init.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754
  1. #include <linux/gfp.h>
  2. #include <linux/initrd.h>
  3. #include <linux/ioport.h>
  4. #include <linux/swap.h>
  5. #include <linux/memblock.h>
  6. #include <linux/bootmem.h> /* for max_low_pfn */
  7. #include <asm/cacheflush.h>
  8. #include <asm/e820.h>
  9. #include <asm/init.h>
  10. #include <asm/page.h>
  11. #include <asm/page_types.h>
  12. #include <asm/sections.h>
  13. #include <asm/setup.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/tlb.h>
  16. #include <asm/proto.h>
  17. #include <asm/dma.h> /* for MAX_DMA_PFN */
  18. #include <asm/microcode.h>
  19. /*
  20. * We need to define the tracepoints somewhere, and tlb.c
  21. * is only compied when SMP=y.
  22. */
  23. #define CREATE_TRACE_POINTS
  24. #include <trace/events/tlb.h>
  25. #include "mm_internal.h"
  26. /*
  27. * Tables translating between page_cache_type_t and pte encoding.
  28. *
  29. * The default values are defined statically as minimal supported mode;
  30. * WC and WT fall back to UC-. pat_init() updates these values to support
  31. * more cache modes, WC and WT, when it is safe to do so. See pat_init()
  32. * for the details. Note, __early_ioremap() used during early boot-time
  33. * takes pgprot_t (pte encoding) and does not use these tables.
  34. *
  35. * Index into __cachemode2pte_tbl[] is the cachemode.
  36. *
  37. * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
  38. * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
  39. */
  40. uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
  41. [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
  42. [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
  43. [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
  44. [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
  45. [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
  46. [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
  47. };
  48. EXPORT_SYMBOL(__cachemode2pte_tbl);
  49. uint8_t __pte2cachemode_tbl[8] = {
  50. [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
  51. [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
  52. [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
  53. [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
  54. [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
  55. [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  56. [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  57. [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
  58. };
  59. EXPORT_SYMBOL(__pte2cachemode_tbl);
  60. static unsigned long __initdata pgt_buf_start;
  61. static unsigned long __initdata pgt_buf_end;
  62. static unsigned long __initdata pgt_buf_top;
  63. static unsigned long min_pfn_mapped;
  64. static bool __initdata can_use_brk_pgt = true;
  65. /*
  66. * Pages returned are already directly mapped.
  67. *
  68. * Changing that is likely to break Xen, see commit:
  69. *
  70. * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
  71. *
  72. * for detailed information.
  73. */
  74. __ref void *alloc_low_pages(unsigned int num)
  75. {
  76. unsigned long pfn;
  77. int i;
  78. if (after_bootmem) {
  79. unsigned int order;
  80. order = get_order((unsigned long)num << PAGE_SHIFT);
  81. return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
  82. __GFP_ZERO, order);
  83. }
  84. if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
  85. unsigned long ret;
  86. if (min_pfn_mapped >= max_pfn_mapped)
  87. panic("alloc_low_pages: ran out of memory");
  88. ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
  89. max_pfn_mapped << PAGE_SHIFT,
  90. PAGE_SIZE * num , PAGE_SIZE);
  91. if (!ret)
  92. panic("alloc_low_pages: can not alloc memory");
  93. memblock_reserve(ret, PAGE_SIZE * num);
  94. pfn = ret >> PAGE_SHIFT;
  95. } else {
  96. pfn = pgt_buf_end;
  97. pgt_buf_end += num;
  98. printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
  99. pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
  100. }
  101. for (i = 0; i < num; i++) {
  102. void *adr;
  103. adr = __va((pfn + i) << PAGE_SHIFT);
  104. clear_page(adr);
  105. }
  106. return __va(pfn << PAGE_SHIFT);
  107. }
  108. /* need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS */
  109. #define INIT_PGT_BUF_SIZE (6 * PAGE_SIZE)
  110. RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
  111. void __init early_alloc_pgt_buf(void)
  112. {
  113. unsigned long tables = INIT_PGT_BUF_SIZE;
  114. phys_addr_t base;
  115. base = __pa(extend_brk(tables, PAGE_SIZE));
  116. pgt_buf_start = base >> PAGE_SHIFT;
  117. pgt_buf_end = pgt_buf_start;
  118. pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
  119. }
  120. int after_bootmem;
  121. early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
  122. struct map_range {
  123. unsigned long start;
  124. unsigned long end;
  125. unsigned page_size_mask;
  126. };
  127. static int page_size_mask;
  128. static void __init probe_page_size_mask(void)
  129. {
  130. #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
  131. /*
  132. * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
  133. * This will simplify cpa(), which otherwise needs to support splitting
  134. * large pages into small in interrupt context, etc.
