i915_sysfs.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Ben Widawsky <ben@bwidawsk.net>
  25. *
  26. */
  27. #include <linux/device.h>
  28. #include <linux/module.h>
  29. #include <linux/stat.h>
  30. #include <linux/sysfs.h>
  31. #include "intel_drv.h"
  32. #include "i915_drv.h"
  33. #define dev_to_drm_minor(d) dev_get_drvdata((d))
  34. #ifdef CONFIG_PM
  35. static u32 calc_residency(struct drm_device *dev, const u32 reg)
  36. {
  37. struct drm_i915_private *dev_priv = dev->dev_private;
  38. u64 raw_time; /* 32b value may overflow during fixed point math */
  39. u64 units = 128ULL, div = 100000ULL, bias = 100ULL;
  40. u32 ret;
  41. if (!intel_enable_rc6(dev))
  42. return 0;
  43. intel_runtime_pm_get(dev_priv);
  44. /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
  45. if (IS_VALLEYVIEW(dev)) {
  46. u32 clk_reg, czcount_30ns;
  47. if (IS_CHERRYVIEW(dev))
  48. clk_reg = CHV_CLK_CTL1;
  49. else
  50. clk_reg = VLV_CLK_CTL2;
  51. czcount_30ns = I915_READ(clk_reg) >> CLK_CTL2_CZCOUNT_30NS_SHIFT;
  52. if (!czcount_30ns) {
  53. WARN(!czcount_30ns, "bogus CZ count value");
  54. ret = 0;
  55. goto out;
  56. }
  57. if (IS_CHERRYVIEW(dev) && czcount_30ns == 1) {
  58. /* Special case for 320Mhz */
  59. div = 10000000ULL;
  60. units = 3125ULL;
  61. } else {
  62. czcount_30ns += 1;
  63. div = 1000000ULL;
  64. units = DIV_ROUND_UP_ULL(30ULL * bias, czcount_30ns);
  65. }
  66. if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
  67. units <<= 8;
  68. div = div * bias;
  69. }
  70. raw_time = I915_READ(reg) * units;
  71. ret = DIV_ROUND_UP_ULL(raw_time, div);
  72. out:
  73. intel_runtime_pm_put(dev_priv);
  74. return ret;
  75. }
  76. static ssize_t
  77. show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf)
  78. {
  79. struct drm_minor *dminor = dev_to_drm_minor(kdev);
  80. return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev));
  81. }
  82. static ssize_t
  83. show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  84. {
  85. struct drm_minor *dminor = dev_get_drvdata(kdev);
  86. u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6);
  87. return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
  88. }
  89. static ssize_t
  90. show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  91. {
  92. struct drm_minor *dminor = dev_to_drm_minor(kdev);
  93. u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p);
  94. return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency);
  95. }
  96. static ssize_t
  97. show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  98. {
  99. struct drm_minor *dminor = dev_to_drm_minor(kdev);
  100. u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp);
  101. return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency);
  102. }
  103. static ssize_t
  104. show_media_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  105. {
  106. struct drm_minor *dminor = dev_get_drvdata(kdev);
  107. u32 rc6_residency = calc_residency(dminor->dev, VLV_GT_MEDIA_RC6);
  108. return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
  109. }
  110. static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL);
  111. static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL);
  112. static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL);
  113. static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL);
  114. static DEVICE_ATTR(media_rc6_residency_ms, S_IRUGO, show_media_rc6_ms, NULL);
