kfd_topology.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/types.h>
  23. #include <linux/kernel.h>
  24. #include <linux/pci.h>
  25. #include <linux/errno.h>
  26. #include <linux/acpi.h>
  27. #include <linux/hash.h>
  28. #include <linux/cpufreq.h>
  29. #include <linux/log2.h>
  30. #include "kfd_priv.h"
  31. #include "kfd_crat.h"
  32. #include "kfd_topology.h"
  33. static struct list_head topology_device_list;
  34. static int topology_crat_parsed;
  35. static struct kfd_system_properties sys_props;
  36. static DECLARE_RWSEM(topology_lock);
  37. struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
  38. {
  39. struct kfd_topology_device *top_dev;
  40. struct kfd_dev *device = NULL;
  41. down_read(&topology_lock);
  42. list_for_each_entry(top_dev, &topology_device_list, list)
  43. if (top_dev->gpu_id == gpu_id) {
  44. device = top_dev->gpu;
  45. break;
  46. }
  47. up_read(&topology_lock);
  48. return device;
  49. }
  50. struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
  51. {
  52. struct kfd_topology_device *top_dev;
  53. struct kfd_dev *device = NULL;
  54. down_read(&topology_lock);
  55. list_for_each_entry(top_dev, &topology_device_list, list)
  56. if (top_dev->gpu->pdev == pdev) {
  57. device = top_dev->gpu;
  58. break;
  59. }
  60. up_read(&topology_lock);
  61. return device;
  62. }
  63. static int kfd_topology_get_crat_acpi(void *crat_image, size_t *size)
  64. {
  65. struct acpi_table_header *crat_table;
  66. acpi_status status;
  67. if (!size)
  68. return -EINVAL;
  69. /*
  70. * Fetch the CRAT table from ACPI
  71. */
  72. status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
  73. if (status == AE_NOT_FOUND) {
  74. pr_warn("CRAT table not found\n");
  75. return -ENODATA;
  76. } else if (ACPI_FAILURE(status)) {
  77. const char *err = acpi_format_exception(status);
  78. pr_err("CRAT table error: %s\n", err);
  79. return -EINVAL;
  80. }
  81. if (*size >= crat_table->length && crat_image != NULL)
  82. memcpy(crat_image, crat_table, crat_table->length);
  83. *size = crat_table->length;
  84. return 0;
  85. }
  86. static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
  87. struct crat_subtype_computeunit *cu)
  88. {
  89. BUG_ON(!dev);
  90. BUG_ON(!cu);
  91. dev->node_props.cpu_cores_count = cu->num_cpu_cores;
  92. dev->node_props.cpu_core_id_base = cu->processor_id_low;
  93. if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
  94. dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
  95. pr_info("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
  96. cu->processor_id_low);
  97. }
  98. static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
  99. struct crat_subtype_computeunit *cu)
  100. {
  101. BUG_ON(!dev);
  102. BUG_ON(!cu);
  103. dev->node_props.simd_id_base = cu->processor_id_low;
  104. dev->node_props.simd_count = cu->num_simd_cores;
  105. dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
  106. dev->node_props.max_waves_per_simd = cu->max_waves_simd;
  107. dev->node_props.wave_front_size = cu->wave_front_size;
  108. dev->node_props.mem_banks_count = cu->num_banks;
  109. dev->node_props.array_count = cu->num_arrays;
  110. dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
  111. dev->node_props.simd_per_cu = cu->num_simd_per_cu;
  112. dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
  113. if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
  114. dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
  115. pr_info("CU GPU: simds=%d id_base=%d\n", cu->num_simd_cores,
  116. cu->processor_id_low);
  117. }
  118. /* kfd_parse_subtype_cu is called when the topology mutex is already acquired */
  119. static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu)
  120. {
  121. struct kfd_topology_device *dev;
  122. int i = 0;
  123. BUG_ON(!cu);
  124. pr_info("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
  125. cu->proximity_domain, cu->hsa_capability);
  126. list_for_each_entry(dev, &topology_device_list, list) {
  127. if (cu->proximity_domain == i) {
  128. if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
  129. kfd_populated_cu_info_cpu(dev, cu);
  130. if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
  131. kfd_populated_cu_info_gpu(dev, cu);
  132. break;
  133. }
  134. i++;
  135. }
  136. return 0;
  137. }
  138. /*
  139. * kfd_parse_subtype_mem is called when the topology mutex is
  140. * already acquired
  141. */
  142. static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem)
  143. {
  144. struct kfd_mem_properties *props;
  145. struct kfd_topology_device *dev;
  146. int i = 0;