  135. */
  136. if (cpu_has_pse)
  137. page_size_mask |= 1 << PG_LEVEL_2M;
  138. #endif
  139. /* Enable PSE if available */
  140. if (cpu_has_pse)
  141. cr4_set_bits_and_update_boot(X86_CR4_PSE);
  142. /* Enable PGE if available */
  143. if (cpu_has_pge) {
  144. cr4_set_bits_and_update_boot(X86_CR4_PGE);
  145. __supported_pte_mask |= _PAGE_GLOBAL;
  146. } else
  147. __supported_pte_mask &= ~_PAGE_GLOBAL;
  148. /* Enable 1 GB linear kernel mappings if available: */
  149. if (direct_gbpages && cpu_has_gbpages) {
  150. printk(KERN_INFO "Using GB pages for direct mapping\n");
  151. page_size_mask |= 1 << PG_LEVEL_1G;
  152. } else {
  153. direct_gbpages = 0;
  154. }
  155. }
  156. #ifdef CONFIG_X86_32
  157. #define NR_RANGE_MR 3
  158. #else /* CONFIG_X86_64 */
  159. #define NR_RANGE_MR 5
  160. #endif
  161. static int __meminit save_mr(struct map_range *mr, int nr_range,
  162. unsigned long start_pfn, unsigned long end_pfn,
  163. unsigned long page_size_mask)
  164. {
  165. if (start_pfn < end_pfn) {
  166. if (nr_range >= NR_RANGE_MR)
  167. panic("run out of range for init_memory_mapping\n");
  168. mr[nr_range].start = start_pfn<<PAGE_SHIFT;
  169. mr[nr_range].end = end_pfn<<PAGE_SHIFT;
  170. mr[nr_range].page_size_mask = page_size_mask;
  171. nr_range++;
  172. }
  173. return nr_range;
  174. }
  175. /*
  176. * adjust the page_size_mask for small range to go with
  177. * big page size instead small one if nearby are ram too.
  178. */
  179. static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
  180. int nr_range)
  181. {
  182. int i;
  183. for (i = 0; i < nr_range; i++) {
  184. if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
  185. !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
  186. unsigned long start = round_down(mr[i].start, PMD_SIZE);
  187. unsigned long end = round_up(mr[i].end, PMD_SIZE);
  188. #ifdef CONFIG_X86_32
  189. if ((end >> PAGE_SHIFT) > max_low_pfn)
  190. continue;
  191. #endif
  192. if (memblock_is_region_memory(start, end - start))
  193. mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
  194. }
  195. if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
  196. !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
  197. unsigned long start = round_down(mr[i].start, PUD_SIZE);
  198. unsigned long end = round_up(mr[i].end, PUD_SIZE);
  199. if (memblock_is_region_memory(start, end - start))
  200. mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
  201. }
  202. }
  203. }
  204. static const char *page_size_string(struct map_range *mr)
  205. {
  206. static const char str_1g[] = "1G";
  207. static const char str_2m[] = "2M";
  208. static const char str_4m[] = "4M";
  209. static const char str_4k[] = "4k";
  210. if (mr->page_size_mask & (1<<PG_LEVEL_1G))
  211. return str_1g;
  212. /*
  213. * 32-bit without PAE has a 4M large page size.
  214. * PG_LEVEL_2M is misnamed, but we can at least
  215. * print out the right size in the string.
  216. */
  217. if (IS_ENABLED(CONFIG_X86_32) &&
  218. !IS_ENABLED(CONFIG_X86_PAE) &&
  219. mr->page_size_mask & (1<<PG_LEVEL_2M))
  220. return str_4m;
  221. if (mr->page_size_mask & (1<<PG_LEVEL_2M))
  222. return str_2m;
  223. return str_4k;
  224. }
  225. static int __meminit split_mem_range(struct map_range *mr, int nr_range,
  226. unsigned long start,
  227. unsigned long end)
  228. {
  229. unsigned long start_pfn, end_pfn, limit_pfn;
  230. unsigned long pfn;
  231. int i;
  232. limit_pfn = PFN_DOWN(end);
  233. /* head if not big page alignment ? */
  234. pfn = start_pfn = PFN_DOWN(start);
  235. #ifdef CONFIG_X86_32
  236. /*
  237. * Don't use a large page for the first 2/4MB of memory
  238. * because there are often fixed size MTRRs in there
  239. * and overlapping MTRRs into large pages can cause
  240. * slowdowns.