  115. static struct attribute *rc6_attrs[] = {
  116. &dev_attr_rc6_enable.attr,
  117. &dev_attr_rc6_residency_ms.attr,
  118. NULL
  119. };
  120. static struct attribute_group rc6_attr_group = {
  121. .name = power_group_name,
  122. .attrs = rc6_attrs
  123. };
  124. static struct attribute *rc6p_attrs[] = {
  125. &dev_attr_rc6p_residency_ms.attr,
  126. &dev_attr_rc6pp_residency_ms.attr,
  127. NULL
  128. };
  129. static struct attribute_group rc6p_attr_group = {
  130. .name = power_group_name,
  131. .attrs = rc6p_attrs
  132. };
  133. static struct attribute *media_rc6_attrs[] = {
  134. &dev_attr_media_rc6_residency_ms.attr,
  135. NULL
  136. };
  137. static struct attribute_group media_rc6_attr_group = {
  138. .name = power_group_name,
  139. .attrs = media_rc6_attrs
  140. };
  141. #endif
  142. static int l3_access_valid(struct drm_device *dev, loff_t offset)
  143. {
  144. if (!HAS_L3_DPF(dev))
  145. return -EPERM;
  146. if (offset % 4 != 0)
  147. return -EINVAL;
  148. if (offset >= GEN7_L3LOG_SIZE)
  149. return -ENXIO;
  150. return 0;
  151. }
  152. static ssize_t
  153. i915_l3_read(struct file *filp, struct kobject *kobj,
  154. struct bin_attribute *attr, char *buf,
  155. loff_t offset, size_t count)
  156. {
  157. struct device *dev = container_of(kobj, struct device, kobj);
  158. struct drm_minor *dminor = dev_to_drm_minor(dev);
  159. struct drm_device *drm_dev = dminor->dev;
  160. struct drm_i915_private *dev_priv = drm_dev->dev_private;
  161. int slice = (int)(uintptr_t)attr->private;
  162. int ret;
  163. count = round_down(count, 4);
  164. ret = l3_access_valid(drm_dev, offset);
  165. if (ret)
  166. return ret;
  167. count = min_t(size_t, GEN7_L3LOG_SIZE - offset, count);
  168. ret = i915_mutex_lock_interruptible(drm_dev);
  169. if (ret)
  170. return ret;
  171. if (dev_priv->l3_parity.remap_info[slice])
  172. memcpy(buf,
  173. dev_priv->l3_parity.remap_info[slice] + (offset/4),
  174. count);
  175. else
  176. memset(buf, 0, count);
  177. mutex_unlock(&drm_dev->struct_mutex);
  178. return count;
  179. }
  180. static ssize_t
  181. i915_l3_write(struct file *filp, struct kobject *kobj,
  182. struct bin_attribute *attr, char *buf,
  183. loff_t offset, size_t count)
  184. {
  185. struct device *dev = container_of(kobj, struct device, kobj);
  186. struct drm_minor *dminor = dev_to_drm_minor(dev);
  187. struct drm_device *drm_dev = dminor->dev;
  188. struct drm_i915_private *dev_priv = drm_dev->dev_private;
  189. struct intel_context *ctx;
  190. u32 *temp = NULL; /* Just here to make handling failures easy */
  191. int slice = (int)(uintptr_t)attr->private;
  192. int ret;
  193. if (!HAS_HW_CONTEXTS(drm_dev))
  194. return -ENXIO;
  195. ret = l3_access_valid(drm_dev, offset);
  196. if (ret)
  197. return ret;
  198. ret = i915_mutex_lock_interruptible(drm_dev);
  199. if (ret)
  200. return ret;
  201. if (!dev_priv->l3_parity.remap_info[slice]) {
  202. temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL);
  203. if (!temp) {
  204. mutex_unlock(&drm_dev->struct_mutex);
  205. return -ENOMEM;
  206. }
  207. }
  208. ret = i915_gpu_idle(drm_dev);
  209. if (ret) {
  210. kfree(temp);
  211. mutex_unlock(&drm_dev->struct_mutex);
  212. return ret;
  213. }
  214. /* TODO: Ideally we really want a GPU reset here to make sure errors
  215. * aren't propagated. Since I cannot find a stable way to reset the GPU
  216. * at this point it is left as a TODO.
