intel_ringbuffer.c 82 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. static void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. struct intel_engine_cs *ring = req->ring;
  87. u32 cmd;
  88. int ret;
  89. cmd = MI_FLUSH;
  90. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  91. cmd |= MI_NO_WRITE_FLUSH;
  92. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  93. cmd |= MI_READ_FLUSH;
  94. ret = intel_ring_begin(req, 2);
  95. if (ret)
  96. return ret;
  97. intel_ring_emit(ring, cmd);
  98. intel_ring_emit(ring, MI_NOOP);
  99. intel_ring_advance(ring);
  100. return 0;
  101. }
  102. static int
  103. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  104. u32 invalidate_domains,
  105. u32 flush_domains)
  106. {
  107. struct intel_engine_cs *ring = req->ring;
  108. struct drm_device *dev = ring->dev;
  109. u32 cmd;
  110. int ret;
  111. /*
  112. * read/write caches:
  113. *
  114. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  115. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  116. * also flushed at 2d versus 3d pipeline switches.
  117. *
  118. * read-only caches:
  119. *
  120. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  121. * MI_READ_FLUSH is set, and is always flushed on 965.
  122. *
  123. * I915_GEM_DOMAIN_COMMAND may not exist?
  124. *
  125. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  126. * invalidated when MI_EXE_FLUSH is set.
  127. *
  128. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  129. * invalidated with every MI_FLUSH.
  130. *
  131. * TLBs:
  132. *
  133. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  134. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  135. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  136. * are flushed at any MI_FLUSH.
  137. */
  138. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  139. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  140. cmd &= ~MI_NO_WRITE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  142. cmd |= MI_EXE_FLUSH;
  143. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  144. (IS_G4X(dev) || IS_GEN5(dev)))
  145. cmd |= MI_INVALIDATE_ISP;
  146. ret = intel_ring_begin(req, 2);
  147. if (ret)
  148. return ret;
  149. intel_ring_emit(ring, cmd);
  150. intel_ring_emit(ring, MI_NOOP);
  151. intel_ring_advance(ring);
  152. return 0;
  153. }
  154. /**
  155. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  156. * implementing two workarounds on gen6. From section 1.4.7.1
  157. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  158. *
  159. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  160. * produced by non-pipelined state commands), software needs to first
  161. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  162. * 0.
  163. *
  164. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  165. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  166. *
  167. * And the workaround for these two requires this workaround first:
  168. *
  169. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  170. * BEFORE the pipe-control with a post-sync op and no write-cache
  171. * flushes.
  172. *
  173. * And this last workaround is tricky because of the requirements on
  174. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  175. * volume 2 part 1:
  176. *
  177. * "1 of the following must also be set:
  178. * - Render Target Cache Flush Enable ([12] of DW1)
  179. * - Depth Cache Flush Enable ([0] of DW1)
  180. * - Stall at Pixel Scoreboard ([1] of DW1)
  181. * - Depth Stall ([13] of DW1)
  182. * - Post-Sync Operation ([13] of DW1)
  183. * - Notify Enable ([8] of DW1)"
  184. *
  185. * The cache flushes require the workaround flush that triggered this
  186. * one, so we can't use it. Depth stall would trigger the same.
  187. * Post-sync nonzero is what triggered this second workaround, so we
  188. * can't use that one either. Notify enable is IRQs, which aren't
  189. * really our business. That leaves only stall at scoreboard.
  190. */
  191. static int
  192. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  193. {
  194. struct intel_engine_cs *ring = req->ring;
  195. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  196. int ret;
  197. ret = intel_ring_begin(req, 6);
  198. if (ret)
  199. return ret;
  200. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  201. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  202. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  203. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  204. intel_ring_emit(ring, 0); /* low dword */
  205. intel_ring_emit(ring, 0); /* high dword */
  206. intel_ring_emit(ring, MI_NOOP);
  207. intel_ring_advance(ring);
  208. ret = intel_ring_begin(req, 6);
  209. if (ret)
  210. return ret;
  211. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  212. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  213. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  214. intel_ring_emit(ring, 0);
  215. intel_ring_emit(ring, 0);
  216. intel_ring_emit(ring, MI_NOOP);
  217. intel_ring_advance(ring);
  218. return 0;
  219. }
  220. static int
  221. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  222. u32 invalidate_domains, u32 flush_domains)
  223. {
  224. struct intel_engine_cs *ring = req->ring;
  225. u32 flags = 0;
  226. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  227. int ret;
  228. /* Force SNB workarounds for PIPE_CONTROL flushes */
  229. ret = intel_emit_post_sync_nonzero_flush(req);
  230. if (ret)
  231. return ret;
  232. /* Just flush everything. Experiments have shown that reducing the
  233. * number of bits based on the write domains has little performance
  234. * impact.
  235. */
  236. if (flush_domains) {
  237. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  238. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  239. /*
  240. * Ensure that any following seqno writes only happen
  241. * when the render cache is indeed flushed.
  242. */
  243. flags |= PIPE_CONTROL_CS_STALL;
  244. }
  245. if (invalidate_domains) {
  246. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  247. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  248. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  249. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  250. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  251. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  252. /*
  253. * TLB invalidate requires a post-sync write.
  254. */
  255. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  256. }
  257. ret = intel_ring_begin(req, 4);
  258. if (ret)
  259. return ret;
  260. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  261. intel_ring_emit(ring, flags);
  262. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  263. intel_ring_emit(ring, 0);
  264. intel_ring_advance(ring);
  265. return 0;
  266. }
  267. static int
  268. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  269. {
  270. struct intel_engine_cs *ring = req->ring;
  271. int ret;
  272. ret = intel_ring_begin(req, 4);
  273. if (ret)
  274. return ret;
  275. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  276. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  277. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  278. intel_ring_emit(ring, 0);
  279. intel_ring_emit(ring, 0);
  280. intel_ring_advance(ring);
  281. return 0;
  282. }
  283. static int
  284. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  285. u32 invalidate_domains, u32 flush_domains)
  286. {
  287. struct intel_engine_cs *ring = req->ring;
  288. u32 flags = 0;
  289. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  290. int ret;
  291. /*
  292. * Ensure that any following seqno writes only happen when the render
  293. * cache is indeed flushed.
  294. *
  295. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  296. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  297. * don't try to be clever and just set it unconditionally.
  298. */
  299. flags |= PIPE_CONTROL_CS_STALL;
  300. /* Just flush everything. Experiments have shown that reducing the
  301. * number of bits based on the write domains has little performance
  302. * impact.
  303. */
  304. if (flush_domains) {
  305. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  306. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  307. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  308. }
  309. if (invalidate_domains) {
  310. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  311. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  312. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  313. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  314. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  315. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  316. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  317. /*
  318. * TLB invalidate requires a post-sync write.
  319. */
  320. flags |= PIPE_CONTROL_QW_WRITE;
  321. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  322. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  323. /* Workaround: we must issue a pipe_control with CS-stall bit
  324. * set before a pipe_control command that has the state cache
  325. * invalidate bit set. */
  326. gen7_render_ring_cs_stall_wa(req);
  327. }
  328. ret = intel_ring_begin(req, 4);
  329. if (ret)
  330. return ret;
  331. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  332. intel_ring_emit(ring, flags);
  333. intel_ring_emit(ring, scratch_addr);
  334. intel_ring_emit(ring, 0);
  335. intel_ring_advance(ring);
  336. return 0;
  337. }
  338. static int
  339. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  340. u32 flags, u32 scratch_addr)
  341. {
  342. struct intel_engine_cs *ring = req->ring;
  343. int ret;
  344. ret = intel_ring_begin(req, 6);
  345. if (ret)
  346. return ret;
  347. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  348. intel_ring_emit(ring, flags);
  349. intel_ring_emit(ring, scratch_addr);
  350. intel_ring_emit(ring, 0);
  351. intel_ring_emit(ring, 0);
  352. intel_ring_emit(ring, 0);
  353. intel_ring_advance(ring);
  354. return 0;
  355. }
  356. static int
  357. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  358. u32 invalidate_domains, u32 flush_domains)
  359. {
  360. u32 flags = 0;
  361. u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  362. int ret;
  363. flags |= PIPE_CONTROL_CS_STALL;
  364. if (flush_domains) {
  365. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  366. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  367. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  368. }
  369. if (invalidate_domains) {
  370. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  371. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  372. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  373. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  374. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  375. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  376. flags |= PIPE_CONTROL_QW_WRITE;
  377. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  378. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  379. ret = gen8_emit_pipe_control(req,
  380. PIPE_CONTROL_CS_STALL |
  381. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  382. 0);
  383. if (ret)
  384. return ret;
  385. }
  386. return gen8_emit_pipe_control(req, flags, scratch_addr);
  387. }
  388. static void ring_write_tail(struct intel_engine_cs *ring,
  389. u32 value)
  390. {
  391. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  392. I915_WRITE_TAIL(ring, value);
  393. }
  394. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  395. {
  396. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  397. u64 acthd;
  398. if (INTEL_INFO(ring->dev)->gen >= 8)
  399. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  400. RING_ACTHD_UDW(ring->mmio_base));
  401. else if (INTEL_INFO(ring->dev)->gen >= 4)
  402. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  403. else
  404. acthd = I915_READ(ACTHD);
  405. return acthd;
  406. }
  407. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  408. {
  409. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  410. u32 addr;
  411. addr = dev_priv->status_page_dmah->busaddr;
  412. if (INTEL_INFO(ring->dev)->gen >= 4)
  413. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  414. I915_WRITE(HWS_PGA, addr);
  415. }
  416. static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  417. {
  418. struct drm_device *dev = ring->dev;
  419. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  420. u32 mmio = 0;
  421. /* The ring status page addresses are no longer next to the rest of
  422. * the ring registers as of gen7.
  423. */
  424. if (IS_GEN7(dev)) {
  425. switch (ring->id) {
  426. case RCS:
  427. mmio = RENDER_HWS_PGA_GEN7;
  428. break;
  429. case BCS:
  430. mmio = BLT_HWS_PGA_GEN7;
  431. break;
  432. /*
  433. * VCS2 actually doesn't exist on Gen7. Only shut up
  434. * gcc switch check warning
  435. */
  436. case VCS2:
  437. case VCS:
  438. mmio = BSD_HWS_PGA_GEN7;
  439. break;
  440. case VECS:
  441. mmio = VEBOX_HWS_PGA_GEN7;
  442. break;
  443. }
  444. } else if (IS_GEN6(ring->dev)) {
  445. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  446. } else {
  447. /* XXX: gen8 returns to sanity */
  448. mmio = RING_HWS_PGA(ring->mmio_base);
  449. }
  450. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  451. POSTING_READ(mmio);
  452. /*
  453. * Flush the TLB for this page
  454. *
  455. * FIXME: These two bits have disappeared on gen8, so a question
  456. * arises: do we still need this and if so how should we go about
  457. * invalidating the TLB?
