ramnv50.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638
  1. /*
  2. * Copyright 2013 Red Hat Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Ben Skeggs
  23. */
  24. #define nv50_ram(p) container_of((p), struct nv50_ram, base)
  25. #include "ram.h"
  26. #include "ramseq.h"
  27. #include "nv50.h"
  28. #include <core/option.h>
  29. #include <subdev/bios.h>
  30. #include <subdev/bios/perf.h>
  31. #include <subdev/bios/pll.h>
  32. #include <subdev/bios/rammap.h>
  33. #include <subdev/bios/timing.h>
  34. #include <subdev/clk/pll.h>
  35. struct nv50_ramseq {
  36. struct hwsq base;
  37. struct hwsq_reg r_0x002504;
  38. struct hwsq_reg r_0x004008;
  39. struct hwsq_reg r_0x00400c;
  40. struct hwsq_reg r_0x00c040;
  41. struct hwsq_reg r_0x100200;
  42. struct hwsq_reg r_0x100210;
  43. struct hwsq_reg r_0x10021c;
  44. struct hwsq_reg r_0x1002d0;
  45. struct hwsq_reg r_0x1002d4;
  46. struct hwsq_reg r_0x1002dc;
  47. struct hwsq_reg r_0x10053c;
  48. struct hwsq_reg r_0x1005a0;
  49. struct hwsq_reg r_0x1005a4;
  50. struct hwsq_reg r_0x100710;
  51. struct hwsq_reg r_0x100714;
  52. struct hwsq_reg r_0x100718;
  53. struct hwsq_reg r_0x10071c;
  54. struct hwsq_reg r_0x100da0;
  55. struct hwsq_reg r_0x100e20;
  56. struct hwsq_reg r_0x100e24;
  57. struct hwsq_reg r_0x611200;
  58. struct hwsq_reg r_timing[9];
  59. struct hwsq_reg r_mr[4];
  60. };
  61. struct nv50_ram {
  62. struct nvkm_ram base;
  63. struct nv50_ramseq hwsq;
  64. };
  65. #define T(t) cfg->timing_10_##t
  66. static int
  67. nv50_ram_timing_calc(struct nv50_ram *ram, u32 *timing)
  68. {
  69. struct nvbios_ramcfg *cfg = &ram->base.target.bios;
  70. struct nvkm_subdev *subdev = &ram->base.fb->subdev;
  71. struct nvkm_device *device = subdev->device;
  72. u32 cur2, cur4, cur7, cur8;
  73. u8 unkt3b;
  74. cur2 = nvkm_rd32(device, 0x100228);
  75. cur4 = nvkm_rd32(device, 0x100230);
  76. cur7 = nvkm_rd32(device, 0x10023c);
  77. cur8 = nvkm_rd32(device, 0x100240);
  78. switch ((!T(CWL)) * ram->base.type) {
  79. case NVKM_RAM_TYPE_DDR2:
  80. T(CWL) = T(CL) - 1;
  81. break;
  82. case NVKM_RAM_TYPE_GDDR3:
  83. T(CWL) = ((cur2 & 0xff000000) >> 24) + 1;
  84. break;
  85. }
  86. /* XXX: N=1 is not proper statistics */
  87. if (device->chipset == 0xa0) {
  88. unkt3b = 0x19 + ram->base.next->bios.rammap_00_16_40;
  89. timing[6] = (0x2d + T(CL) - T(CWL) +
  90. ram->base.next->bios.rammap_00_16_40) << 16 |
  91. T(CWL) << 8 |
  92. (0x2f + T(CL) - T(CWL));
  93. } else {
  94. unkt3b = 0x16;
  95. timing[6] = (0x2b + T(CL) - T(CWL)) << 16 |
  96. max_t(s8, T(CWL) - 2, 1) << 8 |
  97. (0x2e + T(CL) - T(CWL));
  98. }
  99. timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC));
  100. timing[1] = (T(WR) + 1 + T(CWL)) << 24 |
  101. max_t(u8, T(18), 1) << 16 |
  102. (T(WTR) + 1 + T(CWL)) << 8 |
  103. (3 + T(CL) - T(CWL));
  104. timing[2] = (T(CWL) - 1) << 24 |
  105. (T(RRD) << 16) |
  106. (T(RCDWR) << 8) |
  107. T(RCDRD);
  108. timing[3] = (unkt3b - 2 + T(CL)) << 24 |
  109. unkt3b << 16 |
  110. (T(CL) - 1) << 8 |
  111. (T(CL) - 1);
  112. timing[4] = (cur4 & 0xffff0000) |
  113. T(13) << 8 |
  114. T(13);
  115. timing[5] = T(RFC) << 24 |
  116. max_t(u8, T(RCDRD), T(RCDWR)) << 16 |
  117. T(RP);
  118. /* Timing 6 is already done above */
  119. timing[7] = (cur7 & 0xff00ffff) | (T(CL) - 1) << 16;
