_kmem_cache;
  110. static sysmmu_pte_t *zero_lv2_table;
  111. #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
  112. static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
  113. {
  114. return pgtable + lv1ent_offset(iova);
  115. }
  116. static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
  117. {
  118. return (sysmmu_pte_t *)phys_to_virt(
  119. lv2table_base(sent)) + lv2ent_offset(iova);
  120. }
  121. enum exynos_sysmmu_inttype {
  122. SYSMMU_PAGEFAULT,
  123. SYSMMU_AR_MULTIHIT,
  124. SYSMMU_AW_MULTIHIT,
  125. SYSMMU_BUSERROR,
  126. SYSMMU_AR_SECURITY,
  127. SYSMMU_AR_ACCESS,
  128. SYSMMU_AW_SECURITY,
  129. SYSMMU_AW_PROTECTION, /* 7 */
  130. SYSMMU_FAULT_UNKNOWN,
  131. SYSMMU_FAULTS_NUM
  132. };
  133. static unsigned short fault_reg_offset[SYSMMU_FAULTS_NUM] = {
  134. REG_PAGE_FAULT_ADDR,
  135. REG_AR_FAULT_ADDR,
  136. REG_AW_FAULT_ADDR,
  137. REG_DEFAULT_SLAVE_ADDR,
  138. REG_AR_FAULT_ADDR,
  139. REG_AR_FAULT_ADDR,
  140. REG_AW_FAULT_ADDR,
  141. REG_AW_FAULT_ADDR
  142. };
  143. static char *sysmmu_fault_name[SYSMMU_FAULTS_NUM] = {
  144. "PAGE FAULT",
  145. "AR MULTI-HIT FAULT",
  146. "AW MULTI-HIT FAULT",
  147. "BUS ERROR",
  148. "AR SECURITY PROTECTION FAULT",
  149. "AR ACCESS PROTECTION FAULT",
  150. "AW SECURITY PROTECTION FAULT",
  151. "AW ACCESS PROTECTION FAULT",
  152. "UNKNOWN FAULT"
  153. };
  154. /*
  155. * This structure is attached to dev.archdata.iommu of the master device
  156. * on device add, contains a list of SYSMMU controllers defined by device tree,
  157. * which are bound to given master device. It is usually referenced by 'owner'
  158. * pointer.
  159. */
  160. struct exynos_iommu_owner {
  161. struct list_head controllers; /* list of sysmmu_drvdata.owner_node */
  162. };
  163. /*
  164. * This structure exynos specific generalization of struct iommu_domain.
  165. * It contains list of SYSMMU controllers from all master devices, which has
  166. * been attached to this domain and page tables of IO address space defined by
  167. * it. It is usually referenced by 'domain' pointer.
  168. */
  169. struct exynos_iommu_domain {
  170. struct list_head clients; /* list of sysmmu_drvdata.domain_node */
  171. sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */
  172. short *lv2entcnt; /* free lv2 entry counter for each section */
  173. spinlock_t lock; /* lock for modyfying list of clients */
  174. spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
  175. struct iommu_domain domain; /* generic domain data structure */
  176. };
  177. /*
  178. * This structure hold all data of a single SYSMMU controller, this includes
  179. * hw resources like registers and clocks, pointers and list nodes to connect
  180. * it to all other structures, internal state and parameters read from device
  181. * tree. It is usually referenced by 'data' pointer.
  182. */
  183. struct sysmmu_drvdata {
  184. struct device *sysmmu; /* SYSMMU controller device */
  185. struct device *master; /* master device (owner) */
  186. void __iomem *sfrbase; /* our registers */
  187. struct clk *clk; /* SYSMMU's clock */
  188. struct clk *clk_master; /* master's device clock */
  189. int activations; /* number of calls to sysmmu_enable */
  190. spinlock_t lock; /* lock for modyfying state */
  191. struct exynos_iommu_domain *domain; /* domain we belong to */
  192. struct list_head domain_node; /* node for domain clients list */
  193. struct list_head owner_node; /* node for owner controllers list */
  194. phys_addr_t pgtable; /* assigned page table structure */
  195. unsigned int version; /* our version */
  196. };
  197. static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
  198. {
  199. return container_of(dom, struct exynos_iommu_domain, domain);
  200. }
  201. static bool set_sysmmu_active(struct sysmmu_drvdata *data)
  202. {
  203. /* return true if the System MMU was not active previously