  147. BUG_ON(!mem);
  148. pr_info("Found memory entry in CRAT table with proximity_domain=%d\n",
  149. mem->promixity_domain);
  150. list_for_each_entry(dev, &topology_device_list, list) {
  151. if (mem->promixity_domain == i) {
  152. props = kfd_alloc_struct(props);
  153. if (props == NULL)
  154. return -ENOMEM;
  155. if (dev->node_props.cpu_cores_count == 0)
  156. props->heap_type = HSA_MEM_HEAP_TYPE_FB_PRIVATE;
  157. else
  158. props->heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
  159. if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
  160. props->flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
  161. if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
  162. props->flags |= HSA_MEM_FLAGS_NON_VOLATILE;
  163. props->size_in_bytes =
  164. ((uint64_t)mem->length_high << 32) +
  165. mem->length_low;
  166. props->width = mem->width;
  167. dev->mem_bank_count++;
  168. list_add_tail(&props->list, &dev->mem_props);
  169. break;
  170. }
  171. i++;
  172. }
  173. return 0;
  174. }
  175. /*
  176. * kfd_parse_subtype_cache is called when the topology mutex
  177. * is already acquired
  178. */
  179. static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache)
  180. {
  181. struct kfd_cache_properties *props;
  182. struct kfd_topology_device *dev;
  183. uint32_t id;
  184. BUG_ON(!cache);
  185. id = cache->processor_id_low;
  186. pr_info("Found cache entry in CRAT table with processor_id=%d\n", id);
  187. list_for_each_entry(dev, &topology_device_list, list)
  188. if (id == dev->node_props.cpu_core_id_base ||
  189. id == dev->node_props.simd_id_base) {
  190. props = kfd_alloc_struct(props);
  191. if (props == NULL)
  192. return -ENOMEM;
  193. props->processor_id_low = id;
  194. props->cache_level = cache->cache_level;
  195. props->cache_size = cache->cache_size;
  196. props->cacheline_size = cache->cache_line_size;
  197. props->cachelines_per_tag = cache->lines_per_tag;
  198. props->cache_assoc = cache->associativity;
  199. props->cache_latency = cache->cache_latency;
  200. if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
  201. props->cache_type |= HSA_CACHE_TYPE_DATA;
  202. if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
  203. props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
  204. if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
  205. props->cache_type |= HSA_CACHE_TYPE_CPU;
  206. if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
  207. props->cache_type |= HSA_CACHE_TYPE_HSACU;
  208. dev->cache_count++;
  209. dev->node_props.caches_count++;
  210. list_add_tail(&props->list, &dev->cache_props);
  211. break;
  212. }
  213. return 0;
  214. }
  215. /*
  216. * kfd_parse_subtype_iolink is called when the topology mutex
  217. * is already acquired
  218. */
  219. static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink)
  220. {
  221. struct kfd_iolink_properties *props;
  222. struct kfd_topology_device *dev;
  223. uint32_t i = 0;
  224. uint32_t id_from;
  225. uint32_t id_to;
  226. BUG_ON(!iolink);
  227. id_from = iolink->proximity_domain_from;
  228. id_to = iolink->proximity_domain_to;
  229. pr_info("Found IO link entry in CRAT table with id_from=%d\n", id_from);
  230. list_for_each_entry(dev, &topology_device_list, list) {
  231. if (id_from == i) {
  232. props = kfd_alloc_struct(props);
  233. if (props == NULL)
  234. return -ENOMEM;
  235. props->node_from = id_from;
  236. props->node_to = id_to;
  237. props->ver_maj = iolink->version_major;
  238. props->ver_min = iolink->version_minor;
  239. /*
  240. * weight factor (derived from CDIR), currently always 1
  241. */
  242. props->weight = 1;
  243. props->min_latency = iolink->minimum_latency;
  244. props->max_latency = iolink->maximum_latency;
  245. props->min_bandwidth = iolink->minimum_bandwidth_mbs;
  246. props->max_bandwidth = iolink->maximum_bandwidth_mbs;
  247. props->rec_transfer_size =
  248. iolink->recommended_transfer_size;
  249. dev->io_link_count++;
  250. dev->node_props.io_links_count++;
  251. list_add_tail(&props->list, &dev->io_link_props);
  252. break;
  253. }
  254. i++;
  255. }
  256. return 0;
  257. }
  258. static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr)
  259. {
  260. struct crat_subtype_computeunit *cu;
  261. struct crat_subtype_memory *mem;
  262. struct crat_subtype_cache *cache;
  263. struct crat_subtype_iolink *iolink;
  264. int ret = 0;
  265. BUG_ON(!sub_type_hdr);
  266. switch (sub_type_hdr->type) {
  267. case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
  268. cu = (struct crat_subtype_computeunit *)sub_type_hdr;