  458. */
  459. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  460. u32 reg = RING_INSTPM(ring->mmio_base);
  461. /* ring should be idle before issuing a sync flush*/
  462. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  463. I915_WRITE(reg,
  464. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  465. INSTPM_SYNC_FLUSH));
  466. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  467. 1000))
  468. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  469. ring->name);
  470. }
  471. }
  472. static bool stop_ring(struct intel_engine_cs *ring)
  473. {
  474. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  475. if (!IS_GEN2(ring->dev)) {
  476. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  477. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  478. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  479. /* Sometimes we observe that the idle flag is not
  480. * set even though the ring is empty. So double
  481. * check before giving up.
  482. */
  483. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  484. return false;
  485. }
  486. }
  487. I915_WRITE_CTL(ring, 0);
  488. I915_WRITE_HEAD(ring, 0);
  489. ring->write_tail(ring, 0);
  490. if (!IS_GEN2(ring->dev)) {
  491. (void)I915_READ_CTL(ring);
  492. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  493. }
  494. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  495. }
  496. static int init_ring_common(struct intel_engine_cs *ring)
  497. {
  498. struct drm_device *dev = ring->dev;
  499. struct drm_i915_private *dev_priv = dev->dev_private;
  500. struct intel_ringbuffer *ringbuf = ring->buffer;
  501. struct drm_i915_gem_object *obj = ringbuf->obj;
  502. int ret = 0;
  503. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  504. if (!stop_ring(ring)) {
  505. /* G45 ring initialization often fails to reset head to zero */
  506. DRM_DEBUG_KMS("%s head not reset to zero "
  507. "ctl %08x head %08x tail %08x start %08x\n",
  508. ring->name,
  509. I915_READ_CTL(ring),
  510. I915_READ_HEAD(ring),
  511. I915_READ_TAIL(ring),
  512. I915_READ_START(ring));
  513. if (!stop_ring(ring)) {
  514. DRM_ERROR("failed to set %s head to zero "
  515. "ctl %08x head %08x tail %08x start %08x\n",
  516. ring->name,
  517. I915_READ_CTL(ring),
  518. I915_READ_HEAD(ring),
  519. I915_READ_TAIL(ring),
  520. I915_READ_START(ring));
  521. ret = -EIO;
  522. goto out;
  523. }
  524. }
  525. if (I915_NEED_GFX_HWS(dev))
  526. intel_ring_setup_status_page(ring);
  527. else
  528. ring_setup_phys_status_page(ring);
  529. /* Enforce ordering by reading HEAD register back */
  530. I915_READ_HEAD(ring);
  531. /* Initialize the ring. This must happen _after_ we've cleared the ring
  532. * registers with the above sequence (the readback of the HEAD registers
  533. * also enforces ordering), otherwise the hw might lose the new ring
  534. * register values. */
  535. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  536. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  537. if (I915_READ_HEAD(ring))
  538. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  539. ring->name, I915_READ_HEAD(ring));
  540. I915_WRITE_HEAD(ring, 0);
  541. (void)I915_READ_HEAD(ring);
  542. I915_WRITE_CTL(ring,
  543. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  544. | RING_VALID);
  545. /* If the head is still not zero, the ring is dead */
  546. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  547. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  548. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  549. DRM_ERROR("%s initialization failed "
  550. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  551. ring->name,
  552. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  553. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  554. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  555. ret = -EIO;
  556. goto out;
  557. }
  558. ringbuf->last_retired_head = -1;
  559. ringbuf->head = I915_READ_HEAD(ring);
  560. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  561. intel_ring_update_space(ringbuf);
  562. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  563. out:
  564. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  565. return ret;
  566. }
  567. void
  568. intel_fini_pipe_control(struct intel_engine_cs *ring)
  569. {
  570. struct drm_device *dev = ring->dev;
  571. if (ring->scratch.obj == NULL)
  572. return;
  573. if (INTEL_INFO(dev)->gen >= 5) {
  574. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  575. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  576. }
  577. drm_gem_object_unreference(&ring->scratch.obj->base);
  578. ring->scratch.obj = NULL;
  579. }
  580. int
  581. intel_init_pipe_control(struct intel_engine_cs *ring)
  582. {
  583. int ret;
  584. WARN_ON(ring->scratch.obj);
  585. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  586. if (ring->scratch.obj == NULL) {
  587. DRM_ERROR("Failed to allocate seqno page\n");
  588. ret = -ENOMEM;
  589. goto err;
  590. }
  591. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  592. if (ret)
  593. goto err_unref;
  594. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  595. if (ret)
  596. goto err_unref;
  597. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  598. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  599. if (ring->scratch.cpu_page == NULL) {
  600. ret = -ENOMEM;
  601. goto err_unpin;
  602. }
  603. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  604. ring->name, ring->scratch.gtt_offset);
  605. return 0;
  606. err_unpin:
  607. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  608. err_unref:
  609. drm_gem_object_unreference(&ring->scratch.obj->base);
  610. err:
  611. return ret;
  612. }
  613. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  614. {
  615. int ret, i;
  616. struct intel_engine_cs *ring = req->ring;
  617. struct drm_device *dev = ring->dev;
  618. struct drm_i915_private *dev_priv = dev->dev_private;
  619. struct i915_workarounds *w = &dev_priv->workarounds;
  620. if (WARN_ON_ONCE(w->count == 0))
  621. return 0;
  622. ring->gpu_caches_dirty = true;
  623. ret = intel_ring_flush_all_caches(req);
  624. if (ret)
  625. return ret;
  626. ret = intel_ring_begin(req, (w->count * 2 + 2));
  627. if (ret)
  628. return ret;
  629. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  630. for (i = 0; i < w->count; i++) {
  631. intel_ring_emit(ring, w->reg[i].addr);
  632. intel_ring_emit(ring, w->reg[i].value);
  633. }
  634. intel_ring_emit(ring, MI_NOOP);
  635. intel_ring_advance(ring);
  636. ring->gpu_caches_dirty = true;
  637. ret = intel_ring_flush_all_caches(req);
  638. if (ret)
  639. return ret;
  640. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  641. return 0;
  642. }
  643. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  644. {
  645. int ret;
  646. ret = intel_ring_workarounds_emit(req);
  647. if (ret != 0)
  648. return ret;
  649. ret = i915_gem_render_state_init(req);
  650. if (ret)
  651. DRM_ERROR("init render state: %d\n", ret);
  652. return ret;
  653. }
  654. static int wa_add(struct drm_i915_private *dev_priv,
  655. const u32 addr, const u32 mask, const u32 val)
  656. {
  657. const u32 idx = dev_priv->workarounds.count;
  658. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  659. return -ENOSPC;
  660. dev_priv->workarounds.reg[idx].addr = addr;
  661. dev_priv->workarounds.reg[idx].value = val;
  662. dev_priv->workarounds.reg[idx].mask = mask;
  663. dev_priv->workarounds.count++;
  664. return 0;
  665. }
  666. #define WA_REG(addr, mask, val) do { \
  667. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  668. if (r) \
  669. return r; \
  670. } while (0)
  671. #define WA_SET_BIT_MASKED(addr, mask) \
  672. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  673. #define WA_CLR_BIT_MASKED(addr, mask) \
  674. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  675. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  676. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  677. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  678. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  679. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  680. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  681. {
  682. struct drm_device *dev = ring->dev;
  683. struct drm_i915_private *dev_priv = dev->dev_private;
  684. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  685. /* WaDisableAsyncFlipPerfMode:bdw */
  686. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  687. /* WaDisablePartialInstShootdown:bdw */
  688. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  689. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  690. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  691. STALL_DOP_GATING_DISABLE);
  692. /* WaDisableDopClockGating:bdw */
  693. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  694. DOP_CLOCK_GATING_DISABLE);
  695. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  696. GEN8_SAMPLER_POWER_BYPASS_DIS);
  697. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  698. * workaround for for a possible hang in the unlikely event a TLB
  699. * invalidation occurs during a PSD flush.
  700. */
  701. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  702. /* WaForceEnableNonCoherent:bdw */
  703. HDC_FORCE_NON_COHERENT |
  704. /* WaForceContextSaveRestoreNonCoherent:bdw */
  705. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  706. /* WaHdcDisableFetchWhenMasked:bdw */
  707. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  708. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  709. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  710. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  711. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  712. * polygons in the same 8x4 pixel/sample area to be processed without
  713. * stalling waiting for the earlier ones to write to Hierarchical Z
  714. * buffer."
  715. *
  716. * This optimization is off by default for Broadwell; turn it on.
  717. */
  718. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  719. /* Wa4x4STCOptimizationDisable:bdw */
  720. WA_SET_BIT_MASKED(CACHE_MODE_1,
  721. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  722. /*
  723. * BSpec recommends 8x4 when MSAA is used,
  724. * however in practice 16x4 seems fastest.
  725. *
  726. * Note that PS/WM thread counts depend on the WIZ hashing
  727. * disable bit, which we don't touch here, but it's good
  728. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  729. */
  730. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  731. GEN6_WIZ_HASHING_MASK,
  732. GEN6_WIZ_HASHING_16x4);
  733. return 0;
  734. }
  735. static int chv_init_workarounds(struct intel_engine_cs *ring)
  736. {
  737. struct drm_device *dev = ring->dev;
  738. struct drm_i915_private *dev_priv = dev->dev_private;
  739. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  740. /* WaDisableAsyncFlipPerfMode:chv */
  741. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  742. /* WaDisablePartialInstShootdown:chv */
  743. /* WaDisableThreadStallDopClockGating:chv */
  744. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  745. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  746. STALL_DOP_GATING_DISABLE);
  747. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  748. * workaround for a possible hang in the unlikely event a TLB
  749. * invalidation occurs during a PSD flush.
