ramgk104.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626
  1. /*
  2. * Copyright 2013 Red Hat Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Ben Skeggs
  23. */
  24. #define gk104_ram(p) container_of((p), struct gk104_ram, base)
  25. #include "ram.h"
  26. #include "ramfuc.h"
  27. #include <core/option.h>
  28. #include <subdev/bios.h>
  29. #include <subdev/bios/init.h>
  30. #include <subdev/bios/M0205.h>
  31. #include <subdev/bios/M0209.h>
  32. #include <subdev/bios/pll.h>
  33. #include <subdev/bios/rammap.h>
  34. #include <subdev/bios/timing.h>
  35. #include <subdev/clk.h>
  36. #include <subdev/clk/pll.h>
  37. #include <subdev/gpio.h>
  38. struct gk104_ramfuc {
  39. struct ramfuc base;
  40. struct nvbios_pll refpll;
  41. struct nvbios_pll mempll;
  42. struct ramfuc_reg r_gpioMV;
  43. u32 r_funcMV[2];
  44. struct ramfuc_reg r_gpio2E;
  45. u32 r_func2E[2];
  46. struct ramfuc_reg r_gpiotrig;
  47. struct ramfuc_reg r_0x132020;
  48. struct ramfuc_reg r_0x132028;
  49. struct ramfuc_reg r_0x132024;
  50. struct ramfuc_reg r_0x132030;
  51. struct ramfuc_reg r_0x132034;
  52. struct ramfuc_reg r_0x132000;
  53. struct ramfuc_reg r_0x132004;
  54. struct ramfuc_reg r_0x132040;
  55. struct ramfuc_reg r_0x10f248;
  56. struct ramfuc_reg r_0x10f290;
  57. struct ramfuc_reg r_0x10f294;
  58. struct ramfuc_reg r_0x10f298;
  59. struct ramfuc_reg r_0x10f29c;
  60. struct ramfuc_reg r_0x10f2a0;
  61. struct ramfuc_reg r_0x10f2a4;
  62. struct ramfuc_reg r_0x10f2a8;
  63. struct ramfuc_reg r_0x10f2ac;
  64. struct ramfuc_reg r_0x10f2cc;
  65. struct ramfuc_reg r_0x10f2e8;
  66. struct ramfuc_reg r_0x10f250;
  67. struct ramfuc_reg r_0x10f24c;
  68. struct ramfuc_reg r_0x10fec4;
  69. struct ramfuc_reg r_0x10fec8;
  70. struct ramfuc_reg r_0x10f604;
  71. struct ramfuc_reg r_0x10f614;
  72. struct ramfuc_reg r_0x10f610;
  73. struct ramfuc_reg r_0x100770;
  74. struct ramfuc_reg r_0x100778;
  75. struct ramfuc_reg r_0x10f224;
  76. struct ramfuc_reg r_0x10f870;
  77. struct ramfuc_reg r_0x10f698;
  78. struct ramfuc_reg r_0x10f694;
  79. struct ramfuc_reg r_0x10f6b8;
  80. struct ramfuc_reg r_0x10f808;
  81. struct ramfuc_reg r_0x10f670;
  82. struct ramfuc_reg r_0x10f60c;
  83. struct ramfuc_reg r_0x10f830;
  84. struct ramfuc_reg r_0x1373ec;
  85. struct ramfuc_reg r_0x10f800;
  86. struct ramfuc_reg r_0x10f82c;
  87. struct ramfuc_reg r_0x10f978;
  88. struct ramfuc_reg r_0x10f910;
  89. struct ramfuc_reg r_0x10f914;
  90. struct ramfuc_reg r_mr[16]; /* MR0 - MR8, MR15 */
  91. struct ramfuc_reg r_0x62c000;
  92. struct ramfuc_reg r_0x10f200;
  93. struct ramfuc_reg r_0x10f210;
  94. struct ramfuc_reg r_0x10f310;
  95. struct ramfuc_reg r_0x10f314;
  96. struct ramfuc_reg r_0x10f318;
  97. struct ramfuc_reg r_0x10f090;
  98. struct ramfuc_reg r_0x10f69c;
  99. struct ramfuc_reg r_0x10f824;
  100. struct ramfuc_reg r_0x1373f0;
  101. struct ramfuc_reg r_0x1373f4;
  102. struct ramfuc_reg r_0x137320;
  103. struct ramfuc_reg r_0x10f65c;
  104. struct ramfuc_reg r_0x10f6bc;
  105. struct ramfuc_reg r_0x100710;
  106. struct ramfuc_reg r_0x100750;
  107. };
  108. struct gk104_ram {
  109. struct nvkm_ram base;
  110. struct gk104_ramfuc fuc;
  111. struct list_head cfg;
  112. u32 parts;
  113. u32 pmask;
  114. u32 pnuts;
  115. struct nvbios_ramcfg diff;
  116. int from;
  117. int mode;
  118. int N1, fN1, M1, P1;
  119. int N2, M2, P2;
  120. };
  121. /*******************************************************************************
  122. * GDDR5
  123. ******************************************************************************/
  124. static void
  125. gk104_ram_train(struct gk104_ramfuc *fuc, u32 mask, u32 data)
  126. {
  127. struct gk104_ram *ram = container_of(fuc, typeof(*ram), fuc);
  128. u32 addr = 0x110974, i;
  129. ram_mask(fuc, 0x10f910, mask, data);
  130. ram_mask(fuc, 0x10f914, mask, data);
  131. for (i = 0; (data & 0x80000000) && i < ram->parts; addr += 0x1000, i++) {
  132. if (ram->pmask & (1 << i))
  133. continue;
  134. ram_wait(fuc, addr, 0x0000000f, 0x00000000, 500000);
  135. }
  136. }
  137. static void
  138. r1373f4_init(struct gk104_ramfuc *fuc)
  139. {
  140. struct gk104_ram *ram = container_of(fuc, typeof(*ram), fuc);
  141. const u32 mcoef = ((--ram->P2 << 28) | (ram->N2 << 8) | ram->M2);
  142. const u32 rcoef = (( ram->P1 << 16) | (ram->N1 << 8) | ram->M1);
  143. const u32 runk0 = ram->fN1 << 16;
  144. const u32 runk1 = ram->fN1;
  145. if (ram->from == 2) {
  146. ram_mask(fuc, 0x1373f4, 0x00000000, 0x00001100);
  147. ram_mask(fuc, 0x1373f4, 0x00000000, 0x00000010);
  148. } else {
  149. ram_mask(fuc, 0x1373f4, 0x00000000, 0x00010010);
  150. }
  151. ram_mask(fuc, 0x1373f4, 0x00000003, 0x00000000);
  152. ram_mask(fuc, 0x1373f4, 0x00000010, 0x00000000);
  153. /* (re)program refpll, if required */
  154. if ((ram_rd32(fuc, 0x132024) & 0xffffffff) != rcoef ||
  155. (ram_rd32(fuc, 0x132034) & 0x0000ffff) != runk1) {
  156. ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);
  157. ram_mask(fuc, 0x132020, 0x00000001, 0x00000000);
  158. ram_wr32(fuc, 0x137320, 0x00000000);
  159. ram_mask(fuc, 0x132030, 0xffff0000, runk0);
  160. ram_mask(fuc, 0x132034, 0x0000ffff, runk1);
  161. ram_wr32(fuc, 0x132024, rcoef);
  162. ram_mask(fuc, 0x132028, 0x00080000, 0x00080000);
  163. ram_mask(fuc, 0x132020, 0x00000001, 0x00000001);
  164. ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000);
  165. ram_mask(fuc, 0x132028, 0x00080000, 0x00000000);
  166. }
  167. /* (re)program mempll, if required */
  168. if (ram->mode == 2) {
  169. ram_mask(fuc, 0x1373f4, 0x00010000, 0x00000000);
  170. ram_mask(fuc, 0x132000, 0x80000000, 0x80000000);
  171. ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);
  172. ram_mask(fuc, 0x132004, 0x103fffff, mcoef);
  173. ram_mask(fuc, 0x132000, 0x00000001, 0x00000001);
  174. ram_wait(fuc, 0x137390, 0x00000002, 0x00000002, 64000);
  175. ram_mask(fuc, 0x1373f4, 0x00000000, 0x00001100);
  176. } else {
  177. ram_mask(fuc, 0x1373f4, 0x00000000, 0x00010100);
  178. }
  179. ram_mask(fuc, 0x1373f4, 0x00000000, 0x00000010);
  180. }
  181. static void
  182. r1373f4_fini(struct gk104_ramfuc *fuc)
  183. {
  184. struct gk104_ram *ram = container_of(fuc, typeof(*ram), fuc);
  185. struct nvkm_ram_data *next = ram->base.next;
  186. u8 v0 = next->bios.ramcfg_11_03_c0;
  187. u8 v1 = next->bios.ramcfg_11_03_30;
  188. u32 tmp;
  189. tmp = ram_rd32(fuc, 0x1373ec) & ~0x00030000;
  190. ram_wr32(fuc, 0x1373ec, tmp | (v1 << 16));
  191. ram_mask(fuc, 0x1373f0, (~ram->mode & 3), 0x00000000);
  192. if (ram->mode == 2) {
  193. ram_mask(fuc, 0x1373f4, 0x00000003, 0x000000002);
  194. ram_mask(fuc, 0x1373f4, 0x00001100, 0x000000000);
  195. } else {
  196. ram_mask(fuc, 0x1373f4, 0x00000003, 0x000000001);
  197. ram_mask(fuc, 0x1373f4, 0x00010000, 0x000000000);
  198. }
  199. ram_mask(fuc, 0x10f800, 0x00000030, (v0 ^ v1) << 4);
  200. }
  201. static void
  202. gk104_ram_nuts(struct gk104_ram *ram, struct ramfuc_reg *reg,
  203. u32 _mask, u32 _data, u32 _copy)