  241. */
  242. if (pfn == 0)
  243. end_pfn = PFN_DOWN(PMD_SIZE);
  244. else
  245. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  246. #else /* CONFIG_X86_64 */
  247. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  248. #endif
  249. if (end_pfn > limit_pfn)
  250. end_pfn = limit_pfn;
  251. if (start_pfn < end_pfn) {
  252. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  253. pfn = end_pfn;
  254. }
  255. /* big page (2M) range */
  256. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  257. #ifdef CONFIG_X86_32
  258. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  259. #else /* CONFIG_X86_64 */
  260. end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  261. if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
  262. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  263. #endif
  264. if (start_pfn < end_pfn) {
  265. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  266. page_size_mask & (1<<PG_LEVEL_2M));
  267. pfn = end_pfn;
  268. }
  269. #ifdef CONFIG_X86_64
  270. /* big page (1G) range */
  271. start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  272. end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
  273. if (start_pfn < end_pfn) {
  274. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  275. page_size_mask &
  276. ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
  277. pfn = end_pfn;
  278. }
  279. /* tail is not big page (1G) alignment */
  280. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  281. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  282. if (start_pfn < end_pfn) {
  283. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  284. page_size_mask & (1<<PG_LEVEL_2M));
  285. pfn = end_pfn;
  286. }
  287. #endif
  288. /* tail is not big page (2M) alignment */
  289. start_pfn = pfn;
  290. end_pfn = limit_pfn;
  291. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  292. if (!after_bootmem)
  293. adjust_range_page_size_mask(mr, nr_range);
  294. /* try to merge same page size and continuous */
  295. for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
  296. unsigned long old_start;
  297. if (mr[i].end != mr[i+1].start ||
  298. mr[i].page_size_mask != mr[i+1].page_size_mask)
  299. continue;
  300. /* move it */
  301. old_start = mr[i].start;
  302. memmove(&mr[i], &mr[i+1],
  303. (nr_range - 1 - i) * sizeof(struct map_range));
  304. mr[i--].start = old_start;
  305. nr_range--;
  306. }
  307. for (i = 0; i < nr_range; i++)
  308. printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
  309. mr[i].start, mr[i].end - 1,
  310. page_size_string(&mr[i]));
  311. return nr_range;
  312. }
  313. struct range pfn_mapped[E820_X_MAX];
  314. int nr_pfn_mapped;
  315. static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
  316. {
  317. nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
  318. nr_pfn_mapped, start_pfn, end_pfn);
  319. nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
  320. max_pfn_mapped = max(max_pfn_mapped, end_pfn);
  321. if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
  322. max_low_pfn_mapped = max(max_low_pfn_mapped,
  323. min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
  324. }
  325. bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
  326. {
  327. int i;
  328. for (i = 0; i < nr_pfn_mapped; i++)
  329. if ((start_pfn >= pfn_mapped[i].start) &&
  330. (end_pfn <= pfn_mapped[i].end))
  331. return true;
  332. return false;
  333. }
  334. /*
  335. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  336. * This runs before bootmem is initialized and gets pages directly from
  337. * the physical memory. To access them they are temporarily mapped.
  338. */
  339. unsigned long __init_refok init_memory_mapping(unsigned long start,
  340. unsigned long end)
  341. {
  342. struct map_range mr[NR_RANGE_MR];
  343. unsigned long ret = 0;
  344. int nr_range, i;
  345. pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
  346. start, end - 1);
  347. memset(mr, 0, sizeof(mr));
  348. nr_range = split_mem_range(mr, 0, start, end);
  349. for (i = 0; i < nr_range; i++)
  350. ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
  351. mr[i].page_size_mask);
  352. add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
  353. return ret >> PAGE_SHIFT;
  354. }
  355. /*
  356. * We need to iterate through the E820 memory map and create direct mappings
  357. * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
  358. * create direct mappings for all pfns from [0 to max_low_pfn) and
  359. * [4GB to max_pfn) because of possible memory holes in high addresses
  360. * that cannot be marked as UC by fixed/variable range MTRRs.
