123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454 |
- /*
- * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
- /*
- * GK20A does not have dedicated video memory, and to accurately represent this
- * fact Nouveau will not create a RAM device for it. Therefore its instmem
- * implementation must be done directly on top of system memory, while providing
- * coherent read and write operations.
- *
- * Instmem can be allocated through two means:
- * 1) If an IOMMU mapping has been probed, the IOMMU API is used to make memory
- * pages contiguous to the GPU. This is the preferred way.
- * 2) If no IOMMU mapping is probed, the DMA API is used to allocate physically
- * contiguous memory.
- *
- * In both cases CPU read and writes are performed using PRAMIN (i.e. using the
- * GPU path) to ensure these operations are coherent for the GPU. This allows us
- * to use more "relaxed" allocation parameters when using the DMA API, since we
- * never need a kernel mapping.
- */
- #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)
- #include "priv.h"
- #include <core/memory.h>
- #include <core/mm.h>
- #include <core/tegra.h>
- #include <subdev/fb.h>
- #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
- struct gk20a_instobj {
- struct nvkm_memory memory;
- struct gk20a_instmem *imem;
- struct nvkm_mem mem;
- };
- /*
- * Used for objects allocated using the DMA API
- */
- struct gk20a_instobj_dma {
- struct gk20a_instobj base;
- void *cpuaddr;
- dma_addr_t handle;
- struct nvkm_mm_node r;
- };
- /*
- * Used for objects flattened using the IOMMU API
- */
- struct gk20a_instobj_iommu {
- struct gk20a_instobj base;
- /* array of base.mem->size pages */
- struct page *pages[];
- };
- struct gk20a_instmem {
- struct nvkm_instmem base;
- unsigned long lock_flags;
- spinlock_t lock;
- u64 addr;
- /* Only used if IOMMU if present */
- struct mutex *mm_mutex;
- struct nvkm_mm *mm;
- struct iommu_domain *domain;
- unsigned long iommu_pgshift;
- /* Only used by DMA API */
- struct dma_attrs attrs;
- };
- static enum nvkm_memory_target
- gk20a_instobj_target(struct nvkm_memory *memory)
- {
- return NVKM_MEM_TARGET_HOST;
- }
- static u64
- gk20a_instobj_addr(struct nvkm_memory *memory)
- {
- return gk20a_instobj(memory)->mem.offset;
- }
- static u64
- gk20a_instobj_size(struct nvkm_memory *memory)
- {
- return (u64)gk20a_instobj(memory)->mem.size << 12;
- }
- static void __iomem *
- gk20a_instobj_acquire(struct nvkm_memory *memory)
- {
- struct gk20a_instmem *imem = gk20a_instobj(memory)->imem;
- unsigned long flags;
- spin_lock_irqsave(&imem->lock, flags);
- imem->lock_flags = flags;
- return NULL;
- }
- static void
- gk20a_instobj_release(struct nvkm_memory *memory)
- {
- struct gk20a_instmem *imem = gk20a_instobj(memory)->imem;
- spin_unlock_irqrestore(&imem->lock, imem->lock_flags);
- }
- /*
- * Use PRAMIN to read/write data and avoid coherency issues.
- * PRAMIN uses the GPU path and ensures data will always be coherent.
- *
- * A dynamic mapping based solution would be desirable in the future, but
- * the issue remains of how to maintain coherency efficiently. On ARM it is
- * not easy (if possible at all?) to create uncached temporary mappings.