  204. {
  205. struct nvkm_fb *fb = ram->base.fb;
  206. struct ramfuc *fuc = &ram->fuc.base;
  207. struct nvkm_device *device = fb->subdev.device;
  208. u32 addr = 0x110000 + (reg->addr & 0xfff);
  209. u32 mask = _mask | _copy;
  210. u32 data = (_data & _mask) | (reg->data & _copy);
  211. u32 i;
  212. for (i = 0; i < 16; i++, addr += 0x1000) {
  213. if (ram->pnuts & (1 << i)) {
  214. u32 prev = nvkm_rd32(device, addr);
  215. u32 next = (prev & ~mask) | data;
  216. nvkm_memx_wr32(fuc->memx, addr, next);
  217. }
  218. }
  219. }
  220. #define ram_nuts(s,r,m,d,c) \
  221. gk104_ram_nuts((s), &(s)->fuc.r_##r, (m), (d), (c))
  222. static int
  223. gk104_ram_calc_gddr5(struct gk104_ram *ram, u32 freq)
  224. {
  225. struct gk104_ramfuc *fuc = &ram->fuc;
  226. struct nvkm_ram_data *next = ram->base.next;
  227. int vc = !next->bios.ramcfg_11_02_08;
  228. int mv = !next->bios.ramcfg_11_02_04;
  229. u32 mask, data;
  230. ram_mask(fuc, 0x10f808, 0x40000000, 0x40000000);
  231. ram_block(fuc);
  232. ram_wr32(fuc, 0x62c000, 0x0f0f0000);
  233. /* MR1: turn termination on early, for some reason.. */
  234. if ((ram->base.mr[1] & 0x03c) != 0x030) {
  235. ram_mask(fuc, mr[1], 0x03c, ram->base.mr[1] & 0x03c);
  236. ram_nuts(ram, mr[1], 0x03c, ram->base.mr1_nuts & 0x03c, 0x000);
  237. }
  238. if (vc == 1 && ram_have(fuc, gpio2E)) {
  239. u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[1]);
  240. if (temp != ram_rd32(fuc, gpio2E)) {
  241. ram_wr32(fuc, gpiotrig, 1);
  242. ram_nsec(fuc, 20000);
  243. }
  244. }
  245. ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000);
  246. gk104_ram_train(fuc, 0x01020000, 0x000c0000);
  247. ram_wr32(fuc, 0x10f210, 0x00000000); /* REFRESH_AUTO = 0 */
  248. ram_nsec(fuc, 1000);
  249. ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */
  250. ram_nsec(fuc, 1000);
  251. ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000);
  252. ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */
  253. ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000);
  254. ram_wr32(fuc, 0x10f090, 0x00000061);
  255. ram_wr32(fuc, 0x10f090, 0xc000007f);
  256. ram_nsec(fuc, 1000);
  257. ram_wr32(fuc, 0x10f698, 0x00000000);
  258. ram_wr32(fuc, 0x10f69c, 0x00000000);
  259. /*XXX: there does appear to be some kind of condition here, simply
  260. * modifying these bits in the vbios from the default pl0
  261. * entries shows no change. however, the data does appear to
  262. * be correct and may be required for the transition back
  263. */
  264. mask = 0x800f07e0;
  265. data = 0x00030000;
  266. if (ram_rd32(fuc, 0x10f978) & 0x00800000)
  267. data |= 0x00040000;
  268. if (1) {
  269. data |= 0x800807e0;
  270. switch (next->bios.ramcfg_11_03_c0) {
  271. case 3: data &= ~0x00000040; break;
  272. case 2: data &= ~0x00000100; break;
  273. case 1: data &= ~0x80000000; break;
  274. case 0: data &= ~0x00000400; break;
  275. }
  276. switch (next->bios.ramcfg_11_03_30) {
  277. case 3: data &= ~0x00000020; break;
  278. case 2: data &= ~0x00000080; break;
  279. case 1: data &= ~0x00080000; break;
  280. case 0: data &= ~0x00000200; break;
  281. }
  282. }
  283. if (next->bios.ramcfg_11_02_80)
  284. mask |= 0x03000000;
  285. if (next->bios.ramcfg_11_02_40)
  286. mask |= 0x00002000;
  287. if (next->bios.ramcfg_11_07_10)
  288. mask |= 0x00004000;
  289. if (next->bios.ramcfg_11_07_08)
  290. mask |= 0x00000003;
  291. else {
  292. mask |= 0x34000000;
  293. if (ram_rd32(fuc, 0x10f978) & 0x00800000)
  294. mask |= 0x40000000;
  295. }
  296. ram_mask(fuc, 0x10f824, mask, data);
  297. ram_mask(fuc, 0x132040, 0x00010000, 0x00000000);
  298. if (ram->from == 2 && ram->mode != 2) {
  299. ram_mask(fuc, 0x10f808, 0x00080000, 0x00000000);
  300. ram_mask(fuc, 0x10f200, 0x18008000, 0x00008000);
  301. ram_mask(fuc, 0x10f800, 0x00000000, 0x00000004);
  302. ram_mask(fuc, 0x10f830, 0x00008000, 0x01040010);
  303. ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
  304. r1373f4_init(fuc);
  305. ram_mask(fuc, 0x1373f0, 0x00000002, 0x00000001);
  306. r1373f4_fini(fuc);
  307. ram_mask(fuc, 0x10f830, 0x00c00000, 0x00240001);
  308. } else
  309. if (ram->from != 2 && ram->mode != 2) {
  310. r1373f4_init(fuc);
  311. r1373f4_fini(fuc);
  312. }
  313. if (ram_have(fuc, gpioMV)) {
  314. u32 temp = ram_mask(fuc, gpioMV, 0x3000, fuc->r_funcMV[mv]);
  315. if (temp != ram_rd32(fuc, gpioMV)) {
  316. ram_wr32(fuc, gpiotrig, 1);
  317. ram_nsec(fuc, 64000);
  318. }
  319. }
  320. if (next->bios.ramcfg_11_02_40 ||
  321. next->bios.ramcfg_11_07_10) {
  322. ram_mask(fuc, 0x132040, 0x00010000, 0x00010000);
  323. ram_nsec(fuc, 20000);
  324. }
  325. if (ram->from != 2 && ram->mode == 2) {
  326. if (0 /*XXX: Titan */)
  327. ram_mask(fuc, 0x10f200, 0x18000000, 0x18000000);
  328. ram_mask(fuc, 0x10f800, 0x00000004, 0x00000000);
  329. ram_mask(fuc, 0x1373f0, 0x00000000, 0x00000002);
  330. ram_mask(fuc, 0x10f830, 0x00800001, 0x00408010);
  331. r1373f4_init(fuc);
  332. r1373f4_fini(fuc);
  333. ram_mask(fuc, 0x10f808, 0x00000000, 0x00080000);
  334. ram_mask(fuc, 0x10f200, 0x00808000, 0x00800000);
  335. } else
  336. if (ram->from == 2 && ram->mode == 2) {
  337. ram_mask(fuc, 0x10f800, 0x00000004, 0x00000000);
  338. r1373f4_init(fuc);
  339. r1373f4_fini(fuc);
  340. }
  341. if (ram->mode != 2) /*XXX*/ {
  342. if (next->bios.ramcfg_11_07_40)
  343. ram_mask(fuc, 0x10f670, 0x80000000, 0x80000000);
  344. }
  345. ram_wr32(fuc, 0x10f65c, 0x00000011 * next->bios.rammap_11_11_0c);
  346. ram_wr32(fuc, 0x10f6b8, 0x01010101 * next->bios.ramcfg_11_09);
  347. ram_wr32(fuc, 0x10f6bc, 0x01010101 * next->bios.ramcfg_11_09);
  348. if (!next->bios.ramcfg_11_07_08 && !next->bios.ramcfg_11_07_04) {
  349. ram_wr32(fuc, 0x10f698, 0x01010101 * next->bios.ramcfg_11_04);
  350. ram_wr32(fuc, 0x10f69c, 0x01010101 * next->bios.ramcfg_11_04);
  351. } else
  352. if (!next->bios.ramcfg_11_07_08) {
  353. ram_wr32(fuc, 0x10f698, 0x00000000);
  354. ram_wr32(fuc, 0x10f69c, 0x00000000);
  355. }
  356. if (ram->mode != 2) {
  357. u32 data = 0x01000100 * next->bios.ramcfg_11_04;
  358. ram_nuke(fuc, 0x10f694);
  359. ram_mask(fuc, 0x10f694, 0xff00ff00, data);
  360. }
  361. if (ram->mode == 2 && next->bios.ramcfg_11_08_10)
  362. data = 0x00000080;
  363. else
  364. data = 0x00000000;
  365. ram_mask(fuc, 0x10f60c, 0x00000080, data);
  366. mask = 0x00070000;
  367. data = 0x00000000;
  368. if (!next->bios.ramcfg_11_02_80)
  369. data |= 0x03000000;
  370. if (!next->bios.ramcfg_11_02_40)
  371. data |= 0x00002000;
  372. if (!next->bios.ramcfg_11_07_10)
  373. data |= 0x00004000;
  374. if (!next->bios.ramcfg_11_07_08)
  375. data |= 0x00000003;
  376. else
  377. data |= 0x74000000;
  378. ram_mask(fuc, 0x10f824, mask, data);
  379. if (next->bios.ramcfg_11_01_08)
  380. data = 0x00000000;
  381. else
  382. data = 0x00001000;
  383. ram_mask(fuc, 0x10f200, 0x00001000, data);
  384. if (ram_rd32(fuc, 0x10f670) & 0x80000000) {
  385. ram_nsec(fuc, 10000);
  386. ram_mask(fuc, 0x10f670, 0x80000000, 0x00000000);
