mem.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985
  1. /*
  2. * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include <linux/module.h>
  33. #include <linux/moduleparam.h>
  34. #include <rdma/ib_umem.h>
  35. #include <linux/atomic.h>
  36. #include "iw_cxgb4.h"
  37. int use_dsgl = 0;
  38. module_param(use_dsgl, int, 0644);
  39. MODULE_PARM_DESC(use_dsgl, "Use DSGL for PBL/FastReg (default=0)");
  40. #define T4_ULPTX_MIN_IO 32
  41. #define C4IW_MAX_INLINE_SIZE 96
  42. #define T4_ULPTX_MAX_DMA 1024
  43. #define C4IW_INLINE_THRESHOLD 128
  44. static int inline_threshold = C4IW_INLINE_THRESHOLD;
  45. module_param(inline_threshold, int, 0644);
  46. MODULE_PARM_DESC(inline_threshold, "inline vs dsgl threshold (default=128)");
  47. static int mr_exceeds_hw_limits(struct c4iw_dev *dev, u64 length)
  48. {
  49. return (is_t4(dev->rdev.lldi.adapter_type) ||
  50. is_t5(dev->rdev.lldi.adapter_type)) &&
  51. length >= 8*1024*1024*1024ULL;
  52. }
  53. static int _c4iw_write_mem_dma_aligned(struct c4iw_rdev *rdev, u32 addr,
  54. u32 len, dma_addr_t data, int wait)
  55. {
  56. struct sk_buff *skb;
  57. struct ulp_mem_io *req;
  58. struct ulptx_sgl *sgl;
  59. u8 wr_len;
  60. int ret = 0;
  61. struct c4iw_wr_wait wr_wait;
  62. addr &= 0x7FFFFFF;
  63. if (wait)
  64. c4iw_init_wr_wait(&wr_wait);
  65. wr_len = roundup(sizeof(*req) + sizeof(*sgl), 16);
  66. skb = alloc_skb(wr_len, GFP_KERNEL);
  67. if (!skb)
  68. return -ENOMEM;
  69. set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
  70. req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
  71. memset(req, 0, wr_len);
  72. INIT_ULPTX_WR(req, wr_len, 0, 0);
  73. req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) |
  74. (wait ? FW_WR_COMPL_F : 0));
  75. req->wr.wr_lo = wait ? (__force __be64)(unsigned long) &wr_wait : 0L;
  76. req->wr.wr_mid = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(wr_len, 16)));
  77. req->cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE));
  78. req->cmd |= cpu_to_be32(T5_ULP_MEMIO_ORDER_V(1));
  79. req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(len>>5));
  80. req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr), 16));
  81. req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(addr));
  82. sgl = (struct ulptx_sgl *)(req + 1);
  83. sgl->cmd_nsge = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
  84. ULPTX_NSGE_V(1));
  85. sgl->len0 = cpu_to_be32(len);
  86. sgl->addr0 = cpu_to_be64(data);
  87. ret = c4iw_ofld_send(rdev, skb);
  88. if (ret)
  89. return ret;
  90. if (wait)
  91. ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
  92. return ret;
  93. }
  94. static int _c4iw_write_mem_inline(struct c4iw_rdev *rdev, u32 addr, u32 len,
  95. void *data)
  96. {
  97. struct sk_buff *skb;
  98. struct ulp_mem_io *req;
  99. struct ulptx_idata *sc;
  100. u8 wr_len, *to_dp, *from_dp;
  101. int copy_len, num_wqe, i, ret = 0;
  102. struct c4iw_wr_wait wr_wait;
  103. __be32 cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE));
  104. if (is_t4(rdev->lldi.adapter_type))
  105. cmd |= cpu_to_be32(ULP_MEMIO_ORDER_F);
  106. else
  107. cmd |= cpu_to_be32(T5_ULP_MEMIO_IMM_F);
  108. addr &= 0x7FFFFFF;
  109. PDBG("%s addr 0x%x len %u\n", __func__, addr, len);
  110. num_wqe = DIV_ROUND_UP(len, C4IW_MAX_INLINE_SIZE);
  111. c4iw_init_wr_wait(&wr_wait);
  112. for (i = 0; i < num_wqe; i++) {
  113. copy_len = len > C4IW_MAX_INLINE_SIZE ? C4IW_MAX_INLINE_SIZE :
  114. len;
  115. wr_len = roundup(sizeof *req + sizeof *sc +