  217. */
  218. if (temp)
  219. dev_priv->l3_parity.remap_info[slice] = temp;
  220. memcpy(dev_priv->l3_parity.remap_info[slice] + (offset/4), buf, count);
  221. /* NB: We defer the remapping until we switch to the context */
  222. list_for_each_entry(ctx, &dev_priv->context_list, link)
  223. ctx->remap_slice |= (1<<slice);
  224. mutex_unlock(&drm_dev->struct_mutex);
  225. return count;
  226. }
  227. static struct bin_attribute dpf_attrs = {
  228. .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)},
  229. .size = GEN7_L3LOG_SIZE,
  230. .read = i915_l3_read,
  231. .write = i915_l3_write,
  232. .mmap = NULL,
  233. .private = (void *)0
  234. };
  235. static struct bin_attribute dpf_attrs_1 = {
  236. .attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)},
  237. .size = GEN7_L3LOG_SIZE,
  238. .read = i915_l3_read,
  239. .write = i915_l3_write,
  240. .mmap = NULL,
  241. .private = (void *)1
  242. };
  243. static ssize_t gt_act_freq_mhz_show(struct device *kdev,
  244. struct device_attribute *attr, char *buf)
  245. {
  246. struct drm_minor *minor = dev_to_drm_minor(kdev);
  247. struct drm_device *dev = minor->dev;
  248. struct drm_i915_private *dev_priv = dev->dev_private;
  249. int ret;
  250. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  251. intel_runtime_pm_get(dev_priv);
  252. mutex_lock(&dev_priv->rps.hw_lock);
  253. if (IS_VALLEYVIEW(dev_priv->dev)) {
  254. u32 freq;
  255. freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  256. ret = intel_gpu_freq(dev_priv, (freq >> 8) & 0xff);
  257. } else {
  258. u32 rpstat = I915_READ(GEN6_RPSTAT1);
  259. if (IS_GEN9(dev_priv))
  260. ret = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
  261. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  262. ret = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  263. else
  264. ret = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  265. ret = intel_gpu_freq(dev_priv, ret);
  266. }
  267. mutex_unlock(&dev_priv->rps.hw_lock);
  268. intel_runtime_pm_put(dev_priv);
  269. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  270. }
  271. static ssize_t gt_cur_freq_mhz_show(struct device *kdev,
  272. struct device_attribute *attr, char *buf)
  273. {
  274. struct drm_minor *minor = dev_to_drm_minor(kdev);
  275. struct drm_device *dev = minor->dev;
  276. struct drm_i915_private *dev_priv = dev->dev_private;
  277. int ret;
  278. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  279. intel_runtime_pm_get(dev_priv);
  280. mutex_lock(&dev_priv->rps.hw_lock);
  281. ret = intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq);
  282. mutex_unlock(&dev_priv->rps.hw_lock);
  283. intel_runtime_pm_put(dev_priv);
  284. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  285. }
  286. static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev,
  287. struct device_attribute *attr, char *buf)
  288. {
  289. struct drm_minor *minor = dev_to_drm_minor(kdev);
  290. struct drm_device *dev = minor->dev;
  291. struct drm_i915_private *dev_priv = dev->dev_private;
  292. return snprintf(buf, PAGE_SIZE,
  293. "%d\n",
  294. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  295. }
  296. static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  297. {
  298. struct drm_minor *minor = dev_to_drm_minor(kdev);
  299. struct drm_device *dev = minor->dev;
  300. struct drm_i915_private *dev_priv = dev->dev_private;
  301. int ret;
  302. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  303. mutex_lock(&dev_priv->rps.hw_lock);
  304. ret = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  305. mutex_unlock(&dev_priv->rps.hw_lock);
  306. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  307. }
  308. static ssize_t gt_max_freq_mhz_store(struct device *kdev,
  309. struct device_attribute *attr,
  310. const char *buf, size_t count)
  311. {
  312. struct drm_minor *minor = dev_to_drm_minor(kdev);
  313. struct drm_device *dev = minor->dev;
  314. struct drm_i915_private *dev_priv = dev->dev_private;
  315. u32 val;
  316. ssize_t ret;
  317. ret = kstrtou32(buf, 0, &val);
  318. if (ret)
  319. return ret;
  320. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  321. mutex_lock(&dev_priv->rps.hw_lock);
  322. val = intel_freq_opcode(dev_priv, val);
  323. if (val < dev_priv->rps.min_freq ||