  387. }
  388. if (next->bios.ramcfg_11_08_01)
  389. data = 0x00100000;
  390. else
  391. data = 0x00000000;
  392. ram_mask(fuc, 0x10f82c, 0x00100000, data);
  393. data = 0x00000000;
  394. if (next->bios.ramcfg_11_08_08)
  395. data |= 0x00002000;
  396. if (next->bios.ramcfg_11_08_04)
  397. data |= 0x00001000;
  398. if (next->bios.ramcfg_11_08_02)
  399. data |= 0x00004000;
  400. ram_mask(fuc, 0x10f830, 0x00007000, data);
  401. /* PFB timing */
  402. ram_mask(fuc, 0x10f248, 0xffffffff, next->bios.timing[10]);
  403. ram_mask(fuc, 0x10f290, 0xffffffff, next->bios.timing[0]);
  404. ram_mask(fuc, 0x10f294, 0xffffffff, next->bios.timing[1]);
  405. ram_mask(fuc, 0x10f298, 0xffffffff, next->bios.timing[2]);
  406. ram_mask(fuc, 0x10f29c, 0xffffffff, next->bios.timing[3]);
  407. ram_mask(fuc, 0x10f2a0, 0xffffffff, next->bios.timing[4]);
  408. ram_mask(fuc, 0x10f2a4, 0xffffffff, next->bios.timing[5]);
  409. ram_mask(fuc, 0x10f2a8, 0xffffffff, next->bios.timing[6]);
  410. ram_mask(fuc, 0x10f2ac, 0xffffffff, next->bios.timing[7]);
  411. ram_mask(fuc, 0x10f2cc, 0xffffffff, next->bios.timing[8]);
  412. ram_mask(fuc, 0x10f2e8, 0xffffffff, next->bios.timing[9]);
  413. data = mask = 0x00000000;
  414. if (ram->diff.ramcfg_11_08_20) {
  415. if (next->bios.ramcfg_11_08_20)
  416. data |= 0x01000000;
  417. mask |= 0x01000000;
  418. }
  419. ram_mask(fuc, 0x10f200, mask, data);
  420. data = mask = 0x00000000;
  421. if (ram->diff.ramcfg_11_02_03) {
  422. data |= next->bios.ramcfg_11_02_03 << 8;
  423. mask |= 0x00000300;
  424. }
  425. if (ram->diff.ramcfg_11_01_10) {
  426. if (next->bios.ramcfg_11_01_10)
  427. data |= 0x70000000;
  428. mask |= 0x70000000;
  429. }
  430. ram_mask(fuc, 0x10f604, mask, data);
  431. data = mask = 0x00000000;
  432. if (ram->diff.timing_20_30_07) {
  433. data |= next->bios.timing_20_30_07 << 28;
  434. mask |= 0x70000000;
  435. }
  436. if (ram->diff.ramcfg_11_01_01) {
  437. if (next->bios.ramcfg_11_01_01)
  438. data |= 0x00000100;
  439. mask |= 0x00000100;
  440. }
  441. ram_mask(fuc, 0x10f614, mask, data);
  442. data = mask = 0x00000000;
  443. if (ram->diff.timing_20_30_07) {
  444. data |= next->bios.timing_20_30_07 << 28;
  445. mask |= 0x70000000;
  446. }
  447. if (ram->diff.ramcfg_11_01_02) {
  448. if (next->bios.ramcfg_11_01_02)
  449. data |= 0x00000100;
  450. mask |= 0x00000100;
  451. }
  452. ram_mask(fuc, 0x10f610, mask, data);
  453. mask = 0x33f00000;
  454. data = 0x00000000;
  455. if (!next->bios.ramcfg_11_01_04)
  456. data |= 0x20200000;
  457. if (!next->bios.ramcfg_11_07_80)
  458. data |= 0x12800000;
  459. /*XXX: see note above about there probably being some condition
  460. * for the 10f824 stuff that uses ramcfg 3...
  461. */
  462. if (next->bios.ramcfg_11_03_f0) {
  463. if (next->bios.rammap_11_08_0c) {
  464. if (!next->bios.ramcfg_11_07_80)
  465. mask |= 0x00000020;
  466. else
  467. data |= 0x00000020;
  468. mask |= 0x00000004;
  469. }
  470. } else {
  471. mask |= 0x40000020;
  472. data |= 0x00000004;
  473. }
  474. ram_mask(fuc, 0x10f808, mask, data);
  475. ram_wr32(fuc, 0x10f870, 0x11111111 * next->bios.ramcfg_11_03_0f);
  476. data = mask = 0x00000000;
  477. if (ram->diff.ramcfg_11_02_03) {
  478. data |= next->bios.ramcfg_11_02_03;
  479. mask |= 0x00000003;
  480. }
  481. if (ram->diff.ramcfg_11_01_10) {
  482. if (next->bios.ramcfg_11_01_10)
  483. data |= 0x00000004;
  484. mask |= 0x00000004;
  485. }
  486. if ((ram_mask(fuc, 0x100770, mask, data) & mask & 4) != (data & 4)) {
  487. ram_mask(fuc, 0x100750, 0x00000008, 0x00000008);
  488. ram_wr32(fuc, 0x100710, 0x00000000);
  489. ram_wait(fuc, 0x100710, 0x80000000, 0x80000000, 200000);
  490. }
  491. data = next->bios.timing_20_30_07 << 8;
  492. if (next->bios.ramcfg_11_01_01)
  493. data |= 0x80000000;
  494. ram_mask(fuc, 0x100778, 0x00000700, data);
  495. ram_mask(fuc, 0x10f250, 0x000003f0, next->bios.timing_20_2c_003f << 4);
  496. data = (next->bios.timing[10] & 0x7f000000) >> 24;
  497. if (data < next->bios.timing_20_2c_1fc0)
  498. data = next->bios.timing_20_2c_1fc0;
  499. ram_mask(fuc, 0x10f24c, 0x7f000000, data << 24);
  500. ram_mask(fuc, 0x10f224, 0x001f0000, next->bios.timing_20_30_f8 << 16);
  501. ram_mask(fuc, 0x10fec4, 0x041e0f07, next->bios.timing_20_31_0800 << 26 |
  502. next->bios.timing_20_31_0780 << 17 |
  503. next->bios.timing_20_31_0078 << 8 |
  504. next->bios.timing_20_31_0007);
  505. ram_mask(fuc, 0x10fec8, 0x00000027, next->bios.timing_20_31_8000 << 5 |
  506. next->bios.timing_20_31_7000);
  507. ram_wr32(fuc, 0x10f090, 0x4000007e);
  508. ram_nsec(fuc, 2000);
  509. ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */
  510. ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */
  511. ram_wr32(fuc, 0x10f210, 0x80000000); /* REFRESH_AUTO = 1 */
  512. if (next->bios.ramcfg_11_08_10 && (ram->mode == 2) /*XXX*/) {
  513. u32 temp = ram_mask(fuc, 0x10f294, 0xff000000, 0x24000000);
  514. gk104_ram_train(fuc, 0xbc0e0000, 0xa4010000); /*XXX*/
  515. ram_nsec(fuc, 1000);
  516. ram_wr32(fuc, 0x10f294, temp);
  517. }
  518. ram_mask(fuc, mr[3], 0xfff, ram->base.mr[3]);
  519. ram_wr32(fuc, mr[0], ram->base.mr[0]);
  520. ram_mask(fuc, mr[8], 0xfff, ram->base.mr[8]);
  521. ram_nsec(fuc, 1000);
  522. ram_mask(fuc, mr[1], 0xfff, ram->base.mr[1]);
  523. ram_mask(fuc, mr[5], 0xfff, ram->base.mr[5] & ~0x004); /* LP3 later */
  524. ram_mask(fuc, mr[6], 0xfff, ram->base.mr[6]);
  525. ram_mask(fuc, mr[7], 0xfff, ram->base.mr[7]);
  526. if (vc == 0 && ram_have(fuc, gpio2E)) {
  527. u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[0]);
  528. if (temp != ram_rd32(fuc, gpio2E)) {
  529. ram_wr32(fuc, gpiotrig, 1);
  530. ram_nsec(fuc, 20000);
  531. }
  532. }
  533. ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000);
  534. ram_wr32(fuc, 0x10f318, 0x00000001); /* NOP? */
  535. ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000);
  536. ram_nsec(fuc, 1000);
  537. ram_nuts(ram, 0x10f200, 0x18808800, 0x00000000, 0x18808800);
  538. data = ram_rd32(fuc, 0x10f978);
  539. data &= ~0x00046144;
  540. data |= 0x0000000b;
  541. if (!next->bios.ramcfg_11_07_08) {
  542. if (!next->bios.ramcfg_11_07_04)
  543. data |= 0x0000200c;
  544. else
  545. data |= 0x00000000;
  546. } else {
  547. data |= 0x00040044;
  548. }
  549. ram_wr32(fuc, 0x10f978, data);
  550. if (ram->mode == 1) {
  551. data = ram_rd32(fuc, 0x10f830) | 0x00000001;
  552. ram_wr32(fuc, 0x10f830, data);
  553. }
  554. if (!next->bios.ramcfg_11_07_08) {
  555. data = 0x88020000;
  556. if ( next->bios.ramcfg_11_07_04)
  557. data |= 0x10000000;
  558. if (!next->bios.rammap_11_08_10)
  559. data |= 0x00080000;
  560. } else {
  561. data = 0xa40e0000;
  562. }
  563. gk104_ram_train(fuc, 0xbc0f0000, data);
  564. if (1) /* XXX: not always? */
  565. ram_nsec(fuc, 1000);
  566. if (ram->mode == 2) { /*XXX*/
  567. ram_mask(fuc, 0x10f800, 0x00000004, 0x00000004);
  568. }
  569. /* LP3 */
  570. if (ram_mask(fuc, mr[5], 0x004, ram->base.mr[5]) != ram->base.mr[5])
  571. ram_nsec(fuc, 1000);