  204. and it needs to be initialized */
  205. return ++data->activations == 1;
  206. }
  207. static bool set_sysmmu_inactive(struct sysmmu_drvdata *data)
  208. {
  209. /* return true if the System MMU is needed to be disabled */
  210. BUG_ON(data->activations < 1);
  211. return --data->activations == 0;
  212. }
  213. static bool is_sysmmu_active(struct sysmmu_drvdata *data)
  214. {
  215. return data->activations > 0;
  216. }
  217. static void sysmmu_unblock(void __iomem *sfrbase)
  218. {
  219. __raw_writel(CTRL_ENABLE, sfrbase + REG_MMU_CTRL);
  220. }
  221. static bool sysmmu_block(void __iomem *sfrbase)
  222. {
  223. int i = 120;
  224. __raw_writel(CTRL_BLOCK, sfrbase + REG_MMU_CTRL);
  225. while ((i > 0) && !(__raw_readl(sfrbase + REG_MMU_STATUS) & 1))
  226. --i;
  227. if (!(__raw_readl(sfrbase + REG_MMU_STATUS) & 1)) {
  228. sysmmu_unblock(sfrbase);
  229. return false;
  230. }
  231. return true;
  232. }
  233. static void __sysmmu_tlb_invalidate(void __iomem *sfrbase)
  234. {
  235. __raw_writel(0x1, sfrbase + REG_MMU_FLUSH);
  236. }
  237. static void __sysmmu_tlb_invalidate_entry(void __iomem *sfrbase,
  238. sysmmu_iova_t iova, unsigned int num_inv)
  239. {
  240. unsigned int i;
  241. for (i = 0; i < num_inv; i++) {
  242. __raw_writel((iova & SPAGE_MASK) | 1,
  243. sfrbase + REG_MMU_FLUSH_ENTRY);
  244. iova += SPAGE_SIZE;
  245. }
  246. }
  247. static void __sysmmu_set_ptbase(void __iomem *sfrbase,
  248. phys_addr_t pgd)
  249. {
  250. __raw_writel(pgd, sfrbase + REG_PT_BASE_ADDR);
  251. __sysmmu_tlb_invalidate(sfrbase);
  252. }
  253. static void show_fault_information(const char *name,
  254. enum exynos_sysmmu_inttype itype,
  255. phys_addr_t pgtable_base, sysmmu_iova_t fault_addr)
  256. {
  257. sysmmu_pte_t *ent;
  258. if ((itype >= SYSMMU_FAULTS_NUM) || (itype < SYSMMU_PAGEFAULT))
  259. itype = SYSMMU_FAULT_UNKNOWN;
  260. pr_err("%s occurred at %#x by %s(Page table base: %pa)\n",
  261. sysmmu_fault_name[itype], fault_addr, name, &pgtable_base);
  262. ent = section_entry(phys_to_virt(pgtable_base), fault_addr);
  263. pr_err("\tLv1 entry: %#x\n", *ent);
  264. if (lv1ent_page(ent)) {
  265. ent = page_entry(ent, fault_addr);
  266. pr_err("\t Lv2 entry: %#x\n", *ent);
  267. }
  268. }
  269. static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
  270. {
  271. /* SYSMMU is in blocked state when interrupt occurred. */
  272. struct sysmmu_drvdata *data = dev_id;
  273. enum exynos_sysmmu_inttype itype;
  274. sysmmu_iova_t addr = -1;
  275. int ret = -ENOSYS;
  276. WARN_ON(!is_sysmmu_active(data));
  277. spin_lock(&data->lock);
  278. if (!IS_ERR(data->clk_master))
  279. clk_enable(data->clk_master);
  280. itype = (enum exynos_sysmmu_inttype)
  281. __ffs(__raw_readl(data->sfrbase + REG_INT_STATUS));
  282. if (WARN_ON(!((itype >= 0) && (itype < SYSMMU_FAULT_UNKNOWN))))
  283. itype = SYSMMU_FAULT_UNKNOWN;
  284. else
  285. addr = __raw_readl(data->sfrbase + fault_reg_offset[itype]);
  286. if (itype == SYSMMU_FAULT_UNKNOWN) {
  287. pr_err("%s: Fault is not occurred by System MMU '%s'!\n",
  288. __func__, dev_name(data->sysmmu));
  289. pr_err("%s: Please check if IRQ is correctly configured.\n",
  290. __func__);
  291. BUG();
  292. } else {
  293. unsigned int base =
  294. __raw_readl(data->sfrbase + REG_PT_BASE_ADDR);
  295. show_fault_information(dev_name(data->sysmmu),
  296. itype, base, addr);
  297. if (data->domain)
  298. ret = report_iommu_fault(&data->domain->domain,
  299. data->master, addr, itype);
  300. }
  301. /* fault is not recovered by fault handler */
  302. BUG_ON(ret != 0);
  303. __raw_writel(1 << itype, data->sfrbase + REG_INT_CLEAR);
  304. sysmmu_unblock(data->sfrbase);
  305. if (!IS_ERR(data->clk_master))
  306. clk_disable(data->clk_master);
  307. spin_unlock(&data->lock);
  308. return IRQ_HANDLED;
  309. }
  310. static void __sysmmu_disable_nocount(struct sysmmu_drvdata *data)
