gk20a.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670
  1. /*
  2. * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  19. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  20. * DEALINGS IN THE SOFTWARE.
  21. *
  22. * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
  23. *
  24. */
  25. #define gk20a_clk(p) container_of((p), struct gk20a_clk, base)
  26. #include "priv.h"
  27. #include <core/tegra.h>
  28. #include <subdev/timer.h>
  29. #define MHZ (1000 * 1000)
  30. #define MASK(w) ((1 << w) - 1)
  31. #define SYS_GPCPLL_CFG_BASE 0x00137000
  32. #define GPC_BCASE_GPCPLL_CFG_BASE 0x00132800
  33. #define GPCPLL_CFG (SYS_GPCPLL_CFG_BASE + 0)
  34. #define GPCPLL_CFG_ENABLE BIT(0)
  35. #define GPCPLL_CFG_IDDQ BIT(1)
  36. #define GPCPLL_CFG_LOCK_DET_OFF BIT(4)
  37. #define GPCPLL_CFG_LOCK BIT(17)
  38. #define GPCPLL_COEFF (SYS_GPCPLL_CFG_BASE + 4)
  39. #define GPCPLL_COEFF_M_SHIFT 0
  40. #define GPCPLL_COEFF_M_WIDTH 8
  41. #define GPCPLL_COEFF_N_SHIFT 8
  42. #define GPCPLL_COEFF_N_WIDTH 8
  43. #define GPCPLL_COEFF_P_SHIFT 16
  44. #define GPCPLL_COEFF_P_WIDTH 6
  45. #define GPCPLL_CFG2 (SYS_GPCPLL_CFG_BASE + 0xc)
  46. #define GPCPLL_CFG2_SETUP2_SHIFT 16
  47. #define GPCPLL_CFG2_PLL_STEPA_SHIFT 24
  48. #define GPCPLL_CFG3 (SYS_GPCPLL_CFG_BASE + 0x18)
  49. #define GPCPLL_CFG3_PLL_STEPB_SHIFT 16
  50. #define GPCPLL_NDIV_SLOWDOWN (SYS_GPCPLL_CFG_BASE + 0x1c)
  51. #define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT 0
  52. #define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT 8
  53. #define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT 16
  54. #define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT 22
  55. #define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT 31
  56. #define SEL_VCO (SYS_GPCPLL_CFG_BASE + 0x100)
  57. #define SEL_VCO_GPC2CLK_OUT_SHIFT 0
  58. #define GPC2CLK_OUT (SYS_GPCPLL_CFG_BASE + 0x250)
  59. #define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH 1
  60. #define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT 31
  61. #define GPC2CLK_OUT_SDIV14_INDIV4_MODE 1
  62. #define GPC2CLK_OUT_VCODIV_WIDTH 6
  63. #define GPC2CLK_OUT_VCODIV_SHIFT 8
  64. #define GPC2CLK_OUT_VCODIV1 0
  65. #define GPC2CLK_OUT_VCODIV_MASK (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
  66. GPC2CLK_OUT_VCODIV_SHIFT)
  67. #define GPC2CLK_OUT_BYPDIV_WIDTH 6
  68. #define GPC2CLK_OUT_BYPDIV_SHIFT 0
  69. #define GPC2CLK_OUT_BYPDIV31 0x3c
  70. #define GPC2CLK_OUT_INIT_MASK ((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \
  71. GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\
  72. | (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\
  73. | (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT))
  74. #define GPC2CLK_OUT_INIT_VAL ((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \
  75. GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \
  76. | (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \
  77. | (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT))
  78. #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG (GPC_BCASE_GPCPLL_CFG_BASE + 0xa0)
  79. #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT 24
  80. #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
  81. (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)
  82. static const u8 pl_to_div[] = {
  83. /* PL: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 */
  84. /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
  85. };
  86. /* All frequencies in Mhz */
  87. struct gk20a_clk_pllg_params {
  88. u32 min_vco, max_vco;
  89. u32 min_u, max_u;
  90. u32 min_m, max_m;
  91. u32 min_n, max_n;
  92. u32 min_pl, max_pl;
  93. };
  94. static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
  95. .min_vco = 1000, .max_vco = 2064,