  750. */
  751. /* WaForceEnableNonCoherent:chv */
  752. /* WaHdcDisableFetchWhenMasked:chv */
  753. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  754. HDC_FORCE_NON_COHERENT |
  755. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  756. /* According to the CACHE_MODE_0 default value documentation, some
  757. * CHV platforms disable this optimization by default. Turn it on.
  758. */
  759. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  760. /* Wa4x4STCOptimizationDisable:chv */
  761. WA_SET_BIT_MASKED(CACHE_MODE_1,
  762. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  763. /* Improve HiZ throughput on CHV. */
  764. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  765. /*
  766. * BSpec recommends 8x4 when MSAA is used,
  767. * however in practice 16x4 seems fastest.
  768. *
  769. * Note that PS/WM thread counts depend on the WIZ hashing
  770. * disable bit, which we don't touch here, but it's good
  771. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  772. */
  773. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  774. GEN6_WIZ_HASHING_MASK,
  775. GEN6_WIZ_HASHING_16x4);
  776. return 0;
  777. }
  778. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  779. {
  780. struct drm_device *dev = ring->dev;
  781. struct drm_i915_private *dev_priv = dev->dev_private;
  782. uint32_t tmp;
  783. /* WaDisablePartialInstShootdown:skl,bxt */
  784. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  785. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  786. /* Syncing dependencies between camera and graphics:skl,bxt */
  787. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  788. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  789. if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
  790. INTEL_REVID(dev) == SKL_REVID_B0)) ||
  791. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
  792. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  793. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  794. GEN9_DG_MIRROR_FIX_ENABLE);
  795. }
  796. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
  797. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
  798. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  799. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  800. GEN9_RHWO_OPTIMIZATION_DISABLE);
  801. /*
  802. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  803. * but we do that in per ctx batchbuffer as there is an issue
  804. * with this register not getting restored on ctx restore
  805. */
  806. }
  807. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
  808. IS_BROXTON(dev)) {
  809. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  810. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  811. GEN9_ENABLE_YV12_BUGFIX);
  812. }
  813. /* Wa4x4STCOptimizationDisable:skl,bxt */
  814. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  815. /* WaDisablePartialResolveInVc:skl,bxt */
  816. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
  817. /* WaCcsTlbPrefetchDisable:skl,bxt */
  818. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  819. GEN9_CCS_TLB_PREFETCH_ENABLE);
  820. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  821. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
  822. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
  823. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  824. PIXEL_MASK_CAMMING_DISABLE);
  825. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  826. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  827. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
  828. (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
  829. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  830. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  831. return 0;
  832. }
  833. static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
  834. {
  835. struct drm_device *dev = ring->dev;
  836. struct drm_i915_private *dev_priv = dev->dev_private;
  837. u8 vals[3] = { 0, 0, 0 };
  838. unsigned int i;
  839. for (i = 0; i < 3; i++) {
  840. u8 ss;
  841. /*
  842. * Only consider slices where one, and only one, subslice has 7
  843. * EUs
  844. */
  845. if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
  846. continue;
  847. /*
  848. * subslice_7eu[i] != 0 (because of the check above) and
  849. * ss_max == 4 (maximum number of subslices possible per slice)
  850. *
  851. * -> 0 <= ss <= 3;
  852. */
  853. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  854. vals[i] = 3 - ss;
  855. }
  856. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  857. return 0;
  858. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  859. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  860. GEN9_IZ_HASHING_MASK(2) |
  861. GEN9_IZ_HASHING_MASK(1) |
  862. GEN9_IZ_HASHING_MASK(0),
  863. GEN9_IZ_HASHING(2, vals[2]) |
  864. GEN9_IZ_HASHING(1, vals[1]) |
  865. GEN9_IZ_HASHING(0, vals[0]));
  866. return 0;
  867. }
  868. static int skl_init_workarounds(struct intel_engine_cs *ring)
  869. {
  870. struct drm_device *dev = ring->dev;
  871. struct drm_i915_private *dev_priv = dev->dev_private;
  872. gen9_init_workarounds(ring);
  873. /* WaDisablePowerCompilerClockGating:skl */
  874. if (INTEL_REVID(dev) == SKL_REVID_B0)
  875. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  876. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  877. if (INTEL_REVID(dev) <= SKL_REVID_D0) {
  878. /*
  879. *Use Force Non-Coherent whenever executing a 3D context. This
  880. * is a workaround for a possible hang in the unlikely event
  881. * a TLB invalidation occurs during a PSD flush.
  882. */
  883. /* WaForceEnableNonCoherent:skl */
  884. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  885. HDC_FORCE_NON_COHERENT);
  886. }
  887. if (INTEL_REVID(dev) == SKL_REVID_C0 ||
  888. INTEL_REVID(dev) == SKL_REVID_D0)
  889. /* WaBarrierPerformanceFixDisable:skl */
  890. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  891. HDC_FENCE_DEST_SLM_DISABLE |
  892. HDC_BARRIER_PERFORMANCE_DISABLE);
  893. /* WaDisableSbeCacheDispatchPortSharing:skl */
  894. if (INTEL_REVID(dev) <= SKL_REVID_F0) {
  895. WA_SET_BIT_MASKED(
  896. GEN7_HALF_SLICE_CHICKEN1,
  897. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  898. }
  899. return skl_tune_iz_hashing(ring);
  900. }
  901. static int bxt_init_workarounds(struct intel_engine_cs *ring)
  902. {
  903. struct drm_device *dev = ring->dev;
  904. struct drm_i915_private *dev_priv = dev->dev_private;
  905. gen9_init_workarounds(ring);
  906. /* WaDisableThreadStallDopClockGating:bxt */
  907. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  908. STALL_DOP_GATING_DISABLE);
  909. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  910. if (INTEL_REVID(dev) <= BXT_REVID_B0) {
  911. WA_SET_BIT_MASKED(
  912. GEN7_HALF_SLICE_CHICKEN1,
  913. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  914. }
  915. return 0;
  916. }
  917. int init_workarounds_ring(struct intel_engine_cs *ring)
  918. {
  919. struct drm_device *dev = ring->dev;
  920. struct drm_i915_private *dev_priv = dev->dev_private;
  921. WARN_ON(ring->id != RCS);
  922. dev_priv->workarounds.count = 0;
  923. if (IS_BROADWELL(dev))
  924. return bdw_init_workarounds(ring);
  925. if (IS_CHERRYVIEW(dev))
  926. return chv_init_workarounds(ring);
  927. if (IS_SKYLAKE(dev))
  928. return skl_init_workarounds(ring);
  929. if (IS_BROXTON(dev))
  930. return bxt_init_workarounds(ring);
  931. return 0;
  932. }
  933. static int init_render_ring(struct intel_engine_cs *ring)
  934. {
  935. struct drm_device *dev = ring->dev;
  936. struct drm_i915_private *dev_priv = dev->dev_private;
  937. int ret = init_ring_common(ring);
  938. if (ret)
  939. return ret;
  940. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  941. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  942. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  943. /* We need to disable the AsyncFlip performance optimisations in order
  944. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  945. * programmed to '1' on all products.
  946. *
  947. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  948. */
  949. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  950. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  951. /* Required for the hardware to program scanline values for waiting */
  952. /* WaEnableFlushTlbInvalidationMode:snb */
  953. if (INTEL_INFO(dev)->gen == 6)
  954. I915_WRITE(GFX_MODE,
  955. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  956. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  957. if (IS_GEN7(dev))
  958. I915_WRITE(GFX_MODE_GEN7,
  959. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  960. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  961. if (IS_GEN6(dev)) {
  962. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  963. * "If this bit is set, STCunit will have LRA as replacement
  964. * policy. [...] This bit must be reset. LRA replacement
  965. * policy is not supported."
  966. */
  967. I915_WRITE(CACHE_MODE_0,
  968. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  969. }
  970. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  971. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  972. if (HAS_L3_DPF(dev))
  973. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  974. return init_workarounds_ring(ring);
  975. }
  976. static void render_ring_cleanup(struct intel_engine_cs *ring)
  977. {
  978. struct drm_device *dev = ring->dev;
  979. struct drm_i915_private *dev_priv = dev->dev_private;
  980. if (dev_priv->semaphore_obj) {
  981. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  982. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  983. dev_priv->semaphore_obj = NULL;
  984. }
  985. intel_fini_pipe_control(ring);
  986. }
  987. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  988. unsigned int num_dwords)
  989. {
  990. #define MBOX_UPDATE_DWORDS 8
  991. struct intel_engine_cs *signaller = signaller_req->ring;
  992. struct drm_device *dev = signaller->dev;
  993. struct drm_i915_private *dev_priv = dev->dev_private;
  994. struct intel_engine_cs *waiter;
  995. int i, ret, num_rings;
  996. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  997. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  998. #undef MBOX_UPDATE_DWORDS
  999. ret = intel_ring_begin(signaller_req, num_dwords);
  1000. if (ret)
  1001. return ret;
  1002. for_each_ring(waiter, dev_priv, i) {
  1003. u32 seqno;
  1004. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1005. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1006. continue;
  1007. seqno = i915_gem_request_get_seqno(signaller_req);
  1008. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1009. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1010. PIPE_CONTROL_QW_WRITE |
  1011. PIPE_CONTROL_FLUSH_ENABLE);
  1012. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1013. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1014. intel_ring_emit(signaller, seqno);
  1015. intel_ring_emit(signaller, 0);
  1016. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1017. MI_SEMAPHORE_TARGET(waiter->id));
  1018. intel_ring_emit(signaller, 0);
  1019. }
  1020. return 0;
  1021. }
  1022. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1023. unsigned int num_dwords)
  1024. {
  1025. #define MBOX_UPDATE_DWORDS 6
  1026. struct intel_engine_cs *signaller = signaller_req->ring;
  1027. struct drm_device *dev = signaller->dev;
  1028. struct drm_i915_private *dev_priv = dev->dev_private;
  1029. struct intel_engine_cs *waiter;
  1030. int i, ret, num_rings;
  1031. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1032. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1033. #undef MBOX_UPDATE_DWORDS
  1034. ret = intel_ring_begin(signaller_req, num_dwords);
  1035. if (ret)
  1036. return ret;
  1037. for_each_ring(waiter, dev_priv, i) {
  1038. u32 seqno;
  1039. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1040. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1041. continue;
  1042. seqno = i915_gem_request_get_seqno(signaller_req);
  1043. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1044. MI_FLUSH_DW_OP_STOREDW);
  1045. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1046. MI_FLUSH_DW_USE_GTT);
  1047. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1048. intel_ring_emit(signaller, seqno);
  1049. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1050. MI_SEMAPHORE_TARGET(waiter->id));
  1051. intel_ring_emit(signaller, 0);
  1052. }
  1053. return 0;
  1054. }
  1055. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1056. unsigned int num_dwords)
  1057. {
  1058. struct intel_engine_cs *signaller = signaller_req->ring;
  1059. struct drm_device *dev = signaller->dev;
  1060. struct drm_i915_private *dev_priv = dev->dev_private;
  1061. struct intel_engine_cs *useless;
  1062. int i, ret, num_rings;
  1063. #define MBOX_UPDATE_DWORDS 3
  1064. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1065. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1066. #undef MBOX_UPDATE_DWORDS
  1067. ret = intel_ring_begin(signaller_req, num_dwords);
  1068. if (ret)
  1069. return ret;
  1070. for_each_ring(useless, dev_priv, i) {
  1071. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  1072. if (mbox_reg != GEN6_NOSYNC) {
  1073. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1074. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1075. intel_ring_emit(signaller, mbox_reg);
  1076. intel_ring_emit(signaller, seqno);
  1077. }
  1078. }
  1079. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1080. if (num_rings % 2 == 0)
  1081. intel_ring_emit(signaller, MI_NOOP);
  1082. return 0;
  1083. }
  1084. /**
  1085. * gen6_add_request - Update the semaphore mailbox registers
  1086. *
  1087. * @request - request to write to the ring
  1088. *
  1089. * Update the mailbox registers in the *other* rings with the current seqno.
