gf100.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466
  1. /*
  2. * Copyright 2012 Red Hat Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Ben Skeggs
  23. */
  24. #define gf100_clk(p) container_of((p), struct gf100_clk, base)
  25. #include "priv.h"
  26. #include "pll.h"
  27. #include <subdev/bios.h>
  28. #include <subdev/bios/pll.h>
  29. #include <subdev/timer.h>
  30. struct gf100_clk_info {
  31. u32 freq;
  32. u32 ssel;
  33. u32 mdiv;
  34. u32 dsrc;
  35. u32 ddiv;
  36. u32 coef;
  37. };
  38. struct gf100_clk {
  39. struct nvkm_clk base;
  40. struct gf100_clk_info eng[16];
  41. };
  42. static u32 read_div(struct gf100_clk *, int, u32, u32);
  43. static u32
  44. read_vco(struct gf100_clk *clk, u32 dsrc)
  45. {
  46. struct nvkm_device *device = clk->base.subdev.device;
  47. u32 ssrc = nvkm_rd32(device, dsrc);
  48. if (!(ssrc & 0x00000100))
  49. return nvkm_clk_read(&clk->base, nv_clk_src_sppll0);
  50. return nvkm_clk_read(&clk->base, nv_clk_src_sppll1);
  51. }
  52. static u32
  53. read_pll(struct gf100_clk *clk, u32 pll)
  54. {
  55. struct nvkm_device *device = clk->base.subdev.device;
  56. u32 ctrl = nvkm_rd32(device, pll + 0x00);
  57. u32 coef = nvkm_rd32(device, pll + 0x04);
  58. u32 P = (coef & 0x003f0000) >> 16;
  59. u32 N = (coef & 0x0000ff00) >> 8;
  60. u32 M = (coef & 0x000000ff) >> 0;
  61. u32 sclk;
  62. if (!(ctrl & 0x00000001))
  63. return 0;
  64. switch (pll) {
  65. case 0x00e800:
  66. case 0x00e820:
  67. sclk = device->crystal;
  68. P = 1;
  69. break;
  70. case 0x132000:
  71. sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrc);
  72. break;
  73. case 0x132020:
  74. sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrcref);
  75. break;
  76. case 0x137000:
  77. case 0x137020:
  78. case 0x137040:
  79. case 0x1370e0:
  80. sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
  81. break;
  82. default:
  83. return 0;
  84. }
  85. return sclk * N / M / P;
  86. }
  87. static u32
  88. read_div(struct gf100_clk *clk, int doff, u32 dsrc, u32 dctl)
  89. {
  90. struct nvkm_device *device = clk->base.subdev.device;
  91. u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4));
  92. u32 sctl = nvkm_rd32(device, dctl + (doff * 4));
  93. switch (ssrc & 0x00000003) {
  94. case 0:
  95. if ((ssrc & 0x00030000) != 0x00030000)
  96. return device->crystal;
  97. return 108000;
  98. case 2:
  99. return 100000;
  100. case 3:
  101. if (sctl & 0x80000000) {
  102. u32 sclk = read_vco(clk, dsrc + (doff * 4));
  103. u32 sdiv = (sctl & 0x0000003f) + 2;
  104. return (sclk * 2) / sdiv;
  105. }
  106. return read_vco(clk, dsrc + (doff * 4));
  107. default:
  108. return 0;
  109. }
  110. }
  111. static u32
  112. read_clk(struct gf100_clk *clk, int idx)
  113. {
  114. struct nvkm_device *device = clk->base.subdev.device;
  115. u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4));
  116. u32 ssel = nvkm_rd32(device, 0x137100);
  117. u32 sclk, sdiv;
  118. if (ssel & (1 << idx)) {
  119. if (idx < 7)
  120. sclk = read_pll(clk, 0x137000 + (idx * 0x20));
  121. else
  122. sclk = read_pll(clk, 0x1370e0);
  123. sdiv = ((sctl & 0x00003f00) >> 8) + 2;
  124. } else {
  125. sclk = read_div(clk, idx, 0x137160, 0x1371d0);
  126. sdiv = ((sctl & 0x0000003f) >> 0) + 2;
  127. }
  128. if (sctl & 0x80000000)
  129. return (sclk * 2) / sdiv;
  130. return sclk;
  131. }
  132. static int
  133. gf100_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
  134. {
  135. struct gf100_clk *clk = gf100_clk(base);
  136. struct nvkm_subdev *subdev = &clk->base.subdev;
  137. struct nvkm_device *device = subdev->device;
  138. switch (src) {
  139. case nv_clk_src_crystal:
  140. return device->crystal;
  141. case nv_clk_src_href:
  142. return 100000;
  143. case nv_clk_src_sppll0:
  144. return read_pll(clk, 0x00e800);
  145. case nv_clk_src_sppll1:
  146. return read_pll(clk, 0x00e820);
  147. case nv_clk_src_mpllsrcref:
  148. return read_div(clk, 0, 0x137320, 0x137330);
  149. case nv_clk_src_mpllsrc:
  150. return read_pll(clk, 0x132020);
  151. case nv_clk_src_mpll:
  152. return read_pll(clk, 0x132000);
  153. case nv_clk_src_mdiv:
  154. return read_div(clk, 0, 0x137300, 0x137310);
  155. case nv_clk_src_mem:
  156. if (nvkm_rd32(device, 0x1373f0) & 0x00000002)