  96. .min_u = 12, .max_u = 38,
  97. .min_m = 1, .max_m = 255,
  98. .min_n = 8, .max_n = 255,
  99. .min_pl = 1, .max_pl = 32,
  100. };
  101. struct gk20a_clk {
  102. struct nvkm_clk base;
  103. const struct gk20a_clk_pllg_params *params;
  104. u32 m, n, pl;
  105. u32 parent_rate;
  106. };
  107. static void
  108. gk20a_pllg_read_mnp(struct gk20a_clk *clk)
  109. {
  110. struct nvkm_device *device = clk->base.subdev.device;
  111. u32 val;
  112. val = nvkm_rd32(device, GPCPLL_COEFF);
  113. clk->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
  114. clk->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
  115. clk->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
  116. }
  117. static u32
  118. gk20a_pllg_calc_rate(struct gk20a_clk *clk)
  119. {
  120. u32 rate;
  121. u32 divider;
  122. rate = clk->parent_rate * clk->n;
  123. divider = clk->m * pl_to_div[clk->pl];
  124. do_div(rate, divider);
  125. return rate / 2;
  126. }
  127. static int
  128. gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate)
  129. {
  130. struct nvkm_subdev *subdev = &clk->base.subdev;
  131. u32 target_clk_f, ref_clk_f, target_freq;
  132. u32 min_vco_f, max_vco_f;
  133. u32 low_pl, high_pl, best_pl;
  134. u32 target_vco_f, vco_f;
  135. u32 best_m, best_n;
  136. u32 u_f;
  137. u32 m, n, n2;
  138. u32 delta, lwv, best_delta = ~0;
  139. u32 pl;
  140. target_clk_f = rate * 2 / MHZ;
  141. ref_clk_f = clk->parent_rate / MHZ;
  142. max_vco_f = clk->params->max_vco;
  143. min_vco_f = clk->params->min_vco;
  144. best_m = clk->params->max_m;
  145. best_n = clk->params->min_n;
  146. best_pl = clk->params->min_pl;
  147. target_vco_f = target_clk_f + target_clk_f / 50;
  148. if (max_vco_f < target_vco_f)
  149. max_vco_f = target_vco_f;
  150. /* min_pl <= high_pl <= max_pl */
  151. high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
  152. high_pl = min(high_pl, clk->params->max_pl);
  153. high_pl = max(high_pl, clk->params->min_pl);
  154. /* min_pl <= low_pl <= max_pl */
  155. low_pl = min_vco_f / target_vco_f;
  156. low_pl = min(low_pl, clk->params->max_pl);
  157. low_pl = max(low_pl, clk->params->min_pl);
  158. /* Find Indices of high_pl and low_pl */
  159. for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
  160. if (pl_to_div[pl] >= low_pl) {
  161. low_pl = pl;
  162. break;
  163. }
  164. }
  165. for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
  166. if (pl_to_div[pl] >= high_pl) {
  167. high_pl = pl;
  168. break;
  169. }
  170. }
  171. nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
  172. pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);
  173. /* Select lowest possible VCO */
  174. for (pl = low_pl; pl <= high_pl; pl++) {
  175. target_vco_f = target_clk_f * pl_to_div[pl];
  176. for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
  177. u_f = ref_clk_f / m;
  178. if (u_f < clk->params->min_u)
  179. break;
  180. if (u_f > clk->params->max_u)
  181. continue;
  182. n = (target_vco_f * m) / ref_clk_f;
  183. n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
  184. if (n > clk->params->max_n)
  185. break;
  186. for (; n <= n2; n++) {
  187. if (n < clk->params->min_n)
  188. continue;
  189. if (n > clk->params->max_n)
  190. break;
  191. vco_f = ref_clk_f * n / m;
  192. if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
  193. lwv = (vco_f + (pl_to_div[pl] / 2))
  194. / pl_to_div[pl];
  195. delta = abs(lwv - target_clk_f);
  196. if (delta < best_delta) {
  197. best_delta = delta;
  198. best_m = m;
  199. best_n = n;
  200. best_pl = pl;
  201. if (best_delta == 0)
  202. goto found_match;
  203. }
  204. }
  205. }
  206. }
  207. }
  208. found_match:
  209. WARN_ON(best_delta == ~0);
  210. if (best_delta != 0)
  211. nvkm_debug(subdev,
  212. "no best match for target @ %dMHz on gpc_pll",