  572. if (ram->mode != 2) {
  573. ram_mask(fuc, 0x10f830, 0x01000000, 0x01000000);
  574. ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
  575. }
  576. if (next->bios.ramcfg_11_07_02)
  577. gk104_ram_train(fuc, 0x80020000, 0x01000000);
  578. ram_unblock(fuc);
  579. ram_wr32(fuc, 0x62c000, 0x0f0f0f00);
  580. if (next->bios.rammap_11_08_01)
  581. data = 0x00000800;
  582. else
  583. data = 0x00000000;
  584. ram_mask(fuc, 0x10f200, 0x00000800, data);
  585. ram_nuts(ram, 0x10f200, 0x18808800, data, 0x18808800);
  586. return 0;
  587. }
  588. /*******************************************************************************
  589. * DDR3
  590. ******************************************************************************/
  591. static int
  592. gk104_ram_calc_sddr3(struct gk104_ram *ram, u32 freq)
  593. {
  594. struct gk104_ramfuc *fuc = &ram->fuc;
  595. const u32 rcoef = (( ram->P1 << 16) | (ram->N1 << 8) | ram->M1);
  596. const u32 runk0 = ram->fN1 << 16;
  597. const u32 runk1 = ram->fN1;
  598. struct nvkm_ram_data *next = ram->base.next;
  599. int vc = !next->bios.ramcfg_11_02_08;
  600. int mv = !next->bios.ramcfg_11_02_04;
  601. u32 mask, data;
  602. ram_mask(fuc, 0x10f808, 0x40000000, 0x40000000);
  603. ram_block(fuc);
  604. ram_wr32(fuc, 0x62c000, 0x0f0f0000);
  605. if (vc == 1 && ram_have(fuc, gpio2E)) {
  606. u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[1]);
  607. if (temp != ram_rd32(fuc, gpio2E)) {
  608. ram_wr32(fuc, gpiotrig, 1);
  609. ram_nsec(fuc, 20000);
  610. }
  611. }
  612. ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000);
  613. if (next->bios.ramcfg_11_03_f0)
  614. ram_mask(fuc, 0x10f808, 0x04000000, 0x04000000);
  615. ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */
  616. ram_wr32(fuc, 0x10f210, 0x00000000); /* REFRESH_AUTO = 0 */
  617. ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */
  618. ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000);
  619. ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */
  620. ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000);
  621. ram_nsec(fuc, 1000);
  622. ram_wr32(fuc, 0x10f090, 0x00000060);
  623. ram_wr32(fuc, 0x10f090, 0xc000007e);
  624. /*XXX: there does appear to be some kind of condition here, simply
  625. * modifying these bits in the vbios from the default pl0
  626. * entries shows no change. however, the data does appear to
  627. * be correct and may be required for the transition back
  628. */
  629. mask = 0x00010000;
  630. data = 0x00010000;
  631. if (1) {
  632. mask |= 0x800807e0;
  633. data |= 0x800807e0;
  634. switch (next->bios.ramcfg_11_03_c0) {
  635. case 3: data &= ~0x00000040; break;
  636. case 2: data &= ~0x00000100; break;
  637. case 1: data &= ~0x80000000; break;
  638. case 0: data &= ~0x00000400; break;
  639. }
  640. switch (next->bios.ramcfg_11_03_30) {
  641. case 3: data &= ~0x00000020; break;
  642. case 2: data &= ~0x00000080; break;
  643. case 1: data &= ~0x00080000; break;
  644. case 0: data &= ~0x00000200; break;
  645. }
  646. }
  647. if (next->bios.ramcfg_11_02_80)
  648. mask |= 0x03000000;
  649. if (next->bios.ramcfg_11_02_40)
  650. mask |= 0x00002000;
  651. if (next->bios.ramcfg_11_07_10)
  652. mask |= 0x00004000;
  653. if (next->bios.ramcfg_11_07_08)
  654. mask |= 0x00000003;
  655. else
  656. mask |= 0x14000000;
  657. ram_mask(fuc, 0x10f824, mask, data);
  658. ram_mask(fuc, 0x132040, 0x00010000, 0x00000000);
  659. ram_mask(fuc, 0x1373f4, 0x00000000, 0x00010010);
  660. data = ram_rd32(fuc, 0x1373ec) & ~0x00030000;
  661. data |= next->bios.ramcfg_11_03_30 << 16;
  662. ram_wr32(fuc, 0x1373ec, data);
  663. ram_mask(fuc, 0x1373f4, 0x00000003, 0x00000000);
  664. ram_mask(fuc, 0x1373f4, 0x00000010, 0x00000000);
  665. /* (re)program refpll, if required */
  666. if ((ram_rd32(fuc, 0x132024) & 0xffffffff) != rcoef ||
  667. (ram_rd32(fuc, 0x132034) & 0x0000ffff) != runk1) {
  668. ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);
  669. ram_mask(fuc, 0x132020, 0x00000001, 0x00000000);
  670. ram_wr32(fuc, 0x137320, 0x00000000);
  671. ram_mask(fuc, 0x132030, 0xffff0000, runk0);
  672. ram_mask(fuc, 0x132034, 0x0000ffff, runk1);
  673. ram_wr32(fuc, 0x132024, rcoef);
  674. ram_mask(fuc, 0x132028, 0x00080000, 0x00080000);
  675. ram_mask(fuc, 0x132020, 0x00000001, 0x00000001);
  676. ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000);
  677. ram_mask(fuc, 0x132028, 0x00080000, 0x00000000);
  678. }
  679. ram_mask(fuc, 0x1373f4, 0x00000010, 0x00000010);
  680. ram_mask(fuc, 0x1373f4, 0x00000003, 0x00000001);
  681. ram_mask(fuc, 0x1373f4, 0x00010000, 0x00000000);
  682. if (ram_have(fuc, gpioMV)) {
  683. u32 temp = ram_mask(fuc, gpioMV, 0x3000, fuc->r_funcMV[mv]);
  684. if (temp != ram_rd32(fuc, gpioMV)) {
  685. ram_wr32(fuc, gpiotrig, 1);
  686. ram_nsec(fuc, 64000);
  687. }
  688. }
  689. if (next->bios.ramcfg_11_02_40 ||
  690. next->bios.ramcfg_11_07_10) {
  691. ram_mask(fuc, 0x132040, 0x00010000, 0x00010000);
  692. ram_nsec(fuc, 20000);
  693. }
  694. if (ram->mode != 2) /*XXX*/ {
  695. if (next->bios.ramcfg_11_07_40)
  696. ram_mask(fuc, 0x10f670, 0x80000000, 0x80000000);
  697. }
  698. ram_wr32(fuc, 0x10f65c, 0x00000011 * next->bios.rammap_11_11_0c);
  699. ram_wr32(fuc, 0x10f6b8, 0x01010101 * next->bios.ramcfg_11_09);
  700. ram_wr32(fuc, 0x10f6bc, 0x01010101 * next->bios.ramcfg_11_09);
  701. mask = 0x00010000;
  702. data = 0x00000000;
  703. if (!next->bios.ramcfg_11_02_80)
  704. data |= 0x03000000;
  705. if (!next->bios.ramcfg_11_02_40)
  706. data |= 0x00002000;
  707. if (!next->bios.ramcfg_11_07_10)
  708. data |= 0x00004000;
  709. if (!next->bios.ramcfg_11_07_08)
  710. data |= 0x00000003;
  711. else
  712. data |= 0x14000000;
  713. ram_mask(fuc, 0x10f824, mask, data);
  714. ram_nsec(fuc, 1000);
  715. if (next->bios.ramcfg_11_08_01)
  716. data = 0x00100000;
  717. else
  718. data = 0x00000000;
  719. ram_mask(fuc, 0x10f82c, 0x00100000, data);
  720. /* PFB timing */
  721. ram_mask(fuc, 0x10f248, 0xffffffff, next->bios.timing[10]);
  722. ram_mask(fuc, 0x10f290, 0xffffffff, next->bios.timing[0]);
  723. ram_mask(fuc, 0x10f294, 0xffffffff, next->bios.timing[1]);
  724. ram_mask(fuc, 0x10f298, 0xffffffff, next->bios.timing[2]);
  725. ram_mask(fuc, 0x10f29c, 0xffffffff, next->bios.timing[3]);
  726. ram_mask(fuc, 0x10f2a0, 0xffffffff, next->bios.timing[4]);
  727. ram_mask(fuc, 0x10f2a4, 0xffffffff, next->bios.timing[5]);
  728. ram_mask(fuc, 0x10f2a8, 0xffffffff, next->bios.timing[6]);
  729. ram_mask(fuc, 0x10f2ac, 0xffffffff, next->bios.timing[7]);
  730. ram_mask(fuc, 0x10f2cc, 0xffffffff, next->bios.timing[8]);
  731. ram_mask(fuc, 0x10f2e8, 0xffffffff, next->bios.timing[9]);
  732. mask = 0x33f00000;
  733. data = 0x00000000;
  734. if (!next->bios.ramcfg_11_01_04)
  735. data |= 0x20200000;
  736. if (!next->bios.ramcfg_11_07_80)
  737. data |= 0x12800000;
  738. /*XXX: see note above about there probably being some condition
  739. * for the 10f824 stuff that uses ramcfg 3...