  157. return nvkm_clk_read(&clk->base, nv_clk_src_mpll);
  158. return nvkm_clk_read(&clk->base, nv_clk_src_mdiv);
  159. case nv_clk_src_gpc:
  160. return read_clk(clk, 0x00);
  161. case nv_clk_src_rop:
  162. return read_clk(clk, 0x01);
  163. case nv_clk_src_hubk07:
  164. return read_clk(clk, 0x02);
  165. case nv_clk_src_hubk06:
  166. return read_clk(clk, 0x07);
  167. case nv_clk_src_hubk01:
  168. return read_clk(clk, 0x08);
  169. case nv_clk_src_copy:
  170. return read_clk(clk, 0x09);
  171. case nv_clk_src_daemon:
  172. return read_clk(clk, 0x0c);
  173. case nv_clk_src_vdec:
  174. return read_clk(clk, 0x0e);
  175. default:
  176. nvkm_error(subdev, "invalid clock source %d\n", src);
  177. return -EINVAL;
  178. }
  179. }
  180. static u32
  181. calc_div(struct gf100_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
  182. {
  183. u32 div = min((ref * 2) / freq, (u32)65);
  184. if (div < 2)
  185. div = 2;
  186. *ddiv = div - 2;
  187. return (ref * 2) / div;
  188. }
  189. static u32
  190. calc_src(struct gf100_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
  191. {
  192. u32 sclk;
  193. /* use one of the fixed frequencies if possible */
  194. *ddiv = 0x00000000;
  195. switch (freq) {
  196. case 27000:
  197. case 108000:
  198. *dsrc = 0x00000000;
  199. if (freq == 108000)
  200. *dsrc |= 0x00030000;
  201. return freq;
  202. case 100000:
  203. *dsrc = 0x00000002;
  204. return freq;
  205. default:
  206. *dsrc = 0x00000003;
  207. break;
  208. }
  209. /* otherwise, calculate the closest divider */
  210. sclk = read_vco(clk, 0x137160 + (idx * 4));
  211. if (idx < 7)
  212. sclk = calc_div(clk, idx, sclk, freq, ddiv);
  213. return sclk;
  214. }
  215. static u32
  216. calc_pll(struct gf100_clk *clk, int idx, u32 freq, u32 *coef)
  217. {
  218. struct nvkm_subdev *subdev = &clk->base.subdev;
  219. struct nvkm_bios *bios = subdev->device->bios;
  220. struct nvbios_pll limits;
  221. int N, M, P, ret;
  222. ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
  223. if (ret)
  224. return 0;
  225. limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
  226. if (!limits.refclk)
  227. return 0;
  228. ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P);
  229. if (ret <= 0)
  230. return 0;
  231. *coef = (P << 16) | (N << 8) | M;
  232. return ret;
  233. }
  234. static int
  235. calc_clk(struct gf100_clk *clk, struct nvkm_cstate *cstate, int idx, int dom)
  236. {
  237. struct gf100_clk_info *info = &clk->eng[idx];
  238. u32 freq = cstate->domain[dom];
  239. u32 src0, div0, div1D, div1P = 0;
  240. u32 clk0, clk1 = 0;
  241. /* invalid clock domain */
  242. if (!freq)
  243. return 0;
  244. /* first possible path, using only dividers */
  245. clk0 = calc_src(clk, idx, freq, &src0, &div0);
  246. clk0 = calc_div(clk, idx, clk0, freq, &div1D);
  247. /* see if we can get any closer using PLLs */
  248. if (clk0 != freq && (0x00004387 & (1 << idx))) {
  249. if (idx <= 7)
  250. clk1 = calc_pll(clk, idx, freq, &info->coef);
  251. else
  252. clk1 = cstate->domain[nv_clk_src_hubk06];
  253. clk1 = calc_div(clk, idx, clk1, freq, &div1P);
  254. }
  255. /* select the method which gets closest to target freq */
  256. if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
  257. info->dsrc = src0;
  258. if (div0) {
  259. info->ddiv |= 0x80000000;
  260. info->ddiv |= div0 << 8;
  261. info->ddiv |= div0;
  262. }
  263. if (div1D) {
  264. info->mdiv |= 0x80000000;
  265. info->mdiv |= div1D;
  266. }
  267. info->ssel = info->coef = 0;
  268. info->freq = clk0;
  269. } else {
  270. if (div1P) {
  271. info->mdiv |= 0x80000000;
  272. info->mdiv |= div1P << 8;
  273. }
  274. info->ssel = (1 << idx);
  275. info->freq = clk1;
  276. }
  277. return 0;
  278. }
  279. static int
  280. gf100_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
  281. {
  282. struct gf100_clk *clk = gf100_clk(base);
  283. int ret;
  284. if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
  285. (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
  286. (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
  287. (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
  288. (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
  289. (ret = calc_clk(clk, cstate, 0x09, nv_clk_src_copy)) ||