- */
- static u32
- gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset)
- {
- struct gk20a_instobj *node = gk20a_instobj(memory);
- struct gk20a_instmem *imem = node->imem;
- struct nvkm_device *device = imem->base.subdev.device;
- u64 base = (node->mem.offset + offset) & 0xffffff00000ULL;
- u64 addr = (node->mem.offset + offset) & 0x000000fffffULL;
- u32 data;
- if (unlikely(imem->addr != base)) {
- nvkm_wr32(device, 0x001700, base >> 16);
- imem->addr = base;
- }
- data = nvkm_rd32(device, 0x700000 + addr);
- return data;
- }
- static void
- gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data)
- {
- struct gk20a_instobj *node = gk20a_instobj(memory);
- struct gk20a_instmem *imem = node->imem;
- struct nvkm_device *device = imem->base.subdev.device;
- u64 base = (node->mem.offset + offset) & 0xffffff00000ULL;
- u64 addr = (node->mem.offset + offset) & 0x000000fffffULL;
- if (unlikely(imem->addr != base)) {
- nvkm_wr32(device, 0x001700, base >> 16);
- imem->addr = base;
- }
- nvkm_wr32(device, 0x700000 + addr, data);
- }
- static void
- gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset)
- {
- struct gk20a_instobj *node = gk20a_instobj(memory);
- nvkm_vm_map_at(vma, offset, &node->mem);
- }
- static void
- gk20a_instobj_dtor_dma(struct gk20a_instobj *_node)
- {
- struct gk20a_instobj_dma *node = (void *)_node;
- struct gk20a_instmem *imem = _node->imem;
- struct device *dev = imem->base.subdev.device->dev;
- if (unlikely(!node->cpuaddr))
- return;
- dma_free_attrs(dev, _node->mem.size << PAGE_SHIFT, node->cpuaddr,
- node->handle, &imem->attrs);
- }
- static void
- gk20a_instobj_dtor_iommu(struct gk20a_instobj *_node)
- {
- struct gk20a_instobj_iommu *node = (void *)_node;
- struct gk20a_instmem *imem = _node->imem;
- struct nvkm_mm_node *r;
- int i;
- if (unlikely(list_empty(&_node->mem.regions)))
- return;
- r = list_first_entry(&_node->mem.regions, struct nvkm_mm_node,
- rl_entry);
- /* clear bit 34 to unmap pages */
- r->offset &= ~BIT(34 - imem->iommu_pgshift);
- /* Unmap pages from GPU address space and free them */
- for (i = 0; i < _node->mem.size; i++) {
- iommu_unmap(imem->domain,
- (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE);
- __free_page(node->pages[i]);
- }
- /* Release area from GPU address space */
- mutex_lock(imem->mm_mutex);
- nvkm_mm_free(imem->mm, &r);
- mutex_unlock(imem->mm_mutex);
- }
- static void *
- gk20a_instobj_dtor(struct nvkm_memory *memory)
- {
- struct gk20a_instobj *node = gk20a_instobj(memory);
- struct gk20a_instmem *imem = node->imem;
- if (imem->domain)
- gk20a_instobj_dtor_iommu(node);
- else
- gk20a_instobj_dtor_dma(node);
- return node;
- }
- static const struct nvkm_memory_func
- gk20a_instobj_func = {
- .dtor = gk20a_instobj_dtor,
- .target = gk20a_instobj_target,
- .addr = gk20a_instobj_addr,
- .size = gk20a_instobj_size,
- .acquire = gk20a_instobj_acquire,
- .release = gk20a_instobj_release,
- .rd32 = gk20a_instobj_rd32,
- .wr32 = gk20a_instobj_wr32,
- .map = gk20a_instobj_map,
- };
- static int
- gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align,
- struct gk20a_instobj **_node)
- {
- struct gk20a_instobj_dma *node;
- struct nvkm_subdev *subdev = &imem->base.subdev;
- struct device *dev = subdev->device->dev;
- if (!(node = kzalloc(sizeof(*node), GFP_KERNEL)))
- return -ENOMEM;
- *_node = &node->base;
- node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
- &node->handle, GFP_KERNEL,
- &imem->attrs);
- if (!node->cpuaddr) {
- nvkm_error(subdev, "cannot allocate DMA memory\n");
- return -ENOMEM;
- }
- /* alignment check */
- if (unlikely(node->handle & (align - 1)))
- nvkm_warn(subdev,
- "memory not aligned as requested: %pad (0x%x)\n",
- &node->handle, align);
- /* present memory for being mapped using small pages */
- node->r.type = 12;
- node->r.offset = node->handle >> 12;
- node->r.length = (npages << PAGE_SHIFT) >> 12;
- node->base.mem.offset = node->handle;
- INIT_LIST_HEAD(&node->base.mem.regions);
- list_add_tail(&node->r.rl_entry, &node->base.mem.regions);
- return 0;
- }
- static int
- gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
- struct gk20a_instobj **_node)
- {
- struct gk20a_instobj_iommu *node;