  213. target_clk_f);
  214. clk->m = best_m;
  215. clk->n = best_n;
  216. clk->pl = best_pl;
  217. target_freq = gk20a_pllg_calc_rate(clk) / MHZ;
  218. nvkm_debug(subdev,
  219. "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
  220. target_freq, clk->m, clk->n, clk->pl, pl_to_div[clk->pl]);
  221. return 0;
  222. }
  223. static int
  224. gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
  225. {
  226. struct nvkm_subdev *subdev = &clk->base.subdev;
  227. struct nvkm_device *device = subdev->device;
  228. u32 val;
  229. int ramp_timeout;
  230. /* get old coefficients */
  231. val = nvkm_rd32(device, GPCPLL_COEFF);
  232. /* do nothing if NDIV is the same */
  233. if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
  234. return 0;
  235. /* setup */
  236. nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
  237. 0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
  238. nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
  239. 0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);
  240. /* pll slowdown mode */
  241. nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
  242. BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
  243. BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
  244. /* new ndiv ready for ramp */
  245. val = nvkm_rd32(device, GPCPLL_COEFF);
  246. val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
  247. val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
  248. udelay(1);
  249. nvkm_wr32(device, GPCPLL_COEFF, val);
  250. /* dynamic ramp to new ndiv */
  251. val = nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
  252. val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
  253. udelay(1);
  254. nvkm_wr32(device, GPCPLL_NDIV_SLOWDOWN, val);
  255. for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
  256. udelay(1);
  257. val = nvkm_rd32(device, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
  258. if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
  259. break;
  260. }
  261. /* exit slowdown mode */
  262. nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
  263. BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
  264. BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
  265. nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
  266. if (ramp_timeout <= 0) {
  267. nvkm_error(subdev, "gpcpll dynamic ramp timeout\n");
  268. return -ETIMEDOUT;
  269. }
  270. return 0;
  271. }
  272. static void
  273. _gk20a_pllg_enable(struct gk20a_clk *clk)
  274. {
  275. struct nvkm_device *device = clk->base.subdev.device;
  276. nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
  277. nvkm_rd32(device, GPCPLL_CFG);
  278. }
  279. static void
  280. _gk20a_pllg_disable(struct gk20a_clk *clk)
  281. {
  282. struct nvkm_device *device = clk->base.subdev.device;
  283. nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
  284. nvkm_rd32(device, GPCPLL_CFG);
  285. }
  286. static int
  287. _gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide)
  288. {
  289. struct nvkm_subdev *subdev = &clk->base.subdev;
  290. struct nvkm_device *device = subdev->device;
  291. u32 val, cfg;
  292. u32 m_old, pl_old, n_lo;
  293. /* get old coefficients */
  294. val = nvkm_rd32(device, GPCPLL_COEFF);
  295. m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
  296. pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
  297. /* do NDIV slide if there is no change in M and PL */
  298. cfg = nvkm_rd32(device, GPCPLL_CFG);
  299. if (allow_slide && clk->m == m_old && clk->pl == pl_old &&
  300. (cfg & GPCPLL_CFG_ENABLE)) {
  301. return gk20a_pllg_slide(clk, clk->n);
  302. }
  303. /* slide down to NDIV_LO */
  304. n_lo = DIV_ROUND_UP(m_old * clk->params->min_vco,
  305. clk->parent_rate / MHZ);