  120. timing[8] = (cur8 & 0xffffff00);
  121. /* XXX: P.version == 1 only has DDR2 and GDDR3? */
  122. if (ram->base.type == NVKM_RAM_TYPE_DDR2) {
  123. timing[5] |= (T(CL) + 3) << 8;
  124. timing[8] |= (T(CL) - 4);
  125. } else
  126. if (ram->base.type == NVKM_RAM_TYPE_GDDR3) {
  127. timing[5] |= (T(CL) + 2) << 8;
  128. timing[8] |= (T(CL) - 2);
  129. }
  130. nvkm_debug(subdev, " 220: %08x %08x %08x %08x\n",
  131. timing[0], timing[1], timing[2], timing[3]);
  132. nvkm_debug(subdev, " 230: %08x %08x %08x %08x\n",
  133. timing[4], timing[5], timing[6], timing[7]);
  134. nvkm_debug(subdev, " 240: %08x\n", timing[8]);
  135. return 0;
  136. }
  137. #undef T
  138. static void
  139. nvkm_sddr2_dll_reset(struct nv50_ramseq *hwsq)
  140. {
  141. ram_mask(hwsq, mr[0], 0x100, 0x100);
  142. ram_mask(hwsq, mr[0], 0x100, 0x000);
  143. ram_nsec(hwsq, 24000);
  144. }
  145. static int
  146. nv50_ram_calc(struct nvkm_ram *base, u32 freq)
  147. {
  148. struct nv50_ram *ram = nv50_ram(base);
  149. struct nv50_ramseq *hwsq = &ram->hwsq;
  150. struct nvkm_subdev *subdev = &ram->base.fb->subdev;
  151. struct nvkm_bios *bios = subdev->device->bios;
  152. struct nvbios_perfE perfE;
  153. struct nvbios_pll mpll;
  154. struct nvkm_ram_data *next;
  155. u8 ver, hdr, cnt, len, strap, size;
  156. u32 data;
  157. u32 r100da0, r004008, unk710, unk714, unk718, unk71c;
  158. int N1, M1, N2, M2, P;
  159. int ret, i;
  160. u32 timing[9];
  161. next = &ram->base.target;
  162. next->freq = freq;
  163. ram->base.next = next;
  164. /* lookup closest matching performance table entry for frequency */
  165. i = 0;
  166. do {
  167. data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt,
  168. &size, &perfE);
  169. if (!data || (ver < 0x25 || ver >= 0x40) ||
  170. (size < 2)) {
  171. nvkm_error(subdev, "invalid/missing perftab entry\n");
  172. return -EINVAL;
  173. }
  174. } while (perfE.memory < freq);
  175. nvbios_rammapEp_from_perf(bios, data, hdr, &next->bios);
  176. /* locate specific data set for the attached memory */
  177. strap = nvbios_ramcfg_index(subdev);
  178. if (strap >= cnt) {
  179. nvkm_error(subdev, "invalid ramcfg strap\n");
  180. return -EINVAL;
  181. }
  182. data = nvbios_rammapSp_from_perf(bios, data + hdr, size, strap,
  183. &next->bios);
  184. if (!data) {
  185. nvkm_error(subdev, "invalid/missing rammap entry ");
  186. return -EINVAL;
  187. }
  188. /* lookup memory timings, if bios says they're present */
  189. if (next->bios.ramcfg_timing != 0xff) {
  190. data = nvbios_timingEp(bios, next->bios.ramcfg_timing,
  191. &ver, &hdr, &cnt, &len, &next->bios);
  192. if (!data || ver != 0x10 || hdr < 0x12) {
  193. nvkm_error(subdev, "invalid/missing timing entry "
  194. "%02x %04x %02x %02x\n",
  195. strap, data, ver, hdr);
  196. return -EINVAL;
  197. }
  198. }
  199. nv50_ram_timing_calc(ram, timing);
  200. ret = ram_init(hwsq, subdev);
  201. if (ret)
  202. return ret;
  203. /* Determine ram-specific MR values */
  204. ram->base.mr[0] = ram_rd32(hwsq, mr[0]);
  205. ram->base.mr[1] = ram_rd32(hwsq, mr[1]);
  206. ram->base.mr[2] = ram_rd32(hwsq, mr[2]);
  207. switch (ram->base.type) {
  208. case NVKM_RAM_TYPE_GDDR3:
  209. ret = nvkm_gddr3_calc(&ram->base);
  210. break;
  211. default:
  212. ret = -ENOSYS;
  213. break;
  214. }