  116. roundup(copy_len, T4_ULPTX_MIN_IO), 16);
  117. skb = alloc_skb(wr_len, GFP_KERNEL);
  118. if (!skb)
  119. return -ENOMEM;
  120. set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
  121. req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
  122. memset(req, 0, wr_len);
  123. INIT_ULPTX_WR(req, wr_len, 0, 0);
  124. if (i == (num_wqe-1)) {
  125. req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) |
  126. FW_WR_COMPL_F);
  127. req->wr.wr_lo = (__force __be64)&wr_wait;
  128. } else
  129. req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR));
  130. req->wr.wr_mid = cpu_to_be32(
  131. FW_WR_LEN16_V(DIV_ROUND_UP(wr_len, 16)));
  132. req->cmd = cmd;
  133. req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(
  134. DIV_ROUND_UP(copy_len, T4_ULPTX_MIN_IO)));
  135. req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr),
  136. 16));
  137. req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(addr + i * 3));
  138. sc = (struct ulptx_idata *)(req + 1);
  139. sc->cmd_more = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_IMM));
  140. sc->len = cpu_to_be32(roundup(copy_len, T4_ULPTX_MIN_IO));
  141. to_dp = (u8 *)(sc + 1);
  142. from_dp = (u8 *)data + i * C4IW_MAX_INLINE_SIZE;
  143. if (data)
  144. memcpy(to_dp, from_dp, copy_len);
  145. else
  146. memset(to_dp, 0, copy_len);
  147. if (copy_len % T4_ULPTX_MIN_IO)
  148. memset(to_dp + copy_len, 0, T4_ULPTX_MIN_IO -
  149. (copy_len % T4_ULPTX_MIN_IO));
  150. ret = c4iw_ofld_send(rdev, skb);
  151. if (ret)
  152. return ret;
  153. len -= C4IW_MAX_INLINE_SIZE;
  154. }
  155. ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
  156. return ret;
  157. }
  158. static int _c4iw_write_mem_dma(struct c4iw_rdev *rdev, u32 addr, u32 len, void *data)
  159. {
  160. u32 remain = len;
  161. u32 dmalen;
  162. int ret = 0;
  163. dma_addr_t daddr;
  164. dma_addr_t save;
  165. daddr = dma_map_single(&rdev->lldi.pdev->dev, data, len, DMA_TO_DEVICE);
  166. if (dma_mapping_error(&rdev->lldi.pdev->dev, daddr))
  167. return -1;
  168. save = daddr;
  169. while (remain > inline_threshold) {
  170. if (remain < T4_ULPTX_MAX_DMA) {
  171. if (remain & ~T4_ULPTX_MIN_IO)
  172. dmalen = remain & ~(T4_ULPTX_MIN_IO-1);
  173. else
  174. dmalen = remain;
  175. } else
  176. dmalen = T4_ULPTX_MAX_DMA;
  177. remain -= dmalen;
  178. ret = _c4iw_write_mem_dma_aligned(rdev, addr, dmalen, daddr,
  179. !remain);
  180. if (ret)
  181. goto out;
  182. addr += dmalen >> 5;
  183. data += dmalen;
  184. daddr += dmalen;
  185. }
  186. if (remain)
  187. ret = _c4iw_write_mem_inline(rdev, addr, remain, data);
  188. out:
  189. dma_unmap_single(&rdev->lldi.pdev->dev, save, len, DMA_TO_DEVICE);
  190. return ret;
  191. }
  192. /*
  193. * write len bytes of data into addr (32B aligned address)
  194. * If data is NULL, clear len byte of memory to zero.
  195. */
  196. static int write_adapter_mem(struct c4iw_rdev *rdev, u32 addr, u32 len,
  197. void *data)
  198. {
  199. if (is_t5(rdev->lldi.adapter_type) && use_dsgl) {
  200. if (len > inline_threshold) {
  201. if (_c4iw_write_mem_dma(rdev, addr, len, data)) {
  202. printk_ratelimited(KERN_WARNING
  203. "%s: dma map"
  204. " failure (non fatal)\n",
  205. pci_name(rdev->lldi.pdev));
  206. return _c4iw_write_mem_inline(rdev, addr, len,
  207. data);
  208. } else
  209. return 0;
  210. } else
  211. return _c4iw_write_mem_inline(rdev, addr, len, data);
  212. } else
  213. return _c4iw_write_mem_inline(rdev, addr, len, data);
  214. }
  215. /*
  216. * Build and write a TPT entry.