  306. if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
  307. int ret = gk20a_pllg_slide(clk, n_lo);
  308. if (ret)
  309. return ret;
  310. }
  311. /* split FO-to-bypass jump in halfs by setting out divider 1:2 */
  312. nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
  313. 0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
  314. /* put PLL in bypass before programming it */
  315. val = nvkm_rd32(device, SEL_VCO);
  316. val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
  317. udelay(2);
  318. nvkm_wr32(device, SEL_VCO, val);
  319. /* get out from IDDQ */
  320. val = nvkm_rd32(device, GPCPLL_CFG);
  321. if (val & GPCPLL_CFG_IDDQ) {
  322. val &= ~GPCPLL_CFG_IDDQ;
  323. nvkm_wr32(device, GPCPLL_CFG, val);
  324. nvkm_rd32(device, GPCPLL_CFG);
  325. udelay(2);
  326. }
  327. _gk20a_pllg_disable(clk);
  328. nvkm_debug(subdev, "%s: m=%d n=%d pl=%d\n", __func__,
  329. clk->m, clk->n, clk->pl);
  330. n_lo = DIV_ROUND_UP(clk->m * clk->params->min_vco,
  331. clk->parent_rate / MHZ);
  332. val = clk->m << GPCPLL_COEFF_M_SHIFT;
  333. val |= (allow_slide ? n_lo : clk->n) << GPCPLL_COEFF_N_SHIFT;
  334. val |= clk->pl << GPCPLL_COEFF_P_SHIFT;
  335. nvkm_wr32(device, GPCPLL_COEFF, val);
  336. _gk20a_pllg_enable(clk);
  337. val = nvkm_rd32(device, GPCPLL_CFG);
  338. if (val & GPCPLL_CFG_LOCK_DET_OFF) {
  339. val &= ~GPCPLL_CFG_LOCK_DET_OFF;
  340. nvkm_wr32(device, GPCPLL_CFG, val);
  341. }
  342. if (nvkm_usec(device, 300,
  343. if (nvkm_rd32(device, GPCPLL_CFG) & GPCPLL_CFG_LOCK)
  344. break;
  345. ) < 0)
  346. return -ETIMEDOUT;
  347. /* switch to VCO mode */
  348. nvkm_mask(device, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
  349. /* restore out divider 1:1 */
  350. val = nvkm_rd32(device, GPC2CLK_OUT);
  351. val &= ~GPC2CLK_OUT_VCODIV_MASK;
  352. udelay(2);
  353. nvkm_wr32(device, GPC2CLK_OUT, val);
  354. /* slide up to new NDIV */
  355. return allow_slide ? gk20a_pllg_slide(clk, clk->n) : 0;
  356. }
  357. static int
  358. gk20a_pllg_program_mnp(struct gk20a_clk *clk)
  359. {
  360. int err;
  361. err = _gk20a_pllg_program_mnp(clk, true);
  362. if (err)
  363. err = _gk20a_pllg_program_mnp(clk, false);
  364. return err;
  365. }
  366. static void
  367. gk20a_pllg_disable(struct gk20a_clk *clk)
  368. {
  369. struct nvkm_device *device = clk->base.subdev.device;
  370. u32 val;
  371. /* slide to VCO min */
  372. val = nvkm_rd32(device, GPCPLL_CFG);
  373. if (val & GPCPLL_CFG_ENABLE) {
  374. u32 coeff, m, n_lo;
  375. coeff = nvkm_rd32(device, GPCPLL_COEFF);
  376. m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
  377. n_lo = DIV_ROUND_UP(m * clk->params->min_vco,
  378. clk->parent_rate / MHZ);
  379. gk20a_pllg_slide(clk, n_lo);
  380. }
  381. /* put PLL in bypass before disabling it */
  382. nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
  383. _gk20a_pllg_disable(clk);
  384. }
  385. #define GK20A_CLK_GPC_MDIV 1000
  386. static struct nvkm_pstate
  387. gk20a_pstates[] = {
  388. {
  389. .base = {
  390. .domain[nv_clk_src_gpc] = 72000,
  391. .voltage = 0,
  392. },
  393. },
  394. {
  395. .base = {
  396. .domain[nv_clk_src_gpc] = 108000,
  397. .voltage = 1,
  398. },
  399. },
  400. {
  401. .base = {
  402. .domain[nv_clk_src_gpc] = 180000,
  403. .voltage = 2,
  404. },
  405. },
  406. {
  407. .base = {
  408. .domain[nv_clk_src_gpc] = 252000,
  409. .voltage = 3,
  410. },
  411. },
  412. {
  413. .base = {
  414. .domain[nv_clk_src_gpc] = 324000,
  415. .voltage = 4,
  416. },
  417. },
  418. {
  419. .base = {
  420. .domain[nv_clk_src_gpc] = 396000,
  421. .voltage = 5,
  422. },
  423. },
  424. {
  425. .base = {
  426. .domain[nv_clk_src_gpc] = 468000,
  427. .voltage = 6,
  428. },
  429. },
  430. {
  431. .base = {
  432. .domain[nv_clk_src_gpc] = 540000,