  311. {
  312. if (!IS_ERR(data->clk_master))
  313. clk_enable(data->clk_master);
  314. __raw_writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
  315. __raw_writel(0, data->sfrbase + REG_MMU_CFG);
  316. clk_disable(data->clk);
  317. if (!IS_ERR(data->clk_master))
  318. clk_disable(data->clk_master);
  319. }
  320. static bool __sysmmu_disable(struct sysmmu_drvdata *data)
  321. {
  322. bool disabled;
  323. unsigned long flags;
  324. spin_lock_irqsave(&data->lock, flags);
  325. disabled = set_sysmmu_inactive(data);
  326. if (disabled) {
  327. data->pgtable = 0;
  328. data->domain = NULL;
  329. __sysmmu_disable_nocount(data);
  330. dev_dbg(data->sysmmu, "Disabled\n");
  331. } else {
  332. dev_dbg(data->sysmmu, "%d times left to disable\n",
  333. data->activations);
  334. }
  335. spin_unlock_irqrestore(&data->lock, flags);
  336. return disabled;
  337. }
  338. static void __sysmmu_init_config(struct sysmmu_drvdata *data)
  339. {
  340. unsigned int cfg = CFG_LRU | CFG_QOS(15);
  341. unsigned int ver;
  342. ver = MMU_RAW_VER(__raw_readl(data->sfrbase + REG_MMU_VERSION));
  343. if (MMU_MAJ_VER(ver) == 3) {
  344. if (MMU_MIN_VER(ver) >= 2) {
  345. cfg |= CFG_FLPDCACHE;
  346. if (MMU_MIN_VER(ver) == 3) {
  347. cfg |= CFG_ACGEN;
  348. cfg &= ~CFG_LRU;
  349. } else {
  350. cfg |= CFG_SYSSEL;
  351. }
  352. }
  353. }
  354. __raw_writel(cfg, data->sfrbase + REG_MMU_CFG);
  355. data->version = ver;
  356. }
  357. static void __sysmmu_enable_nocount(struct sysmmu_drvdata *data)
  358. {
  359. if (!IS_ERR(data->clk_master))
  360. clk_enable(data->clk_master);
  361. clk_enable(data->clk);
  362. __raw_writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
  363. __sysmmu_init_config(data);
  364. __sysmmu_set_ptbase(data->sfrbase, data->pgtable);
  365. __raw_writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
  366. if (!IS_ERR(data->clk_master))
  367. clk_disable(data->clk_master);
  368. }
  369. static int __sysmmu_enable(struct sysmmu_drvdata *data, phys_addr_t pgtable,
  370. struct exynos_iommu_domain *domain)
  371. {
  372. int ret = 0;
  373. unsigned long flags;
  374. spin_lock_irqsave(&data->lock, flags);
  375. if (set_sysmmu_active(data)) {
  376. data->pgtable = pgtable;
  377. data->domain = domain;
  378. __sysmmu_enable_nocount(data);
  379. dev_dbg(data->sysmmu, "Enabled\n");
  380. } else {
  381. ret = (pgtable == data->pgtable) ? 1 : -EBUSY;
  382. dev_dbg(data->sysmmu, "already enabled\n");
  383. }
  384. if (WARN_ON(ret < 0))
  385. set_sysmmu_inactive(data); /* decrement count */
  386. spin_unlock_irqrestore(&data->lock, flags);
  387. return ret;
  388. }
  389. static void __sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
  390. sysmmu_iova_t iova)
  391. {
  392. if (data->version == MAKE_MMU_VER(3, 3))
  393. __raw_writel(iova | 0x1, data->sfrbase + REG_MMU_FLUSH_ENTRY);
  394. }
  395. static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
  396. sysmmu_iova_t iova)
  397. {
  398. unsigned long flags;
  399. if (!IS_ERR(data->clk_master))
  400. clk_enable(data->clk_master);
  401. spin_lock_irqsave(&data->lock, flags);
  402. if (is_sysmmu_active(data))
  403. __sysmmu_tlb_invalidate_flpdcache(data, iova);
  404. spin_unlock_irqrestore(&data->lock, flags);
  405. if (!IS_ERR(data->clk_master))
  406. clk_disable(data->clk_master);
  407. }
  408. static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
  409. sysmmu_iova_t iova, size_t size)
  410. {
  411. unsigned long flags;
  412. spin_lock_irqsave(&data->lock, flags);
  413. if (is_sysmmu_active(data)) {
  414. unsigned int num_inv = 1;
  415. if (!IS_ERR(data->clk_master))
  416. clk_enable(data->clk_master);
  417. /*
  418. * L2TLB invalidation required
  419. * 4KB page: 1 invalidation
  420. * 64KB page: 16 invalidations
  421. * 1MB page: 64 invalidations
  422. * because it is set-associative TLB
  423. * with 8-way and 64 sets.