  269. ret = kfd_parse_subtype_cu(cu);
  270. break;
  271. case CRAT_SUBTYPE_MEMORY_AFFINITY:
  272. mem = (struct crat_subtype_memory *)sub_type_hdr;
  273. ret = kfd_parse_subtype_mem(mem);
  274. break;
  275. case CRAT_SUBTYPE_CACHE_AFFINITY:
  276. cache = (struct crat_subtype_cache *)sub_type_hdr;
  277. ret = kfd_parse_subtype_cache(cache);
  278. break;
  279. case CRAT_SUBTYPE_TLB_AFFINITY:
  280. /*
  281. * For now, nothing to do here
  282. */
  283. pr_info("Found TLB entry in CRAT table (not processing)\n");
  284. break;
  285. case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
  286. /*
  287. * For now, nothing to do here
  288. */
  289. pr_info("Found CCOMPUTE entry in CRAT table (not processing)\n");
  290. break;
  291. case CRAT_SUBTYPE_IOLINK_AFFINITY:
  292. iolink = (struct crat_subtype_iolink *)sub_type_hdr;
  293. ret = kfd_parse_subtype_iolink(iolink);
  294. break;
  295. default:
  296. pr_warn("Unknown subtype (%d) in CRAT\n",
  297. sub_type_hdr->type);
  298. }
  299. return ret;
  300. }
  301. static void kfd_release_topology_device(struct kfd_topology_device *dev)
  302. {
  303. struct kfd_mem_properties *mem;
  304. struct kfd_cache_properties *cache;
  305. struct kfd_iolink_properties *iolink;
  306. BUG_ON(!dev);
  307. list_del(&dev->list);
  308. while (dev->mem_props.next != &dev->mem_props) {
  309. mem = container_of(dev->mem_props.next,
  310. struct kfd_mem_properties, list);
  311. list_del(&mem->list);
  312. kfree(mem);
  313. }
  314. while (dev->cache_props.next != &dev->cache_props) {
  315. cache = container_of(dev->cache_props.next,
  316. struct kfd_cache_properties, list);
  317. list_del(&cache->list);
  318. kfree(cache);
  319. }
  320. while (dev->io_link_props.next != &dev->io_link_props) {
  321. iolink = container_of(dev->io_link_props.next,
  322. struct kfd_iolink_properties, list);
  323. list_del(&iolink->list);
  324. kfree(iolink);
  325. }
  326. kfree(dev);
  327. sys_props.num_devices--;
  328. }
  329. static void kfd_release_live_view(void)
  330. {
  331. struct kfd_topology_device *dev;
  332. while (topology_device_list.next != &topology_device_list) {
  333. dev = container_of(topology_device_list.next,
  334. struct kfd_topology_device, list);
  335. kfd_release_topology_device(dev);
  336. }
  337. memset(&sys_props, 0, sizeof(sys_props));
  338. }
  339. static struct kfd_topology_device *kfd_create_topology_device(void)
  340. {
  341. struct kfd_topology_device *dev;
  342. dev = kfd_alloc_struct(dev);
  343. if (dev == NULL) {
  344. pr_err("No memory to allocate a topology device");
  345. return NULL;
  346. }
  347. INIT_LIST_HEAD(&dev->mem_props);
  348. INIT_LIST_HEAD(&dev->cache_props);
  349. INIT_LIST_HEAD(&dev->io_link_props);
  350. list_add_tail(&dev->list, &topology_device_list);
  351. sys_props.num_devices++;
  352. return dev;
  353. }
  354. static int kfd_parse_crat_table(void *crat_image)
  355. {
  356. struct kfd_topology_device *top_dev;
  357. struct crat_subtype_generic *sub_type_hdr;
  358. uint16_t node_id;
  359. int ret;
  360. struct crat_header *crat_table = (struct crat_header *)crat_image;
  361. uint16_t num_nodes;
  362. uint32_t image_len;
  363. if (!crat_image)
  364. return -EINVAL;
  365. num_nodes = crat_table->num_domains;
  366. image_len = crat_table->length;
  367. pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
  368. for (node_id = 0; node_id < num_nodes; node_id++) {
  369. top_dev = kfd_create_topology_device();
  370. if (!top_dev) {
  371. kfd_release_live_view();
  372. return -ENOMEM;
  373. }
  374. }
  375. sys_props.platform_id =
  376. (*((uint64_t *)crat_table->oem_id)) & CRAT_OEMID_64BIT_MASK;
  377. sys_props.platform_oem = *((uint64_t *)crat_table->oem_table_id);
  378. sys_props.platform_rev = crat_table->revision;
  379. sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
  380. while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
  381. ((char *)crat_image) + image_len) {
  382. if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
  383. ret = kfd_parse_subtype(sub_type_hdr);
  384. if (ret != 0) {
  385. kfd_release_live_view();
  386. return ret;
  387. }
  388. }
  389. sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
  390. sub_type_hdr->length);
  391. }
  392. sys_props.generation_count++;
  393. topology_crat_parsed = 1;
  394. return 0;
  395. }
  396. #define sysfs_show_gen_prop(buffer, fmt, ...) \
  397. snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__)
  398. #define sysfs_show_32bit_prop(buffer, name, value) \
  399. sysfs_show_gen_prop(buffer, "%s %u\n", name, value)
