ramgt215.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992
  1. /*
  2. * Copyright 2013 Red Hat Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Ben Skeggs
  23. * Roy Spliet <rspliet@eclipso.eu>
  24. */
  25. #define gt215_ram(p) container_of((p), struct gt215_ram, base)
  26. #include "ram.h"
  27. #include "ramfuc.h"
  28. #include <core/option.h>
  29. #include <subdev/bios.h>
  30. #include <subdev/bios/M0205.h>
  31. #include <subdev/bios/rammap.h>
  32. #include <subdev/bios/timing.h>
  33. #include <subdev/clk/gt215.h>
  34. #include <subdev/gpio.h>
  35. /* XXX: Remove when memx gains GPIO support */
  36. extern int nv50_gpio_location(int line, u32 *reg, u32 *shift);
  37. struct gt215_ramfuc {
  38. struct ramfuc base;
  39. struct ramfuc_reg r_0x001610;
  40. struct ramfuc_reg r_0x001700;
  41. struct ramfuc_reg r_0x002504;
  42. struct ramfuc_reg r_0x004000;
  43. struct ramfuc_reg r_0x004004;
  44. struct ramfuc_reg r_0x004018;
  45. struct ramfuc_reg r_0x004128;
  46. struct ramfuc_reg r_0x004168;
  47. struct ramfuc_reg r_0x100080;
  48. struct ramfuc_reg r_0x100200;
  49. struct ramfuc_reg r_0x100210;
  50. struct ramfuc_reg r_0x100220[9];
  51. struct ramfuc_reg r_0x100264;
  52. struct ramfuc_reg r_0x1002d0;
  53. struct ramfuc_reg r_0x1002d4;
  54. struct ramfuc_reg r_0x1002dc;
  55. struct ramfuc_reg r_0x10053c;
  56. struct ramfuc_reg r_0x1005a0;
  57. struct ramfuc_reg r_0x1005a4;
  58. struct ramfuc_reg r_0x100700;
  59. struct ramfuc_reg r_0x100714;
  60. struct ramfuc_reg r_0x100718;
  61. struct ramfuc_reg r_0x10071c;
  62. struct ramfuc_reg r_0x100720;
  63. struct ramfuc_reg r_0x100760;
  64. struct ramfuc_reg r_0x1007a0;
  65. struct ramfuc_reg r_0x1007e0;
  66. struct ramfuc_reg r_0x100da0;
  67. struct ramfuc_reg r_0x10f804;
  68. struct ramfuc_reg r_0x1110e0;
  69. struct ramfuc_reg r_0x111100;
  70. struct ramfuc_reg r_0x111104;
  71. struct ramfuc_reg r_0x1111e0;
  72. struct ramfuc_reg r_0x111400;
  73. struct ramfuc_reg r_0x611200;
  74. struct ramfuc_reg r_mr[4];
  75. struct ramfuc_reg r_gpioFBVREF;
  76. };
  77. struct gt215_ltrain {
  78. enum {
  79. NVA3_TRAIN_UNKNOWN,
  80. NVA3_TRAIN_UNSUPPORTED,
  81. NVA3_TRAIN_ONCE,
  82. NVA3_TRAIN_EXEC,
  83. NVA3_TRAIN_DONE
  84. } state;
  85. u32 r_100720;
  86. u32 r_1111e0;
  87. u32 r_111400;
  88. struct nvkm_mem *mem;
  89. };
  90. struct gt215_ram {
  91. struct nvkm_ram base;
  92. struct gt215_ramfuc fuc;
  93. struct gt215_ltrain ltrain;
  94. };
  95. void
  96. gt215_link_train_calc(u32 *vals, struct gt215_ltrain *train)
  97. {
  98. int i, lo, hi;
  99. u8 median[8], bins[4] = {0, 0, 0, 0}, bin = 0, qty = 0;
  100. for (i = 0; i < 8; i++) {
  101. for (lo = 0; lo < 0x40; lo++) {
  102. if (!(vals[lo] & 0x80000000))
  103. continue;
  104. if (vals[lo] & (0x101 << i))
  105. break;
  106. }
  107. if (lo == 0x40)
  108. return;
  109. for (hi = lo + 1; hi < 0x40; hi++) {
  110. if (!(vals[lo] & 0x80000000))
  111. continue;
  112. if (!(vals[hi] & (0x101 << i))) {
  113. hi--;
  114. break;
  115. }
  116. }
  117. median[i] = ((hi - lo) >> 1) + lo;
  118. bins[(median[i] & 0xf0) >> 4]++;
  119. median[i] += 0x30;
  120. }
  121. /* Find the best value for 0x1111e0 */
  122. for (i = 0; i < 4; i++) {
  123. if (bins[i] > qty) {
  124. bin = i + 3;
  125. qty = bins[i];
  126. }
  127. }
  128. train->r_100720 = 0;
  129. for (i = 0; i < 8; i++) {
  130. median[i] = max(median[i], (u8) (bin << 4));
  131. median[i] = min(median[i], (u8) ((bin << 4) | 0xf));
  132. train->r_100720 |= ((median[i] & 0x0f) << (i << 2));
  133. }
  134. train->r_1111e0 = 0x02000000 | (bin * 0x101);
  135. train->r_111400 = 0x0;
  136. }
  137. /*
  138. * Link training for (at least) DDR3
  139. */
  140. int
  141. gt215_link_train(struct gt215_ram *ram)