  424. * 1MB page can be cached in one of all sets.
  425. * 64KB page can be one of 16 consecutive sets.
  426. */
  427. if (MMU_MAJ_VER(data->version) == 2)
  428. num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
  429. if (sysmmu_block(data->sfrbase)) {
  430. __sysmmu_tlb_invalidate_entry(
  431. data->sfrbase, iova, num_inv);
  432. sysmmu_unblock(data->sfrbase);
  433. }
  434. if (!IS_ERR(data->clk_master))
  435. clk_disable(data->clk_master);
  436. } else {
  437. dev_dbg(data->master,
  438. "disabled. Skipping TLB invalidation @ %#x\n", iova);
  439. }
  440. spin_unlock_irqrestore(&data->lock, flags);
  441. }
  442. static int __init exynos_sysmmu_probe(struct platform_device *pdev)
  443. {
  444. int irq, ret;
  445. struct device *dev = &pdev->dev;
  446. struct sysmmu_drvdata *data;
  447. struct resource *res;
  448. data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
  449. if (!data)
  450. return -ENOMEM;
  451. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  452. data->sfrbase = devm_ioremap_resource(dev, res);
  453. if (IS_ERR(data->sfrbase))
  454. return PTR_ERR(data->sfrbase);
  455. irq = platform_get_irq(pdev, 0);
  456. if (irq <= 0) {
  457. dev_err(dev, "Unable to find IRQ resource\n");
  458. return irq;
  459. }
  460. ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
  461. dev_name(dev), data);
  462. if (ret) {
  463. dev_err(dev, "Unabled to register handler of irq %d\n", irq);
  464. return ret;
  465. }
  466. data->clk = devm_clk_get(dev, "sysmmu");
  467. if (IS_ERR(data->clk)) {
  468. dev_err(dev, "Failed to get clock!\n");
  469. return PTR_ERR(data->clk);
  470. } else {
  471. ret = clk_prepare(data->clk);
  472. if (ret) {
  473. dev_err(dev, "Failed to prepare clk\n");
  474. return ret;
  475. }
  476. }
  477. data->clk_master = devm_clk_get(dev, "master");
  478. if (!IS_ERR(data->clk_master)) {
  479. ret = clk_prepare(data->clk_master);
  480. if (ret) {
  481. clk_unprepare(data->clk);
  482. dev_err(dev, "Failed to prepare master's clk\n");
  483. return ret;
  484. }
  485. }
  486. data->sysmmu = dev;
  487. spin_lock_init(&data->lock);
  488. platform_set_drvdata(pdev, data);
  489. pm_runtime_enable(dev);
  490. return 0;
  491. }
  492. #ifdef CONFIG_PM_SLEEP
  493. static int exynos_sysmmu_suspend(struct device *dev)
  494. {
  495. struct sysmmu_drvdata *data = dev_get_drvdata(dev);
  496. dev_dbg(dev, "suspend\n");
  497. if (is_sysmmu_active(data)) {
  498. __sysmmu_disable_nocount(data);
  499. pm_runtime_put(dev);
  500. }
  501. return 0;
  502. }
  503. static int exynos_sysmmu_resume(struct device *dev)
  504. {
  505. struct sysmmu_drvdata *data = dev_get_drvdata(dev);
  506. dev_dbg(dev, "resume\n");
  507. if (is_sysmmu_active(data)) {
  508. pm_runtime_get_sync(dev);
  509. __sysmmu_enable_nocount(data);
  510. }
  511. return 0;
  512. }
  513. #endif
  514. static const struct dev_pm_ops sysmmu_pm_ops = {
  515. SET_LATE_SYSTEM_SLEEP_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume)
  516. };
  517. static const struct of_device_id sysmmu_of_match[] __initconst = {
  518. { .compatible = "samsung,exynos-sysmmu", },
  519. { },
  520. };
  521. static struct platform_driver exynos_sysmmu_driver __refdata = {
  522. .probe = exynos_sysmmu_probe,
  523. .driver = {
  524. .name = "exynos-sysmmu",
  525. .of_match_table = sysmmu_of_match,
  526. .pm = &sysmmu_pm_ops,
  527. }
  528. };
  529. static inline void pgtable_flush(void *vastart, void *vaend)
  530. {
  531. dmac_flush_range(vastart, vaend);
  532. outer_flush_range(virt_to_phys(vastart),
  533. virt_to_phys(vaend));
  534. }
  535. static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
  536. {
  537. struct exynos_iommu_domain *domain;
  538. int i;
  539. if (type != IOMMU_DOMAIN_UNMANAGED)
  540. return NULL;
  541. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  542. if (!domain)
  543. return NULL;
  544. domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
  545. if (!domain->pgtable)
  546. goto err_pgtable;
  547. domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
  548. if (!domain->lv2entcnt)
  549. goto err_counter;
  550. /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
  551. for (i = 0; i < NUM_LV1ENTRIES; i += 8) {
  552. domain->pgtable[i + 0] = ZERO_LV2LINK;
  553. domain->pgtable[i + 1] = ZERO_LV2LINK;
  554. domain->pgtable[i + 2] = ZERO_LV2LINK;
  555. domain->pgtable[i + 3] = ZERO_LV2LINK;
  556. domain->pgtable[i + 4] = ZERO_LV2LINK;
  557. domain->pgtable[i + 5] = ZERO_LV2LINK;