  400. #define sysfs_show_64bit_prop(buffer, name, value) \
  401. sysfs_show_gen_prop(buffer, "%s %llu\n", name, value)
  402. #define sysfs_show_32bit_val(buffer, value) \
  403. sysfs_show_gen_prop(buffer, "%u\n", value)
  404. #define sysfs_show_str_val(buffer, value) \
  405. sysfs_show_gen_prop(buffer, "%s\n", value)
  406. static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
  407. char *buffer)
  408. {
  409. ssize_t ret;
  410. /* Making sure that the buffer is an empty string */
  411. buffer[0] = 0;
  412. if (attr == &sys_props.attr_genid) {
  413. ret = sysfs_show_32bit_val(buffer, sys_props.generation_count);
  414. } else if (attr == &sys_props.attr_props) {
  415. sysfs_show_64bit_prop(buffer, "platform_oem",
  416. sys_props.platform_oem);
  417. sysfs_show_64bit_prop(buffer, "platform_id",
  418. sys_props.platform_id);
  419. ret = sysfs_show_64bit_prop(buffer, "platform_rev",
  420. sys_props.platform_rev);
  421. } else {
  422. ret = -EINVAL;
  423. }
  424. return ret;
  425. }
  426. static const struct sysfs_ops sysprops_ops = {
  427. .show = sysprops_show,
  428. };
  429. static struct kobj_type sysprops_type = {
  430. .sysfs_ops = &sysprops_ops,
  431. };
  432. static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
  433. char *buffer)
  434. {
  435. ssize_t ret;
  436. struct kfd_iolink_properties *iolink;
  437. /* Making sure that the buffer is an empty string */
  438. buffer[0] = 0;
  439. iolink = container_of(attr, struct kfd_iolink_properties, attr);
  440. sysfs_show_32bit_prop(buffer, "type", iolink->iolink_type);
  441. sysfs_show_32bit_prop(buffer, "version_major", iolink->ver_maj);
  442. sysfs_show_32bit_prop(buffer, "version_minor", iolink->ver_min);
  443. sysfs_show_32bit_prop(buffer, "node_from", iolink->node_from);
  444. sysfs_show_32bit_prop(buffer, "node_to", iolink->node_to);
  445. sysfs_show_32bit_prop(buffer, "weight", iolink->weight);
  446. sysfs_show_32bit_prop(buffer, "min_latency", iolink->min_latency);
  447. sysfs_show_32bit_prop(buffer, "max_latency", iolink->max_latency);
  448. sysfs_show_32bit_prop(buffer, "min_bandwidth", iolink->min_bandwidth);
  449. sysfs_show_32bit_prop(buffer, "max_bandwidth", iolink->max_bandwidth);
  450. sysfs_show_32bit_prop(buffer, "recommended_transfer_size",
  451. iolink->rec_transfer_size);
  452. ret = sysfs_show_32bit_prop(buffer, "flags", iolink->flags);
  453. return ret;
  454. }
  455. static const struct sysfs_ops iolink_ops = {
  456. .show = iolink_show,
  457. };
  458. static struct kobj_type iolink_type = {
  459. .sysfs_ops = &iolink_ops,
  460. };
  461. static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
  462. char *buffer)
  463. {
  464. ssize_t ret;
  465. struct kfd_mem_properties *mem;
  466. /* Making sure that the buffer is an empty string */
  467. buffer[0] = 0;
  468. mem = container_of(attr, struct kfd_mem_properties, attr);
  469. sysfs_show_32bit_prop(buffer, "heap_type", mem->heap_type);
  470. sysfs_show_64bit_prop(buffer, "size_in_bytes", mem->size_in_bytes);
  471. sysfs_show_32bit_prop(buffer, "flags", mem->flags);
  472. sysfs_show_32bit_prop(buffer, "width", mem->width);
  473. ret = sysfs_show_32bit_prop(buffer, "mem_clk_max", mem->mem_clk_max);
  474. return ret;
  475. }
  476. static const struct sysfs_ops mem_ops = {
  477. .show = mem_show,
  478. };
  479. static struct kobj_type mem_type = {
  480. .sysfs_ops = &mem_ops,
  481. };
  482. static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
  483. char *buffer)
  484. {
  485. ssize_t ret;
  486. uint32_t i;
  487. struct kfd_cache_properties *cache;
  488. /* Making sure that the buffer is an empty string */
  489. buffer[0] = 0;
  490. cache = container_of(attr, struct kfd_cache_properties, attr);
  491. sysfs_show_32bit_prop(buffer, "processor_id_low",
  492. cache->processor_id_low);
  493. sysfs_show_32bit_prop(buffer, "level", cache->cache_level);
  494. sysfs_show_32bit_prop(buffer, "size", cache->cache_size);
  495. sysfs_show_32bit_prop(buffer, "cache_line_size", cache->cacheline_size);
  496. sysfs_show_32bit_prop(buffer, "cache_lines_per_tag",
  497. cache->cachelines_per_tag);
  498. sysfs_show_32bit_prop(buffer, "association", cache->cache_assoc);
  499. sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency);
  500. sysfs_show_32bit_prop(buffer, "type", cache->cache_type);
  501. snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer);
  502. for (i = 0; i < KFD_TOPOLOGY_CPU_SIBLINGS; i++)
  503. ret = snprintf(buffer, PAGE_SIZE, "%s%d%s",
  504. buffer, cache->sibling_map[i],
  505. (i == KFD_TOPOLOGY_CPU_SIBLINGS-1) ?