  1090. * This acts like a signal in the canonical semaphore.
  1091. */
  1092. static int
  1093. gen6_add_request(struct drm_i915_gem_request *req)
  1094. {
  1095. struct intel_engine_cs *ring = req->ring;
  1096. int ret;
  1097. if (ring->semaphore.signal)
  1098. ret = ring->semaphore.signal(req, 4);
  1099. else
  1100. ret = intel_ring_begin(req, 4);
  1101. if (ret)
  1102. return ret;
  1103. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1104. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1105. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1106. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1107. __intel_ring_advance(ring);
  1108. return 0;
  1109. }
  1110. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1111. u32 seqno)
  1112. {
  1113. struct drm_i915_private *dev_priv = dev->dev_private;
  1114. return dev_priv->last_seqno < seqno;
  1115. }
  1116. /**
  1117. * intel_ring_sync - sync the waiter to the signaller on seqno
  1118. *
  1119. * @waiter - ring that is waiting
  1120. * @signaller - ring which has, or will signal
  1121. * @seqno - seqno which the waiter will block on
  1122. */
  1123. static int
  1124. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1125. struct intel_engine_cs *signaller,
  1126. u32 seqno)
  1127. {
  1128. struct intel_engine_cs *waiter = waiter_req->ring;
  1129. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1130. int ret;
  1131. ret = intel_ring_begin(waiter_req, 4);
  1132. if (ret)
  1133. return ret;
  1134. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1135. MI_SEMAPHORE_GLOBAL_GTT |
  1136. MI_SEMAPHORE_POLL |
  1137. MI_SEMAPHORE_SAD_GTE_SDD);
  1138. intel_ring_emit(waiter, seqno);
  1139. intel_ring_emit(waiter,
  1140. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1141. intel_ring_emit(waiter,
  1142. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1143. intel_ring_advance(waiter);
  1144. return 0;
  1145. }
  1146. static int
  1147. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1148. struct intel_engine_cs *signaller,
  1149. u32 seqno)
  1150. {
  1151. struct intel_engine_cs *waiter = waiter_req->ring;
  1152. u32 dw1 = MI_SEMAPHORE_MBOX |
  1153. MI_SEMAPHORE_COMPARE |
  1154. MI_SEMAPHORE_REGISTER;
  1155. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1156. int ret;
  1157. /* Throughout all of the GEM code, seqno passed implies our current
  1158. * seqno is >= the last seqno executed. However for hardware the
  1159. * comparison is strictly greater than.
  1160. */
  1161. seqno -= 1;
  1162. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1163. ret = intel_ring_begin(waiter_req, 4);
  1164. if (ret)
  1165. return ret;
  1166. /* If seqno wrap happened, omit the wait with no-ops */
  1167. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1168. intel_ring_emit(waiter, dw1 | wait_mbox);
  1169. intel_ring_emit(waiter, seqno);
  1170. intel_ring_emit(waiter, 0);
  1171. intel_ring_emit(waiter, MI_NOOP);
  1172. } else {
  1173. intel_ring_emit(waiter, MI_NOOP);
  1174. intel_ring_emit(waiter, MI_NOOP);
  1175. intel_ring_emit(waiter, MI_NOOP);
  1176. intel_ring_emit(waiter, MI_NOOP);
  1177. }
  1178. intel_ring_advance(waiter);
  1179. return 0;
  1180. }
  1181. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1182. do { \
  1183. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1184. PIPE_CONTROL_DEPTH_STALL); \
  1185. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1186. intel_ring_emit(ring__, 0); \
  1187. intel_ring_emit(ring__, 0); \
  1188. } while (0)
  1189. static int
  1190. pc_render_add_request(struct drm_i915_gem_request *req)
  1191. {
  1192. struct intel_engine_cs *ring = req->ring;
  1193. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1194. int ret;
  1195. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1196. * incoherent with writes to memory, i.e. completely fubar,
  1197. * so we need to use PIPE_NOTIFY instead.
  1198. *
  1199. * However, we also need to workaround the qword write
  1200. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1201. * memory before requesting an interrupt.
  1202. */
  1203. ret = intel_ring_begin(req, 32);
  1204. if (ret)
  1205. return ret;
  1206. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1207. PIPE_CONTROL_WRITE_FLUSH |
  1208. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1209. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1210. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1211. intel_ring_emit(ring, 0);
  1212. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1213. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1214. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1215. scratch_addr += 2 * CACHELINE_BYTES;
  1216. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1217. scratch_addr += 2 * CACHELINE_BYTES;
  1218. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1219. scratch_addr += 2 * CACHELINE_BYTES;
  1220. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1221. scratch_addr += 2 * CACHELINE_BYTES;
  1222. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1223. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1224. PIPE_CONTROL_WRITE_FLUSH |
  1225. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1226. PIPE_CONTROL_NOTIFY);
  1227. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1228. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1229. intel_ring_emit(ring, 0);
  1230. __intel_ring_advance(ring);
  1231. return 0;
  1232. }
  1233. static u32
  1234. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1235. {
  1236. /* Workaround to force correct ordering between irq and seqno writes on
  1237. * ivb (and maybe also on snb) by reading from a CS register (like
  1238. * ACTHD) before reading the status page. */
  1239. if (!lazy_coherency) {
  1240. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1241. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1242. }
  1243. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1244. }
  1245. static u32
  1246. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1247. {
  1248. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1249. }
  1250. static void
  1251. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1252. {
  1253. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1254. }
  1255. static u32
  1256. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1257. {
  1258. return ring->scratch.cpu_page[0];
  1259. }
  1260. static void
  1261. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1262. {
  1263. ring->scratch.cpu_page[0] = seqno;
  1264. }
  1265. static bool
  1266. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1267. {
  1268. struct drm_device *dev = ring->dev;
  1269. struct drm_i915_private *dev_priv = dev->dev_private;
  1270. unsigned long flags;
  1271. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1272. return false;
  1273. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1274. if (ring->irq_refcount++ == 0)
  1275. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1276. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1277. return true;
  1278. }
  1279. static void
  1280. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1281. {
  1282. struct drm_device *dev = ring->dev;
  1283. struct drm_i915_private *dev_priv = dev->dev_private;
  1284. unsigned long flags;
  1285. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1286. if (--ring->irq_refcount == 0)
  1287. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1288. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1289. }
  1290. static bool
  1291. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1292. {
  1293. struct drm_device *dev = ring->dev;
  1294. struct drm_i915_private *dev_priv = dev->dev_private;
  1295. unsigned long flags;
  1296. if (!intel_irqs_enabled(dev_priv))
  1297. return false;
  1298. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1299. if (ring->irq_refcount++ == 0) {
  1300. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1301. I915_WRITE(IMR, dev_priv->irq_mask);
  1302. POSTING_READ(IMR);
  1303. }
  1304. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1305. return true;
  1306. }
  1307. static void
  1308. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1309. {
  1310. struct drm_device *dev = ring->dev;
  1311. struct drm_i915_private *dev_priv = dev->dev_private;
  1312. unsigned long flags;
  1313. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1314. if (--ring->irq_refcount == 0) {
  1315. dev_priv->irq_mask |= ring->irq_enable_mask;
  1316. I915_WRITE(IMR, dev_priv->irq_mask);
  1317. POSTING_READ(IMR);
  1318. }
  1319. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1320. }
  1321. static bool
  1322. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1323. {
  1324. struct drm_device *dev = ring->dev;
  1325. struct drm_i915_private *dev_priv = dev->dev_private;
  1326. unsigned long flags;
  1327. if (!intel_irqs_enabled(dev_priv))
  1328. return false;
  1329. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1330. if (ring->irq_refcount++ == 0) {
  1331. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1332. I915_WRITE16(IMR, dev_priv->irq_mask);
  1333. POSTING_READ16(IMR);
  1334. }
  1335. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1336. return true;
  1337. }
  1338. static void
  1339. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1340. {
  1341. struct drm_device *dev = ring->dev;
  1342. struct drm_i915_private *dev_priv = dev->dev_private;
  1343. unsigned long flags;
  1344. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1345. if (--ring->irq_refcount == 0) {
  1346. dev_priv->irq_mask |= ring->irq_enable_mask;
  1347. I915_WRITE16(IMR, dev_priv->irq_mask);
  1348. POSTING_READ16(IMR);
  1349. }
  1350. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1351. }
  1352. static int
  1353. bsd_ring_flush(struct drm_i915_gem_request *req,
  1354. u32 invalidate_domains,
  1355. u32 flush_domains)
  1356. {
  1357. struct intel_engine_cs *ring = req->ring;
  1358. int ret;
  1359. ret = intel_ring_begin(req, 2);
  1360. if (ret)
  1361. return ret;
  1362. intel_ring_emit(ring, MI_FLUSH);
  1363. intel_ring_emit(ring, MI_NOOP);
  1364. intel_ring_advance(ring);
  1365. return 0;
  1366. }
  1367. static int
  1368. i9xx_add_request(struct drm_i915_gem_request *req)
  1369. {
  1370. struct intel_engine_cs *ring = req->ring;
  1371. int ret;
  1372. ret = intel_ring_begin(req, 4);
  1373. if (ret)
  1374. return ret;
  1375. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1376. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1377. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1378. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1379. __intel_ring_advance(ring);
  1380. return 0;
  1381. }
  1382. static bool
  1383. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1384. {
  1385. struct drm_device *dev = ring->dev;
  1386. struct drm_i915_private *dev_priv = dev->dev_private;
  1387. unsigned long flags;
  1388. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1389. return false;
  1390. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1391. if (ring->irq_refcount++ == 0) {
  1392. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1393. I915_WRITE_IMR(ring,
  1394. ~(ring->irq_enable_mask |
  1395. GT_PARITY_ERROR(dev)));
  1396. else
  1397. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1398. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1399. }
  1400. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1401. return true;
  1402. }
  1403. static void
  1404. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1405. {
  1406. struct drm_device *dev = ring->dev;
  1407. struct drm_i915_private *dev_priv = dev->dev_private;
  1408. unsigned long flags;