  361. * Depending on the alignment of E820 ranges, this may possibly result
  362. * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
  363. *
  364. * init_mem_mapping() calls init_range_memory_mapping() with big range.
  365. * That range would have hole in the middle or ends, and only ram parts
  366. * will be mapped in init_range_memory_mapping().
  367. */
  368. static unsigned long __init init_range_memory_mapping(
  369. unsigned long r_start,
  370. unsigned long r_end)
  371. {
  372. unsigned long start_pfn, end_pfn;
  373. unsigned long mapped_ram_size = 0;
  374. int i;
  375. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
  376. u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
  377. u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
  378. if (start >= end)
  379. continue;
  380. /*
  381. * if it is overlapping with brk pgt, we need to
  382. * alloc pgt buf from memblock instead.
  383. */
  384. can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
  385. min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
  386. init_memory_mapping(start, end);
  387. mapped_ram_size += end - start;
  388. can_use_brk_pgt = true;
  389. }
  390. return mapped_ram_size;
  391. }
  392. static unsigned long __init get_new_step_size(unsigned long step_size)
  393. {
  394. /*
  395. * Initial mapped size is PMD_SIZE (2M).
  396. * We can not set step_size to be PUD_SIZE (1G) yet.
  397. * In worse case, when we cross the 1G boundary, and
  398. * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
  399. * to map 1G range with PTE. Hence we use one less than the
  400. * difference of page table level shifts.
  401. *
  402. * Don't need to worry about overflow in the top-down case, on 32bit,
  403. * when step_size is 0, round_down() returns 0 for start, and that
  404. * turns it into 0x100000000ULL.
  405. * In the bottom-up case, round_up(x, 0) returns 0 though too, which
  406. * needs to be taken into consideration by the code below.
  407. */
  408. return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
  409. }
  410. /**
  411. * memory_map_top_down - Map [map_start, map_end) top down
  412. * @map_start: start address of the target memory range
  413. * @map_end: end address of the target memory range
  414. *
  415. * This function will setup direct mapping for memory range
  416. * [map_start, map_end) in top-down. That said, the page tables
  417. * will be allocated at the end of the memory, and we map the
  418. * memory in top-down.
  419. */
  420. static void __init memory_map_top_down(unsigned long map_start,
  421. unsigned long map_end)
  422. {
  423. unsigned long real_end, start, last_start;
  424. unsigned long step_size;
  425. unsigned long addr;
  426. unsigned long mapped_ram_size = 0;
  427. /* xen has big range in reserved near end of ram, skip it at first.*/
  428. addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
  429. real_end = addr + PMD_SIZE;
  430. /* step_size need to be small so pgt_buf from BRK could cover it */
  431. step_size = PMD_SIZE;
  432. max_pfn_mapped = 0; /* will get exact value next */
  433. min_pfn_mapped = real_end >> PAGE_SHIFT;
  434. last_start = start = real_end;
  435. /*
  436. * We start from the top (end of memory) and go to the bottom.
  437. * The memblock_find_in_range() gets us a block of RAM from the
  438. * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  439. * for page table.
  440. */
  441. while (last_start > map_start) {
  442. if (last_start > step_size) {
  443. start = round_down(last_start - 1, step_size);
  444. if (start < map_start)
  445. start = map_start;
  446. } else
  447. start = map_start;
  448. mapped_ram_size += init_range_memory_mapping(start,
  449. last_start);
  450. last_start = start;
  451. min_pfn_mapped = last_start >> PAGE_SHIFT;
  452. if (mapped_ram_size >= step_size)
  453. step_size = get_new_step_size(step_size);
  454. }
  455. if (real_end < map_end)
  456. init_range_memory_mapping(real_end, map_end);
  457. }
  458. /**
  459. * memory_map_bottom_up - Map [map_start, map_end) bottom up
  460. * @map_start: start address of the target memory range
  461. * @map_end: end address of the target memory range
  462. *
  463. * This function will setup direct mapping for memory range
  464. * [map_start, map_end) in bottom-up. Since we have limited the
  465. * bottom-up allocation above the kernel, the page tables will
  466. * be allocated just above the kernel and we map the memory
  467. * in [map_start, map_end) in bottom-up.