  217. * IN: stag key, pdid, perm, bind_enabled, zbva, to, len, page_size,
  218. * pbl_size and pbl_addr
  219. * OUT: stag index
  220. */
  221. static int write_tpt_entry(struct c4iw_rdev *rdev, u32 reset_tpt_entry,
  222. u32 *stag, u8 stag_state, u32 pdid,
  223. enum fw_ri_stag_type type, enum fw_ri_mem_perms perm,
  224. int bind_enabled, u32 zbva, u64 to,
  225. u64 len, u8 page_size, u32 pbl_size, u32 pbl_addr)
  226. {
  227. int err;
  228. struct fw_ri_tpte tpt;
  229. u32 stag_idx;
  230. static atomic_t key;
  231. if (c4iw_fatal_error(rdev))
  232. return -EIO;
  233. stag_state = stag_state > 0;
  234. stag_idx = (*stag) >> 8;
  235. if ((!reset_tpt_entry) && (*stag == T4_STAG_UNSET)) {
  236. stag_idx = c4iw_get_resource(&rdev->resource.tpt_table);
  237. if (!stag_idx) {
  238. mutex_lock(&rdev->stats.lock);
  239. rdev->stats.stag.fail++;
  240. mutex_unlock(&rdev->stats.lock);
  241. return -ENOMEM;
  242. }
  243. mutex_lock(&rdev->stats.lock);
  244. rdev->stats.stag.cur += 32;
  245. if (rdev->stats.stag.cur > rdev->stats.stag.max)
  246. rdev->stats.stag.max = rdev->stats.stag.cur;
  247. mutex_unlock(&rdev->stats.lock);
  248. *stag = (stag_idx << 8) | (atomic_inc_return(&key) & 0xff);
  249. }
  250. PDBG("%s stag_state 0x%0x type 0x%0x pdid 0x%0x, stag_idx 0x%x\n",
  251. __func__, stag_state, type, pdid, stag_idx);
  252. /* write TPT entry */
  253. if (reset_tpt_entry)
  254. memset(&tpt, 0, sizeof(tpt));
  255. else {
  256. tpt.valid_to_pdid = cpu_to_be32(FW_RI_TPTE_VALID_F |
  257. FW_RI_TPTE_STAGKEY_V((*stag & FW_RI_TPTE_STAGKEY_M)) |
  258. FW_RI_TPTE_STAGSTATE_V(stag_state) |
  259. FW_RI_TPTE_STAGTYPE_V(type) | FW_RI_TPTE_PDID_V(pdid));
  260. tpt.locread_to_qpid = cpu_to_be32(FW_RI_TPTE_PERM_V(perm) |
  261. (bind_enabled ? FW_RI_TPTE_MWBINDEN_F : 0) |
  262. FW_RI_TPTE_ADDRTYPE_V((zbva ? FW_RI_ZERO_BASED_TO :
  263. FW_RI_VA_BASED_TO))|
  264. FW_RI_TPTE_PS_V(page_size));
  265. tpt.nosnoop_pbladdr = !pbl_size ? 0 : cpu_to_be32(
  266. FW_RI_TPTE_PBLADDR_V(PBL_OFF(rdev, pbl_addr)>>3));
  267. tpt.len_lo = cpu_to_be32((u32)(len & 0xffffffffUL));
  268. tpt.va_hi = cpu_to_be32((u32)(to >> 32));
  269. tpt.va_lo_fbo = cpu_to_be32((u32)(to & 0xffffffffUL));
  270. tpt.dca_mwbcnt_pstag = cpu_to_be32(0);
  271. tpt.len_hi = cpu_to_be32((u32)(len >> 32));
  272. }
  273. err = write_adapter_mem(rdev, stag_idx +
  274. (rdev->lldi.vr->stag.start >> 5),
  275. sizeof(tpt), &tpt);
  276. if (reset_tpt_entry) {
  277. c4iw_put_resource(&rdev->resource.tpt_table, stag_idx);
  278. mutex_lock(&rdev->stats.lock);
  279. rdev->stats.stag.cur -= 32;
  280. mutex_unlock(&rdev->stats.lock);
  281. }
  282. return err;
  283. }
  284. static int write_pbl(struct c4iw_rdev *rdev, __be64 *pbl,
  285. u32 pbl_addr, u32 pbl_size)
  286. {
  287. int err;
  288. PDBG("%s *pdb_addr 0x%x, pbl_base 0x%x, pbl_size %d\n",
  289. __func__, pbl_addr, rdev->lldi.vr->pbl.start,
  290. pbl_size);
  291. err = write_adapter_mem(rdev, pbl_addr >> 5, pbl_size << 3, pbl);
  292. return err;
  293. }
  294. static int dereg_mem(struct c4iw_rdev *rdev, u32 stag, u32 pbl_size,
  295. u32 pbl_addr)
  296. {
  297. return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0,
  298. pbl_size, pbl_addr);
  299. }
  300. static int allocate_window(struct c4iw_rdev *rdev, u32 * stag, u32 pdid)
  301. {
  302. *stag = T4_STAG_UNSET;
  303. return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_MW, 0, 0, 0,
  304. 0UL, 0, 0, 0, 0);
  305. }
  306. static int deallocate_window(struct c4iw_rdev *rdev, u32 stag)
  307. {
  308. return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, 0,
  309. 0);
  310. }
  311. static int allocate_stag(struct c4iw_rdev *rdev, u32 *stag, u32 pdid,
  312. u32 pbl_size, u32 pbl_addr)
  313. {
  314. *stag = T4_STAG_UNSET;
  315. return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_NSMR, 0, 0, 0,
  316. 0UL, 0, 0, pbl_size, pbl_addr);
  317. }
  318. static int finish_mem_reg(struct c4iw_mr *mhp, u32 stag)
  319. {
  320. u32 mmid;
  321. mhp->attr.state = 1;
  322. mhp->attr.stag = stag;
  323. mmid = stag >> 8;
  324. mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
  325. PDBG("%s mmid 0x%x mhp %p\n", __func__, mmid, mhp);
  326. return insert_handle(mhp->rhp, &mhp->rhp->mmidr, mhp, mmid);
  327. }
  328. static int register_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
  329. struct c4iw_mr *mhp, int shift)
  330. {
  331. u32 stag = T4_STAG_UNSET;
  332. int ret;