  142. {
  143. struct gt215_ltrain *train = &ram->ltrain;
  144. struct gt215_ramfuc *fuc = &ram->fuc;
  145. struct nvkm_subdev *subdev = &ram->base.fb->subdev;
  146. struct nvkm_device *device = subdev->device;
  147. struct nvkm_bios *bios = device->bios;
  148. struct nvkm_clk *clk = device->clk;
  149. u32 *result, r1700;
  150. int ret, i;
  151. struct nvbios_M0205T M0205T = { 0 };
  152. u8 ver, hdr, cnt, len, snr, ssz;
  153. unsigned int clk_current;
  154. unsigned long flags;
  155. unsigned long *f = &flags;
  156. if (nvkm_boolopt(device->cfgopt, "NvMemExec", true) != true)
  157. return -ENOSYS;
  158. /* XXX: Multiple partitions? */
  159. result = kmalloc(64 * sizeof(u32), GFP_KERNEL);
  160. if (!result)
  161. return -ENOMEM;
  162. train->state = NVA3_TRAIN_EXEC;
  163. /* Clock speeds for training and back */
  164. nvbios_M0205Tp(bios, &ver, &hdr, &cnt, &len, &snr, &ssz, &M0205T);
  165. if (M0205T.freq == 0) {
  166. kfree(result);
  167. return -ENOENT;
  168. }
  169. clk_current = nvkm_clk_read(clk, nv_clk_src_mem);
  170. ret = gt215_clk_pre(clk, f);
  171. if (ret)
  172. goto out;
  173. /* First: clock up/down */
  174. ret = ram->base.func->calc(&ram->base, (u32) M0205T.freq * 1000);
  175. if (ret)
  176. goto out;
  177. /* Do this *after* calc, eliminates write in script */
  178. nvkm_wr32(device, 0x111400, 0x00000000);
  179. /* XXX: Magic writes that improve train reliability? */
  180. nvkm_mask(device, 0x100674, 0x0000ffff, 0x00000000);
  181. nvkm_mask(device, 0x1005e4, 0x0000ffff, 0x00000000);
  182. nvkm_mask(device, 0x100b0c, 0x000000ff, 0x00000000);
  183. nvkm_wr32(device, 0x100c04, 0x00000400);
  184. /* Now the training script */
  185. r1700 = ram_rd32(fuc, 0x001700);
  186. ram_mask(fuc, 0x100200, 0x00000800, 0x00000000);
  187. ram_wr32(fuc, 0x611200, 0x3300);
  188. ram_wait_vblank(fuc);
  189. ram_wait(fuc, 0x611200, 0x00000003, 0x00000000, 500000);
  190. ram_mask(fuc, 0x001610, 0x00000083, 0x00000003);
  191. ram_mask(fuc, 0x100080, 0x00000020, 0x00000000);
  192. ram_mask(fuc, 0x10f804, 0x80000000, 0x00000000);
  193. ram_wr32(fuc, 0x001700, 0x00000000);
  194. ram_train(fuc);
  195. /* Reset */
  196. ram_mask(fuc, 0x10f804, 0x80000000, 0x80000000);
  197. ram_wr32(fuc, 0x10053c, 0x0);
  198. ram_wr32(fuc, 0x100720, train->r_100720);
  199. ram_wr32(fuc, 0x1111e0, train->r_1111e0);
  200. ram_wr32(fuc, 0x111400, train->r_111400);
  201. ram_nuke(fuc, 0x100080);
  202. ram_mask(fuc, 0x100080, 0x00000020, 0x00000020);
  203. ram_nsec(fuc, 1000);
  204. ram_wr32(fuc, 0x001700, r1700);
  205. ram_mask(fuc, 0x001610, 0x00000083, 0x00000080);
  206. ram_wr32(fuc, 0x611200, 0x3330);
  207. ram_mask(fuc, 0x100200, 0x00000800, 0x00000800);
  208. ram_exec(fuc, true);
  209. ram->base.func->calc(&ram->base, clk_current);
  210. ram_exec(fuc, true);
  211. /* Post-processing, avoids flicker */
  212. nvkm_mask(device, 0x616308, 0x10, 0x10);
  213. nvkm_mask(device, 0x616b08, 0x10, 0x10);
  214. gt215_clk_post(clk, f);
  215. ram_train_result(ram->base.fb, result, 64);
  216. for (i = 0; i < 64; i++)
  217. nvkm_debug(subdev, "Train: %08x", result[i]);
  218. gt215_link_train_calc(result, train);
  219. nvkm_debug(subdev, "Train: %08x %08x %08x", train->r_100720,
  220. train->r_1111e0, train->r_111400);
  221. kfree(result);
  222. train->state = NVA3_TRAIN_DONE;
  223. return ret;
  224. out:
  225. if(ret == -EBUSY)
  226. f = NULL;
  227. train->state = NVA3_TRAIN_UNSUPPORTED;
  228. gt215_clk_post(clk, f);
  229. kfree(result);
  230. return ret;
  231. }
  232. int
  233. gt215_link_train_init(struct gt215_ram *ram)
  234. {
  235. static const u32 pattern[16] = {
  236. 0xaaaaaaaa, 0xcccccccc, 0xdddddddd, 0xeeeeeeee,
  237. 0x00000000, 0x11111111, 0x44444444, 0xdddddddd,