  215. if (ret)
  216. return ret;
  217. /* Always disable this bit during reclock */
  218. ram_mask(hwsq, 0x100200, 0x00000800, 0x00000000);
  219. ram_wait(hwsq, 0x01, 0x00); /* wait for !vblank */
  220. ram_wait(hwsq, 0x01, 0x01); /* wait for vblank */
  221. ram_wr32(hwsq, 0x611200, 0x00003300);
  222. ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */
  223. ram_nsec(hwsq, 8000);
  224. ram_setf(hwsq, 0x10, 0x00); /* disable fb */
  225. ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
  226. ram_nsec(hwsq, 2000);
  227. ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */
  228. ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
  229. ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
  230. ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */
  231. ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */
  232. ret = nvbios_pll_parse(bios, 0x004008, &mpll);
  233. mpll.vco2.max_freq = 0;
  234. if (ret >= 0) {
  235. ret = nv04_pll_calc(subdev, &mpll, freq,
  236. &N1, &M1, &N2, &M2, &P);
  237. if (ret <= 0)
  238. ret = -EINVAL;
  239. }
  240. if (ret < 0)
  241. return ret;
  242. /* XXX: 750MHz seems rather arbitrary */
  243. if (freq <= 750000) {
  244. r100da0 = 0x00000010;
  245. r004008 = 0x90000000;
  246. } else {
  247. r100da0 = 0x00000000;
  248. r004008 = 0x80000000;
  249. }
  250. r004008 |= (mpll.bias_p << 19) | (P << 22) | (P << 16);
  251. ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000);
  252. /* XXX: Is rammap_00_16_40 the DLL bit we've seen in GT215? Why does
  253. * it have a different rammap bit from DLLoff? */
  254. ram_mask(hwsq, 0x004008, 0x00004200, 0x00000200 |
  255. next->bios.rammap_00_16_40 << 14);
  256. ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1);
  257. ram_mask(hwsq, 0x004008, 0x91ff0000, r004008);
  258. if (subdev->device->chipset >= 0x96)
  259. ram_wr32(hwsq, 0x100da0, r100da0);
  260. ram_nsec(hwsq, 64000); /*XXX*/
  261. ram_nsec(hwsq, 32000); /*XXX*/
  262. ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000);
  263. ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */
  264. ram_wr32(hwsq, 0x1002d4, 0x00000001); /* disable self-refresh */
  265. ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */
  266. ram_nsec(hwsq, 12000);
  267. switch (ram->base.type) {
  268. case NVKM_RAM_TYPE_DDR2:
  269. ram_nuke(hwsq, mr[0]); /* force update */
  270. ram_mask(hwsq, mr[0], 0x000, 0x000);
  271. break;
  272. case NVKM_RAM_TYPE_GDDR3:
  273. ram_nuke(hwsq, mr[1]); /* force update */
  274. ram_wr32(hwsq, mr[1], ram->base.mr[1]);
  275. ram_nuke(hwsq, mr[0]); /* force update */
  276. ram_wr32(hwsq, mr[0], ram->base.mr[0]);
  277. break;
  278. default:
  279. break;
  280. }
  281. ram_mask(hwsq, timing[3], 0xffffffff, timing[3]);
  282. ram_mask(hwsq, timing[1], 0xffffffff, timing[1]);
  283. ram_mask(hwsq, timing[6], 0xffffffff, timing[6]);
  284. ram_mask(hwsq, timing[7], 0xffffffff, timing[7]);
  285. ram_mask(hwsq, timing[8], 0xffffffff, timing[8]);
  286. ram_mask(hwsq, timing[0], 0xffffffff, timing[0]);
  287. ram_mask(hwsq, timing[2], 0xffffffff, timing[2]);
  288. ram_mask(hwsq, timing[4], 0xffffffff, timing[4]);
  289. ram_mask(hwsq, timing[5], 0xffffffff, timing[5]);
  290. if (!next->bios.ramcfg_00_03_02)
  291. ram_mask(hwsq, 0x10021c, 0x00010000, 0x00000000);