  333. ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
  334. FW_RI_STAG_NSMR, mhp->attr.len ?
  335. mhp->attr.perms : 0,
  336. mhp->attr.mw_bind_enable, mhp->attr.zbva,
  337. mhp->attr.va_fbo, mhp->attr.len ?
  338. mhp->attr.len : -1, shift - 12,
  339. mhp->attr.pbl_size, mhp->attr.pbl_addr);
  340. if (ret)
  341. return ret;
  342. ret = finish_mem_reg(mhp, stag);
  343. if (ret)
  344. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  345. mhp->attr.pbl_addr);
  346. return ret;
  347. }
  348. static int reregister_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
  349. struct c4iw_mr *mhp, int shift, int npages)
  350. {
  351. u32 stag;
  352. int ret;
  353. if (npages > mhp->attr.pbl_size)
  354. return -ENOMEM;
  355. stag = mhp->attr.stag;
  356. ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
  357. FW_RI_STAG_NSMR, mhp->attr.perms,
  358. mhp->attr.mw_bind_enable, mhp->attr.zbva,
  359. mhp->attr.va_fbo, mhp->attr.len, shift - 12,
  360. mhp->attr.pbl_size, mhp->attr.pbl_addr);
  361. if (ret)
  362. return ret;
  363. ret = finish_mem_reg(mhp, stag);
  364. if (ret)
  365. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  366. mhp->attr.pbl_addr);
  367. return ret;
  368. }
  369. static int alloc_pbl(struct c4iw_mr *mhp, int npages)
  370. {
  371. mhp->attr.pbl_addr = c4iw_pblpool_alloc(&mhp->rhp->rdev,
  372. npages << 3);
  373. if (!mhp->attr.pbl_addr)
  374. return -ENOMEM;
  375. mhp->attr.pbl_size = npages;
  376. return 0;
  377. }
  378. static int build_phys_page_list(struct ib_phys_buf *buffer_list,
  379. int num_phys_buf, u64 *iova_start,
  380. u64 *total_size, int *npages,
  381. int *shift, __be64 **page_list)
  382. {
  383. u64 mask;
  384. int i, j, n;
  385. mask = 0;
  386. *total_size = 0;
  387. for (i = 0; i < num_phys_buf; ++i) {
  388. if (i != 0 && buffer_list[i].addr & ~PAGE_MASK)
  389. return -EINVAL;
  390. if (i != 0 && i != num_phys_buf - 1 &&
  391. (buffer_list[i].size & ~PAGE_MASK))
  392. return -EINVAL;
  393. *total_size += buffer_list[i].size;
  394. if (i > 0)
  395. mask |= buffer_list[i].addr;
  396. else
  397. mask |= buffer_list[i].addr & PAGE_MASK;
  398. if (i != num_phys_buf - 1)
  399. mask |= buffer_list[i].addr + buffer_list[i].size;
  400. else
  401. mask |= (buffer_list[i].addr + buffer_list[i].size +
  402. PAGE_SIZE - 1) & PAGE_MASK;
  403. }
  404. if (*total_size > 0xFFFFFFFFULL)
  405. return -ENOMEM;
  406. /* Find largest page shift we can use to cover buffers */
  407. for (*shift = PAGE_SHIFT; *shift < 27; ++(*shift))
  408. if ((1ULL << *shift) & mask)
  409. break;
  410. buffer_list[0].size += buffer_list[0].addr & ((1ULL << *shift) - 1);
  411. buffer_list[0].addr &= ~0ull << *shift;
  412. *npages = 0;
  413. for (i = 0; i < num_phys_buf; ++i)
  414. *npages += (buffer_list[i].size +
  415. (1ULL << *shift) - 1) >> *shift;
  416. if (!*npages)
  417. return -EINVAL;
  418. *page_list = kmalloc(sizeof(u64) * *npages, GFP_KERNEL);
  419. if (!*page_list)
  420. return -ENOMEM;
  421. n = 0;
  422. for (i = 0; i < num_phys_buf; ++i)
  423. for (j = 0;
  424. j < (buffer_list[i].size + (1ULL << *shift) - 1) >> *shift;
  425. ++j)
  426. (*page_list)[n++] = cpu_to_be64(buffer_list[i].addr +
  427. ((u64) j << *shift));