  290. (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_daemon)) ||
  291. (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
  292. return ret;
  293. return 0;
  294. }
  295. static void
  296. gf100_clk_prog_0(struct gf100_clk *clk, int idx)
  297. {
  298. struct gf100_clk_info *info = &clk->eng[idx];
  299. struct nvkm_device *device = clk->base.subdev.device;
  300. if (idx < 7 && !info->ssel) {
  301. nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x80003f3f, info->ddiv);
  302. nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc);
  303. }
  304. }
  305. static void
  306. gf100_clk_prog_1(struct gf100_clk *clk, int idx)
  307. {
  308. struct nvkm_device *device = clk->base.subdev.device;
  309. nvkm_mask(device, 0x137100, (1 << idx), 0x00000000);
  310. nvkm_msec(device, 2000,
  311. if (!(nvkm_rd32(device, 0x137100) & (1 << idx)))
  312. break;
  313. );
  314. }
  315. static void
  316. gf100_clk_prog_2(struct gf100_clk *clk, int idx)
  317. {
  318. struct gf100_clk_info *info = &clk->eng[idx];
  319. struct nvkm_device *device = clk->base.subdev.device;
  320. const u32 addr = 0x137000 + (idx * 0x20);
  321. if (idx <= 7) {
  322. nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000);
  323. nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000);
  324. if (info->coef) {
  325. nvkm_wr32(device, addr + 0x04, info->coef);
  326. nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001);
  327. nvkm_msec(device, 2000,
  328. if (nvkm_rd32(device, addr + 0x00) & 0x00020000)
  329. break;
  330. );
  331. nvkm_mask(device, addr + 0x00, 0x00020004, 0x00000004);
  332. }
  333. }
  334. }
  335. static void
  336. gf100_clk_prog_3(struct gf100_clk *clk, int idx)
  337. {
  338. struct gf100_clk_info *info = &clk->eng[idx];
  339. struct nvkm_device *device = clk->base.subdev.device;
  340. if (info->ssel) {
  341. nvkm_mask(device, 0x137100, (1 << idx), info->ssel);
  342. nvkm_msec(device, 2000,
  343. u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx);
  344. if (tmp == info->ssel)
  345. break;
  346. );
  347. }
  348. }
  349. static void
  350. gf100_clk_prog_4(struct gf100_clk *clk, int idx)
  351. {
  352. struct gf100_clk_info *info = &clk->eng[idx];
  353. struct nvkm_device *device = clk->base.subdev.device;
  354. nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f3f, info->mdiv);
  355. }
  356. static int
  357. gf100_clk_prog(struct nvkm_clk *base)
  358. {
  359. struct gf100_clk *clk = gf100_clk(base);
  360. struct {
  361. void (*exec)(struct gf100_clk *, int);
  362. } stage[] = {
  363. { gf100_clk_prog_0 }, /* div programming */
  364. { gf100_clk_prog_1 }, /* select div mode */
  365. { gf100_clk_prog_2 }, /* (maybe) program pll */
  366. { gf100_clk_prog_3 }, /* (maybe) select pll mode */
  367. { gf100_clk_prog_4 }, /* final divider */
  368. };
  369. int i, j;
  370. for (i = 0; i < ARRAY_SIZE(stage); i++) {
  371. for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
  372. if (!clk->eng[j].freq)
  373. continue;
  374. stage[i].exec(clk, j);
  375. }
  376. }
  377. return 0;
  378. }
  379. static void
  380. gf100_clk_tidy(struct nvkm_clk *base)
  381. {
  382. struct gf100_clk *clk = gf100_clk(base);
  383. memset(clk->eng, 0x00, sizeof(clk->eng));
  384. }
  385. static const struct nvkm_clk_func
  386. gf100_clk = {
  387. .read = gf100_clk_read,
  388. .calc = gf100_clk_calc,
  389. .prog = gf100_clk_prog,
  390. .tidy = gf100_clk_tidy,
  391. .domains = {
  392. { nv_clk_src_crystal, 0xff },
  393. { nv_clk_src_href , 0xff },
  394. { nv_clk_src_hubk06 , 0x00 },
  395. { nv_clk_src_hubk01 , 0x01 },
  396. { nv_clk_src_copy , 0x02 },
  397. { nv_clk_src_gpc , 0x03, 0, "core", 2000 },
  398. { nv_clk_src_rop , 0x04 },
  399. { nv_clk_src_mem , 0x05, 0, "memory", 1000 },
  400. { nv_clk_src_vdec , 0x06 },
  401. { nv_clk_src_daemon , 0x0a },
  402. { nv_clk_src_hubk07 , 0x0b },
  403. { nv_clk_src_max }
  404. }
  405. };
  406. int
  407. gf100_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
  408. {
  409. struct gf100_clk *clk;
  410. if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
  411. return -ENOMEM;
  412. *pclk = &clk->base;
  413. return nvkm_clk_ctor(&gf100_clk, device, index, false, &clk->base);
  414. }