  506. "\n" : ",");
  507. return ret;
  508. }
  509. static const struct sysfs_ops cache_ops = {
  510. .show = kfd_cache_show,
  511. };
  512. static struct kobj_type cache_type = {
  513. .sysfs_ops = &cache_ops,
  514. };
  515. static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
  516. char *buffer)
  517. {
  518. struct kfd_topology_device *dev;
  519. char public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE];
  520. uint32_t i;
  521. uint32_t log_max_watch_addr;
  522. /* Making sure that the buffer is an empty string */
  523. buffer[0] = 0;
  524. if (strcmp(attr->name, "gpu_id") == 0) {
  525. dev = container_of(attr, struct kfd_topology_device,
  526. attr_gpuid);
  527. return sysfs_show_32bit_val(buffer, dev->gpu_id);
  528. }
  529. if (strcmp(attr->name, "name") == 0) {
  530. dev = container_of(attr, struct kfd_topology_device,
  531. attr_name);
  532. for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE; i++) {
  533. public_name[i] =
  534. (char)dev->node_props.marketing_name[i];
  535. if (dev->node_props.marketing_name[i] == 0)
  536. break;
  537. }
  538. public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1] = 0x0;
  539. return sysfs_show_str_val(buffer, public_name);
  540. }
  541. dev = container_of(attr, struct kfd_topology_device,
  542. attr_props);
  543. sysfs_show_32bit_prop(buffer, "cpu_cores_count",
  544. dev->node_props.cpu_cores_count);
  545. sysfs_show_32bit_prop(buffer, "simd_count",
  546. dev->node_props.simd_count);
  547. if (dev->mem_bank_count < dev->node_props.mem_banks_count) {
  548. pr_warn("kfd: mem_banks_count truncated from %d to %d\n",
  549. dev->node_props.mem_banks_count,
  550. dev->mem_bank_count);
  551. sysfs_show_32bit_prop(buffer, "mem_banks_count",
  552. dev->mem_bank_count);
  553. } else {
  554. sysfs_show_32bit_prop(buffer, "mem_banks_count",
  555. dev->node_props.mem_banks_count);
  556. }
  557. sysfs_show_32bit_prop(buffer, "caches_count",
  558. dev->node_props.caches_count);
  559. sysfs_show_32bit_prop(buffer, "io_links_count",
  560. dev->node_props.io_links_count);
  561. sysfs_show_32bit_prop(buffer, "cpu_core_id_base",
  562. dev->node_props.cpu_core_id_base);
  563. sysfs_show_32bit_prop(buffer, "simd_id_base",
  564. dev->node_props.simd_id_base);
  565. sysfs_show_32bit_prop(buffer, "max_waves_per_simd",
  566. dev->node_props.max_waves_per_simd);
  567. sysfs_show_32bit_prop(buffer, "lds_size_in_kb",
  568. dev->node_props.lds_size_in_kb);
  569. sysfs_show_32bit_prop(buffer, "gds_size_in_kb",
  570. dev->node_props.gds_size_in_kb);
  571. sysfs_show_32bit_prop(buffer, "wave_front_size",
  572. dev->node_props.wave_front_size);
  573. sysfs_show_32bit_prop(buffer, "array_count",
  574. dev->node_props.array_count);
  575. sysfs_show_32bit_prop(buffer, "simd_arrays_per_engine",
  576. dev->node_props.simd_arrays_per_engine);
  577. sysfs_show_32bit_prop(buffer, "cu_per_simd_array",
  578. dev->node_props.cu_per_simd_array);
  579. sysfs_show_32bit_prop(buffer, "simd_per_cu",
  580. dev->node_props.simd_per_cu);
  581. sysfs_show_32bit_prop(buffer, "max_slots_scratch_cu",
  582. dev->node_props.max_slots_scratch_cu);
  583. sysfs_show_32bit_prop(buffer, "vendor_id",
  584. dev->node_props.vendor_id);
  585. sysfs_show_32bit_prop(buffer, "device_id",
  586. dev->node_props.device_id);
  587. sysfs_show_32bit_prop(buffer, "location_id",
  588. dev->node_props.location_id);
  589. if (dev->gpu) {
  590. log_max_watch_addr =
  591. __ilog2_u32(dev->gpu->device_info->num_of_watch_points);
  592. if (log_max_watch_addr) {
  593. dev->node_props.capability |=
  594. HSA_CAP_WATCH_POINTS_SUPPORTED;
  595. dev->node_props.capability |=
  596. ((log_max_watch_addr <<
  597. HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
  598. HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
  599. }
  600. sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute",
  601. dev->gpu->kfd2kgd->get_max_engine_clock_in_mhz(
  602. dev->gpu->kgd));
  603. sysfs_show_64bit_prop(buffer, "local_mem_size",
  604. (unsigned long long int) 0);
  605. sysfs_show_32bit_prop(buffer, "fw_version",
  606. dev->gpu->kfd2kgd->get_fw_version(
  607. dev->gpu->kgd,
  608. KGD_ENGINE_MEC1));
  609. sysfs_show_32bit_prop(buffer, "capability",
  610. dev->node_props.capability);
  611. }
  612. return sysfs_show_32bit_prop(buffer, "max_engine_clk_ccompute",
  613. cpufreq_quick_get_max(0)/1000);
  614. }
  615. static const struct sysfs_ops node_ops = {
  616. .show = node_show,
  617. };
  618. static struct kobj_type node_type = {
  619. .sysfs_ops = &node_ops,