  428. PDBG("%s va 0x%llx mask 0x%llx shift %d len %lld pbl_size %d\n",
  429. __func__, (unsigned long long)*iova_start,
  430. (unsigned long long)mask, *shift, (unsigned long long)*total_size,
  431. *npages);
  432. return 0;
  433. }
  434. int c4iw_reregister_phys_mem(struct ib_mr *mr, int mr_rereg_mask,
  435. struct ib_pd *pd, struct ib_phys_buf *buffer_list,
  436. int num_phys_buf, int acc, u64 *iova_start)
  437. {
  438. struct c4iw_mr mh, *mhp;
  439. struct c4iw_pd *php;
  440. struct c4iw_dev *rhp;
  441. __be64 *page_list = NULL;
  442. int shift = 0;
  443. u64 total_size;
  444. int npages;
  445. int ret;
  446. PDBG("%s ib_mr %p ib_pd %p\n", __func__, mr, pd);
  447. /* There can be no memory windows */
  448. if (atomic_read(&mr->usecnt))
  449. return -EINVAL;
  450. mhp = to_c4iw_mr(mr);
  451. rhp = mhp->rhp;
  452. php = to_c4iw_pd(mr->pd);
  453. /* make sure we are on the same adapter */
  454. if (rhp != php->rhp)
  455. return -EINVAL;
  456. memcpy(&mh, mhp, sizeof *mhp);
  457. if (mr_rereg_mask & IB_MR_REREG_PD)
  458. php = to_c4iw_pd(pd);
  459. if (mr_rereg_mask & IB_MR_REREG_ACCESS) {
  460. mh.attr.perms = c4iw_ib_to_tpt_access(acc);
  461. mh.attr.mw_bind_enable = (acc & IB_ACCESS_MW_BIND) ==
  462. IB_ACCESS_MW_BIND;
  463. }
  464. if (mr_rereg_mask & IB_MR_REREG_TRANS) {
  465. ret = build_phys_page_list(buffer_list, num_phys_buf,
  466. iova_start,
  467. &total_size, &npages,
  468. &shift, &page_list);
  469. if (ret)
  470. return ret;
  471. }
  472. if (mr_exceeds_hw_limits(rhp, total_size)) {
  473. kfree(page_list);
  474. return -EINVAL;
  475. }
  476. ret = reregister_mem(rhp, php, &mh, shift, npages);
  477. kfree(page_list);
  478. if (ret)
  479. return ret;
  480. if (mr_rereg_mask & IB_MR_REREG_PD)
  481. mhp->attr.pdid = php->pdid;
  482. if (mr_rereg_mask & IB_MR_REREG_ACCESS)
  483. mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
  484. if (mr_rereg_mask & IB_MR_REREG_TRANS) {
  485. mhp->attr.zbva = 0;
  486. mhp->attr.va_fbo = *iova_start;
  487. mhp->attr.page_size = shift - 12;
  488. mhp->attr.len = (u32) total_size;
  489. mhp->attr.pbl_size = npages;
  490. }
  491. return 0;
  492. }
  493. struct ib_mr *c4iw_register_phys_mem(struct ib_pd *pd,
  494. struct ib_phys_buf *buffer_list,
  495. int num_phys_buf, int acc, u64 *iova_start)
  496. {
  497. __be64 *page_list;
  498. int shift;
  499. u64 total_size;
  500. int npages;
  501. struct c4iw_dev *rhp;
  502. struct c4iw_pd *php;
  503. struct c4iw_mr *mhp;
  504. int ret;
  505. PDBG("%s ib_pd %p\n", __func__, pd);
  506. php = to_c4iw_pd(pd);
  507. rhp = php->rhp;
  508. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  509. if (!mhp)
  510. return ERR_PTR(-ENOMEM);
  511. mhp->rhp = rhp;
  512. /* First check that we have enough alignment */
  513. if ((*iova_start & ~PAGE_MASK) != (buffer_list[0].addr & ~PAGE_MASK)) {
  514. ret = -EINVAL;
  515. goto err;
  516. }
  517. if (num_phys_buf > 1 &&
  518. ((buffer_list[0].addr + buffer_list[0].size) & ~PAGE_MASK)) {
  519. ret = -EINVAL;
  520. goto err;
  521. }
  522. ret = build_phys_page_list(buffer_list, num_phys_buf, iova_start,
  523. &total_size, &npages, &shift,
  524. &page_list);
  525. if (ret)
  526. goto err;
  527. if (mr_exceeds_hw_limits(rhp, total_size)) {