  292. ram_mask(hwsq, 0x100200, 0x00001000, !next->bios.ramcfg_00_04_02 << 12);
  293. /* XXX: A lot of this could be "chipset"/"ram type" specific stuff */
  294. unk710 = ram_rd32(hwsq, 0x100710) & ~0x00000101;
  295. unk714 = ram_rd32(hwsq, 0x100714) & ~0xf0000020;
  296. unk718 = ram_rd32(hwsq, 0x100718) & ~0x00000100;
  297. unk71c = ram_rd32(hwsq, 0x10071c) & ~0x00000100;
  298. if ( next->bios.ramcfg_00_03_01)
  299. unk71c |= 0x00000100;
  300. if ( next->bios.ramcfg_00_03_02)
  301. unk710 |= 0x00000100;
  302. if (!next->bios.ramcfg_00_03_08) {
  303. unk710 |= 0x1;
  304. unk714 |= 0x20;
  305. }
  306. if ( next->bios.ramcfg_00_04_04)
  307. unk714 |= 0x70000000;
  308. if ( next->bios.ramcfg_00_04_20)
  309. unk718 |= 0x00000100;
  310. ram_mask(hwsq, 0x100714, 0xffffffff, unk714);
  311. ram_mask(hwsq, 0x10071c, 0xffffffff, unk71c);
  312. ram_mask(hwsq, 0x100718, 0xffffffff, unk718);
  313. ram_mask(hwsq, 0x100710, 0xffffffff, unk710);
  314. if (next->bios.rammap_00_16_20) {
  315. ram_wr32(hwsq, 0x1005a0, next->bios.ramcfg_00_07 << 16 |
  316. next->bios.ramcfg_00_06 << 8 |
  317. next->bios.ramcfg_00_05);
  318. ram_wr32(hwsq, 0x1005a4, next->bios.ramcfg_00_09 << 8 |
  319. next->bios.ramcfg_00_08);
  320. ram_mask(hwsq, 0x10053c, 0x00001000, 0x00000000);
  321. } else {
  322. ram_mask(hwsq, 0x10053c, 0x00001000, 0x00001000);
  323. }
  324. ram_mask(hwsq, mr[1], 0xffffffff, ram->base.mr[1]);
  325. /* Reset DLL */
  326. if (!next->bios.ramcfg_DLLoff)
  327. nvkm_sddr2_dll_reset(hwsq);
  328. ram_setf(hwsq, 0x10, 0x01); /* enable fb */
  329. ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
  330. ram_wr32(hwsq, 0x611200, 0x00003330);
  331. ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */
  332. if (next->bios.rammap_00_17_02)
  333. ram_mask(hwsq, 0x100200, 0x00000800, 0x00000800);
  334. if (!next->bios.rammap_00_16_40)
  335. ram_mask(hwsq, 0x004008, 0x00004000, 0x00000000);
  336. if (next->bios.ramcfg_00_03_02)
  337. ram_mask(hwsq, 0x10021c, 0x00010000, 0x00010000);
  338. return 0;
  339. }
  340. static int
  341. nv50_ram_prog(struct nvkm_ram *base)
  342. {
  343. struct nv50_ram *ram = nv50_ram(base);
  344. struct nvkm_device *device = ram->base.fb->subdev.device;
  345. ram_exec(&ram->hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
  346. return 0;
  347. }
  348. static void
  349. nv50_ram_tidy(struct nvkm_ram *base)
  350. {
  351. struct nv50_ram *ram = nv50_ram(base);
  352. ram_exec(&ram->hwsq, false);
  353. }
  354. void
  355. __nv50_ram_put(struct nvkm_ram *ram, struct nvkm_mem *mem)
  356. {
  357. struct nvkm_mm_node *this;
  358. while (!list_empty(&mem->regions)) {
  359. this = list_first_entry(&mem->regions, typeof(*this), rl_entry);
  360. list_del(&this->rl_entry);
  361. nvkm_mm_free(&ram->vram, &this);
  362. }
  363. nvkm_mm_free(&ram->tags, &mem->tag);
  364. }
  365. void
  366. nv50_ram_put(struct nvkm_ram *ram, struct nvkm_mem **pmem)
  367. {
  368. struct nvkm_mem *mem = *pmem;
  369. *pmem = NULL;
  370. if (unlikely(mem == NULL))
  371. return;
  372. mutex_lock(&ram->fb->subdev.mutex);
  373. __nv50_ram_put(ram, mem);
  374. mutex_unlock(&ram->fb->subdev.mutex);
  375. kfree(mem);
  376. }
  377. int
  378. nv50_ram_get(struct nvkm_ram *ram, u64 size, u32 align, u32 ncmin,
  379. u32 memtype, struct nvkm_mem **pmem)
  380. {
  381. struct nvkm_mm *heap = &ram->vram;