  620. };
  621. static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
  622. {
  623. sysfs_remove_file(kobj, attr);
  624. kobject_del(kobj);
  625. kobject_put(kobj);
  626. }
  627. static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
  628. {
  629. struct kfd_iolink_properties *iolink;
  630. struct kfd_cache_properties *cache;
  631. struct kfd_mem_properties *mem;
  632. BUG_ON(!dev);
  633. if (dev->kobj_iolink) {
  634. list_for_each_entry(iolink, &dev->io_link_props, list)
  635. if (iolink->kobj) {
  636. kfd_remove_sysfs_file(iolink->kobj,
  637. &iolink->attr);
  638. iolink->kobj = NULL;
  639. }
  640. kobject_del(dev->kobj_iolink);
  641. kobject_put(dev->kobj_iolink);
  642. dev->kobj_iolink = NULL;
  643. }
  644. if (dev->kobj_cache) {
  645. list_for_each_entry(cache, &dev->cache_props, list)
  646. if (cache->kobj) {
  647. kfd_remove_sysfs_file(cache->kobj,
  648. &cache->attr);
  649. cache->kobj = NULL;
  650. }
  651. kobject_del(dev->kobj_cache);
  652. kobject_put(dev->kobj_cache);
  653. dev->kobj_cache = NULL;
  654. }
  655. if (dev->kobj_mem) {
  656. list_for_each_entry(mem, &dev->mem_props, list)
  657. if (mem->kobj) {
  658. kfd_remove_sysfs_file(mem->kobj, &mem->attr);
  659. mem->kobj = NULL;
  660. }
  661. kobject_del(dev->kobj_mem);
  662. kobject_put(dev->kobj_mem);
  663. dev->kobj_mem = NULL;
  664. }
  665. if (dev->kobj_node) {
  666. sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
  667. sysfs_remove_file(dev->kobj_node, &dev->attr_name);
  668. sysfs_remove_file(dev->kobj_node, &dev->attr_props);
  669. kobject_del(dev->kobj_node);
  670. kobject_put(dev->kobj_node);
  671. dev->kobj_node = NULL;
  672. }
  673. }
  674. static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
  675. uint32_t id)
  676. {
  677. struct kfd_iolink_properties *iolink;
  678. struct kfd_cache_properties *cache;
  679. struct kfd_mem_properties *mem;
  680. int ret;
  681. uint32_t i;
  682. BUG_ON(!dev);
  683. /*
  684. * Creating the sysfs folders
  685. */
  686. BUG_ON(dev->kobj_node);
  687. dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
  688. if (!dev->kobj_node)
  689. return -ENOMEM;
  690. ret = kobject_init_and_add(dev->kobj_node, &node_type,
  691. sys_props.kobj_nodes, "%d", id);
  692. if (ret < 0)
  693. return ret;
  694. dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
  695. if (!dev->kobj_mem)
  696. return -ENOMEM;
  697. dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
  698. if (!dev->kobj_cache)
  699. return -ENOMEM;
  700. dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
  701. if (!dev->kobj_iolink)
  702. return -ENOMEM;
  703. /*
  704. * Creating sysfs files for node properties
  705. */
  706. dev->attr_gpuid.name = "gpu_id";
  707. dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
  708. sysfs_attr_init(&dev->attr_gpuid);
  709. dev->attr_name.name = "name";
  710. dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
  711. sysfs_attr_init(&dev->attr_name);
  712. dev->attr_props.name = "properties";
  713. dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
  714. sysfs_attr_init(&dev->attr_props);
  715. ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
  716. if (ret < 0)
  717. return ret;
  718. ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
  719. if (ret < 0)
  720. return ret;
  721. ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
  722. if (ret < 0)
  723. return ret;
  724. i = 0;
  725. list_for_each_entry(mem, &dev->mem_props, list) {
  726. mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
  727. if (!mem->kobj)
  728. return -ENOMEM;
  729. ret = kobject_init_and_add(mem->kobj, &mem_type,
  730. dev->kobj_mem, "%d", i);
  731. if (ret < 0)
  732. return ret;
  733. mem->attr.name = "properties";
  734. mem->attr.mode = KFD_SYSFS_FILE_MODE;
  735. sysfs_attr_init(&mem->attr);
  736. ret = sysfs_create_file(mem->kobj, &mem->attr);
  737. if (ret < 0)
  738. return ret;
  739. i++;
  740. }
  741. i = 0;
  742. list_for_each_entry(cache, &dev->cache_props, list) {
  743. cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
  744. if (!cache->kobj)
  745. return -ENOMEM;
  746. ret = kobject_init_and_add(cache->kobj, &cache_type,
  747. dev->kobj_cache, "%d", i);
  748. if (ret < 0)
  749. return ret;
  750. cache->attr.name = "properties";
  751. cache->attr.mode = KFD_SYSFS_FILE_MODE;
  752. sysfs_attr_init(&cache->attr);
  753. ret = sysfs_create_file(cache->kobj, &cache->attr);
  754. if (ret < 0)
  755. return ret;
  756. i++;
  757. }
  758. i = 0;
  759. list_for_each_entry(iolink, &dev->io_link_props, list) {