  1409. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1410. if (--ring->irq_refcount == 0) {
  1411. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1412. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1413. else
  1414. I915_WRITE_IMR(ring, ~0);
  1415. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1416. }
  1417. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1418. }
  1419. static bool
  1420. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1421. {
  1422. struct drm_device *dev = ring->dev;
  1423. struct drm_i915_private *dev_priv = dev->dev_private;
  1424. unsigned long flags;
  1425. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1426. return false;
  1427. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1428. if (ring->irq_refcount++ == 0) {
  1429. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1430. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1431. }
  1432. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1433. return true;
  1434. }
  1435. static void
  1436. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1437. {
  1438. struct drm_device *dev = ring->dev;
  1439. struct drm_i915_private *dev_priv = dev->dev_private;
  1440. unsigned long flags;
  1441. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1442. if (--ring->irq_refcount == 0) {
  1443. I915_WRITE_IMR(ring, ~0);
  1444. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1445. }
  1446. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1447. }
  1448. static bool
  1449. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1450. {
  1451. struct drm_device *dev = ring->dev;
  1452. struct drm_i915_private *dev_priv = dev->dev_private;
  1453. unsigned long flags;
  1454. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1455. return false;
  1456. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1457. if (ring->irq_refcount++ == 0) {
  1458. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1459. I915_WRITE_IMR(ring,
  1460. ~(ring->irq_enable_mask |
  1461. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1462. } else {
  1463. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1464. }
  1465. POSTING_READ(RING_IMR(ring->mmio_base));
  1466. }
  1467. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1468. return true;
  1469. }
  1470. static void
  1471. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1472. {
  1473. struct drm_device *dev = ring->dev;
  1474. struct drm_i915_private *dev_priv = dev->dev_private;
  1475. unsigned long flags;
  1476. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1477. if (--ring->irq_refcount == 0) {
  1478. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1479. I915_WRITE_IMR(ring,
  1480. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1481. } else {
  1482. I915_WRITE_IMR(ring, ~0);
  1483. }
  1484. POSTING_READ(RING_IMR(ring->mmio_base));
  1485. }
  1486. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1487. }
  1488. static int
  1489. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1490. u64 offset, u32 length,
  1491. unsigned dispatch_flags)
  1492. {
  1493. struct intel_engine_cs *ring = req->ring;
  1494. int ret;
  1495. ret = intel_ring_begin(req, 2);
  1496. if (ret)
  1497. return ret;
  1498. intel_ring_emit(ring,
  1499. MI_BATCH_BUFFER_START |
  1500. MI_BATCH_GTT |
  1501. (dispatch_flags & I915_DISPATCH_SECURE ?
  1502. 0 : MI_BATCH_NON_SECURE_I965));
  1503. intel_ring_emit(ring, offset);
  1504. intel_ring_advance(ring);
  1505. return 0;
  1506. }
  1507. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1508. #define I830_BATCH_LIMIT (256*1024)
  1509. #define I830_TLB_ENTRIES (2)
  1510. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1511. static int
  1512. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1513. u64 offset, u32 len,
  1514. unsigned dispatch_flags)
  1515. {
  1516. struct intel_engine_cs *ring = req->ring;
  1517. u32 cs_offset = ring->scratch.gtt_offset;
  1518. int ret;
  1519. ret = intel_ring_begin(req, 6);
  1520. if (ret)
  1521. return ret;
  1522. /* Evict the invalid PTE TLBs */
  1523. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1524. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1525. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1526. intel_ring_emit(ring, cs_offset);
  1527. intel_ring_emit(ring, 0xdeadbeef);
  1528. intel_ring_emit(ring, MI_NOOP);
  1529. intel_ring_advance(ring);
  1530. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1531. if (len > I830_BATCH_LIMIT)
  1532. return -ENOSPC;
  1533. ret = intel_ring_begin(req, 6 + 2);
  1534. if (ret)
  1535. return ret;
  1536. /* Blit the batch (which has now all relocs applied) to the
  1537. * stable batch scratch bo area (so that the CS never
  1538. * stumbles over its tlb invalidation bug) ...
  1539. */
  1540. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1541. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1542. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1543. intel_ring_emit(ring, cs_offset);
  1544. intel_ring_emit(ring, 4096);
  1545. intel_ring_emit(ring, offset);
  1546. intel_ring_emit(ring, MI_FLUSH);
  1547. intel_ring_emit(ring, MI_NOOP);
  1548. intel_ring_advance(ring);
  1549. /* ... and execute it. */
  1550. offset = cs_offset;
  1551. }
  1552. ret = intel_ring_begin(req, 4);
  1553. if (ret)
  1554. return ret;
  1555. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1556. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1557. 0 : MI_BATCH_NON_SECURE));
  1558. intel_ring_emit(ring, offset + len - 8);
  1559. intel_ring_emit(ring, MI_NOOP);
  1560. intel_ring_advance(ring);
  1561. return 0;
  1562. }
  1563. static int
  1564. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1565. u64 offset, u32 len,
  1566. unsigned dispatch_flags)
  1567. {
  1568. struct intel_engine_cs *ring = req->ring;
  1569. int ret;
  1570. ret = intel_ring_begin(req, 2);
  1571. if (ret)
  1572. return ret;
  1573. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1574. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1575. 0 : MI_BATCH_NON_SECURE));
  1576. intel_ring_advance(ring);
  1577. return 0;
  1578. }
  1579. static void cleanup_status_page(struct intel_engine_cs *ring)
  1580. {
  1581. struct drm_i915_gem_object *obj;
  1582. obj = ring->status_page.obj;
  1583. if (obj == NULL)
  1584. return;
  1585. kunmap(sg_page(obj->pages->sgl));
  1586. i915_gem_object_ggtt_unpin(obj);
  1587. drm_gem_object_unreference(&obj->base);
  1588. ring->status_page.obj = NULL;
  1589. }
  1590. static int init_status_page(struct intel_engine_cs *ring)
  1591. {
  1592. struct drm_i915_gem_object *obj;
  1593. if ((obj = ring->status_page.obj) == NULL) {
  1594. unsigned flags;
  1595. int ret;
  1596. obj = i915_gem_alloc_object(ring->dev, 4096);
  1597. if (obj == NULL) {
  1598. DRM_ERROR("Failed to allocate status page\n");
  1599. return -ENOMEM;
  1600. }
  1601. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1602. if (ret)
  1603. goto err_unref;
  1604. flags = 0;
  1605. if (!HAS_LLC(ring->dev))
  1606. /* On g33, we cannot place HWS above 256MiB, so
  1607. * restrict its pinning to the low mappable arena.
  1608. * Though this restriction is not documented for
  1609. * gen4, gen5, or byt, they also behave similarly
  1610. * and hang if the HWS is placed at the top of the
  1611. * GTT. To generalise, it appears that all !llc
  1612. * platforms have issues with us placing the HWS
  1613. * above the mappable region (even though we never
  1614. * actualy map it).
  1615. */
  1616. flags |= PIN_MAPPABLE;
  1617. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1618. if (ret) {
  1619. err_unref:
  1620. drm_gem_object_unreference(&obj->base);
  1621. return ret;
  1622. }
  1623. ring->status_page.obj = obj;
  1624. }
  1625. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1626. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1627. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1628. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1629. ring->name, ring->status_page.gfx_addr);
  1630. return 0;
  1631. }
  1632. static int init_phys_status_page(struct intel_engine_cs *ring)
  1633. {
  1634. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1635. if (!dev_priv->status_page_dmah) {
  1636. dev_priv->status_page_dmah =
  1637. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1638. if (!dev_priv->status_page_dmah)
  1639. return -ENOMEM;
  1640. }
  1641. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1642. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1643. return 0;
  1644. }
  1645. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1646. {
  1647. iounmap(ringbuf->virtual_start);
  1648. ringbuf->virtual_start = NULL;
  1649. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1650. }
  1651. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1652. struct intel_ringbuffer *ringbuf)
  1653. {
  1654. struct drm_i915_private *dev_priv = to_i915(dev);
  1655. struct drm_i915_gem_object *obj = ringbuf->obj;
  1656. int ret;
  1657. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1658. if (ret)
  1659. return ret;
  1660. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1661. if (ret) {
  1662. i915_gem_object_ggtt_unpin(obj);
  1663. return ret;
  1664. }
  1665. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1666. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1667. if (ringbuf->virtual_start == NULL) {
  1668. i915_gem_object_ggtt_unpin(obj);
  1669. return -EINVAL;
  1670. }
  1671. return 0;
  1672. }
  1673. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1674. {
  1675. drm_gem_object_unreference(&ringbuf->obj->base);
  1676. ringbuf->obj = NULL;
  1677. }
  1678. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1679. struct intel_ringbuffer *ringbuf)
  1680. {
  1681. struct drm_i915_gem_object *obj;
  1682. obj = NULL;
  1683. if (!HAS_LLC(dev))
  1684. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1685. if (obj == NULL)
  1686. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1687. if (obj == NULL)
  1688. return -ENOMEM;
  1689. /* mark ring buffers as read-only from GPU side by default */
  1690. obj->gt_ro = 1;
  1691. ringbuf->obj = obj;
  1692. return 0;
  1693. }
  1694. static int intel_init_ring_buffer(struct drm_device *dev,
  1695. struct intel_engine_cs *ring)
  1696. {
  1697. struct intel_ringbuffer *ringbuf;
  1698. int ret;
  1699. WARN_ON(ring->buffer);
  1700. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1701. if (!ringbuf)
  1702. return -ENOMEM;
  1703. ring->buffer = ringbuf;
  1704. ring->dev = dev;
  1705. INIT_LIST_HEAD(&ring->active_list);
  1706. INIT_LIST_HEAD(&ring->request_list);
  1707. INIT_LIST_HEAD(&ring->execlist_queue);
  1708. i915_gem_batch_pool_init(dev, &ring->batch_pool);
  1709. ringbuf->size = 32 * PAGE_SIZE;
  1710. ringbuf->ring = ring;
  1711. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1712. init_waitqueue_head(&ring->irq_queue);
  1713. if (I915_NEED_GFX_HWS(dev)) {
  1714. ret = init_status_page(ring);
  1715. if (ret)
  1716. goto error;
  1717. } else {
  1718. BUG_ON(ring->id != RCS);
  1719. ret = init_phys_status_page(ring);
  1720. if (ret)
  1721. goto error;
  1722. }
  1723. WARN_ON(ringbuf->obj);
  1724. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1725. if (ret) {
  1726. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1727. ring->name, ret);
  1728. goto error;
  1729. }
  1730. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1731. if (ret) {
  1732. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1733. ring->name, ret);
  1734. intel_destroy_ringbuffer_obj(ringbuf);
  1735. goto error;
  1736. }
  1737. /* Workaround an erratum on the i830 which causes a hang if
  1738. * the TAIL pointer points to within the last 2 cachelines
  1739. * of the buffer.