  238. 0x33333333, 0x55555555, 0x77777777, 0x66666666,
  239. 0x99999999, 0x88888888, 0xeeeeeeee, 0xbbbbbbbb,
  240. };
  241. struct gt215_ltrain *train = &ram->ltrain;
  242. struct nvkm_device *device = ram->base.fb->subdev.device;
  243. struct nvkm_bios *bios = device->bios;
  244. struct nvkm_mem *mem;
  245. struct nvbios_M0205E M0205E;
  246. u8 ver, hdr, cnt, len;
  247. u32 r001700;
  248. int ret, i = 0;
  249. train->state = NVA3_TRAIN_UNSUPPORTED;
  250. /* We support type "5"
  251. * XXX: training pattern table appears to be unused for this routine */
  252. if (!nvbios_M0205Ep(bios, i, &ver, &hdr, &cnt, &len, &M0205E))
  253. return -ENOENT;
  254. if (M0205E.type != 5)
  255. return 0;
  256. train->state = NVA3_TRAIN_ONCE;
  257. ret = ram->base.func->get(&ram->base, 0x8000, 0x10000, 0, 0x800,
  258. &ram->ltrain.mem);
  259. if (ret)
  260. return ret;
  261. mem = ram->ltrain.mem;
  262. nvkm_wr32(device, 0x100538, 0x10000000 | (mem->offset >> 16));
  263. nvkm_wr32(device, 0x1005a8, 0x0000ffff);
  264. nvkm_mask(device, 0x10f800, 0x00000001, 0x00000001);
  265. for (i = 0; i < 0x30; i++) {
  266. nvkm_wr32(device, 0x10f8c0, (i << 8) | i);
  267. nvkm_wr32(device, 0x10f900, pattern[i % 16]);
  268. }
  269. for (i = 0; i < 0x30; i++) {
  270. nvkm_wr32(device, 0x10f8e0, (i << 8) | i);
  271. nvkm_wr32(device, 0x10f920, pattern[i % 16]);
  272. }
  273. /* And upload the pattern */
  274. r001700 = nvkm_rd32(device, 0x1700);
  275. nvkm_wr32(device, 0x1700, mem->offset >> 16);
  276. for (i = 0; i < 16; i++)
  277. nvkm_wr32(device, 0x700000 + (i << 2), pattern[i]);
  278. for (i = 0; i < 16; i++)
  279. nvkm_wr32(device, 0x700100 + (i << 2), pattern[i]);
  280. nvkm_wr32(device, 0x1700, r001700);
  281. train->r_100720 = nvkm_rd32(device, 0x100720);
  282. train->r_1111e0 = nvkm_rd32(device, 0x1111e0);
  283. train->r_111400 = nvkm_rd32(device, 0x111400);
  284. return 0;
  285. }
  286. void
  287. gt215_link_train_fini(struct gt215_ram *ram)
  288. {
  289. if (ram->ltrain.mem)
  290. ram->base.func->put(&ram->base, &ram->ltrain.mem);
  291. }
  292. /*
  293. * RAM reclocking
  294. */
  295. #define T(t) cfg->timing_10_##t
  296. static int
  297. gt215_ram_timing_calc(struct gt215_ram *ram, u32 *timing)
  298. {
  299. struct nvbios_ramcfg *cfg = &ram->base.target.bios;
  300. struct nvkm_subdev *subdev = &ram->base.fb->subdev;
  301. struct nvkm_device *device = subdev->device;
  302. int tUNK_base, tUNK_40_0, prevCL;
  303. u32 cur2, cur3, cur7, cur8;
  304. cur2 = nvkm_rd32(device, 0x100228);
  305. cur3 = nvkm_rd32(device, 0x10022c);
  306. cur7 = nvkm_rd32(device, 0x10023c);
  307. cur8 = nvkm_rd32(device, 0x100240);
  308. switch ((!T(CWL)) * ram->base.type) {
  309. case NVKM_RAM_TYPE_DDR2:
  310. T(CWL) = T(CL) - 1;
  311. break;
  312. case NVKM_RAM_TYPE_GDDR3:
  313. T(CWL) = ((cur2 & 0xff000000) >> 24) + 1;
  314. break;
  315. }
  316. prevCL = (cur3 & 0x000000ff) + 1;
  317. tUNK_base = ((cur7 & 0x00ff0000) >> 16) - prevCL;
  318. timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC));
  319. timing[1] = (T(WR) + 1 + T(CWL)) << 24 |
  320. max_t(u8,T(18), 1) << 16 |
  321. (T(WTR) + 1 + T(CWL)) << 8 |
  322. (5 + T(CL) - T(CWL));
  323. timing[2] = (T(CWL) - 1) << 24 |
  324. (T(RRD) << 16) |
  325. (T(RCDWR) << 8) |
  326. T(RCDRD);
  327. timing[3] = (cur3 & 0x00ff0000) |
  328. (0x30 + T(CL)) << 24 |
  329. (0xb + T(CL)) << 8 |
  330. (T(CL) - 1);
  331. timing[4] = T(20) << 24 |
  332. T(21) << 16 |
  333. T(13) << 8 |
  334. T(13);
  335. timing[5] = T(RFC) << 24 |
  336. max_t(u8,T(RCDRD), T(RCDWR)) << 16 |
  337. max_t(u8, (T(CWL) + 6), (T(CL) + 2)) << 8 |
  338. T(RP);
  339. timing[6] = (0x5a + T(CL)) << 16 |
  340. max_t(u8, 1, (6 - T(CL) + T(CWL))) << 8 |
  341. (0x50 + T(CL) - T(CWL));
  342. timing[7] = (cur7 & 0xff000000) |