  760. iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
  761. if (!iolink->kobj)
  762. return -ENOMEM;
  763. ret = kobject_init_and_add(iolink->kobj, &iolink_type,
  764. dev->kobj_iolink, "%d", i);
  765. if (ret < 0)
  766. return ret;
  767. iolink->attr.name = "properties";
  768. iolink->attr.mode = KFD_SYSFS_FILE_MODE;
  769. sysfs_attr_init(&iolink->attr);
  770. ret = sysfs_create_file(iolink->kobj, &iolink->attr);
  771. if (ret < 0)
  772. return ret;
  773. i++;
  774. }
  775. return 0;
  776. }
  777. static int kfd_build_sysfs_node_tree(void)
  778. {
  779. struct kfd_topology_device *dev;
  780. int ret;
  781. uint32_t i = 0;
  782. list_for_each_entry(dev, &topology_device_list, list) {
  783. ret = kfd_build_sysfs_node_entry(dev, i);
  784. if (ret < 0)
  785. return ret;
  786. i++;
  787. }
  788. return 0;
  789. }
  790. static void kfd_remove_sysfs_node_tree(void)
  791. {
  792. struct kfd_topology_device *dev;
  793. list_for_each_entry(dev, &topology_device_list, list)
  794. kfd_remove_sysfs_node_entry(dev);
  795. }
  796. static int kfd_topology_update_sysfs(void)
  797. {
  798. int ret;
  799. pr_info("Creating topology SYSFS entries\n");
  800. if (sys_props.kobj_topology == NULL) {
  801. sys_props.kobj_topology =
  802. kfd_alloc_struct(sys_props.kobj_topology);
  803. if (!sys_props.kobj_topology)
  804. return -ENOMEM;
  805. ret = kobject_init_and_add(sys_props.kobj_topology,
  806. &sysprops_type, &kfd_device->kobj,
  807. "topology");
  808. if (ret < 0)
  809. return ret;
  810. sys_props.kobj_nodes = kobject_create_and_add("nodes",
  811. sys_props.kobj_topology);
  812. if (!sys_props.kobj_nodes)
  813. return -ENOMEM;
  814. sys_props.attr_genid.name = "generation_id";
  815. sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
  816. sysfs_attr_init(&sys_props.attr_genid);
  817. ret = sysfs_create_file(sys_props.kobj_topology,
  818. &sys_props.attr_genid);
  819. if (ret < 0)
  820. return ret;
  821. sys_props.attr_props.name = "system_properties";
  822. sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
  823. sysfs_attr_init(&sys_props.attr_props);
  824. ret = sysfs_create_file(sys_props.kobj_topology,
  825. &sys_props.attr_props);
  826. if (ret < 0)
  827. return ret;
  828. }
  829. kfd_remove_sysfs_node_tree();
  830. return kfd_build_sysfs_node_tree();
  831. }
  832. static void kfd_topology_release_sysfs(void)
  833. {
  834. kfd_remove_sysfs_node_tree();
  835. if (sys_props.kobj_topology) {
  836. sysfs_remove_file(sys_props.kobj_topology,
  837. &sys_props.attr_genid);
  838. sysfs_remove_file(sys_props.kobj_topology,
  839. &sys_props.attr_props);
  840. if (sys_props.kobj_nodes) {
  841. kobject_del(sys_props.kobj_nodes);
  842. kobject_put(sys_props.kobj_nodes);
  843. sys_props.kobj_nodes = NULL;
  844. }
  845. kobject_del(sys_props.kobj_topology);
  846. kobject_put(sys_props.kobj_topology);
  847. sys_props.kobj_topology = NULL;
  848. }
  849. }
  850. int kfd_topology_init(void)
  851. {
  852. void *crat_image = NULL;
  853. size_t image_size = 0;
  854. int ret;
  855. /*
  856. * Initialize the head for the topology device list
  857. */
  858. INIT_LIST_HEAD(&topology_device_list);
  859. init_rwsem(&topology_lock);
  860. topology_crat_parsed = 0;
  861. memset(&sys_props, 0, sizeof(sys_props));
  862. /*
  863. * Get the CRAT image from the ACPI
  864. */
  865. ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
  866. if (ret == 0 && image_size > 0) {
  867. pr_info("Found CRAT image with size=%zd\n", image_size);
  868. crat_image = kmalloc(image_size, GFP_KERNEL);
  869. if (!crat_image) {
  870. ret = -ENOMEM;
  871. pr_err("No memory for allocating CRAT image\n");
  872. goto err;
  873. }
  874. ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
  875. if (ret == 0) {
  876. down_write(&topology_lock);
  877. ret = kfd_parse_crat_table(crat_image);
  878. if (ret == 0)
  879. ret = kfd_topology_update_sysfs();
  880. up_write(&topology_lock);
  881. } else {
  882. pr_err("Couldn't get CRAT table size from ACPI\n");
  883. }
  884. kfree(crat_image);
  885. } else if (ret == -ENODATA) {
  886. ret = 0;
  887. } else {
  888. pr_err("Couldn't get CRAT table size from ACPI\n");
  889. }
  890. err:
  891. pr_info("Finished initializing topology ret=%d\n", ret);
  892. return ret;
  893. }
  894. void kfd_topology_shutdown(void)
  895. {
  896. kfd_topology_release_sysfs();
  897. kfd_release_live_view();
  898. }
  899. static void kfd_debug_print_topology(void)
  900. {
  901. struct kfd_topology_device *dev;
  902. uint32_t i = 0;