  528. kfree(page_list);
  529. ret = -EINVAL;
  530. goto err;
  531. }
  532. ret = alloc_pbl(mhp, npages);
  533. if (ret) {
  534. kfree(page_list);
  535. goto err;
  536. }
  537. ret = write_pbl(&mhp->rhp->rdev, page_list, mhp->attr.pbl_addr,
  538. npages);
  539. kfree(page_list);
  540. if (ret)
  541. goto err_pbl;
  542. mhp->attr.pdid = php->pdid;
  543. mhp->attr.zbva = 0;
  544. mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
  545. mhp->attr.va_fbo = *iova_start;
  546. mhp->attr.page_size = shift - 12;
  547. mhp->attr.len = (u32) total_size;
  548. mhp->attr.pbl_size = npages;
  549. ret = register_mem(rhp, php, mhp, shift);
  550. if (ret)
  551. goto err_pbl;
  552. return &mhp->ibmr;
  553. err_pbl:
  554. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  555. mhp->attr.pbl_size << 3);
  556. err:
  557. kfree(mhp);
  558. return ERR_PTR(ret);
  559. }
  560. struct ib_mr *c4iw_get_dma_mr(struct ib_pd *pd, int acc)
  561. {
  562. struct c4iw_dev *rhp;
  563. struct c4iw_pd *php;
  564. struct c4iw_mr *mhp;
  565. int ret;
  566. u32 stag = T4_STAG_UNSET;
  567. PDBG("%s ib_pd %p\n", __func__, pd);
  568. php = to_c4iw_pd(pd);
  569. rhp = php->rhp;
  570. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  571. if (!mhp)
  572. return ERR_PTR(-ENOMEM);
  573. mhp->rhp = rhp;
  574. mhp->attr.pdid = php->pdid;
  575. mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
  576. mhp->attr.mw_bind_enable = (acc&IB_ACCESS_MW_BIND) == IB_ACCESS_MW_BIND;
  577. mhp->attr.zbva = 0;
  578. mhp->attr.va_fbo = 0;
  579. mhp->attr.page_size = 0;
  580. mhp->attr.len = ~0ULL;
  581. mhp->attr.pbl_size = 0;
  582. ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, php->pdid,
  583. FW_RI_STAG_NSMR, mhp->attr.perms,
  584. mhp->attr.mw_bind_enable, 0, 0, ~0ULL, 0, 0, 0);
  585. if (ret)
  586. goto err1;
  587. ret = finish_mem_reg(mhp, stag);
  588. if (ret)
  589. goto err2;
  590. return &mhp->ibmr;
  591. err2:
  592. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  593. mhp->attr.pbl_addr);
  594. err1:
  595. kfree(mhp);
  596. return ERR_PTR(ret);
  597. }
  598. struct ib_mr *c4iw_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
  599. u64 virt, int acc, struct ib_udata *udata)
  600. {
  601. __be64 *pages;
  602. int shift, n, len;
  603. int i, k, entry;
  604. int err = 0;
  605. struct scatterlist *sg;
  606. struct c4iw_dev *rhp;
  607. struct c4iw_pd *php;
  608. struct c4iw_mr *mhp;
  609. PDBG("%s ib_pd %p\n", __func__, pd);
  610. if (length == ~0ULL)
  611. return ERR_PTR(-EINVAL);
  612. if ((length + start) < start)
  613. return ERR_PTR(-EINVAL);
  614. php = to_c4iw_pd(pd);
  615. rhp = php->rhp;
  616. if (mr_exceeds_hw_limits(rhp, length))
  617. return ERR_PTR(-EINVAL);
  618. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  619. if (!mhp)
  620. return ERR_PTR(-ENOMEM);
  621. mhp->rhp = rhp;
  622. mhp->umem = ib_umem_get(pd->uobject->context, start, length, acc, 0);
  623. if (IS_ERR(mhp->umem)) {
  624. err = PTR_ERR(mhp->umem);
  625. kfree(mhp);
  626. return ERR_PTR(err);
  627. }
  628. shift = ffs(mhp->umem->page_size) - 1;
  629. n = mhp->umem->nmap;
  630. err = alloc_pbl(mhp, n);
  631. if (err)
  632. goto err;
  633. pages = (__be64 *) __get_free_page(GFP_KERNEL);