  558. domain->pgtable[i + 6] = ZERO_LV2LINK;
  559. domain->pgtable[i + 7] = ZERO_LV2LINK;
  560. }
  561. pgtable_flush(domain->pgtable, domain->pgtable + NUM_LV1ENTRIES);
  562. spin_lock_init(&domain->lock);
  563. spin_lock_init(&domain->pgtablelock);
  564. INIT_LIST_HEAD(&domain->clients);
  565. domain->domain.geometry.aperture_start = 0;
  566. domain->domain.geometry.aperture_end = ~0UL;
  567. domain->domain.geometry.force_aperture = true;
  568. return &domain->domain;
  569. err_counter:
  570. free_pages((unsigned long)domain->pgtable, 2);
  571. err_pgtable:
  572. kfree(domain);
  573. return NULL;
  574. }
  575. static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
  576. {
  577. struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
  578. struct sysmmu_drvdata *data, *next;
  579. unsigned long flags;
  580. int i;
  581. WARN_ON(!list_empty(&domain->clients));
  582. spin_lock_irqsave(&domain->lock, flags);
  583. list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
  584. if (__sysmmu_disable(data))
  585. data->master = NULL;
  586. list_del_init(&data->domain_node);
  587. }
  588. spin_unlock_irqrestore(&domain->lock, flags);
  589. for (i = 0; i < NUM_LV1ENTRIES; i++)
  590. if (lv1ent_page(domain->pgtable + i))
  591. kmem_cache_free(lv2table_kmem_cache,
  592. phys_to_virt(lv2table_base(domain->pgtable + i)));
  593. free_pages((unsigned long)domain->pgtable, 2);
  594. free_pages((unsigned long)domain->lv2entcnt, 1);
  595. kfree(domain);
  596. }
  597. static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
  598. struct device *dev)
  599. {
  600. struct exynos_iommu_owner *owner = dev->archdata.iommu;
  601. struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
  602. struct sysmmu_drvdata *data;
  603. phys_addr_t pagetable = virt_to_phys(domain->pgtable);
  604. unsigned long flags;
  605. int ret = -ENODEV;
  606. if (!has_sysmmu(dev))
  607. return -ENODEV;
  608. list_for_each_entry(data, &owner->controllers, owner_node) {
  609. pm_runtime_get_sync(data->sysmmu);
  610. ret = __sysmmu_enable(data, pagetable, domain);
  611. if (ret >= 0) {
  612. data->master = dev;
  613. spin_lock_irqsave(&domain->lock, flags);
  614. list_add_tail(&data->domain_node, &domain->clients);
  615. spin_unlock_irqrestore(&domain->lock, flags);
  616. }
  617. }
  618. if (ret < 0) {
  619. dev_err(dev, "%s: Failed to attach IOMMU with pgtable %pa\n",
  620. __func__, &pagetable);
  621. return ret;
  622. }
  623. dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa %s\n",
  624. __func__, &pagetable, (ret == 0) ? "" : ", again");
  625. return ret;
  626. }
  627. static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
  628. struct device *dev)
  629. {
  630. struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
  631. phys_addr_t pagetable = virt_to_phys(domain->pgtable);
  632. struct sysmmu_drvdata *data, *next;
  633. unsigned long flags;
  634. bool found = false;
  635. if (!has_sysmmu(dev))
  636. return;
  637. spin_lock_irqsave(&domain->lock, flags);
  638. list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
  639. if (data->master == dev) {
  640. if (__sysmmu_disable(data)) {
  641. data->master = NULL;
  642. list_del_init(&data->domain_node);
  643. }
  644. pm_runtime_put(data->sysmmu);
  645. found = true;
  646. }
  647. }
  648. spin_unlock_irqrestore(&domain->lock, flags);
  649. if (found)
  650. dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n",
  651. __func__, &pagetable);
  652. else
  653. dev_err(dev, "%s: No IOMMU is attached\n", __func__);
  654. }
  655. static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
  656. sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
  657. {
  658. if (lv1ent_section(sent)) {
  659. WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
  660. return ERR_PTR(-EADDRINUSE);
  661. }
  662. if (lv1ent_fault(sent)) {
  663. sysmmu_pte_t *pent;
  664. bool need_flush_flpd_cache = lv1ent_zero(sent);
  665. pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
  666. BUG_ON((unsigned int)pent & (LV2TABLE_SIZE - 1));
  667. if (!pent)
  668. return ERR_PTR(-ENOMEM);
  669. *sent = mk_lv1ent_page(virt_to_phys(pent));
  670. kmemleak_ignore(pent);
  671. *pgcounter = NUM_LV2ENTRIES;
  672. pgtable_flush(pent, pent + NUM_LV2ENTRIES);
  673. pgtable_flush(sent, sent + 1);
  674. /*
  675. * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
  676. * FLPD cache may cache the address of zero_l2_table. This
  677. * function replaces the zero_l2_table with new L2 page table
  678. * to write valid mappings.