  740. */
  741. if (next->bios.ramcfg_11_03_f0) {
  742. if (next->bios.rammap_11_08_0c) {
  743. if (!next->bios.ramcfg_11_07_80)
  744. mask |= 0x00000020;
  745. else
  746. data |= 0x00000020;
  747. mask |= 0x08000004;
  748. }
  749. data |= 0x04000000;
  750. } else {
  751. mask |= 0x44000020;
  752. data |= 0x08000004;
  753. }
  754. ram_mask(fuc, 0x10f808, mask, data);
  755. ram_wr32(fuc, 0x10f870, 0x11111111 * next->bios.ramcfg_11_03_0f);
  756. ram_mask(fuc, 0x10f250, 0x000003f0, next->bios.timing_20_2c_003f << 4);
  757. data = (next->bios.timing[10] & 0x7f000000) >> 24;
  758. if (data < next->bios.timing_20_2c_1fc0)
  759. data = next->bios.timing_20_2c_1fc0;
  760. ram_mask(fuc, 0x10f24c, 0x7f000000, data << 24);
  761. ram_mask(fuc, 0x10f224, 0x001f0000, next->bios.timing_20_30_f8 << 16);
  762. ram_wr32(fuc, 0x10f090, 0x4000007f);
  763. ram_nsec(fuc, 1000);
  764. ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */
  765. ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */
  766. ram_wr32(fuc, 0x10f210, 0x80000000); /* REFRESH_AUTO = 1 */
  767. ram_nsec(fuc, 1000);
  768. ram_nuke(fuc, mr[0]);
  769. ram_mask(fuc, mr[0], 0x100, 0x100);
  770. ram_mask(fuc, mr[0], 0x100, 0x000);
  771. ram_mask(fuc, mr[2], 0xfff, ram->base.mr[2]);
  772. ram_wr32(fuc, mr[0], ram->base.mr[0]);
  773. ram_nsec(fuc, 1000);
  774. ram_nuke(fuc, mr[0]);
  775. ram_mask(fuc, mr[0], 0x100, 0x100);
  776. ram_mask(fuc, mr[0], 0x100, 0x000);
  777. if (vc == 0 && ram_have(fuc, gpio2E)) {
  778. u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[0]);
  779. if (temp != ram_rd32(fuc, gpio2E)) {
  780. ram_wr32(fuc, gpiotrig, 1);
  781. ram_nsec(fuc, 20000);
  782. }
  783. }
  784. if (ram->mode != 2) {
  785. ram_mask(fuc, 0x10f830, 0x01000000, 0x01000000);
  786. ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
  787. }
  788. ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000);
  789. ram_wr32(fuc, 0x10f318, 0x00000001); /* NOP? */
  790. ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000);
  791. ram_nsec(fuc, 1000);
  792. ram_unblock(fuc);
  793. ram_wr32(fuc, 0x62c000, 0x0f0f0f00);
  794. if (next->bios.rammap_11_08_01)
  795. data = 0x00000800;
  796. else
  797. data = 0x00000000;
  798. ram_mask(fuc, 0x10f200, 0x00000800, data);
  799. return 0;
  800. }
  801. /*******************************************************************************
  802. * main hooks
  803. ******************************************************************************/
  804. static int
  805. gk104_ram_calc_data(struct gk104_ram *ram, u32 khz, struct nvkm_ram_data *data)
  806. {
  807. struct nvkm_subdev *subdev = &ram->base.fb->subdev;
  808. struct nvkm_ram_data *cfg;
  809. u32 mhz = khz / 1000;
  810. list_for_each_entry(cfg, &ram->cfg, head) {
  811. if (mhz >= cfg->bios.rammap_min &&
  812. mhz <= cfg->bios.rammap_max) {
  813. *data = *cfg;
  814. data->freq = khz;
  815. return 0;
  816. }
  817. }
  818. nvkm_error(subdev, "ramcfg data for %dMHz not found\n", mhz);
  819. return -EINVAL;
  820. }
  821. static int
  822. gk104_ram_calc_xits(struct gk104_ram *ram, struct nvkm_ram_data *next)
  823. {
  824. struct gk104_ramfuc *fuc = &ram->fuc;
  825. struct nvkm_subdev *subdev = &ram->base.fb->subdev;
  826. int refclk, i;
  827. int ret;
  828. ret = ram_init(fuc, ram->base.fb);
  829. if (ret)
  830. return ret;
  831. ram->mode = (next->freq > fuc->refpll.vco1.max_freq) ? 2 : 1;
  832. ram->from = ram_rd32(fuc, 0x1373f4) & 0x0000000f;
  833. /* XXX: this is *not* what nvidia do. on fermi nvidia generally
  834. * select, based on some unknown condition, one of the two possible
  835. * reference frequencies listed in the vbios table for mempll and
  836. * program refpll to that frequency.
  837. *
  838. * so far, i've seen very weird values being chosen by nvidia on
  839. * kepler boards, no idea how/why they're chosen.
  840. */
  841. refclk = next->freq;
  842. if (ram->mode == 2)
  843. refclk = fuc->mempll.refclk;
  844. /* calculate refpll coefficients */
  845. ret = gt215_pll_calc(subdev, &fuc->refpll, refclk, &ram->N1,
  846. &ram->fN1, &ram->M1, &ram->P1);
  847. fuc->mempll.refclk = ret;
  848. if (ret <= 0) {
  849. nvkm_error(subdev, "unable to calc refpll\n");
  850. return -EINVAL;
  851. }
  852. /* calculate mempll coefficients, if we're using it */
  853. if (ram->mode == 2) {
  854. /* post-divider doesn't work... the reg takes the values but
  855. * appears to completely ignore it. there *is* a bit at
  856. * bit 28 that appears to divide the clock by 2 if set.