  324. val > dev_priv->rps.max_freq ||
  325. val < dev_priv->rps.min_freq_softlimit) {
  326. mutex_unlock(&dev_priv->rps.hw_lock);
  327. return -EINVAL;
  328. }
  329. if (val > dev_priv->rps.rp0_freq)
  330. DRM_DEBUG("User requested overclocking to %d\n",
  331. intel_gpu_freq(dev_priv, val));
  332. dev_priv->rps.max_freq_softlimit = val;
  333. val = clamp_t(int, dev_priv->rps.cur_freq,
  334. dev_priv->rps.min_freq_softlimit,
  335. dev_priv->rps.max_freq_softlimit);
  336. /* We still need *_set_rps to process the new max_delay and
  337. * update the interrupt limits and PMINTRMSK even though
  338. * frequency request may be unchanged. */
  339. intel_set_rps(dev, val);
  340. mutex_unlock(&dev_priv->rps.hw_lock);
  341. return count;
  342. }
  343. static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  344. {
  345. struct drm_minor *minor = dev_to_drm_minor(kdev);
  346. struct drm_device *dev = minor->dev;
  347. struct drm_i915_private *dev_priv = dev->dev_private;
  348. int ret;
  349. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  350. mutex_lock(&dev_priv->rps.hw_lock);
  351. ret = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  352. mutex_unlock(&dev_priv->rps.hw_lock);
  353. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  354. }
  355. static ssize_t gt_min_freq_mhz_store(struct device *kdev,
  356. struct device_attribute *attr,
  357. const char *buf, size_t count)
  358. {
  359. struct drm_minor *minor = dev_to_drm_minor(kdev);
  360. struct drm_device *dev = minor->dev;
  361. struct drm_i915_private *dev_priv = dev->dev_private;
  362. u32 val;
  363. ssize_t ret;
  364. ret = kstrtou32(buf, 0, &val);
  365. if (ret)
  366. return ret;
  367. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  368. mutex_lock(&dev_priv->rps.hw_lock);
  369. val = intel_freq_opcode(dev_priv, val);
  370. if (val < dev_priv->rps.min_freq ||
  371. val > dev_priv->rps.max_freq ||
  372. val > dev_priv->rps.max_freq_softlimit) {
  373. mutex_unlock(&dev_priv->rps.hw_lock);
  374. return -EINVAL;
  375. }
  376. dev_priv->rps.min_freq_softlimit = val;
  377. val = clamp_t(int, dev_priv->rps.cur_freq,
  378. dev_priv->rps.min_freq_softlimit,
  379. dev_priv->rps.max_freq_softlimit);
  380. /* We still need *_set_rps to process the new min_delay and
  381. * update the interrupt limits and PMINTRMSK even though
  382. * frequency request may be unchanged. */
  383. intel_set_rps(dev, val);
  384. mutex_unlock(&dev_priv->rps.hw_lock);
  385. return count;
  386. }
  387. static DEVICE_ATTR(gt_act_freq_mhz, S_IRUGO, gt_act_freq_mhz_show, NULL);
  388. static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL);
  389. static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store);
  390. static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store);
  391. static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL);
  392. static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf);
  393. static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  394. static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  395. static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  396. /* For now we have a static number of RP states */
  397. static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  398. {
  399. struct drm_minor *minor = dev_to_drm_minor(kdev);
  400. struct drm_device *dev = minor->dev;
  401. struct drm_i915_private *dev_priv = dev->dev_private;
  402. u32 val;
  403. if (attr == &dev_attr_gt_RP0_freq_mhz)
  404. val = intel_gpu_freq(dev_priv, dev_priv->rps.rp0_freq);
  405. else if (attr == &dev_attr_gt_RP1_freq_mhz)
  406. val = intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq);
  407. else if (attr == &dev_attr_gt_RPn_freq_mhz)
  408. val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq);
  409. else
  410. BUG();
  411. return snprintf(buf, PAGE_SIZE, "%d\n", val);
  412. }
  413. static const struct attribute *gen6_attrs[] = {
  414. &dev_attr_gt_act_freq_mhz.attr,
  415. &dev_attr_gt_cur_freq_mhz.attr,
  416. &dev_attr_gt_max_freq_mhz.attr,
  417. &dev_attr_gt_min_freq_mhz.attr,
  418. &dev_attr_gt_RP0_freq_mhz.attr,
  419. &dev_attr_gt_RP1_freq_mhz.attr,
  420. &dev_attr_gt_RPn_freq_mhz.attr,
  421. NULL,
  422. };
  423. static const struct attribute *vlv_attrs[] = {
  424. &dev_attr_gt_act_freq_mhz.attr,