  343. ((tUNK_base + T(CL)) << 16) |
  344. 0x202;
  345. timing[8] = cur8 & 0xffffff00;
  346. switch (ram->base.type) {
  347. case NVKM_RAM_TYPE_DDR2:
  348. case NVKM_RAM_TYPE_GDDR3:
  349. tUNK_40_0 = prevCL - (cur8 & 0xff);
  350. if (tUNK_40_0 > 0)
  351. timing[8] |= T(CL);
  352. break;
  353. default:
  354. break;
  355. }
  356. nvkm_debug(subdev, "Entry: 220: %08x %08x %08x %08x\n",
  357. timing[0], timing[1], timing[2], timing[3]);
  358. nvkm_debug(subdev, " 230: %08x %08x %08x %08x\n",
  359. timing[4], timing[5], timing[6], timing[7]);
  360. nvkm_debug(subdev, " 240: %08x\n", timing[8]);
  361. return 0;
  362. }
  363. #undef T
  364. static void
  365. nvkm_sddr2_dll_reset(struct gt215_ramfuc *fuc)
  366. {
  367. ram_mask(fuc, mr[0], 0x100, 0x100);
  368. ram_nsec(fuc, 1000);
  369. ram_mask(fuc, mr[0], 0x100, 0x000);
  370. ram_nsec(fuc, 1000);
  371. }
  372. static void
  373. nvkm_sddr3_dll_disable(struct gt215_ramfuc *fuc, u32 *mr)
  374. {
  375. u32 mr1_old = ram_rd32(fuc, mr[1]);
  376. if (!(mr1_old & 0x1)) {
  377. ram_wr32(fuc, 0x1002d4, 0x00000001);
  378. ram_wr32(fuc, mr[1], mr[1]);
  379. ram_nsec(fuc, 1000);
  380. }
  381. }
  382. static void
  383. nvkm_gddr3_dll_disable(struct gt215_ramfuc *fuc, u32 *mr)
  384. {
  385. u32 mr1_old = ram_rd32(fuc, mr[1]);
  386. if (!(mr1_old & 0x40)) {
  387. ram_wr32(fuc, mr[1], mr[1]);
  388. ram_nsec(fuc, 1000);
  389. }
  390. }
  391. static void
  392. gt215_ram_lock_pll(struct gt215_ramfuc *fuc, struct gt215_clk_info *mclk)
  393. {
  394. ram_wr32(fuc, 0x004004, mclk->pll);
  395. ram_mask(fuc, 0x004000, 0x00000001, 0x00000001);
  396. ram_mask(fuc, 0x004000, 0x00000010, 0x00000000);
  397. ram_wait(fuc, 0x004000, 0x00020000, 0x00020000, 64000);
  398. ram_mask(fuc, 0x004000, 0x00000010, 0x00000010);
  399. }
  400. static void
  401. gt215_ram_fbvref(struct gt215_ramfuc *fuc, u32 val)
  402. {
  403. struct nvkm_gpio *gpio = fuc->base.fb->subdev.device->gpio;
  404. struct dcb_gpio_func func;
  405. u32 reg, sh, gpio_val;
  406. int ret;
  407. if (nvkm_gpio_get(gpio, 0, 0x2e, DCB_GPIO_UNUSED) != val) {
  408. ret = nvkm_gpio_find(gpio, 0, 0x2e, DCB_GPIO_UNUSED, &func);
  409. if (ret)
  410. return;
  411. nv50_gpio_location(func.line, &reg, &sh);
  412. gpio_val = ram_rd32(fuc, gpioFBVREF);
  413. if (gpio_val & (8 << sh))
  414. val = !val;
  415. ram_mask(fuc, gpioFBVREF, (0x3 << sh), ((val | 0x2) << sh));
  416. ram_nsec(fuc, 20000);
  417. }
  418. }
  419. static int
  420. gt215_ram_calc(struct nvkm_ram *base, u32 freq)
  421. {
  422. struct gt215_ram *ram = gt215_ram(base);
  423. struct gt215_ramfuc *fuc = &ram->fuc;
  424. struct gt215_ltrain *train = &ram->ltrain;
  425. struct nvkm_subdev *subdev = &ram->base.fb->subdev;
  426. struct nvkm_device *device = subdev->device;
  427. struct nvkm_bios *bios = device->bios;
  428. struct gt215_clk_info mclk;
  429. struct nvkm_ram_data *next;
  430. u8 ver, hdr, cnt, len, strap;
  431. u32 data;
  432. u32 r004018, r100760, r100da0, r111100, ctrl;
  433. u32 unk714, unk718, unk71c;
  434. int ret, i;
  435. u32 timing[9];
  436. bool pll2pll;
  437. next = &ram->base.target;
  438. next->freq = freq;
  439. ram->base.next = next;
  440. if (ram->ltrain.state == NVA3_TRAIN_ONCE)
  441. gt215_link_train(ram);
  442. /* lookup memory config data relevant to the target frequency */
  443. data = nvbios_rammapEm(bios, freq / 1000, &ver, &hdr, &cnt, &len,
  444. &next->bios);
  445. if (!data || ver != 0x10 || hdr < 0x05) {
  446. nvkm_error(subdev, "invalid/missing rammap entry\n");
  447. return -EINVAL;
  448. }
  449. /* locate specific data set for the attached memory */
  450. strap = nvbios_ramcfg_index(subdev);
  451. if (strap >= cnt) {
  452. nvkm_error(subdev, "invalid ramcfg strap\n");