  679. * Accessing the valid area may cause page fault since FLPD
  680. * cache may still cache zero_l2_table for the valid area
  681. * instead of new L2 page table that has the mapping
  682. * information of the valid area.
  683. * Thus any replacement of zero_l2_table with other valid L2
  684. * page table must involve FLPD cache invalidation for System
  685. * MMU v3.3.
  686. * FLPD cache invalidation is performed with TLB invalidation
  687. * by VPN without blocking. It is safe to invalidate TLB without
  688. * blocking because the target address of TLB invalidation is
  689. * not currently mapped.
  690. */
  691. if (need_flush_flpd_cache) {
  692. struct sysmmu_drvdata *data;
  693. spin_lock(&domain->lock);
  694. list_for_each_entry(data, &domain->clients, domain_node)
  695. sysmmu_tlb_invalidate_flpdcache(data, iova);
  696. spin_unlock(&domain->lock);
  697. }
  698. }
  699. return page_entry(sent, iova);
  700. }
  701. static int lv1set_section(struct exynos_iommu_domain *domain,
  702. sysmmu_pte_t *sent, sysmmu_iova_t iova,
  703. phys_addr_t paddr, short *pgcnt)
  704. {
  705. if (lv1ent_section(sent)) {
  706. WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
  707. iova);
  708. return -EADDRINUSE;
  709. }
  710. if (lv1ent_page(sent)) {
  711. if (*pgcnt != NUM_LV2ENTRIES) {
  712. WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
  713. iova);
  714. return -EADDRINUSE;
  715. }
  716. kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
  717. *pgcnt = 0;
  718. }
  719. *sent = mk_lv1ent_sect(paddr);
  720. pgtable_flush(sent, sent + 1);
  721. spin_lock(&domain->lock);
  722. if (lv1ent_page_zero(sent)) {
  723. struct sysmmu_drvdata *data;
  724. /*
  725. * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
  726. * entry by speculative prefetch of SLPD which has no mapping.
  727. */
  728. list_for_each_entry(data, &domain->clients, domain_node)
  729. sysmmu_tlb_invalidate_flpdcache(data, iova);
  730. }
  731. spin_unlock(&domain->lock);
  732. return 0;
  733. }
  734. static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
  735. short *pgcnt)
  736. {
  737. if (size == SPAGE_SIZE) {
  738. if (WARN_ON(!lv2ent_fault(pent)))
  739. return -EADDRINUSE;
  740. *pent = mk_lv2ent_spage(paddr);
  741. pgtable_flush(pent, pent + 1);
  742. *pgcnt -= 1;
  743. } else { /* size == LPAGE_SIZE */
  744. int i;
  745. for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
  746. if (WARN_ON(!lv2ent_fault(pent))) {
  747. if (i > 0)
  748. memset(pent - i, 0, sizeof(*pent) * i);
  749. return -EADDRINUSE;
  750. }
  751. *pent = mk_lv2ent_lpage(paddr);
  752. }
  753. pgtable_flush(pent - SPAGES_PER_LPAGE, pent);
  754. *pgcnt -= SPAGES_PER_LPAGE;
  755. }
  756. return 0;
  757. }
  758. /*
  759. * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
  760. *
  761. * System MMU v3.x has advanced logic to improve address translation
  762. * performance with caching more page table entries by a page table walk.
  763. * However, the logic has a bug that while caching faulty page table entries,
  764. * System MMU reports page fault if the cached fault entry is hit even though
  765. * the fault entry is updated to a valid entry after the entry is cached.
  766. * To prevent caching faulty page table entries which may be updated to valid
  767. * entries later, the virtual memory manager should care about the workaround
  768. * for the problem. The following describes the workaround.
  769. *
  770. * Any two consecutive I/O virtual address regions must have a hole of 128KiB
  771. * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
  772. *
  773. * Precisely, any start address of I/O virtual region must be aligned with
  774. * the following sizes for System MMU v3.1 and v3.2.
  775. * System MMU v3.1: 128KiB
  776. * System MMU v3.2: 256KiB
  777. *
  778. * Because System MMU v3.3 caches page table entries more aggressively, it needs
  779. * more workarounds.