  1740. */
  1741. ringbuf->effective_size = ringbuf->size;
  1742. if (IS_I830(dev) || IS_845G(dev))
  1743. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1744. ret = i915_cmd_parser_init_ring(ring);
  1745. if (ret)
  1746. goto error;
  1747. return 0;
  1748. error:
  1749. kfree(ringbuf);
  1750. ring->buffer = NULL;
  1751. return ret;
  1752. }
  1753. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1754. {
  1755. struct drm_i915_private *dev_priv;
  1756. struct intel_ringbuffer *ringbuf;
  1757. if (!intel_ring_initialized(ring))
  1758. return;
  1759. dev_priv = to_i915(ring->dev);
  1760. ringbuf = ring->buffer;
  1761. intel_stop_ring_buffer(ring);
  1762. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1763. intel_unpin_ringbuffer_obj(ringbuf);
  1764. intel_destroy_ringbuffer_obj(ringbuf);
  1765. if (ring->cleanup)
  1766. ring->cleanup(ring);
  1767. cleanup_status_page(ring);
  1768. i915_cmd_parser_fini_ring(ring);
  1769. i915_gem_batch_pool_fini(&ring->batch_pool);
  1770. kfree(ringbuf);
  1771. ring->buffer = NULL;
  1772. }
  1773. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1774. {
  1775. struct intel_ringbuffer *ringbuf = ring->buffer;
  1776. struct drm_i915_gem_request *request;
  1777. unsigned space;
  1778. int ret;
  1779. if (intel_ring_space(ringbuf) >= n)
  1780. return 0;
  1781. /* The whole point of reserving space is to not wait! */
  1782. WARN_ON(ringbuf->reserved_in_use);
  1783. list_for_each_entry(request, &ring->request_list, list) {
  1784. space = __intel_ring_space(request->postfix, ringbuf->tail,
  1785. ringbuf->size);
  1786. if (space >= n)
  1787. break;
  1788. }
  1789. if (WARN_ON(&request->list == &ring->request_list))
  1790. return -ENOSPC;
  1791. ret = i915_wait_request(request);
  1792. if (ret)
  1793. return ret;
  1794. ringbuf->space = space;
  1795. return 0;
  1796. }
  1797. static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
  1798. {
  1799. uint32_t __iomem *virt;
  1800. int rem = ringbuf->size - ringbuf->tail;
  1801. virt = ringbuf->virtual_start + ringbuf->tail;
  1802. rem /= 4;
  1803. while (rem--)
  1804. iowrite32(MI_NOOP, virt++);
  1805. ringbuf->tail = 0;
  1806. intel_ring_update_space(ringbuf);
  1807. }
  1808. int intel_ring_idle(struct intel_engine_cs *ring)
  1809. {
  1810. struct drm_i915_gem_request *req;
  1811. /* Wait upon the last request to be completed */
  1812. if (list_empty(&ring->request_list))
  1813. return 0;
  1814. req = list_entry(ring->request_list.prev,
  1815. struct drm_i915_gem_request,
  1816. list);
  1817. /* Make sure we do not trigger any retires */
  1818. return __i915_wait_request(req,
  1819. atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
  1820. to_i915(ring->dev)->mm.interruptible,
  1821. NULL, NULL);
  1822. }
  1823. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1824. {
  1825. request->ringbuf = request->ring->buffer;
  1826. return 0;
  1827. }
  1828. int intel_ring_reserve_space(struct drm_i915_gem_request *request)
  1829. {
  1830. /*
  1831. * The first call merely notes the reserve request and is common for
  1832. * all back ends. The subsequent localised _begin() call actually
  1833. * ensures that the reservation is available. Without the begin, if
  1834. * the request creator immediately submitted the request without
  1835. * adding any commands to it then there might not actually be
  1836. * sufficient room for the submission commands.
  1837. */
  1838. intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
  1839. return intel_ring_begin(request, 0);
  1840. }
  1841. void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
  1842. {
  1843. WARN_ON(ringbuf->reserved_size);
  1844. WARN_ON(ringbuf->reserved_in_use);
  1845. ringbuf->reserved_size = size;
  1846. }
  1847. void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
  1848. {
  1849. WARN_ON(ringbuf->reserved_in_use);
  1850. ringbuf->reserved_size = 0;
  1851. ringbuf->reserved_in_use = false;
  1852. }
  1853. void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
  1854. {
  1855. WARN_ON(ringbuf->reserved_in_use);
  1856. ringbuf->reserved_in_use = true;
  1857. ringbuf->reserved_tail = ringbuf->tail;
  1858. }
  1859. void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
  1860. {
  1861. WARN_ON(!ringbuf->reserved_in_use);
  1862. if (ringbuf->tail > ringbuf->reserved_tail) {
  1863. WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
  1864. "request reserved size too small: %d vs %d!\n",
  1865. ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
  1866. } else {
  1867. /*
  1868. * The ring was wrapped while the reserved space was in use.
  1869. * That means that some unknown amount of the ring tail was
  1870. * no-op filled and skipped. Thus simply adding the ring size
  1871. * to the tail and doing the above space check will not work.
  1872. * Rather than attempt to track how much tail was skipped,
  1873. * it is much simpler to say that also skipping the sanity
  1874. * check every once in a while is not a big issue.
  1875. */
  1876. }
  1877. ringbuf->reserved_size = 0;
  1878. ringbuf->reserved_in_use = false;
  1879. }
  1880. static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
  1881. {
  1882. struct intel_ringbuffer *ringbuf = ring->buffer;
  1883. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  1884. int remain_actual = ringbuf->size - ringbuf->tail;
  1885. int ret, total_bytes, wait_bytes = 0;
  1886. bool need_wrap = false;
  1887. if (ringbuf->reserved_in_use)
  1888. total_bytes = bytes;
  1889. else
  1890. total_bytes = bytes + ringbuf->reserved_size;
  1891. if (unlikely(bytes > remain_usable)) {
  1892. /*
  1893. * Not enough space for the basic request. So need to flush
  1894. * out the remainder and then wait for base + reserved.
  1895. */
  1896. wait_bytes = remain_actual + total_bytes;
  1897. need_wrap = true;
  1898. } else {
  1899. if (unlikely(total_bytes > remain_usable)) {
  1900. /*
  1901. * The base request will fit but the reserved space
  1902. * falls off the end. So only need to to wait for the
  1903. * reserved size after flushing out the remainder.
  1904. */
  1905. wait_bytes = remain_actual + ringbuf->reserved_size;
  1906. need_wrap = true;
  1907. } else if (total_bytes > ringbuf->space) {
  1908. /* No wrapping required, just waiting. */
  1909. wait_bytes = total_bytes;
  1910. }
  1911. }
  1912. if (wait_bytes) {
  1913. ret = ring_wait_for_space(ring, wait_bytes);
  1914. if (unlikely(ret))
  1915. return ret;
  1916. if (need_wrap)
  1917. __wrap_ring_buffer(ringbuf);
  1918. }
  1919. return 0;
  1920. }
  1921. int intel_ring_begin(struct drm_i915_gem_request *req,
  1922. int num_dwords)
  1923. {
  1924. struct intel_engine_cs *ring;
  1925. struct drm_i915_private *dev_priv;
  1926. int ret;
  1927. WARN_ON(req == NULL);
  1928. ring = req->ring;
  1929. dev_priv = ring->dev->dev_private;
  1930. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1931. dev_priv->mm.interruptible);
  1932. if (ret)
  1933. return ret;
  1934. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1935. if (ret)
  1936. return ret;
  1937. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1938. return 0;
  1939. }
  1940. /* Align the ring tail to a cacheline boundary */
  1941. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  1942. {
  1943. struct intel_engine_cs *ring = req->ring;
  1944. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1945. int ret;
  1946. if (num_dwords == 0)
  1947. return 0;
  1948. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1949. ret = intel_ring_begin(req, num_dwords);
  1950. if (ret)
  1951. return ret;
  1952. while (num_dwords--)
  1953. intel_ring_emit(ring, MI_NOOP);
  1954. intel_ring_advance(ring);
  1955. return 0;
  1956. }
  1957. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1958. {
  1959. struct drm_device *dev = ring->dev;
  1960. struct drm_i915_private *dev_priv = dev->dev_private;
  1961. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1962. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1963. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1964. if (HAS_VEBOX(dev))
  1965. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1966. }
  1967. ring->set_seqno(ring, seqno);
  1968. ring->hangcheck.seqno = seqno;
  1969. }
  1970. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1971. u32 value)
  1972. {
  1973. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1974. /* Every tail move must follow the sequence below */
  1975. /* Disable notification that the ring is IDLE. The GT
  1976. * will then assume that it is busy and bring it out of rc6.