  453. return -EINVAL;
  454. }
  455. data = nvbios_rammapSp(bios, data, ver, hdr, cnt, len, strap,
  456. &ver, &hdr, &next->bios);
  457. if (!data || ver != 0x10 || hdr < 0x09) {
  458. nvkm_error(subdev, "invalid/missing ramcfg entry\n");
  459. return -EINVAL;
  460. }
  461. /* lookup memory timings, if bios says they're present */
  462. if (next->bios.ramcfg_timing != 0xff) {
  463. data = nvbios_timingEp(bios, next->bios.ramcfg_timing,
  464. &ver, &hdr, &cnt, &len,
  465. &next->bios);
  466. if (!data || ver != 0x10 || hdr < 0x17) {
  467. nvkm_error(subdev, "invalid/missing timing entry\n");
  468. return -EINVAL;
  469. }
  470. }
  471. ret = gt215_pll_info(device->clk, 0x12, 0x4000, freq, &mclk);
  472. if (ret < 0) {
  473. nvkm_error(subdev, "failed mclk calculation\n");
  474. return ret;
  475. }
  476. gt215_ram_timing_calc(ram, timing);
  477. ret = ram_init(fuc, ram->base.fb);
  478. if (ret)
  479. return ret;
  480. /* Determine ram-specific MR values */
  481. ram->base.mr[0] = ram_rd32(fuc, mr[0]);
  482. ram->base.mr[1] = ram_rd32(fuc, mr[1]);
  483. ram->base.mr[2] = ram_rd32(fuc, mr[2]);
  484. switch (ram->base.type) {
  485. case NVKM_RAM_TYPE_DDR2:
  486. ret = nvkm_sddr2_calc(&ram->base);
  487. break;
  488. case NVKM_RAM_TYPE_DDR3:
  489. ret = nvkm_sddr3_calc(&ram->base);
  490. break;
  491. case NVKM_RAM_TYPE_GDDR3:
  492. ret = nvkm_gddr3_calc(&ram->base);
  493. break;
  494. default:
  495. ret = -ENOSYS;
  496. break;
  497. }
  498. if (ret)
  499. return ret;
  500. /* XXX: 750MHz seems rather arbitrary */
  501. if (freq <= 750000) {
  502. r004018 = 0x10000000;
  503. r100760 = 0x22222222;
  504. r100da0 = 0x00000010;
  505. } else {
  506. r004018 = 0x00000000;
  507. r100760 = 0x00000000;
  508. r100da0 = 0x00000000;
  509. }
  510. if (!next->bios.ramcfg_DLLoff)
  511. r004018 |= 0x00004000;
  512. /* pll2pll requires to switch to a safe clock first */
  513. ctrl = ram_rd32(fuc, 0x004000);
  514. pll2pll = (!(ctrl & 0x00000008)) && mclk.pll;
  515. /* Pre, NVIDIA does this outside the script */
  516. if (next->bios.ramcfg_10_02_10) {
  517. ram_mask(fuc, 0x111104, 0x00000600, 0x00000000);
  518. } else {
  519. ram_mask(fuc, 0x111100, 0x40000000, 0x40000000);
  520. ram_mask(fuc, 0x111104, 0x00000180, 0x00000000);
  521. }
  522. /* Always disable this bit during reclock */
  523. ram_mask(fuc, 0x100200, 0x00000800, 0x00000000);
  524. /* If switching from non-pll to pll, lock before disabling FB */
  525. if (mclk.pll && !pll2pll) {
  526. ram_mask(fuc, 0x004128, 0x003f3141, mclk.clk | 0x00000101);
  527. gt215_ram_lock_pll(fuc, &mclk);
  528. }
  529. /* Start with disabling some CRTCs and PFIFO? */
  530. ram_wait_vblank(fuc);
  531. ram_wr32(fuc, 0x611200, 0x3300);
  532. ram_mask(fuc, 0x002504, 0x1, 0x1);
  533. ram_nsec(fuc, 10000);
  534. ram_wait(fuc, 0x002504, 0x10, 0x10, 20000); /* XXX: or longer? */
  535. ram_block(fuc);
  536. ram_nsec(fuc, 2000);
  537. if (!next->bios.ramcfg_10_02_10) {
  538. if (ram->base.type == NVKM_RAM_TYPE_GDDR3)
  539. ram_mask(fuc, 0x111100, 0x04020000, 0x00020000);
  540. else
  541. ram_mask(fuc, 0x111100, 0x04020000, 0x04020000);
  542. }
  543. /* If we're disabling the DLL, do it now */
  544. switch (next->bios.ramcfg_DLLoff * ram->base.type) {
  545. case NVKM_RAM_TYPE_DDR3:
  546. nvkm_sddr3_dll_disable(fuc, ram->base.mr);
  547. break;
  548. case NVKM_RAM_TYPE_GDDR3:
  549. nvkm_gddr3_dll_disable(fuc, ram->base.mr);
  550. break;
  551. }
  552. if (fuc->r_gpioFBVREF.addr && next->bios.timing_10_ODT)
  553. gt215_ram_fbvref(fuc, 0);
  554. /* Brace RAM for impact */
  555. ram_wr32(fuc, 0x1002d4, 0x00000001);
  556. ram_wr32(fuc, 0x1002d0, 0x00000001);
  557. ram_wr32(fuc, 0x1002d0, 0x00000001);
  558. ram_wr32(fuc, 0x100210, 0x00000000);