  425. &dev_attr_gt_cur_freq_mhz.attr,
  426. &dev_attr_gt_max_freq_mhz.attr,
  427. &dev_attr_gt_min_freq_mhz.attr,
  428. &dev_attr_gt_RP0_freq_mhz.attr,
  429. &dev_attr_gt_RP1_freq_mhz.attr,
  430. &dev_attr_gt_RPn_freq_mhz.attr,
  431. &dev_attr_vlv_rpe_freq_mhz.attr,
  432. NULL,
  433. };
  434. static ssize_t error_state_read(struct file *filp, struct kobject *kobj,
  435. struct bin_attribute *attr, char *buf,
  436. loff_t off, size_t count)
  437. {
  438. struct device *kdev = container_of(kobj, struct device, kobj);
  439. struct drm_minor *minor = dev_to_drm_minor(kdev);
  440. struct drm_device *dev = minor->dev;
  441. struct i915_error_state_file_priv error_priv;
  442. struct drm_i915_error_state_buf error_str;
  443. ssize_t ret_count = 0;
  444. int ret;
  445. memset(&error_priv, 0, sizeof(error_priv));
  446. ret = i915_error_state_buf_init(&error_str, to_i915(dev), count, off);
  447. if (ret)
  448. return ret;
  449. error_priv.dev = dev;
  450. i915_error_state_get(dev, &error_priv);
  451. ret = i915_error_state_to_str(&error_str, &error_priv);
  452. if (ret)
  453. goto out;
  454. ret_count = count < error_str.bytes ? count : error_str.bytes;
  455. memcpy(buf, error_str.buf, ret_count);
  456. out:
  457. i915_error_state_put(&error_priv);
  458. i915_error_state_buf_release(&error_str);
  459. return ret ?: ret_count;
  460. }
  461. static ssize_t error_state_write(struct file *file, struct kobject *kobj,
  462. struct bin_attribute *attr, char *buf,
  463. loff_t off, size_t count)
  464. {
  465. struct device *kdev = container_of(kobj, struct device, kobj);
  466. struct drm_minor *minor = dev_to_drm_minor(kdev);
  467. struct drm_device *dev = minor->dev;
  468. int ret;
  469. DRM_DEBUG_DRIVER("Resetting error state\n");
  470. ret = mutex_lock_interruptible(&dev->struct_mutex);
  471. if (ret)
  472. return ret;
  473. i915_destroy_error_state(dev);
  474. mutex_unlock(&dev->struct_mutex);
  475. return count;
  476. }
  477. static struct bin_attribute error_state_attr = {
  478. .attr.name = "error",
  479. .attr.mode = S_IRUSR | S_IWUSR,
  480. .size = 0,
  481. .read = error_state_read,
  482. .write = error_state_write,
  483. };
  484. void i915_setup_sysfs(struct drm_device *dev)
  485. {
  486. int ret;
  487. #ifdef CONFIG_PM
  488. if (HAS_RC6(dev)) {
  489. ret = sysfs_merge_group(&dev->primary->kdev->kobj,
  490. &rc6_attr_group);
  491. if (ret)
  492. DRM_ERROR("RC6 residency sysfs setup failed\n");
  493. }
  494. if (HAS_RC6p(dev)) {
  495. ret = sysfs_merge_group(&dev->primary->kdev->kobj,
  496. &rc6p_attr_group);
  497. if (ret)
  498. DRM_ERROR("RC6p residency sysfs setup failed\n");
  499. }
  500. if (IS_VALLEYVIEW(dev)) {
  501. ret = sysfs_merge_group(&dev->primary->kdev->kobj,
  502. &media_rc6_attr_group);
  503. if (ret)
  504. DRM_ERROR("Media RC6 residency sysfs setup failed\n");
  505. }
  506. #endif
  507. if (HAS_L3_DPF(dev)) {
  508. ret = device_create_bin_file(dev->primary->kdev, &dpf_attrs);
  509. if (ret)
  510. DRM_ERROR("l3 parity sysfs setup failed\n");
  511. if (NUM_L3_SLICES(dev) > 1) {
  512. ret = device_create_bin_file(dev->primary->kdev,
  513. &dpf_attrs_1);
  514. if (ret)
  515. DRM_ERROR("l3 parity slice 1 setup failed\n");
  516. }
  517. }
  518. ret = 0;
  519. if (IS_VALLEYVIEW(dev))
  520. ret = sysfs_create_files(&dev->primary->kdev->kobj, vlv_attrs);
  521. else if (INTEL_INFO(dev)->gen >= 6)
  522. ret = sysfs_create_files(&dev->primary->kdev->kobj, gen6_attrs);
  523. if (ret)
  524. DRM_ERROR("RPS sysfs setup failed\n");
  525. ret = sysfs_create_bin_file(&dev->primary->kdev->kobj,
  526. &error_state_attr);
  527. if (ret)
  528. DRM_ERROR("error_state sysfs setup failed\n");
  529. }
  530. void i915_teardown_sysfs(struct drm_device *dev)
  531. {
  532. sysfs_remove_bin_file(&dev->primary->kdev->kobj, &error_state_attr);
  533. if (IS_VALLEYVIEW(dev))
  534. sysfs_remove_files(&dev->primary->kdev->kobj, vlv_attrs);
  535. else
  536. sysfs_remove_files(&dev->primary->kdev->kobj, gen6_attrs);
  537. device_remove_bin_file(dev->primary->kdev, &dpf_attrs_1);
  538. device_remove_bin_file(dev->primary->kdev, &dpf_attrs);
  539. #ifdef CONFIG_PM
  540. sysfs_unmerge_group(&dev->primary->kdev->kobj, &rc6_attr_group);
  541. sysfs_unmerge_group(&dev->primary->kdev->kobj, &rc6p_attr_group);
  542. #endif
  543. }