- struct nvkm_subdev *subdev = &imem->base.subdev;
- struct nvkm_mm_node *r;
- int ret;
- int i;
- if (!(node = kzalloc(sizeof(*node) +
- sizeof( node->pages[0]) * npages, GFP_KERNEL)))
- return -ENOMEM;
- *_node = &node->base;
- /* Allocate backing memory */
- for (i = 0; i < npages; i++) {
- struct page *p = alloc_page(GFP_KERNEL);
- if (p == NULL) {
- ret = -ENOMEM;
- goto free_pages;
- }
- node->pages[i] = p;
- }
- mutex_lock(imem->mm_mutex);
- /* Reserve area from GPU address space */
- ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages,
- align >> imem->iommu_pgshift, &r);
- mutex_unlock(imem->mm_mutex);
- if (ret) {
- nvkm_error(subdev, "virtual space is full!\n");
- goto free_pages;
- }
- /* Map into GPU address space */
- for (i = 0; i < npages; i++) {
- struct page *p = node->pages[i];
- u32 offset = (r->offset + i) << imem->iommu_pgshift;
- ret = iommu_map(imem->domain, offset, page_to_phys(p),
- PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
- if (ret < 0) {
- nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret);
- while (i-- > 0) {
- offset -= PAGE_SIZE;
- iommu_unmap(imem->domain, offset, PAGE_SIZE);
- }
- goto release_area;
- }
- }
- /* Bit 34 tells that an address is to be resolved through the IOMMU */
- r->offset |= BIT(34 - imem->iommu_pgshift);
- node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift;
- INIT_LIST_HEAD(&node->base.mem.regions);
- list_add_tail(&r->rl_entry, &node->base.mem.regions);
- return 0;
- release_area:
- mutex_lock(imem->mm_mutex);
- nvkm_mm_free(imem->mm, &r);
- mutex_unlock(imem->mm_mutex);
- free_pages:
- for (i = 0; i < npages && node->pages[i] != NULL; i++)
- __free_page(node->pages[i]);
- return ret;
- }
- static int
- gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
- struct nvkm_memory **pmemory)
- {
- struct gk20a_instmem *imem = gk20a_instmem(base);
- struct gk20a_instobj *node = NULL;
- struct nvkm_subdev *subdev = &imem->base.subdev;
- int ret;
- nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__,
- imem->domain ? "IOMMU" : "DMA", size, align);
- /* Round size and align to page bounds */
- size = max(roundup(size, PAGE_SIZE), PAGE_SIZE);
- align = max(roundup(align, PAGE_SIZE), PAGE_SIZE);
- if (imem->domain)
- ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT,
- align, &node);
- else
- ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT,
- align, &node);
- *pmemory = node ? &node->memory : NULL;
- if (ret)
- return ret;
- nvkm_memory_ctor(&gk20a_instobj_func, &node->memory);
- node->imem = imem;
- /* present memory for being mapped using small pages */
- node->mem.size = size >> 12;
- node->mem.memtype = 0;
- node->mem.page_shift = 12;
- nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
- size, align, node->mem.offset);
- return 0;
- }
- static void
- gk20a_instmem_fini(struct nvkm_instmem *base)
- {
- gk20a_instmem(base)->addr = ~0ULL;
- }
- static const struct nvkm_instmem_func
- gk20a_instmem = {
- .fini = gk20a_instmem_fini,
- .memory_new = gk20a_instobj_new,
- .persistent = true,
- .zero = false,
- };
- int
- gk20a_instmem_new(struct nvkm_device *device, int index,
- struct nvkm_instmem **pimem)
- {
- struct nvkm_device_tegra *tdev = device->func->tegra(device);
- struct gk20a_instmem *imem;
- if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL)))
- return -ENOMEM;
- nvkm_instmem_ctor(&gk20a_instmem, device, index, &imem->base);
- spin_lock_init(&imem->lock);
- *pimem = &imem->base;
- if (tdev->iommu.domain) {
- imem->domain = tdev->iommu.domain;
- imem->mm = &tdev->iommu.mm;
- imem->iommu_pgshift = tdev->iommu.pgshift;
- imem->mm_mutex = &tdev->iommu.mutex;
- nvkm_info(&imem->base.subdev, "using IOMMU\n");
- } else {
- init_dma_attrs(&imem->attrs);
- /*
- * We will access instmem through PRAMIN and thus do not need a
- * consistent CPU pointer or kernel mapping
- */
- dma_set_attr(DMA_ATTR_NON_CONSISTENT, &imem->attrs);
- dma_set_attr(DMA_ATTR_WEAK_ORDERING, &imem->attrs);
- dma_set_attr(DMA_ATTR_WRITE_COMBINE, &imem->attrs);
- dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &imem->attrs);
- nvkm_info(&imem->base.subdev, "using DMA API\n");
- }
- return 0;
- }
|