  559. ram_wr32(fuc, 0x1002dc, 0x00000001);
  560. ram_nsec(fuc, 2000);
  561. if (device->chipset == 0xa3 && freq <= 500000)
  562. ram_mask(fuc, 0x100700, 0x00000006, 0x00000006);
  563. /* Fiddle with clocks */
  564. /* There's 4 scenario's
  565. * pll->pll: first switch to a 324MHz clock, set up new PLL, switch
  566. * clk->pll: Set up new PLL, switch
  567. * pll->clk: Set up clock, switch
  568. * clk->clk: Overwrite ctrl and other bits, switch */
  569. /* Switch to regular clock - 324MHz */
  570. if (pll2pll) {
  571. ram_mask(fuc, 0x004000, 0x00000004, 0x00000004);
  572. ram_mask(fuc, 0x004168, 0x003f3141, 0x00083101);
  573. ram_mask(fuc, 0x004000, 0x00000008, 0x00000008);
  574. ram_mask(fuc, 0x1110e0, 0x00088000, 0x00088000);
  575. ram_wr32(fuc, 0x004018, 0x00001000);
  576. gt215_ram_lock_pll(fuc, &mclk);
  577. }
  578. if (mclk.pll) {
  579. ram_mask(fuc, 0x004000, 0x00000105, 0x00000105);
  580. ram_wr32(fuc, 0x004018, 0x00001000 | r004018);
  581. ram_wr32(fuc, 0x100da0, r100da0);
  582. } else {
  583. ram_mask(fuc, 0x004168, 0x003f3141, mclk.clk | 0x00000101);
  584. ram_mask(fuc, 0x004000, 0x00000108, 0x00000008);
  585. ram_mask(fuc, 0x1110e0, 0x00088000, 0x00088000);
  586. ram_wr32(fuc, 0x004018, 0x00009000 | r004018);
  587. ram_wr32(fuc, 0x100da0, r100da0);
  588. }
  589. ram_nsec(fuc, 20000);
  590. if (next->bios.rammap_10_04_08) {
  591. ram_wr32(fuc, 0x1005a0, next->bios.ramcfg_10_06 << 16 |
  592. next->bios.ramcfg_10_05 << 8 |
  593. next->bios.ramcfg_10_05);
  594. ram_wr32(fuc, 0x1005a4, next->bios.ramcfg_10_08 << 8 |
  595. next->bios.ramcfg_10_07);
  596. ram_wr32(fuc, 0x10f804, next->bios.ramcfg_10_09_f0 << 20 |
  597. next->bios.ramcfg_10_03_0f << 16 |
  598. next->bios.ramcfg_10_09_0f |
  599. 0x80000000);
  600. ram_mask(fuc, 0x10053c, 0x00001000, 0x00000000);
  601. } else {
  602. if (train->state == NVA3_TRAIN_DONE) {
  603. ram_wr32(fuc, 0x100080, 0x1020);
  604. ram_mask(fuc, 0x111400, 0xffffffff, train->r_111400);
  605. ram_mask(fuc, 0x1111e0, 0xffffffff, train->r_1111e0);
  606. ram_mask(fuc, 0x100720, 0xffffffff, train->r_100720);
  607. }
  608. ram_mask(fuc, 0x10053c, 0x00001000, 0x00001000);
  609. ram_mask(fuc, 0x10f804, 0x80000000, 0x00000000);
  610. ram_mask(fuc, 0x100760, 0x22222222, r100760);
  611. ram_mask(fuc, 0x1007a0, 0x22222222, r100760);
  612. ram_mask(fuc, 0x1007e0, 0x22222222, r100760);
  613. }
  614. if (device->chipset == 0xa3 && freq > 500000) {
  615. ram_mask(fuc, 0x100700, 0x00000006, 0x00000000);
  616. }
  617. /* Final switch */
  618. if (mclk.pll) {
  619. ram_mask(fuc, 0x1110e0, 0x00088000, 0x00011000);
  620. ram_mask(fuc, 0x004000, 0x00000008, 0x00000000);
  621. }
  622. ram_wr32(fuc, 0x1002dc, 0x00000000);
  623. ram_wr32(fuc, 0x1002d4, 0x00000001);
  624. ram_wr32(fuc, 0x100210, 0x80000000);
  625. ram_nsec(fuc, 2000);
  626. /* Set RAM MR parameters and timings */
  627. for (i = 2; i >= 0; i--) {
  628. if (ram_rd32(fuc, mr[i]) != ram->base.mr[i]) {
  629. ram_wr32(fuc, mr[i], ram->base.mr[i]);
  630. ram_nsec(fuc, 1000);
  631. }
  632. }
  633. ram_wr32(fuc, 0x100220[3], timing[3]);
  634. ram_wr32(fuc, 0x100220[1], timing[1]);
  635. ram_wr32(fuc, 0x100220[6], timing[6]);
  636. ram_wr32(fuc, 0x100220[7], timing[7]);
  637. ram_wr32(fuc, 0x100220[2], timing[2]);
  638. ram_wr32(fuc, 0x100220[4], timing[4]);
  639. ram_wr32(fuc, 0x100220[5], timing[5]);
  640. ram_wr32(fuc, 0x100220[0], timing[0]);
  641. ram_wr32(fuc, 0x100220[8], timing[8]);
  642. /* Misc */
  643. ram_mask(fuc, 0x100200, 0x00001000, !next->bios.ramcfg_10_02_08 << 12);
  644. /* XXX: A lot of "chipset"/"ram type" specific stuff...? */
  645. unk714 = ram_rd32(fuc, 0x100714) & ~0xf0000130;
  646. unk718 = ram_rd32(fuc, 0x100718) & ~0x00000100;
  647. unk71c = ram_rd32(fuc, 0x10071c) & ~0x00000100;