  433. .voltage = 7,
  434. },
  435. },
  436. {
  437. .base = {
  438. .domain[nv_clk_src_gpc] = 612000,
  439. .voltage = 8,
  440. },
  441. },
  442. {
  443. .base = {
  444. .domain[nv_clk_src_gpc] = 648000,
  445. .voltage = 9,
  446. },
  447. },
  448. {
  449. .base = {
  450. .domain[nv_clk_src_gpc] = 684000,
  451. .voltage = 10,
  452. },
  453. },
  454. {
  455. .base = {
  456. .domain[nv_clk_src_gpc] = 708000,
  457. .voltage = 11,
  458. },
  459. },
  460. {
  461. .base = {
  462. .domain[nv_clk_src_gpc] = 756000,
  463. .voltage = 12,
  464. },
  465. },
  466. {
  467. .base = {
  468. .domain[nv_clk_src_gpc] = 804000,
  469. .voltage = 13,
  470. },
  471. },
  472. {
  473. .base = {
  474. .domain[nv_clk_src_gpc] = 852000,
  475. .voltage = 14,
  476. },
  477. },
  478. };
  479. static int
  480. gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
  481. {
  482. struct gk20a_clk *clk = gk20a_clk(base);
  483. struct nvkm_subdev *subdev = &clk->base.subdev;
  484. struct nvkm_device *device = subdev->device;
  485. switch (src) {
  486. case nv_clk_src_crystal:
  487. return device->crystal;
  488. case nv_clk_src_gpc:
  489. gk20a_pllg_read_mnp(clk);
  490. return gk20a_pllg_calc_rate(clk) / GK20A_CLK_GPC_MDIV;
  491. default:
  492. nvkm_error(subdev, "invalid clock source %d\n", src);
  493. return -EINVAL;
  494. }
  495. }
  496. static int
  497. gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
  498. {
  499. struct gk20a_clk *clk = gk20a_clk(base);
  500. return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
  501. GK20A_CLK_GPC_MDIV);
  502. }
  503. static int
  504. gk20a_clk_prog(struct nvkm_clk *base)
  505. {
  506. struct gk20a_clk *clk = gk20a_clk(base);
  507. return gk20a_pllg_program_mnp(clk);
  508. }
  509. static void
  510. gk20a_clk_tidy(struct nvkm_clk *base)
  511. {
  512. }
  513. static void
  514. gk20a_clk_fini(struct nvkm_clk *base)
  515. {
  516. struct gk20a_clk *clk = gk20a_clk(base);
  517. gk20a_pllg_disable(clk);
  518. }
  519. static int
  520. gk20a_clk_init(struct nvkm_clk *base)
  521. {
  522. struct gk20a_clk *clk = gk20a_clk(base);
  523. struct nvkm_subdev *subdev = &clk->base.subdev;
  524. struct nvkm_device *device = subdev->device;
  525. int ret;
  526. nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);
  527. ret = gk20a_clk_prog(&clk->base);
  528. if (ret) {
  529. nvkm_error(subdev, "cannot initialize clock\n");
  530. return ret;
  531. }
  532. return 0;
  533. }
  534. static const struct nvkm_clk_func
  535. gk20a_clk = {
  536. .init = gk20a_clk_init,
  537. .fini = gk20a_clk_fini,
  538. .read = gk20a_clk_read,
  539. .calc = gk20a_clk_calc,
  540. .prog = gk20a_clk_prog,
  541. .tidy = gk20a_clk_tidy,
  542. .pstates = gk20a_pstates,
  543. .nr_pstates = ARRAY_SIZE(gk20a_pstates),
  544. .domains = {
  545. { nv_clk_src_crystal, 0xff },
  546. { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
  547. { nv_clk_src_max }
  548. }
  549. };
  550. int
  551. gk20a_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
  552. {
  553. struct nvkm_device_tegra *tdev = device->func->tegra(device);
  554. struct gk20a_clk *clk;
  555. int ret, i;
  556. if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
  557. return -ENOMEM;
  558. *pclk = &clk->base;
  559. /* Finish initializing the pstates */
  560. for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) {
  561. INIT_LIST_HEAD(&gk20a_pstates[i].list);
  562. gk20a_pstates[i].pstate = i + 1;
  563. }
  564. clk->params = &gk20a_pllg_params;
  565. clk->parent_rate = clk_get_rate(tdev->clk);
  566. ret = nvkm_clk_ctor(&gk20a_clk, device, index, true, &clk->base);
  567. nvkm_info(&clk->base.subdev, "parent clock rate: %d Mhz\n",
  568. clk->parent_rate / MHZ);
  569. return ret;
  570. }