  634. if (!pages) {
  635. err = -ENOMEM;
  636. goto err_pbl;
  637. }
  638. i = n = 0;
  639. for_each_sg(mhp->umem->sg_head.sgl, sg, mhp->umem->nmap, entry) {
  640. len = sg_dma_len(sg) >> shift;
  641. for (k = 0; k < len; ++k) {
  642. pages[i++] = cpu_to_be64(sg_dma_address(sg) +
  643. mhp->umem->page_size * k);
  644. if (i == PAGE_SIZE / sizeof *pages) {
  645. err = write_pbl(&mhp->rhp->rdev,
  646. pages,
  647. mhp->attr.pbl_addr + (n << 3), i);
  648. if (err)
  649. goto pbl_done;
  650. n += i;
  651. i = 0;
  652. }
  653. }
  654. }
  655. if (i)
  656. err = write_pbl(&mhp->rhp->rdev, pages,
  657. mhp->attr.pbl_addr + (n << 3), i);
  658. pbl_done:
  659. free_page((unsigned long) pages);
  660. if (err)
  661. goto err_pbl;
  662. mhp->attr.pdid = php->pdid;
  663. mhp->attr.zbva = 0;
  664. mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
  665. mhp->attr.va_fbo = virt;
  666. mhp->attr.page_size = shift - 12;
  667. mhp->attr.len = length;
  668. err = register_mem(rhp, php, mhp, shift);
  669. if (err)
  670. goto err_pbl;
  671. return &mhp->ibmr;
  672. err_pbl:
  673. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  674. mhp->attr.pbl_size << 3);
  675. err:
  676. ib_umem_release(mhp->umem);
  677. kfree(mhp);
  678. return ERR_PTR(err);
  679. }
  680. struct ib_mw *c4iw_alloc_mw(struct ib_pd *pd, enum ib_mw_type type)
  681. {
  682. struct c4iw_dev *rhp;
  683. struct c4iw_pd *php;
  684. struct c4iw_mw *mhp;
  685. u32 mmid;
  686. u32 stag = 0;
  687. int ret;
  688. if (type != IB_MW_TYPE_1)
  689. return ERR_PTR(-EINVAL);
  690. php = to_c4iw_pd(pd);
  691. rhp = php->rhp;
  692. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  693. if (!mhp)
  694. return ERR_PTR(-ENOMEM);
  695. ret = allocate_window(&rhp->rdev, &stag, php->pdid);
  696. if (ret) {
  697. kfree(mhp);
  698. return ERR_PTR(ret);
  699. }
  700. mhp->rhp = rhp;
  701. mhp->attr.pdid = php->pdid;
  702. mhp->attr.type = FW_RI_STAG_MW;
  703. mhp->attr.stag = stag;
  704. mmid = (stag) >> 8;
  705. mhp->ibmw.rkey = stag;
  706. if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
  707. deallocate_window(&rhp->rdev, mhp->attr.stag);
  708. kfree(mhp);
  709. return ERR_PTR(-ENOMEM);
  710. }
  711. PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
  712. return &(mhp->ibmw);
  713. }
  714. int c4iw_dealloc_mw(struct ib_mw *mw)
  715. {
  716. struct c4iw_dev *rhp;
  717. struct c4iw_mw *mhp;
  718. u32 mmid;
  719. mhp = to_c4iw_mw(mw);
  720. rhp = mhp->rhp;
  721. mmid = (mw->rkey) >> 8;
  722. remove_handle(rhp, &rhp->mmidr, mmid);
  723. deallocate_window(&rhp->rdev, mhp->attr.stag);
  724. kfree(mhp);
  725. PDBG("%s ib_mw %p mmid 0x%x ptr %p\n", __func__, mw, mmid, mhp);
  726. return 0;
  727. }
  728. struct ib_mr *c4iw_alloc_mr(struct ib_pd *pd,
  729. enum ib_mr_type mr_type,
  730. u32 max_num_sg)
  731. {
  732. struct c4iw_dev *rhp;
  733. struct c4iw_pd *php;
  734. struct c4iw_mr *mhp;
  735. u32 mmid;
  736. u32 stag = 0;
  737. int ret = 0;
  738. if (mr_type != IB_MR_TYPE_MEM_REG ||
  739. max_num_sg > t4_max_fr_depth(use_dsgl))
  740. return ERR_PTR(-EINVAL);
  741. php = to_c4iw_pd(pd);
  742. rhp = php->rhp;
  743. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  744. if (!mhp) {