  780. * - Any two consecutive I/O virtual regions must have a hole of size larger
  781. * than or equal to 128KiB.
  782. * - Start address of an I/O virtual region must be aligned by 128KiB.
  783. */
  784. static int exynos_iommu_map(struct iommu_domain *iommu_domain,
  785. unsigned long l_iova, phys_addr_t paddr, size_t size,
  786. int prot)
  787. {
  788. struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
  789. sysmmu_pte_t *entry;
  790. sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
  791. unsigned long flags;
  792. int ret = -ENOMEM;
  793. BUG_ON(domain->pgtable == NULL);
  794. spin_lock_irqsave(&domain->pgtablelock, flags);
  795. entry = section_entry(domain->pgtable, iova);
  796. if (size == SECT_SIZE) {
  797. ret = lv1set_section(domain, entry, iova, paddr,
  798. &domain->lv2entcnt[lv1ent_offset(iova)]);
  799. } else {
  800. sysmmu_pte_t *pent;
  801. pent = alloc_lv2entry(domain, entry, iova,
  802. &domain->lv2entcnt[lv1ent_offset(iova)]);
  803. if (IS_ERR(pent))
  804. ret = PTR_ERR(pent);
  805. else
  806. ret = lv2set_page(pent, paddr, size,
  807. &domain->lv2entcnt[lv1ent_offset(iova)]);
  808. }
  809. if (ret)
  810. pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
  811. __func__, ret, size, iova);
  812. spin_unlock_irqrestore(&domain->pgtablelock, flags);
  813. return ret;
  814. }
  815. static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
  816. sysmmu_iova_t iova, size_t size)
  817. {
  818. struct sysmmu_drvdata *data;
  819. unsigned long flags;
  820. spin_lock_irqsave(&domain->lock, flags);
  821. list_for_each_entry(data, &domain->clients, domain_node)
  822. sysmmu_tlb_invalidate_entry(data, iova, size);
  823. spin_unlock_irqrestore(&domain->lock, flags);
  824. }
  825. static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
  826. unsigned long l_iova, size_t size)
  827. {
  828. struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
  829. sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
  830. sysmmu_pte_t *ent;
  831. size_t err_pgsize;
  832. unsigned long flags;
  833. BUG_ON(domain->pgtable == NULL);
  834. spin_lock_irqsave(&domain->pgtablelock, flags);
  835. ent = section_entry(domain->pgtable, iova);
  836. if (lv1ent_section(ent)) {
  837. if (WARN_ON(size < SECT_SIZE)) {
  838. err_pgsize = SECT_SIZE;
  839. goto err;
  840. }
  841. /* workaround for h/w bug in System MMU v3.3 */
  842. *ent = ZERO_LV2LINK;
  843. pgtable_flush(ent, ent + 1);
  844. size = SECT_SIZE;
  845. goto done;
  846. }
  847. if (unlikely(lv1ent_fault(ent))) {
  848. if (size > SECT_SIZE)
  849. size = SECT_SIZE;
  850. goto done;
  851. }
  852. /* lv1ent_page(sent) == true here */
  853. ent = page_entry(ent, iova);
  854. if (unlikely(lv2ent_fault(ent))) {
  855. size = SPAGE_SIZE;
  856. goto done;
  857. }
  858. if (lv2ent_small(ent)) {
  859. *ent = 0;
  860. size = SPAGE_SIZE;
  861. pgtable_flush(ent, ent + 1);
  862. domain->lv2entcnt[lv1ent_offset(iova)] += 1;
  863. goto done;
  864. }
  865. /* lv1ent_large(ent) == true here */
  866. if (WARN_ON(size < LPAGE_SIZE)) {
  867. err_pgsize = LPAGE_SIZE;
  868. goto err;
  869. }
  870. memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
  871. pgtable_flush(ent, ent + SPAGES_PER_LPAGE);
  872. size = LPAGE_SIZE;
  873. domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
  874. done:
  875. spin_unlock_irqrestore(&domain->pgtablelock, flags);
  876. exynos_iommu_tlb_invalidate_entry(domain, iova, size);
  877. return size;
  878. err:
  879. spin_unlock_irqrestore(&domain->pgtablelock, flags);
  880. pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
  881. __func__, size, iova, err_pgsize);
  882. return 0;
  883. }
  884. static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
  885. dma_addr_t iova)
  886. {
  887. struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
  888. sysmmu_pte_t *entry;
  889. unsigned long flags;
  890. phys_addr_t phys = 0;
  891. spin_lock_irqsave(&domain->pgtablelock, flags);
  892. entry = section_entry(domain->pgtable, iova);
  893. if (lv1ent_section(entry)) {