  648. r111100 = ram_rd32(fuc, 0x111100) & ~0x3a800000;
  649. if (next->bios.ramcfg_10_02_04) {
  650. switch (ram->base.type) {
  651. case NVKM_RAM_TYPE_DDR3:
  652. if (device->chipset != 0xa8)
  653. r111100 |= 0x00000004;
  654. /* no break */
  655. case NVKM_RAM_TYPE_DDR2:
  656. r111100 |= 0x08000000;
  657. break;
  658. default:
  659. break;
  660. }
  661. } else {
  662. switch (ram->base.type) {
  663. case NVKM_RAM_TYPE_DDR2:
  664. r111100 |= 0x1a800000;
  665. unk714 |= 0x00000010;
  666. break;
  667. case NVKM_RAM_TYPE_DDR3:
  668. if (device->chipset == 0xa8) {
  669. r111100 |= 0x08000000;
  670. } else {
  671. r111100 &= ~0x00000004;
  672. r111100 |= 0x12800000;
  673. }
  674. unk714 |= 0x00000010;
  675. break;
  676. case NVKM_RAM_TYPE_GDDR3:
  677. r111100 |= 0x30000000;
  678. unk714 |= 0x00000020;
  679. break;
  680. default:
  681. break;
  682. }
  683. }
  684. unk714 |= (next->bios.ramcfg_10_04_01) << 8;
  685. if (next->bios.ramcfg_10_02_20)
  686. unk714 |= 0xf0000000;
  687. if (next->bios.ramcfg_10_02_02)
  688. unk718 |= 0x00000100;
  689. if (next->bios.ramcfg_10_02_01)
  690. unk71c |= 0x00000100;
  691. if (next->bios.timing_10_24 != 0xff) {
  692. unk718 &= ~0xf0000000;
  693. unk718 |= next->bios.timing_10_24 << 28;
  694. }
  695. if (next->bios.ramcfg_10_02_10)
  696. r111100 &= ~0x04020000;
  697. ram_mask(fuc, 0x100714, 0xffffffff, unk714);
  698. ram_mask(fuc, 0x10071c, 0xffffffff, unk71c);
  699. ram_mask(fuc, 0x100718, 0xffffffff, unk718);
  700. ram_mask(fuc, 0x111100, 0xffffffff, r111100);
  701. if (fuc->r_gpioFBVREF.addr && !next->bios.timing_10_ODT)
  702. gt215_ram_fbvref(fuc, 1);
  703. /* Reset DLL */
  704. if (!next->bios.ramcfg_DLLoff)
  705. nvkm_sddr2_dll_reset(fuc);
  706. if (ram->base.type == NVKM_RAM_TYPE_GDDR3) {
  707. ram_nsec(fuc, 31000);
  708. } else {
  709. ram_nsec(fuc, 14000);
  710. }
  711. if (ram->base.type == NVKM_RAM_TYPE_DDR3) {
  712. ram_wr32(fuc, 0x100264, 0x1);
  713. ram_nsec(fuc, 2000);
  714. }
  715. ram_nuke(fuc, 0x100700);
  716. ram_mask(fuc, 0x100700, 0x01000000, 0x01000000);
  717. ram_mask(fuc, 0x100700, 0x01000000, 0x00000000);
  718. /* Re-enable FB */
  719. ram_unblock(fuc);
  720. ram_wr32(fuc, 0x611200, 0x3330);
  721. /* Post fiddlings */
  722. if (next->bios.rammap_10_04_02)
  723. ram_mask(fuc, 0x100200, 0x00000800, 0x00000800);
  724. if (next->bios.ramcfg_10_02_10) {
  725. ram_mask(fuc, 0x111104, 0x00000180, 0x00000180);
  726. ram_mask(fuc, 0x111100, 0x40000000, 0x00000000);
  727. } else {
  728. ram_mask(fuc, 0x111104, 0x00000600, 0x00000600);
  729. }
  730. if (mclk.pll) {
  731. ram_mask(fuc, 0x004168, 0x00000001, 0x00000000);
  732. ram_mask(fuc, 0x004168, 0x00000100, 0x00000000);
  733. } else {
  734. ram_mask(fuc, 0x004000, 0x00000001, 0x00000000);
  735. ram_mask(fuc, 0x004128, 0x00000001, 0x00000000);
  736. ram_mask(fuc, 0x004128, 0x00000100, 0x00000000);
  737. }
  738. return 0;
  739. }
  740. static int
  741. gt215_ram_prog(struct nvkm_ram *base)
  742. {
  743. struct gt215_ram *ram = gt215_ram(base);
  744. struct gt215_ramfuc *fuc = &ram->fuc;
  745. struct nvkm_device *device = ram->base.fb->subdev.device;
  746. bool exec = nvkm_boolopt(device->cfgopt, "NvMemExec", true);
  747. if (exec) {
  748. nvkm_mask(device, 0x001534, 0x2, 0x2);
  749. ram_exec(fuc, true);
  750. /* Post-processing, avoids flicker */
  751. nvkm_mask(device, 0x002504, 0x1, 0x0);
  752. nvkm_mask(device, 0x001534, 0x2, 0x0);
  753. nvkm_mask(device, 0x616308, 0x10, 0x10);
  754. nvkm_mask(device, 0x616b08, 0x10, 0x10);
  755. } else {
  756. ram_exec(fuc, false);
  757. }
  758. return 0;
  759. }
  760. static void
  761. gt215_ram_tidy(struct nvkm_ram *base)
  762. {
  763. struct gt215_ram *ram = gt215_ram(base);
  764. ram_exec(&ram->fuc, false);