  903. pr_info("DEBUG PRINT OF TOPOLOGY:");
  904. list_for_each_entry(dev, &topology_device_list, list) {
  905. pr_info("Node: %d\n", i);
  906. pr_info("\tGPU assigned: %s\n", (dev->gpu ? "yes" : "no"));
  907. pr_info("\tCPU count: %d\n", dev->node_props.cpu_cores_count);
  908. pr_info("\tSIMD count: %d", dev->node_props.simd_count);
  909. i++;
  910. }
  911. }
  912. static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
  913. {
  914. uint32_t hashout;
  915. uint32_t buf[7];
  916. int i;
  917. if (!gpu)
  918. return 0;
  919. buf[0] = gpu->pdev->devfn;
  920. buf[1] = gpu->pdev->subsystem_vendor;
  921. buf[2] = gpu->pdev->subsystem_device;
  922. buf[3] = gpu->pdev->device;
  923. buf[4] = gpu->pdev->bus->number;
  924. buf[5] = (uint32_t)(gpu->kfd2kgd->get_vmem_size(gpu->kgd)
  925. & 0xffffffff);
  926. buf[6] = (uint32_t)(gpu->kfd2kgd->get_vmem_size(gpu->kgd) >> 32);
  927. for (i = 0, hashout = 0; i < 7; i++)
  928. hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
  929. return hashout;
  930. }
  931. static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
  932. {
  933. struct kfd_topology_device *dev;
  934. struct kfd_topology_device *out_dev = NULL;
  935. BUG_ON(!gpu);
  936. list_for_each_entry(dev, &topology_device_list, list)
  937. if (dev->gpu == NULL && dev->node_props.simd_count > 0) {
  938. dev->gpu = gpu;
  939. out_dev = dev;
  940. break;
  941. }
  942. return out_dev;
  943. }
  944. static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
  945. {
  946. /*
  947. * TODO: Generate an event for thunk about the arrival/removal
  948. * of the GPU
  949. */
  950. }
  951. int kfd_topology_add_device(struct kfd_dev *gpu)
  952. {
  953. uint32_t gpu_id;
  954. struct kfd_topology_device *dev;
  955. int res;
  956. BUG_ON(!gpu);
  957. gpu_id = kfd_generate_gpu_id(gpu);
  958. pr_debug("kfd: Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
  959. down_write(&topology_lock);
  960. /*
  961. * Try to assign the GPU to existing topology device (generated from
  962. * CRAT table
  963. */
  964. dev = kfd_assign_gpu(gpu);
  965. if (!dev) {
  966. pr_info("GPU was not found in the current topology. Extending.\n");
  967. kfd_debug_print_topology();
  968. dev = kfd_create_topology_device();
  969. if (!dev) {
  970. res = -ENOMEM;
  971. goto err;
  972. }
  973. dev->gpu = gpu;
  974. /*
  975. * TODO: Make a call to retrieve topology information from the
  976. * GPU vBIOS
  977. */
  978. /*
  979. * Update the SYSFS tree, since we added another topology device
  980. */
  981. if (kfd_topology_update_sysfs() < 0)
  982. kfd_topology_release_sysfs();
  983. }
  984. dev->gpu_id = gpu_id;
  985. gpu->id = gpu_id;
  986. dev->node_props.vendor_id = gpu->pdev->vendor;
  987. dev->node_props.device_id = gpu->pdev->device;
  988. dev->node_props.location_id = (gpu->pdev->bus->number << 24) +
  989. (gpu->pdev->devfn & 0xffffff);
  990. /*
  991. * TODO: Retrieve max engine clock values from KGD
  992. */
  993. if (dev->gpu->device_info->asic_family == CHIP_CARRIZO) {
  994. dev->node_props.capability |= HSA_CAP_DOORBELL_PACKET_TYPE;
  995. pr_info("amdkfd: adding doorbell packet type capability\n");
  996. }
  997. res = 0;
  998. err:
  999. up_write(&topology_lock);
  1000. if (res == 0)
  1001. kfd_notify_gpu_change(gpu_id, 1);
  1002. return res;
  1003. }
  1004. int kfd_topology_remove_device(struct kfd_dev *gpu)
  1005. {
  1006. struct kfd_topology_device *dev;
  1007. uint32_t gpu_id;
  1008. int res = -ENODEV;
  1009. BUG_ON(!gpu);
  1010. down_write(&topology_lock);
  1011. list_for_each_entry(dev, &topology_device_list, list)
  1012. if (dev->gpu == gpu) {
  1013. gpu_id = dev->gpu_id;
  1014. kfd_remove_sysfs_node_entry(dev);
  1015. kfd_release_topology_device(dev);
  1016. res = 0;
  1017. if (kfd_topology_update_sysfs() < 0)
  1018. kfd_topology_release_sysfs();
  1019. break;
  1020. }
  1021. up_write(&topology_lock);
  1022. if (res == 0)
  1023. kfd_notify_gpu_change(gpu_id, 0);
  1024. return res;
  1025. }
  1026. /*
  1027. * When idx is out of bounds, the function will return NULL
  1028. */
  1029. struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx)
  1030. {
  1031. struct kfd_topology_device *top_dev;
  1032. struct kfd_dev *device = NULL;
  1033. uint8_t device_idx = 0;
  1034. down_read(&topology_lock);
  1035. list_for_each_entry(top_dev, &topology_device_list, list) {
  1036. if (device_idx == idx) {
  1037. device = top_dev->gpu;
  1038. break;
  1039. }
  1040. device_idx++;
  1041. }
  1042. up_read(&topology_lock);
  1043. return device;
  1044. }