  857. */
  858. fuc->mempll.min_p = 1;
  859. fuc->mempll.max_p = 2;
  860. ret = gt215_pll_calc(subdev, &fuc->mempll, next->freq,
  861. &ram->N2, NULL, &ram->M2, &ram->P2);
  862. if (ret <= 0) {
  863. nvkm_error(subdev, "unable to calc mempll\n");
  864. return -EINVAL;
  865. }
  866. }
  867. for (i = 0; i < ARRAY_SIZE(fuc->r_mr); i++) {
  868. if (ram_have(fuc, mr[i]))
  869. ram->base.mr[i] = ram_rd32(fuc, mr[i]);
  870. }
  871. ram->base.freq = next->freq;
  872. switch (ram->base.type) {
  873. case NVKM_RAM_TYPE_DDR3:
  874. ret = nvkm_sddr3_calc(&ram->base);
  875. if (ret == 0)
  876. ret = gk104_ram_calc_sddr3(ram, next->freq);
  877. break;
  878. case NVKM_RAM_TYPE_GDDR5:
  879. ret = nvkm_gddr5_calc(&ram->base, ram->pnuts != 0);
  880. if (ret == 0)
  881. ret = gk104_ram_calc_gddr5(ram, next->freq);
  882. break;
  883. default:
  884. ret = -ENOSYS;
  885. break;
  886. }
  887. return ret;
  888. }
  889. static int
  890. gk104_ram_calc(struct nvkm_ram *base, u32 freq)
  891. {
  892. struct gk104_ram *ram = gk104_ram(base);
  893. struct nvkm_clk *clk = ram->base.fb->subdev.device->clk;
  894. struct nvkm_ram_data *xits = &ram->base.xition;
  895. struct nvkm_ram_data *copy;
  896. int ret;
  897. if (ram->base.next == NULL) {
  898. ret = gk104_ram_calc_data(ram,
  899. nvkm_clk_read(clk, nv_clk_src_mem),
  900. &ram->base.former);
  901. if (ret)
  902. return ret;
  903. ret = gk104_ram_calc_data(ram, freq, &ram->base.target);
  904. if (ret)
  905. return ret;
  906. if (ram->base.target.freq < ram->base.former.freq) {
  907. *xits = ram->base.target;
  908. copy = &ram->base.former;
  909. } else {
  910. *xits = ram->base.former;
  911. copy = &ram->base.target;
  912. }
  913. xits->bios.ramcfg_11_02_04 = copy->bios.ramcfg_11_02_04;
  914. xits->bios.ramcfg_11_02_03 = copy->bios.ramcfg_11_02_03;
  915. xits->bios.timing_20_30_07 = copy->bios.timing_20_30_07;
  916. ram->base.next = &ram->base.target;
  917. if (memcmp(xits, &ram->base.former, sizeof(xits->bios)))
  918. ram->base.next = &ram->base.xition;
  919. } else {
  920. BUG_ON(ram->base.next != &ram->base.xition);
  921. ram->base.next = &ram->base.target;
  922. }
  923. return gk104_ram_calc_xits(ram, ram->base.next);
  924. }
  925. static void
  926. gk104_ram_prog_0(struct gk104_ram *ram, u32 freq)
  927. {
  928. struct nvkm_device *device = ram->base.fb->subdev.device;
  929. struct nvkm_ram_data *cfg;
  930. u32 mhz = freq / 1000;
  931. u32 mask, data;
  932. list_for_each_entry(cfg, &ram->cfg, head) {
  933. if (mhz >= cfg->bios.rammap_min &&
  934. mhz <= cfg->bios.rammap_max)
  935. break;
  936. }
  937. if (&cfg->head == &ram->cfg)
  938. return;
  939. if (mask = 0, data = 0, ram->diff.rammap_11_0a_03fe) {
  940. data |= cfg->bios.rammap_11_0a_03fe << 12;
  941. mask |= 0x001ff000;
  942. }
  943. if (ram->diff.rammap_11_09_01ff) {
  944. data |= cfg->bios.rammap_11_09_01ff;
  945. mask |= 0x000001ff;
  946. }
  947. nvkm_mask(device, 0x10f468, mask, data);
  948. if (mask = 0, data = 0, ram->diff.rammap_11_0a_0400) {
  949. data |= cfg->bios.rammap_11_0a_0400;
  950. mask |= 0x00000001;
  951. }
  952. nvkm_mask(device, 0x10f420, mask, data);
  953. if (mask = 0, data = 0, ram->diff.rammap_11_0a_0800) {
  954. data |= cfg->bios.rammap_11_0a_0800;
  955. mask |= 0x00000001;
  956. }
  957. nvkm_mask(device, 0x10f430, mask, data);
  958. if (mask = 0, data = 0, ram->diff.rammap_11_0b_01f0) {
  959. data |= cfg->bios.rammap_11_0b_01f0;
  960. mask |= 0x0000001f;
  961. }
  962. nvkm_mask(device, 0x10f400, mask, data);
  963. if (mask = 0, data = 0, ram->diff.rammap_11_0b_0200) {
  964. data |= cfg->bios.rammap_11_0b_0200 << 9;
  965. mask |= 0x00000200;
  966. }
  967. nvkm_mask(device, 0x10f410, mask, data);
  968. if (mask = 0, data = 0, ram->diff.rammap_11_0d) {
  969. data |= cfg->bios.rammap_11_0d << 16;
  970. mask |= 0x00ff0000;
  971. }
  972. if (ram->diff.rammap_11_0f) {
  973. data |= cfg->bios.rammap_11_0f << 8;
  974. mask |= 0x0000ff00;
  975. }
  976. nvkm_mask(device, 0x10f440, mask, data);
  977. if (mask = 0, data = 0, ram->diff.rammap_11_0e) {
  978. data |= cfg->bios.rammap_11_0e << 8;
  979. mask |= 0x0000ff00;
  980. }
  981. if (ram->diff.rammap_11_0b_0800) {
  982. data |= cfg->bios.rammap_11_0b_0800 << 7;
  983. mask |= 0x00000080;
  984. }
  985. if (ram->diff.rammap_11_0b_0400) {
  986. data |= cfg->bios.rammap_11_0b_0400 << 5;
  987. mask |= 0x00000020;
  988. }
  989. nvkm_mask(device, 0x10f444, mask, data);
  990. }
  991. static int
  992. gk104_ram_prog(struct nvkm_ram *base)
  993. {
  994. struct gk104_ram *ram = gk104_ram(base);
  995. struct gk104_ramfuc *fuc = &ram->fuc;
  996. struct nvkm_device *device = ram->base.fb->subdev.device;
  997. struct nvkm_ram_data *next = ram->base.next;
  998. if (!nvkm_boolopt(device->cfgopt, "NvMemExec", true)) {
  999. ram_exec(fuc, false);
  1000. return (ram->base.next == &ram->base.xition);
  1001. }
  1002. gk104_ram_prog_0(ram, 1000);
  1003. ram_exec(fuc, true);
  1004. gk104_ram_prog_0(ram, next->freq);
  1005. return (ram->base.next == &ram->base.xition);
  1006. }
  1007. static void
  1008. gk104_ram_tidy(struct nvkm_ram *base)
  1009. {
  1010. struct gk104_ram *ram = gk104_ram(base);
  1011. ram->base.next = NULL;
  1012. ram_exec(&ram->fuc, false);
  1013. }
  1014. struct gk104_ram_train {
  1015. u16 mask;
  1016. struct nvbios_M0209S remap;
  1017. struct nvbios_M0209S type00;
  1018. struct nvbios_M0209S type01;
  1019. struct nvbios_M0209S type04;
  1020. struct nvbios_M0209S type06;
  1021. struct nvbios_M0209S type07;
  1022. struct nvbios_M0209S type08;
  1023. struct nvbios_M0209S type09;
  1024. };
  1025. static int
  1026. gk104_ram_train_type(struct nvkm_ram *ram, int i, u8 ramcfg,
  1027. struct gk104_ram_train *train)
  1028. {
  1029. struct nvkm_bios *bios = ram->fb->subdev.device->bios;
  1030. struct nvbios_M0205E M0205E;
  1031. struct nvbios_M0205S M0205S;
  1032. struct nvbios_M0209E M0209E;
  1033. struct nvbios_M0209S *remap = &train->remap;
  1034. struct nvbios_M0209S *value;
  1035. u8 ver, hdr, cnt, len;
  1036. u32 data;
  1037. /* determine type of data for this index */
  1038. if (!(data = nvbios_M0205Ep(bios, i, &ver, &hdr, &cnt, &len, &M0205E)))
  1039. return -ENOENT;
  1040. switch (M0205E.type) {
  1041. case 0x00: value = &train->type00; break;
  1042. case 0x01: value = &train->type01; break;
  1043. case 0x04: value = &train->type04; break;
  1044. case 0x06: value = &train->type06; break;
  1045. case 0x07: value = &train->type07; break;
  1046. case 0x08: value = &train->type08; break;
  1047. case 0x09: value = &train->type09; break;
  1048. default:
  1049. return 0;
  1050. }
  1051. /* training data index determined by ramcfg strap */
  1052. if (!(data = nvbios_M0205Sp(bios, i, ramcfg, &ver, &hdr, &M0205S)))
  1053. return -EINVAL;
  1054. i = M0205S.data;
  1055. /* training data format information */
  1056. if (!(data = nvbios_M0209Ep(bios, i, &ver, &hdr, &cnt, &len, &M0209E)))
  1057. return -EINVAL;
  1058. /* ... and the raw data */
  1059. if (!(data = nvbios_M0209Sp(bios, i, 0, &ver, &hdr, value)))
  1060. return -EINVAL;
  1061. if (M0209E.v02_07 == 2) {
  1062. /* of course! why wouldn't we have a pointer to another entry
  1063. * in the same table, and use the first one as an array of
  1064. * remap indices...
  1065. */
  1066. if (!(data = nvbios_M0209Sp(bios, M0209E.v03, 0, &ver, &hdr,
  1067. remap)))
  1068. return -EINVAL;
  1069. for (i = 0; i < ARRAY_SIZE(value->data); i++)
  1070. value->data[i] = remap->data[value->data[i]];
  1071. } else
  1072. if (M0209E.v02_07 != 1)
  1073. return -EINVAL;
  1074. train->mask |= 1 << M0205E.type;
  1075. return 0;
  1076. }
  1077. static int
  1078. gk104_ram_train_init_0(struct nvkm_ram *ram, struct gk104_ram_train *train)
  1079. {
  1080. struct nvkm_subdev *subdev = &ram->fb->subdev;
  1081. struct nvkm_device *device = subdev->device;
  1082. int i, j;
  1083. if ((train->mask & 0x03d3) != 0x03d3) {
  1084. nvkm_warn(subdev, "missing link training data\n");
  1085. return -EINVAL;
  1086. }
  1087. for (i = 0; i < 0x30; i++) {
  1088. for (j = 0; j < 8; j += 4) {
  1089. nvkm_wr32(device, 0x10f968 + j, 0x00000000 | (i << 8));
  1090. nvkm_wr32(device, 0x10f920 + j, 0x00000000 |
  1091. train->type08.data[i] << 4 |
  1092. train->type06.data[i]);
  1093. nvkm_wr32(device, 0x10f918 + j, train->type00.data[i]);
  1094. nvkm_wr32(device, 0x10f920 + j, 0x00000100 |
  1095. train->type09.data[i] << 4 |
  1096. train->type07.data[i]);
  1097. nvkm_wr32(device, 0x10f918 + j, train->type01.data[i]);
  1098. }
  1099. }
  1100. for (j = 0; j < 8; j += 4) {
  1101. for (i = 0; i < 0x100; i++) {
  1102. nvkm_wr32(device, 0x10f968 + j, i);
  1103. nvkm_wr32(device, 0x10f900 + j, train->type04.data[i]);
  1104. }
  1105. }
  1106. return 0;
  1107. }
  1108. static int
  1109. gk104_ram_train_init(struct nvkm_ram *ram)
  1110. {
  1111. u8 ramcfg = nvbios_ramcfg_index(&ram->fb->subdev);
  1112. struct gk104_ram_train *train;
  1113. int ret, i;
  1114. if (!(train = kzalloc(sizeof(*train), GFP_KERNEL)))
  1115. return -ENOMEM;
  1116. for (i = 0; i < 0x100; i++) {
  1117. ret = gk104_ram_train_type(ram, i, ramcfg, train);
  1118. if (ret && ret != -ENOENT)
  1119. break;
  1120. }
  1121. switch (ram->type) {
  1122. case NVKM_RAM_TYPE_GDDR5:
  1123. ret = gk104_ram_train_init_0(ram, train);
  1124. break;
  1125. default:
  1126. ret = 0;
  1127. break;
  1128. }
  1129. kfree(train);
  1130. return ret;
  1131. }
  1132. int
  1133. gk104_ram_init(struct nvkm_ram *ram)
  1134. {
  1135. struct nvkm_subdev *subdev = &ram->fb->subdev;
  1136. struct nvkm_device *device = subdev->device;
  1137. struct nvkm_bios *bios = device->bios;
  1138. u8 ver, hdr, cnt, len, snr, ssz;
  1139. u32 data, save;
  1140. int i;
  1141. /* run a bunch of tables from rammap table. there's actually
  1142. * individual pointers for each rammap entry too, but, nvidia
  1143. * seem to just run the last two entries' scripts early on in
  1144. * their init, and never again.. we'll just run 'em all once
  1145. * for now.