  1977. */
  1978. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1979. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1980. /* Clear the context id. Here be magic! */
  1981. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1982. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1983. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1984. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1985. 50))
  1986. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1987. /* Now that the ring is fully powered up, update the tail */
  1988. I915_WRITE_TAIL(ring, value);
  1989. POSTING_READ(RING_TAIL(ring->mmio_base));
  1990. /* Let the ring send IDLE messages to the GT again,
  1991. * and so let it sleep to conserve power when idle.
  1992. */
  1993. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1994. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1995. }
  1996. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  1997. u32 invalidate, u32 flush)
  1998. {
  1999. struct intel_engine_cs *ring = req->ring;
  2000. uint32_t cmd;
  2001. int ret;
  2002. ret = intel_ring_begin(req, 4);
  2003. if (ret)
  2004. return ret;
  2005. cmd = MI_FLUSH_DW;
  2006. if (INTEL_INFO(ring->dev)->gen >= 8)
  2007. cmd += 1;
  2008. /* We always require a command barrier so that subsequent
  2009. * commands, such as breadcrumb interrupts, are strictly ordered
  2010. * wrt the contents of the write cache being flushed to memory
  2011. * (and thus being coherent from the CPU).
  2012. */
  2013. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2014. /*
  2015. * Bspec vol 1c.5 - video engine command streamer:
  2016. * "If ENABLED, all TLBs will be invalidated once the flush
  2017. * operation is complete. This bit is only valid when the
  2018. * Post-Sync Operation field is a value of 1h or 3h."
  2019. */
  2020. if (invalidate & I915_GEM_GPU_DOMAINS)
  2021. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2022. intel_ring_emit(ring, cmd);
  2023. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2024. if (INTEL_INFO(ring->dev)->gen >= 8) {
  2025. intel_ring_emit(ring, 0); /* upper addr */
  2026. intel_ring_emit(ring, 0); /* value */
  2027. } else {
  2028. intel_ring_emit(ring, 0);
  2029. intel_ring_emit(ring, MI_NOOP);
  2030. }
  2031. intel_ring_advance(ring);
  2032. return 0;
  2033. }
  2034. static int
  2035. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2036. u64 offset, u32 len,
  2037. unsigned dispatch_flags)
  2038. {
  2039. struct intel_engine_cs *ring = req->ring;
  2040. bool ppgtt = USES_PPGTT(ring->dev) &&
  2041. !(dispatch_flags & I915_DISPATCH_SECURE);
  2042. int ret;
  2043. ret = intel_ring_begin(req, 4);
  2044. if (ret)
  2045. return ret;
  2046. /* FIXME(BDW): Address space and security selectors. */
  2047. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2048. (dispatch_flags & I915_DISPATCH_RS ?
  2049. MI_BATCH_RESOURCE_STREAMER : 0));
  2050. intel_ring_emit(ring, lower_32_bits(offset));
  2051. intel_ring_emit(ring, upper_32_bits(offset));
  2052. intel_ring_emit(ring, MI_NOOP);
  2053. intel_ring_advance(ring);
  2054. return 0;
  2055. }
  2056. static int
  2057. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2058. u64 offset, u32 len,
  2059. unsigned dispatch_flags)
  2060. {
  2061. struct intel_engine_cs *ring = req->ring;
  2062. int ret;
  2063. ret = intel_ring_begin(req, 2);
  2064. if (ret)
  2065. return ret;
  2066. intel_ring_emit(ring,
  2067. MI_BATCH_BUFFER_START |
  2068. (dispatch_flags & I915_DISPATCH_SECURE ?
  2069. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2070. (dispatch_flags & I915_DISPATCH_RS ?
  2071. MI_BATCH_RESOURCE_STREAMER : 0));
  2072. /* bit0-7 is the length on GEN6+ */
  2073. intel_ring_emit(ring, offset);
  2074. intel_ring_advance(ring);
  2075. return 0;
  2076. }
  2077. static int
  2078. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2079. u64 offset, u32 len,
  2080. unsigned dispatch_flags)
  2081. {
  2082. struct intel_engine_cs *ring = req->ring;
  2083. int ret;
  2084. ret = intel_ring_begin(req, 2);
  2085. if (ret)
  2086. return ret;
  2087. intel_ring_emit(ring,
  2088. MI_BATCH_BUFFER_START |
  2089. (dispatch_flags & I915_DISPATCH_SECURE ?
  2090. 0 : MI_BATCH_NON_SECURE_I965));
  2091. /* bit0-7 is the length on GEN6+ */
  2092. intel_ring_emit(ring, offset);
  2093. intel_ring_advance(ring);
  2094. return 0;
  2095. }
  2096. /* Blitter support (SandyBridge+) */
  2097. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2098. u32 invalidate, u32 flush)
  2099. {
  2100. struct intel_engine_cs *ring = req->ring;
  2101. struct drm_device *dev = ring->dev;
  2102. uint32_t cmd;
  2103. int ret;
  2104. ret = intel_ring_begin(req, 4);
  2105. if (ret)
  2106. return ret;
  2107. cmd = MI_FLUSH_DW;
  2108. if (INTEL_INFO(dev)->gen >= 8)
  2109. cmd += 1;
  2110. /* We always require a command barrier so that subsequent
  2111. * commands, such as breadcrumb interrupts, are strictly ordered
  2112. * wrt the contents of the write cache being flushed to memory
  2113. * (and thus being coherent from the CPU).
  2114. */
  2115. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2116. /*
  2117. * Bspec vol 1c.3 - blitter engine command streamer:
  2118. * "If ENABLED, all TLBs will be invalidated once the flush
  2119. * operation is complete. This bit is only valid when the
  2120. * Post-Sync Operation field is a value of 1h or 3h."
  2121. */
  2122. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2123. cmd |= MI_INVALIDATE_TLB;
  2124. intel_ring_emit(ring, cmd);
  2125. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2126. if (INTEL_INFO(dev)->gen >= 8) {
  2127. intel_ring_emit(ring, 0); /* upper addr */
  2128. intel_ring_emit(ring, 0); /* value */
  2129. } else {
  2130. intel_ring_emit(ring, 0);
  2131. intel_ring_emit(ring, MI_NOOP);
  2132. }
  2133. intel_ring_advance(ring);
  2134. return 0;
  2135. }
  2136. int intel_init_render_ring_buffer(struct drm_device *dev)
  2137. {
  2138. struct drm_i915_private *dev_priv = dev->dev_private;
  2139. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2140. struct drm_i915_gem_object *obj;
  2141. int ret;
  2142. ring->name = "render ring";
  2143. ring->id = RCS;
  2144. ring->mmio_base = RENDER_RING_BASE;
  2145. if (INTEL_INFO(dev)->gen >= 8) {
  2146. if (i915_semaphore_is_enabled(dev)) {
  2147. obj = i915_gem_alloc_object(dev, 4096);
  2148. if (obj == NULL) {
  2149. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2150. i915.semaphores = 0;
  2151. } else {
  2152. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2153. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2154. if (ret != 0) {
  2155. drm_gem_object_unreference(&obj->base);
  2156. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2157. i915.semaphores = 0;
  2158. } else
  2159. dev_priv->semaphore_obj = obj;
  2160. }
  2161. }
  2162. ring->init_context = intel_rcs_ctx_init;
  2163. ring->add_request = gen6_add_request;
  2164. ring->flush = gen8_render_ring_flush;
  2165. ring->irq_get = gen8_ring_get_irq;
  2166. ring->irq_put = gen8_ring_put_irq;
  2167. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2168. ring->get_seqno = gen6_ring_get_seqno;
  2169. ring->set_seqno = ring_set_seqno;
  2170. if (i915_semaphore_is_enabled(dev)) {
  2171. WARN_ON(!dev_priv->semaphore_obj);
  2172. ring->semaphore.sync_to = gen8_ring_sync;
  2173. ring->semaphore.signal = gen8_rcs_signal;
  2174. GEN8_RING_SEMAPHORE_INIT;
  2175. }
  2176. } else if (INTEL_INFO(dev)->gen >= 6) {
  2177. ring->add_request = gen6_add_request;
  2178. ring->flush = gen7_render_ring_flush;
  2179. if (INTEL_INFO(dev)->gen == 6)
  2180. ring->flush = gen6_render_ring_flush;
  2181. ring->irq_get = gen6_ring_get_irq;
  2182. ring->irq_put = gen6_ring_put_irq;
  2183. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2184. ring->get_seqno = gen6_ring_get_seqno;
  2185. ring->set_seqno = ring_set_seqno;
  2186. if (i915_semaphore_is_enabled(dev)) {
  2187. ring->semaphore.sync_to = gen6_ring_sync;
  2188. ring->semaphore.signal = gen6_signal;
  2189. /*
  2190. * The current semaphore is only applied on pre-gen8
  2191. * platform. And there is no VCS2 ring on the pre-gen8
  2192. * platform. So the semaphore between RCS and VCS2 is
  2193. * initialized as INVALID. Gen8 will initialize the
  2194. * sema between VCS2 and RCS later.