  382. struct nvkm_mm *tags = &ram->tags;
  383. struct nvkm_mm_node *r;
  384. struct nvkm_mem *mem;
  385. int comp = (memtype & 0x300) >> 8;
  386. int type = (memtype & 0x07f);
  387. int back = (memtype & 0x800);
  388. int min, max, ret;
  389. max = (size >> NVKM_RAM_MM_SHIFT);
  390. min = ncmin ? (ncmin >> NVKM_RAM_MM_SHIFT) : max;
  391. align >>= NVKM_RAM_MM_SHIFT;
  392. mem = kzalloc(sizeof(*mem), GFP_KERNEL);
  393. if (!mem)
  394. return -ENOMEM;
  395. mutex_lock(&ram->fb->subdev.mutex);
  396. if (comp) {
  397. if (align == (1 << (16 - NVKM_RAM_MM_SHIFT))) {
  398. int n = (max >> 4) * comp;
  399. ret = nvkm_mm_head(tags, 0, 1, n, n, 1, &mem->tag);
  400. if (ret)
  401. mem->tag = NULL;
  402. }
  403. if (unlikely(!mem->tag))
  404. comp = 0;
  405. }
  406. INIT_LIST_HEAD(&mem->regions);
  407. mem->memtype = (comp << 7) | type;
  408. mem->size = max;
  409. type = nv50_fb_memtype[type];
  410. do {
  411. if (back)
  412. ret = nvkm_mm_tail(heap, 0, type, max, min, align, &r);
  413. else
  414. ret = nvkm_mm_head(heap, 0, type, max, min, align, &r);
  415. if (ret) {
  416. mutex_unlock(&ram->fb->subdev.mutex);
  417. ram->func->put(ram, &mem);
  418. return ret;
  419. }
  420. list_add_tail(&r->rl_entry, &mem->regions);
  421. max -= r->length;
  422. } while (max);
  423. mutex_unlock(&ram->fb->subdev.mutex);
  424. r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry);
  425. mem->offset = (u64)r->offset << NVKM_RAM_MM_SHIFT;
  426. *pmem = mem;
  427. return 0;
  428. }
  429. static const struct nvkm_ram_func
  430. nv50_ram_func = {
  431. .get = nv50_ram_get,
  432. .put = nv50_ram_put,
  433. .calc = nv50_ram_calc,
  434. .prog = nv50_ram_prog,
  435. .tidy = nv50_ram_tidy,
  436. };
  437. static u32
  438. nv50_fb_vram_rblock(struct nvkm_ram *ram)
  439. {
  440. struct nvkm_subdev *subdev = &ram->fb->subdev;
  441. struct nvkm_device *device = subdev->device;
  442. int colbits, rowbitsa, rowbitsb, banks;
  443. u64 rowsize, predicted;
  444. u32 r0, r4, rt, rblock_size;
  445. r0 = nvkm_rd32(device, 0x100200);
  446. r4 = nvkm_rd32(device, 0x100204);
  447. rt = nvkm_rd32(device, 0x100250);
  448. nvkm_debug(subdev, "memcfg %08x %08x %08x %08x\n",
  449. r0, r4, rt, nvkm_rd32(device, 0x001540));
  450. colbits = (r4 & 0x0000f000) >> 12;
  451. rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
  452. rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
  453. banks = 1 << (((r4 & 0x03000000) >> 24) + 2);
  454. rowsize = ram->parts * banks * (1 << colbits) * 8;
  455. predicted = rowsize << rowbitsa;
  456. if (r0 & 0x00000004)
  457. predicted += rowsize << rowbitsb;
  458. if (predicted != ram->size) {
  459. nvkm_warn(subdev, "memory controller reports %d MiB VRAM\n",
  460. (u32)(ram->size >> 20));
  461. }
  462. rblock_size = rowsize;
  463. if (rt & 1)
  464. rblock_size *= 3;
  465. nvkm_debug(subdev, "rblock %d bytes\n", rblock_size);
  466. return rblock_size;
  467. }
  468. int
  469. nv50_ram_ctor(const struct nvkm_ram_func *func,
  470. struct nvkm_fb *fb, struct nvkm_ram *ram)
  471. {
  472. struct nvkm_device *device = fb->subdev.device;
  473. struct nvkm_bios *bios = device->bios;
  474. const u32 rsvd_head = ( 256 * 1024); /* vga memory */
  475. const u32 rsvd_tail = (1024 * 1024); /* vbios etc */
  476. u64 size = nvkm_rd32(device, 0x10020c);