  1146. *
  1147. * i strongly suspect that each script is for a separate mode
  1148. * (likely selected by 0x10f65c's lower bits?), and the
  1149. * binary driver skips the one that's already been setup by
  1150. * the init tables.
  1151. */
  1152. data = nvbios_rammapTe(bios, &ver, &hdr, &cnt, &len, &snr, &ssz);
  1153. if (!data || hdr < 0x15)
  1154. return -EINVAL;
  1155. cnt = nvbios_rd08(bios, data + 0x14); /* guess at count */
  1156. data = nvbios_rd32(bios, data + 0x10); /* guess u32... */
  1157. save = nvkm_rd32(device, 0x10f65c) & 0x000000f0;
  1158. for (i = 0; i < cnt; i++, data += 4) {
  1159. if (i != save >> 4) {
  1160. nvkm_mask(device, 0x10f65c, 0x000000f0, i << 4);
  1161. nvbios_exec(&(struct nvbios_init) {
  1162. .subdev = subdev,
  1163. .bios = bios,
  1164. .offset = nvbios_rd32(bios, data),
  1165. .execute = 1,
  1166. });
  1167. }
  1168. }
  1169. nvkm_mask(device, 0x10f65c, 0x000000f0, save);
  1170. nvkm_mask(device, 0x10f584, 0x11000000, 0x00000000);
  1171. nvkm_wr32(device, 0x10ecc0, 0xffffffff);
  1172. nvkm_mask(device, 0x10f160, 0x00000010, 0x00000010);
  1173. return gk104_ram_train_init(ram);
  1174. }
  1175. static int
  1176. gk104_ram_ctor_data(struct gk104_ram *ram, u8 ramcfg, int i)
  1177. {
  1178. struct nvkm_bios *bios = ram->base.fb->subdev.device->bios;
  1179. struct nvkm_ram_data *cfg;
  1180. struct nvbios_ramcfg *d = &ram->diff;
  1181. struct nvbios_ramcfg *p, *n;
  1182. u8 ver, hdr, cnt, len;
  1183. u32 data;
  1184. int ret;
  1185. if (!(cfg = kmalloc(sizeof(*cfg), GFP_KERNEL)))
  1186. return -ENOMEM;
  1187. p = &list_last_entry(&ram->cfg, typeof(*cfg), head)->bios;
  1188. n = &cfg->bios;
  1189. /* memory config data for a range of target frequencies */
  1190. data = nvbios_rammapEp(bios, i, &ver, &hdr, &cnt, &len, &cfg->bios);
  1191. if (ret = -ENOENT, !data)
  1192. goto done;
  1193. if (ret = -ENOSYS, ver != 0x11 || hdr < 0x12)
  1194. goto done;
  1195. /* ... and a portion specific to the attached memory */
  1196. data = nvbios_rammapSp(bios, data, ver, hdr, cnt, len, ramcfg,
  1197. &ver, &hdr, &cfg->bios);
  1198. if (ret = -EINVAL, !data)
  1199. goto done;
  1200. if (ret = -ENOSYS, ver != 0x11 || hdr < 0x0a)
  1201. goto done;
  1202. /* lookup memory timings, if bios says they're present */
  1203. if (cfg->bios.ramcfg_timing != 0xff) {
  1204. data = nvbios_timingEp(bios, cfg->bios.ramcfg_timing,
  1205. &ver, &hdr, &cnt, &len,
  1206. &cfg->bios);
  1207. if (ret = -EINVAL, !data)
  1208. goto done;
  1209. if (ret = -ENOSYS, ver != 0x20 || hdr < 0x33)
  1210. goto done;
  1211. }
  1212. list_add_tail(&cfg->head, &ram->cfg);
  1213. if (ret = 0, i == 0)
  1214. goto done;
  1215. d->rammap_11_0a_03fe |= p->rammap_11_0a_03fe != n->rammap_11_0a_03fe;
  1216. d->rammap_11_09_01ff |= p->rammap_11_09_01ff != n->rammap_11_09_01ff;
  1217. d->rammap_11_0a_0400 |= p->rammap_11_0a_0400 != n->rammap_11_0a_0400;
  1218. d->rammap_11_0a_0800 |= p->rammap_11_0a_0800 != n->rammap_11_0a_0800;
  1219. d->rammap_11_0b_01f0 |= p->rammap_11_0b_01f0 != n->rammap_11_0b_01f0;
  1220. d->rammap_11_0b_0200 |= p->rammap_11_0b_0200 != n->rammap_11_0b_0200;
  1221. d->rammap_11_0d |= p->rammap_11_0d != n->rammap_11_0d;
  1222. d->rammap_11_0f |= p->rammap_11_0f != n->rammap_11_0f;
  1223. d->rammap_11_0e |= p->rammap_11_0e != n->rammap_11_0e;
  1224. d->rammap_11_0b_0800 |= p->rammap_11_0b_0800 != n->rammap_11_0b_0800;
  1225. d->rammap_11_0b_0400 |= p->rammap_11_0b_0400 != n->rammap_11_0b_0400;
  1226. d->ramcfg_11_01_01 |= p->ramcfg_11_01_01 != n->ramcfg_11_01_01;
  1227. d->ramcfg_11_01_02 |= p->ramcfg_11_01_02 != n->ramcfg_11_01_02;
  1228. d->ramcfg_11_01_10 |= p->ramcfg_11_01_10 != n->ramcfg_11_01_10;
  1229. d->ramcfg_11_02_03 |= p->ramcfg_11_02_03 != n->ramcfg_11_02_03;
  1230. d->ramcfg_11_08_20 |= p->ramcfg_11_08_20 != n->ramcfg_11_08_20;
  1231. d->timing_20_30_07 |= p->timing_20_30_07 != n->timing_20_30_07;
  1232. done:
  1233. if (ret)
  1234. kfree(cfg);
  1235. return ret;
  1236. }
  1237. static void *
  1238. gk104_ram_dtor(struct nvkm_ram *base)
  1239. {
  1240. struct gk104_ram *ram = gk104_ram(base);
  1241. struct nvkm_ram_data *cfg, *tmp;
  1242. list_for_each_entry_safe(cfg, tmp, &ram->cfg, head) {
  1243. kfree(cfg);
  1244. }
  1245. return ram;
  1246. }
  1247. static const struct nvkm_ram_func
  1248. gk104_ram_func = {
  1249. .dtor = gk104_ram_dtor,
  1250. .init = gk104_ram_init,
  1251. .get = gf100_ram_get,
  1252. .put = gf100_ram_put,
  1253. .calc = gk104_ram_calc,
  1254. .prog = gk104_ram_prog,
  1255. .tidy = gk104_ram_tidy,
  1256. };
  1257. int
  1258. gk104_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
  1259. {
  1260. struct nvkm_subdev *subdev = &fb->subdev;
  1261. struct nvkm_device *device = subdev->device;
  1262. struct nvkm_bios *bios = device->bios;
  1263. struct nvkm_gpio *gpio = device->gpio;
  1264. struct dcb_gpio_func func;
  1265. struct gk104_ram *ram;
  1266. int ret, i;
  1267. u8 ramcfg = nvbios_ramcfg_index(subdev);
  1268. u32 tmp;
  1269. if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
  1270. return -ENOMEM;
  1271. *pram = &ram->base;
  1272. ret = gf100_ram_ctor(&gk104_ram_func, fb, 0x022554, &ram->base);
  1273. if (ret)
  1274. return ret;
  1275. INIT_LIST_HEAD(&ram->cfg);
  1276. /* calculate a mask of differently configured memory partitions,
  1277. * because, of course reclocking wasn't complicated enough
  1278. * already without having to treat some of them differently to
  1279. * the others....