  2195. */
  2196. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2197. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2198. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2199. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2200. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2201. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2202. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2203. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2204. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2205. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2206. }
  2207. } else if (IS_GEN5(dev)) {
  2208. ring->add_request = pc_render_add_request;
  2209. ring->flush = gen4_render_ring_flush;
  2210. ring->get_seqno = pc_render_get_seqno;
  2211. ring->set_seqno = pc_render_set_seqno;
  2212. ring->irq_get = gen5_ring_get_irq;
  2213. ring->irq_put = gen5_ring_put_irq;
  2214. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2215. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2216. } else {
  2217. ring->add_request = i9xx_add_request;
  2218. if (INTEL_INFO(dev)->gen < 4)
  2219. ring->flush = gen2_render_ring_flush;
  2220. else
  2221. ring->flush = gen4_render_ring_flush;
  2222. ring->get_seqno = ring_get_seqno;
  2223. ring->set_seqno = ring_set_seqno;
  2224. if (IS_GEN2(dev)) {
  2225. ring->irq_get = i8xx_ring_get_irq;
  2226. ring->irq_put = i8xx_ring_put_irq;
  2227. } else {
  2228. ring->irq_get = i9xx_ring_get_irq;
  2229. ring->irq_put = i9xx_ring_put_irq;
  2230. }
  2231. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2232. }
  2233. ring->write_tail = ring_write_tail;
  2234. if (IS_HASWELL(dev))
  2235. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2236. else if (IS_GEN8(dev))
  2237. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2238. else if (INTEL_INFO(dev)->gen >= 6)
  2239. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2240. else if (INTEL_INFO(dev)->gen >= 4)
  2241. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2242. else if (IS_I830(dev) || IS_845G(dev))
  2243. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2244. else
  2245. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2246. ring->init_hw = init_render_ring;
  2247. ring->cleanup = render_ring_cleanup;
  2248. /* Workaround batchbuffer to combat CS tlb bug. */
  2249. if (HAS_BROKEN_CS_TLB(dev)) {
  2250. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2251. if (obj == NULL) {
  2252. DRM_ERROR("Failed to allocate batch bo\n");
  2253. return -ENOMEM;
  2254. }
  2255. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2256. if (ret != 0) {
  2257. drm_gem_object_unreference(&obj->base);
  2258. DRM_ERROR("Failed to ping batch bo\n");
  2259. return ret;
  2260. }
  2261. ring->scratch.obj = obj;
  2262. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2263. }
  2264. ret = intel_init_ring_buffer(dev, ring);
  2265. if (ret)
  2266. return ret;
  2267. if (INTEL_INFO(dev)->gen >= 5) {
  2268. ret = intel_init_pipe_control(ring);
  2269. if (ret)
  2270. return ret;
  2271. }
  2272. return 0;
  2273. }
  2274. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2275. {
  2276. struct drm_i915_private *dev_priv = dev->dev_private;
  2277. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2278. ring->name = "bsd ring";
  2279. ring->id = VCS;
  2280. ring->write_tail = ring_write_tail;
  2281. if (INTEL_INFO(dev)->gen >= 6) {
  2282. ring->mmio_base = GEN6_BSD_RING_BASE;
  2283. /* gen6 bsd needs a special wa for tail updates */
  2284. if (IS_GEN6(dev))
  2285. ring->write_tail = gen6_bsd_ring_write_tail;
  2286. ring->flush = gen6_bsd_ring_flush;
  2287. ring->add_request = gen6_add_request;
  2288. ring->get_seqno = gen6_ring_get_seqno;
  2289. ring->set_seqno = ring_set_seqno;
  2290. if (INTEL_INFO(dev)->gen >= 8) {
  2291. ring->irq_enable_mask =
  2292. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2293. ring->irq_get = gen8_ring_get_irq;
  2294. ring->irq_put = gen8_ring_put_irq;
  2295. ring->dispatch_execbuffer =
  2296. gen8_ring_dispatch_execbuffer;
  2297. if (i915_semaphore_is_enabled(dev)) {
  2298. ring->semaphore.sync_to = gen8_ring_sync;
  2299. ring->semaphore.signal = gen8_xcs_signal;
  2300. GEN8_RING_SEMAPHORE_INIT;
  2301. }
  2302. } else {
  2303. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2304. ring->irq_get = gen6_ring_get_irq;
  2305. ring->irq_put = gen6_ring_put_irq;
  2306. ring->dispatch_execbuffer =
  2307. gen6_ring_dispatch_execbuffer;
  2308. if (i915_semaphore_is_enabled(dev)) {
  2309. ring->semaphore.sync_to = gen6_ring_sync;
  2310. ring->semaphore.signal = gen6_signal;
  2311. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2312. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2313. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2314. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2315. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2316. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2317. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2318. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2319. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2320. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2321. }
  2322. }
  2323. } else {
  2324. ring->mmio_base = BSD_RING_BASE;
  2325. ring->flush = bsd_ring_flush;
  2326. ring->add_request = i9xx_add_request;
  2327. ring->get_seqno = ring_get_seqno;
  2328. ring->set_seqno = ring_set_seqno;
  2329. if (IS_GEN5(dev)) {
  2330. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2331. ring->irq_get = gen5_ring_get_irq;
  2332. ring->irq_put = gen5_ring_put_irq;
  2333. } else {
  2334. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2335. ring->irq_get = i9xx_ring_get_irq;
  2336. ring->irq_put = i9xx_ring_put_irq;
  2337. }
  2338. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2339. }
  2340. ring->init_hw = init_ring_common;
  2341. return intel_init_ring_buffer(dev, ring);
  2342. }
  2343. /**
  2344. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2345. */
  2346. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2347. {
  2348. struct drm_i915_private *dev_priv = dev->dev_private;
  2349. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2350. ring->name = "bsd2 ring";
  2351. ring->id = VCS2;
  2352. ring->write_tail = ring_write_tail;
  2353. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2354. ring->flush = gen6_bsd_ring_flush;
  2355. ring->add_request = gen6_add_request;
  2356. ring->get_seqno = gen6_ring_get_seqno;
  2357. ring->set_seqno = ring_set_seqno;
  2358. ring->irq_enable_mask =
  2359. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2360. ring->irq_get = gen8_ring_get_irq;
  2361. ring->irq_put = gen8_ring_put_irq;
  2362. ring->dispatch_execbuffer =
  2363. gen8_ring_dispatch_execbuffer;
  2364. if (i915_semaphore_is_enabled(dev)) {
  2365. ring->semaphore.sync_to = gen8_ring_sync;
  2366. ring->semaphore.signal = gen8_xcs_signal;
  2367. GEN8_RING_SEMAPHORE_INIT;
  2368. }
  2369. ring->init_hw = init_ring_common;
  2370. return intel_init_ring_buffer(dev, ring);
  2371. }
  2372. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2373. {
  2374. struct drm_i915_private *dev_priv = dev->dev_private;
  2375. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2376. ring->name = "blitter ring";
  2377. ring->id = BCS;
  2378. ring->mmio_base = BLT_RING_BASE;
  2379. ring->write_tail = ring_write_tail;
  2380. ring->flush = gen6_ring_flush;
  2381. ring->add_request = gen6_add_request;
  2382. ring->get_seqno = gen6_ring_get_seqno;
  2383. ring->set_seqno = ring_set_seqno;
  2384. if (INTEL_INFO(dev)->gen >= 8) {
  2385. ring->irq_enable_mask =
  2386. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2387. ring->irq_get = gen8_ring_get_irq;
  2388. ring->irq_put = gen8_ring_put_irq;
  2389. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2390. if (i915_semaphore_is_enabled(dev)) {
  2391. ring->semaphore.sync_to = gen8_ring_sync;
  2392. ring->semaphore.signal = gen8_xcs_signal;
  2393. GEN8_RING_SEMAPHORE_INIT;
  2394. }
  2395. } else {
  2396. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2397. ring->irq_get = gen6_ring_get_irq;
  2398. ring->irq_put = gen6_ring_put_irq;
  2399. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2400. if (i915_semaphore_is_enabled(dev)) {
  2401. ring->semaphore.signal = gen6_signal;
  2402. ring->semaphore.sync_to = gen6_ring_sync;
  2403. /*
  2404. * The current semaphore is only applied on pre-gen8
  2405. * platform. And there is no VCS2 ring on the pre-gen8
  2406. * platform. So the semaphore between BCS and VCS2 is
  2407. * initialized as INVALID. Gen8 will initialize the
  2408. * sema between BCS and VCS2 later.
  2409. */
  2410. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2411. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2412. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2413. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2414. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2415. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2416. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2417. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2418. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2419. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2420. }
  2421. }
  2422. ring->init_hw = init_ring_common;
  2423. return intel_init_ring_buffer(dev, ring);
  2424. }
  2425. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2426. {
  2427. struct drm_i915_private *dev_priv = dev->dev_private;
  2428. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2429. ring->name = "video enhancement ring";
  2430. ring->id = VECS;
  2431. ring->mmio_base = VEBOX_RING_BASE;
  2432. ring->write_tail = ring_write_tail;
  2433. ring->flush = gen6_ring_flush;
  2434. ring->add_request = gen6_add_request;
  2435. ring->get_seqno = gen6_ring_get_seqno;
  2436. ring->set_seqno = ring_set_seqno;
  2437. if (INTEL_INFO(dev)->gen >= 8) {
  2438. ring->irq_enable_mask =
  2439. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2440. ring->irq_get = gen8_ring_get_irq;
  2441. ring->irq_put = gen8_ring_put_irq;
  2442. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2443. if (i915_semaphore_is_enabled(dev)) {
  2444. ring->semaphore.sync_to = gen8_ring_sync;
  2445. ring->semaphore.signal = gen8_xcs_signal;
  2446. GEN8_RING_SEMAPHORE_INIT;
  2447. }
  2448. } else {
  2449. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2450. ring->irq_get = hsw_vebox_get_irq;
  2451. ring->irq_put = hsw_vebox_put_irq;
  2452. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2453. if (i915_semaphore_is_enabled(dev)) {
  2454. ring->semaphore.sync_to = gen6_ring_sync;
  2455. ring->semaphore.signal = gen6_signal;
  2456. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2457. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2458. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2459. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2460. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2461. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2462. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2463. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2464. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2465. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2466. }
  2467. }
  2468. ring->init_hw = init_ring_common;
  2469. return intel_init_ring_buffer(dev, ring);
  2470. }
  2471. int
  2472. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2473. {
  2474. struct intel_engine_cs *ring = req->ring;
  2475. int ret;
  2476. if (!ring->gpu_caches_dirty)
  2477. return 0;
  2478. ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2479. if (ret)
  2480. return ret;
  2481. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2482. ring->gpu_caches_dirty = false;
  2483. return 0;
  2484. }
  2485. int
  2486. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2487. {
  2488. struct intel_engine_cs *ring = req->ring;
  2489. uint32_t flush_domains;
  2490. int ret;
  2491. flush_domains = 0;
  2492. if (ring->gpu_caches_dirty)
  2493. flush_domains = I915_GEM_GPU_DOMAINS;
  2494. ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2495. if (ret)
  2496. return ret;
  2497. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2498. ring->gpu_caches_dirty = false;
  2499. return 0;
  2500. }
  2501. void
  2502. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2503. {
  2504. int ret;
  2505. if (!intel_ring_initialized(ring))
  2506. return;
  2507. ret = intel_ring_idle(ring);
  2508. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2509. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2510. ring->name, ret);
  2511. stop_ring(ring);
  2512. }