  765. }
  766. static int
  767. gt215_ram_init(struct nvkm_ram *base)
  768. {
  769. struct gt215_ram *ram = gt215_ram(base);
  770. gt215_link_train_init(ram);
  771. return 0;
  772. }
  773. static void *
  774. gt215_ram_dtor(struct nvkm_ram *base)
  775. {
  776. struct gt215_ram *ram = gt215_ram(base);
  777. gt215_link_train_fini(ram);
  778. return ram;
  779. }
  780. static const struct nvkm_ram_func
  781. gt215_ram_func = {
  782. .dtor = gt215_ram_dtor,
  783. .init = gt215_ram_init,
  784. .get = nv50_ram_get,
  785. .put = nv50_ram_put,
  786. .calc = gt215_ram_calc,
  787. .prog = gt215_ram_prog,
  788. .tidy = gt215_ram_tidy,
  789. };
  790. int
  791. gt215_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
  792. {
  793. struct nvkm_gpio *gpio = fb->subdev.device->gpio;
  794. struct dcb_gpio_func func;
  795. struct gt215_ram *ram;
  796. u32 reg, shift;
  797. int ret, i;
  798. if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
  799. return -ENOMEM;
  800. *pram = &ram->base;
  801. ret = nv50_ram_ctor(&gt215_ram_func, fb, &ram->base);
  802. if (ret)
  803. return ret;
  804. ram->fuc.r_0x001610 = ramfuc_reg(0x001610);
  805. ram->fuc.r_0x001700 = ramfuc_reg(0x001700);
  806. ram->fuc.r_0x002504 = ramfuc_reg(0x002504);
  807. ram->fuc.r_0x004000 = ramfuc_reg(0x004000);
  808. ram->fuc.r_0x004004 = ramfuc_reg(0x004004);
  809. ram->fuc.r_0x004018 = ramfuc_reg(0x004018);
  810. ram->fuc.r_0x004128 = ramfuc_reg(0x004128);
  811. ram->fuc.r_0x004168 = ramfuc_reg(0x004168);
  812. ram->fuc.r_0x100080 = ramfuc_reg(0x100080);
  813. ram->fuc.r_0x100200 = ramfuc_reg(0x100200);
  814. ram->fuc.r_0x100210 = ramfuc_reg(0x100210);
  815. for (i = 0; i < 9; i++)
  816. ram->fuc.r_0x100220[i] = ramfuc_reg(0x100220 + (i * 4));
  817. ram->fuc.r_0x100264 = ramfuc_reg(0x100264);
  818. ram->fuc.r_0x1002d0 = ramfuc_reg(0x1002d0);
  819. ram->fuc.r_0x1002d4 = ramfuc_reg(0x1002d4);
  820. ram->fuc.r_0x1002dc = ramfuc_reg(0x1002dc);
  821. ram->fuc.r_0x10053c = ramfuc_reg(0x10053c);
  822. ram->fuc.r_0x1005a0 = ramfuc_reg(0x1005a0);
  823. ram->fuc.r_0x1005a4 = ramfuc_reg(0x1005a4);
  824. ram->fuc.r_0x100700 = ramfuc_reg(0x100700);
  825. ram->fuc.r_0x100714 = ramfuc_reg(0x100714);
  826. ram->fuc.r_0x100718 = ramfuc_reg(0x100718);
  827. ram->fuc.r_0x10071c = ramfuc_reg(0x10071c);
  828. ram->fuc.r_0x100720 = ramfuc_reg(0x100720);
  829. ram->fuc.r_0x100760 = ramfuc_stride(0x100760, 4, ram->base.part_mask);
  830. ram->fuc.r_0x1007a0 = ramfuc_stride(0x1007a0, 4, ram->base.part_mask);
  831. ram->fuc.r_0x1007e0 = ramfuc_stride(0x1007e0, 4, ram->base.part_mask);
  832. ram->fuc.r_0x100da0 = ramfuc_stride(0x100da0, 4, ram->base.part_mask);
  833. ram->fuc.r_0x10f804 = ramfuc_reg(0x10f804);
  834. ram->fuc.r_0x1110e0 = ramfuc_stride(0x1110e0, 4, ram->base.part_mask);
  835. ram->fuc.r_0x111100 = ramfuc_reg(0x111100);
  836. ram->fuc.r_0x111104 = ramfuc_reg(0x111104);
  837. ram->fuc.r_0x1111e0 = ramfuc_reg(0x1111e0);
  838. ram->fuc.r_0x111400 = ramfuc_reg(0x111400);
  839. ram->fuc.r_0x611200 = ramfuc_reg(0x611200);
  840. if (ram->base.ranks > 1) {
  841. ram->fuc.r_mr[0] = ramfuc_reg2(0x1002c0, 0x1002c8);
  842. ram->fuc.r_mr[1] = ramfuc_reg2(0x1002c4, 0x1002cc);
  843. ram->fuc.r_mr[2] = ramfuc_reg2(0x1002e0, 0x1002e8);
  844. ram->fuc.r_mr[3] = ramfuc_reg2(0x1002e4, 0x1002ec);
  845. } else {
  846. ram->fuc.r_mr[0] = ramfuc_reg(0x1002c0);
  847. ram->fuc.r_mr[1] = ramfuc_reg(0x1002c4);
  848. ram->fuc.r_mr[2] = ramfuc_reg(0x1002e0);
  849. ram->fuc.r_mr[3] = ramfuc_reg(0x1002e4);
  850. }
  851. ret = nvkm_gpio_find(gpio, 0, 0x2e, DCB_GPIO_UNUSED, &func);
  852. if (ret == 0) {
  853. nv50_gpio_location(func.line, &reg, &shift);
  854. ram->fuc.r_gpioFBVREF = ramfuc_reg(reg);
  855. }
  856. return 0;
  857. }