  1280. */
  1281. ram->parts = nvkm_rd32(device, 0x022438);
  1282. ram->pmask = nvkm_rd32(device, 0x022554);
  1283. ram->pnuts = 0;
  1284. for (i = 0, tmp = 0; i < ram->parts; i++) {
  1285. if (!(ram->pmask & (1 << i))) {
  1286. u32 cfg1 = nvkm_rd32(device, 0x110204 + (i * 0x1000));
  1287. if (tmp && tmp != cfg1) {
  1288. ram->pnuts |= (1 << i);
  1289. continue;
  1290. }
  1291. tmp = cfg1;
  1292. }
  1293. }
  1294. /* parse bios data for all rammap table entries up-front, and
  1295. * build information on whether certain fields differ between
  1296. * any of the entries.
  1297. *
  1298. * the binary driver appears to completely ignore some fields
  1299. * when all entries contain the same value. at first, it was
  1300. * hoped that these were mere optimisations and the bios init
  1301. * tables had configured as per the values here, but there is
  1302. * evidence now to suggest that this isn't the case and we do
  1303. * need to treat this condition as a "don't touch" indicator.
  1304. */
  1305. for (i = 0; !ret; i++) {
  1306. ret = gk104_ram_ctor_data(ram, ramcfg, i);
  1307. if (ret && ret != -ENOENT) {
  1308. nvkm_error(subdev, "failed to parse ramcfg data\n");
  1309. return ret;
  1310. }
  1311. }
  1312. /* parse bios data for both pll's */
  1313. ret = nvbios_pll_parse(bios, 0x0c, &ram->fuc.refpll);
  1314. if (ret) {
  1315. nvkm_error(subdev, "mclk refpll data not found\n");
  1316. return ret;
  1317. }
  1318. ret = nvbios_pll_parse(bios, 0x04, &ram->fuc.mempll);
  1319. if (ret) {
  1320. nvkm_error(subdev, "mclk pll data not found\n");
  1321. return ret;
  1322. }
  1323. /* lookup memory voltage gpios */
  1324. ret = nvkm_gpio_find(gpio, 0, 0x18, DCB_GPIO_UNUSED, &func);
  1325. if (ret == 0) {
  1326. ram->fuc.r_gpioMV = ramfuc_reg(0x00d610 + (func.line * 0x04));
  1327. ram->fuc.r_funcMV[0] = (func.log[0] ^ 2) << 12;
  1328. ram->fuc.r_funcMV[1] = (func.log[1] ^ 2) << 12;
  1329. }
  1330. ret = nvkm_gpio_find(gpio, 0, 0x2e, DCB_GPIO_UNUSED, &func);
  1331. if (ret == 0) {
  1332. ram->fuc.r_gpio2E = ramfuc_reg(0x00d610 + (func.line * 0x04));
  1333. ram->fuc.r_func2E[0] = (func.log[0] ^ 2) << 12;
  1334. ram->fuc.r_func2E[1] = (func.log[1] ^ 2) << 12;
  1335. }
  1336. ram->fuc.r_gpiotrig = ramfuc_reg(0x00d604);
  1337. ram->fuc.r_0x132020 = ramfuc_reg(0x132020);
  1338. ram->fuc.r_0x132028 = ramfuc_reg(0x132028);
  1339. ram->fuc.r_0x132024 = ramfuc_reg(0x132024);
  1340. ram->fuc.r_0x132030 = ramfuc_reg(0x132030);
  1341. ram->fuc.r_0x132034 = ramfuc_reg(0x132034);
  1342. ram->fuc.r_0x132000 = ramfuc_reg(0x132000);
  1343. ram->fuc.r_0x132004 = ramfuc_reg(0x132004);
  1344. ram->fuc.r_0x132040 = ramfuc_reg(0x132040);
  1345. ram->fuc.r_0x10f248 = ramfuc_reg(0x10f248);
  1346. ram->fuc.r_0x10f290 = ramfuc_reg(0x10f290);
  1347. ram->fuc.r_0x10f294 = ramfuc_reg(0x10f294);
  1348. ram->fuc.r_0x10f298 = ramfuc_reg(0x10f298);
  1349. ram->fuc.r_0x10f29c = ramfuc_reg(0x10f29c);
  1350. ram->fuc.r_0x10f2a0 = ramfuc_reg(0x10f2a0);
  1351. ram->fuc.r_0x10f2a4 = ramfuc_reg(0x10f2a4);
  1352. ram->fuc.r_0x10f2a8 = ramfuc_reg(0x10f2a8);
  1353. ram->fuc.r_0x10f2ac = ramfuc_reg(0x10f2ac);
  1354. ram->fuc.r_0x10f2cc = ramfuc_reg(0x10f2cc);
  1355. ram->fuc.r_0x10f2e8 = ramfuc_reg(0x10f2e8);
  1356. ram->fuc.r_0x10f250 = ramfuc_reg(0x10f250);
  1357. ram->fuc.r_0x10f24c = ramfuc_reg(0x10f24c);
  1358. ram->fuc.r_0x10fec4 = ramfuc_reg(0x10fec4);
  1359. ram->fuc.r_0x10fec8 = ramfuc_reg(0x10fec8);
  1360. ram->fuc.r_0x10f604 = ramfuc_reg(0x10f604);
  1361. ram->fuc.r_0x10f614 = ramfuc_reg(0x10f614);
  1362. ram->fuc.r_0x10f610 = ramfuc_reg(0x10f610);
  1363. ram->fuc.r_0x100770 = ramfuc_reg(0x100770);
  1364. ram->fuc.r_0x100778 = ramfuc_reg(0x100778);
  1365. ram->fuc.r_0x10f224 = ramfuc_reg(0x10f224);
  1366. ram->fuc.r_0x10f870 = ramfuc_reg(0x10f870);
  1367. ram->fuc.r_0x10f698 = ramfuc_reg(0x10f698);
  1368. ram->fuc.r_0x10f694 = ramfuc_reg(0x10f694);
  1369. ram->fuc.r_0x10f6b8 = ramfuc_reg(0x10f6b8);
  1370. ram->fuc.r_0x10f808 = ramfuc_reg(0x10f808);
  1371. ram->fuc.r_0x10f670 = ramfuc_reg(0x10f670);
  1372. ram->fuc.r_0x10f60c = ramfuc_reg(0x10f60c);
  1373. ram->fuc.r_0x10f830 = ramfuc_reg(0x10f830);
  1374. ram->fuc.r_0x1373ec = ramfuc_reg(0x1373ec);
  1375. ram->fuc.r_0x10f800 = ramfuc_reg(0x10f800);
  1376. ram->fuc.r_0x10f82c = ramfuc_reg(0x10f82c);
  1377. ram->fuc.r_0x10f978 = ramfuc_reg(0x10f978);
  1378. ram->fuc.r_0x10f910 = ramfuc_reg(0x10f910);
  1379. ram->fuc.r_0x10f914 = ramfuc_reg(0x10f914);
  1380. switch (ram->base.type) {
  1381. case NVKM_RAM_TYPE_GDDR5:
  1382. ram->fuc.r_mr[0] = ramfuc_reg(0x10f300);
  1383. ram->fuc.r_mr[1] = ramfuc_reg(0x10f330);
  1384. ram->fuc.r_mr[2] = ramfuc_reg(0x10f334);
  1385. ram->fuc.r_mr[3] = ramfuc_reg(0x10f338);
  1386. ram->fuc.r_mr[4] = ramfuc_reg(0x10f33c);
  1387. ram->fuc.r_mr[5] = ramfuc_reg(0x10f340);
  1388. ram->fuc.r_mr[6] = ramfuc_reg(0x10f344);
  1389. ram->fuc.r_mr[7] = ramfuc_reg(0x10f348);
  1390. ram->fuc.r_mr[8] = ramfuc_reg(0x10f354);
  1391. ram->fuc.r_mr[15] = ramfuc_reg(0x10f34c);
  1392. break;
  1393. case NVKM_RAM_TYPE_DDR3:
  1394. ram->fuc.r_mr[0] = ramfuc_reg(0x10f300);
  1395. ram->fuc.r_mr[2] = ramfuc_reg(0x10f320);
  1396. break;
  1397. default:
  1398. break;
  1399. }
  1400. ram->fuc.r_0x62c000 = ramfuc_reg(0x62c000);
  1401. ram->fuc.r_0x10f200 = ramfuc_reg(0x10f200);
  1402. ram->fuc.r_0x10f210 = ramfuc_reg(0x10f210);
  1403. ram->fuc.r_0x10f310 = ramfuc_reg(0x10f310);
  1404. ram->fuc.r_0x10f314 = ramfuc_reg(0x10f314);
  1405. ram->fuc.r_0x10f318 = ramfuc_reg(0x10f318);
  1406. ram->fuc.r_0x10f090 = ramfuc_reg(0x10f090);
  1407. ram->fuc.r_0x10f69c = ramfuc_reg(0x10f69c);
  1408. ram->fuc.r_0x10f824 = ramfuc_reg(0x10f824);
  1409. ram->fuc.r_0x1373f0 = ramfuc_reg(0x1373f0);
  1410. ram->fuc.r_0x1373f4 = ramfuc_reg(0x1373f4);
  1411. ram->fuc.r_0x137320 = ramfuc_reg(0x137320);
  1412. ram->fuc.r_0x10f65c = ramfuc_reg(0x10f65c);
  1413. ram->fuc.r_0x10f6bc = ramfuc_reg(0x10f6bc);
  1414. ram->fuc.r_0x100710 = ramfuc_reg(0x100710);
  1415. ram->fuc.r_0x100750 = ramfuc_reg(0x100750);
  1416. return 0;
  1417. }