  477. u32 tags = nvkm_rd32(device, 0x100320);
  478. enum nvkm_ram_type type = NVKM_RAM_TYPE_UNKNOWN;
  479. int ret;
  480. switch (nvkm_rd32(device, 0x100714) & 0x00000007) {
  481. case 0: type = NVKM_RAM_TYPE_DDR1; break;
  482. case 1:
  483. if (nvkm_fb_bios_memtype(bios) == NVKM_RAM_TYPE_DDR3)
  484. type = NVKM_RAM_TYPE_DDR3;
  485. else
  486. type = NVKM_RAM_TYPE_DDR2;
  487. break;
  488. case 2: type = NVKM_RAM_TYPE_GDDR3; break;
  489. case 3: type = NVKM_RAM_TYPE_GDDR4; break;
  490. case 4: type = NVKM_RAM_TYPE_GDDR5; break;
  491. default:
  492. break;
  493. }
  494. size = (size & 0x000000ff) << 32 | (size & 0xffffff00);
  495. ret = nvkm_ram_ctor(func, fb, type, size, tags, ram);
  496. if (ret)
  497. return ret;
  498. ram->part_mask = (nvkm_rd32(device, 0x001540) & 0x00ff0000) >> 16;
  499. ram->parts = hweight8(ram->part_mask);
  500. ram->ranks = (nvkm_rd32(device, 0x100200) & 0x4) ? 2 : 1;
  501. nvkm_mm_fini(&ram->vram);
  502. return nvkm_mm_init(&ram->vram, rsvd_head >> NVKM_RAM_MM_SHIFT,
  503. (size - rsvd_head - rsvd_tail) >> NVKM_RAM_MM_SHIFT,
  504. nv50_fb_vram_rblock(ram) >> NVKM_RAM_MM_SHIFT);
  505. }
  506. int
  507. nv50_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
  508. {
  509. struct nv50_ram *ram;
  510. int ret, i;
  511. if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
  512. return -ENOMEM;
  513. *pram = &ram->base;
  514. ret = nv50_ram_ctor(&nv50_ram_func, fb, &ram->base);
  515. if (ret)
  516. return ret;
  517. ram->hwsq.r_0x002504 = hwsq_reg(0x002504);
  518. ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040);
  519. ram->hwsq.r_0x004008 = hwsq_reg(0x004008);
  520. ram->hwsq.r_0x00400c = hwsq_reg(0x00400c);
  521. ram->hwsq.r_0x100200 = hwsq_reg(0x100200);
  522. ram->hwsq.r_0x100210 = hwsq_reg(0x100210);
  523. ram->hwsq.r_0x10021c = hwsq_reg(0x10021c);
  524. ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0);
  525. ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4);
  526. ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc);
  527. ram->hwsq.r_0x10053c = hwsq_reg(0x10053c);
  528. ram->hwsq.r_0x1005a0 = hwsq_reg(0x1005a0);
  529. ram->hwsq.r_0x1005a4 = hwsq_reg(0x1005a4);
  530. ram->hwsq.r_0x100710 = hwsq_reg(0x100710);
  531. ram->hwsq.r_0x100714 = hwsq_reg(0x100714);
  532. ram->hwsq.r_0x100718 = hwsq_reg(0x100718);
  533. ram->hwsq.r_0x10071c = hwsq_reg(0x10071c);
  534. ram->hwsq.r_0x100da0 = hwsq_stride(0x100da0, 4, ram->base.part_mask);
  535. ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20);
  536. ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24);
  537. ram->hwsq.r_0x611200 = hwsq_reg(0x611200);
  538. for (i = 0; i < 9; i++)
  539. ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04));
  540. if (ram->base.ranks > 1) {
  541. ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8);
  542. ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc);
  543. ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8);
  544. ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec);
  545. } else {
  546. ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0);
  547. ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4);
  548. ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0);
  549. ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4);
  550. }
  551. return 0;
  552. }