  745. ret = -ENOMEM;
  746. goto err;
  747. }
  748. mhp->rhp = rhp;
  749. ret = alloc_pbl(mhp, max_num_sg);
  750. if (ret)
  751. goto err1;
  752. mhp->attr.pbl_size = max_num_sg;
  753. ret = allocate_stag(&rhp->rdev, &stag, php->pdid,
  754. mhp->attr.pbl_size, mhp->attr.pbl_addr);
  755. if (ret)
  756. goto err2;
  757. mhp->attr.pdid = php->pdid;
  758. mhp->attr.type = FW_RI_STAG_NSMR;
  759. mhp->attr.stag = stag;
  760. mhp->attr.state = 1;
  761. mmid = (stag) >> 8;
  762. mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
  763. if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
  764. ret = -ENOMEM;
  765. goto err3;
  766. }
  767. PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
  768. return &(mhp->ibmr);
  769. err3:
  770. dereg_mem(&rhp->rdev, stag, mhp->attr.pbl_size,
  771. mhp->attr.pbl_addr);
  772. err2:
  773. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  774. mhp->attr.pbl_size << 3);
  775. err1:
  776. kfree(mhp);
  777. err:
  778. return ERR_PTR(ret);
  779. }
  780. struct ib_fast_reg_page_list *c4iw_alloc_fastreg_pbl(struct ib_device *device,
  781. int page_list_len)
  782. {
  783. struct c4iw_fr_page_list *c4pl;
  784. struct c4iw_dev *dev = to_c4iw_dev(device);
  785. dma_addr_t dma_addr;
  786. int pll_len = roundup(page_list_len * sizeof(u64), 32);
  787. c4pl = kmalloc(sizeof(*c4pl), GFP_KERNEL);
  788. if (!c4pl)
  789. return ERR_PTR(-ENOMEM);
  790. c4pl->ibpl.page_list = dma_alloc_coherent(&dev->rdev.lldi.pdev->dev,
  791. pll_len, &dma_addr,
  792. GFP_KERNEL);
  793. if (!c4pl->ibpl.page_list) {
  794. kfree(c4pl);
  795. return ERR_PTR(-ENOMEM);
  796. }
  797. dma_unmap_addr_set(c4pl, mapping, dma_addr);
  798. c4pl->dma_addr = dma_addr;
  799. c4pl->dev = dev;
  800. c4pl->pll_len = pll_len;
  801. PDBG("%s c4pl %p pll_len %u page_list %p dma_addr %pad\n",
  802. __func__, c4pl, c4pl->pll_len, c4pl->ibpl.page_list,
  803. &c4pl->dma_addr);
  804. return &c4pl->ibpl;
  805. }
  806. void c4iw_free_fastreg_pbl(struct ib_fast_reg_page_list *ibpl)
  807. {
  808. struct c4iw_fr_page_list *c4pl = to_c4iw_fr_page_list(ibpl);
  809. PDBG("%s c4pl %p pll_len %u page_list %p dma_addr %pad\n",
  810. __func__, c4pl, c4pl->pll_len, c4pl->ibpl.page_list,
  811. &c4pl->dma_addr);
  812. dma_free_coherent(&c4pl->dev->rdev.lldi.pdev->dev,
  813. c4pl->pll_len,
  814. c4pl->ibpl.page_list, dma_unmap_addr(c4pl, mapping));
  815. kfree(c4pl);
  816. }
  817. int c4iw_dereg_mr(struct ib_mr *ib_mr)
  818. {
  819. struct c4iw_dev *rhp;
  820. struct c4iw_mr *mhp;
  821. u32 mmid;
  822. PDBG("%s ib_mr %p\n", __func__, ib_mr);
  823. /* There can be no memory windows */
  824. if (atomic_read(&ib_mr->usecnt))
  825. return -EINVAL;
  826. mhp = to_c4iw_mr(ib_mr);
  827. rhp = mhp->rhp;
  828. mmid = mhp->attr.stag >> 8;
  829. remove_handle(rhp, &rhp->mmidr, mmid);
  830. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  831. mhp->attr.pbl_addr);
  832. if (mhp->attr.pbl_size)
  833. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  834. mhp->attr.pbl_size << 3);
  835. if (mhp->kva)
  836. kfree((void *) (unsigned long) mhp->kva);
  837. if (mhp->umem)
  838. ib_umem_release(mhp->umem);
  839. PDBG("%s mmid 0x%x ptr %p\n", __func__, mmid, mhp);
  840. kfree(mhp);
  841. return 0;
  842. }