  894. phys = section_phys(entry) + section_offs(iova);
  895. } else if (lv1ent_page(entry)) {
  896. entry = page_entry(entry, iova);
  897. if (lv2ent_large(entry))
  898. phys = lpage_phys(entry) + lpage_offs(iova);
  899. else if (lv2ent_small(entry))
  900. phys = spage_phys(entry) + spage_offs(iova);
  901. }
  902. spin_unlock_irqrestore(&domain->pgtablelock, flags);
  903. return phys;
  904. }
  905. static int exynos_iommu_add_device(struct device *dev)
  906. {
  907. struct iommu_group *group;
  908. int ret;
  909. if (!has_sysmmu(dev))
  910. return -ENODEV;
  911. group = iommu_group_get(dev);
  912. if (!group) {
  913. group = iommu_group_alloc();
  914. if (IS_ERR(group)) {
  915. dev_err(dev, "Failed to allocate IOMMU group\n");
  916. return PTR_ERR(group);
  917. }
  918. }
  919. ret = iommu_group_add_device(group, dev);
  920. iommu_group_put(group);
  921. return ret;
  922. }
  923. static void exynos_iommu_remove_device(struct device *dev)
  924. {
  925. if (!has_sysmmu(dev))
  926. return;
  927. iommu_group_remove_device(dev);
  928. }
  929. static int exynos_iommu_of_xlate(struct device *dev,
  930. struct of_phandle_args *spec)
  931. {
  932. struct exynos_iommu_owner *owner = dev->archdata.iommu;
  933. struct platform_device *sysmmu = of_find_device_by_node(spec->np);
  934. struct sysmmu_drvdata *data;
  935. if (!sysmmu)
  936. return -ENODEV;
  937. data = platform_get_drvdata(sysmmu);
  938. if (!data)
  939. return -ENODEV;
  940. if (!owner) {
  941. owner = kzalloc(sizeof(*owner), GFP_KERNEL);
  942. if (!owner)
  943. return -ENOMEM;
  944. INIT_LIST_HEAD(&owner->controllers);
  945. dev->archdata.iommu = owner;
  946. }
  947. list_add_tail(&data->owner_node, &owner->controllers);
  948. return 0;
  949. }
  950. static struct iommu_ops exynos_iommu_ops = {
  951. .domain_alloc = exynos_iommu_domain_alloc,
  952. .domain_free = exynos_iommu_domain_free,
  953. .attach_dev = exynos_iommu_attach_device,
  954. .detach_dev = exynos_iommu_detach_device,
  955. .map = exynos_iommu_map,
  956. .unmap = exynos_iommu_unmap,
  957. .map_sg = default_iommu_map_sg,
  958. .iova_to_phys = exynos_iommu_iova_to_phys,
  959. .add_device = exynos_iommu_add_device,
  960. .remove_device = exynos_iommu_remove_device,
  961. .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
  962. .of_xlate = exynos_iommu_of_xlate,
  963. };
  964. static bool init_done;
  965. static int __init exynos_iommu_init(void)
  966. {
  967. int ret;
  968. lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
  969. LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
  970. if (!lv2table_kmem_cache) {
  971. pr_err("%s: Failed to create kmem cache\n", __func__);
  972. return -ENOMEM;
  973. }
  974. ret = platform_driver_register(&exynos_sysmmu_driver);
  975. if (ret) {
  976. pr_err("%s: Failed to register driver\n", __func__);
  977. goto err_reg_driver;
  978. }
  979. zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
  980. if (zero_lv2_table == NULL) {
  981. pr_err("%s: Failed to allocate zero level2 page table\n",
  982. __func__);
  983. ret = -ENOMEM;
  984. goto err_zero_lv2;
  985. }
  986. ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
  987. if (ret) {
  988. pr_err("%s: Failed to register exynos-iommu driver.\n",
  989. __func__);
  990. goto err_set_iommu;
  991. }
  992. init_done = true;
  993. return 0;
  994. err_set_iommu:
  995. kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
  996. err_zero_lv2:
  997. platform_driver_unregister(&exynos_sysmmu_driver);
  998. err_reg_driver:
  999. kmem_cache_destroy(lv2table_kmem_cache);
  1000. return ret;
  1001. }
  1002. static int __init exynos_iommu_of_setup(struct device_node *np)
  1003. {
  1004. struct platform_device *pdev;
  1005. if (!init_done)
  1006. exynos_iommu_init();
  1007. pdev = of_platform_device_create(np, NULL, platform_bus_type.dev_root);
  1008. if (IS_ERR(pdev))
  1009. return PTR_ERR(pdev);
  1010. of_iommu_set_ops(np, &exynos_iommu_ops);
  1011. return 0;
  1012. }
  1013. IOMMU_OF_DECLARE(exynos_iommu_of, "samsung,exynos-sysmmu",
  1014. exynos_iommu_of_setup);