  468. */
  469. static void __init memory_map_bottom_up(unsigned long map_start,
  470. unsigned long map_end)
  471. {
  472. unsigned long next, start;
  473. unsigned long mapped_ram_size = 0;
  474. /* step_size need to be small so pgt_buf from BRK could cover it */
  475. unsigned long step_size = PMD_SIZE;
  476. start = map_start;
  477. min_pfn_mapped = start >> PAGE_SHIFT;
  478. /*
  479. * We start from the bottom (@map_start) and go to the top (@map_end).
  480. * The memblock_find_in_range() gets us a block of RAM from the
  481. * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  482. * for page table.
  483. */
  484. while (start < map_end) {
  485. if (step_size && map_end - start > step_size) {
  486. next = round_up(start + 1, step_size);
  487. if (next > map_end)
  488. next = map_end;
  489. } else {
  490. next = map_end;
  491. }
  492. mapped_ram_size += init_range_memory_mapping(start, next);
  493. start = next;
  494. if (mapped_ram_size >= step_size)
  495. step_size = get_new_step_size(step_size);
  496. }
  497. }
  498. void __init init_mem_mapping(void)
  499. {
  500. unsigned long end;
  501. probe_page_size_mask();
  502. #ifdef CONFIG_X86_64
  503. end = max_pfn << PAGE_SHIFT;
  504. #else
  505. end = max_low_pfn << PAGE_SHIFT;
  506. #endif
  507. /* the ISA range is always mapped regardless of memory holes */
  508. init_memory_mapping(0, ISA_END_ADDRESS);
  509. /*
  510. * If the allocation is in bottom-up direction, we setup direct mapping
  511. * in bottom-up, otherwise we setup direct mapping in top-down.
  512. */
  513. if (memblock_bottom_up()) {
  514. unsigned long kernel_end = __pa_symbol(_end);
  515. /*
  516. * we need two separate calls here. This is because we want to
  517. * allocate page tables above the kernel. So we first map
  518. * [kernel_end, end) to make memory above the kernel be mapped
  519. * as soon as possible. And then use page tables allocated above
  520. * the kernel to map [ISA_END_ADDRESS, kernel_end).
  521. */
  522. memory_map_bottom_up(kernel_end, end);
  523. memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
  524. } else {
  525. memory_map_top_down(ISA_END_ADDRESS, end);
  526. }
  527. #ifdef CONFIG_X86_64
  528. if (max_pfn > max_low_pfn) {
  529. /* can we preseve max_low_pfn ?*/
  530. max_low_pfn = max_pfn;
  531. }
  532. #else
  533. early_ioremap_page_table_range_init();
  534. #endif
  535. load_cr3(swapper_pg_dir);
  536. __flush_tlb_all();
  537. early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
  538. }
  539. /*
  540. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  541. * is valid. The argument is a physical page number.
  542. *
  543. *
  544. * On x86, access has to be given to the first megabyte of ram because that area
  545. * contains BIOS code and data regions used by X and dosemu and similar apps.
  546. * Access has to be given to non-kernel-ram areas as well, these contain the PCI
  547. * mmio resources as well as potential bios/acpi data regions.
  548. */
  549. int devmem_is_allowed(unsigned long pagenr)
  550. {
  551. if (pagenr < 256)
  552. return 1;
  553. if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
  554. return 0;
  555. if (!page_is_ram(pagenr))
  556. return 1;
  557. return 0;
  558. }
  559. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  560. {
  561. unsigned long begin_aligned, end_aligned;
  562. /* Make sure boundaries are page aligned */
  563. begin_aligned = PAGE_ALIGN(begin);
  564. end_aligned = end & PAGE_MASK;
  565. if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
  566. begin = begin_aligned;
  567. end = end_aligned;
  568. }
  569. if (begin >= end)
  570. return;
  571. /*
  572. * If debugging page accesses then do not free this memory but
  573. * mark them not present - any buggy init-section access will
  574. * create a kernel page fault:
  575. */
  576. #ifdef CONFIG_DEBUG_PAGEALLOC
  577. printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
  578. begin, end - 1);
  579. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  580. #else
  581. /*
  582. * We just marked the kernel text read only above, now that
  583. * we are going to free part of that, we need to make that
  584. * writeable and non-executable first.
  585. */
  586. set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
  587. set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
  588. free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
  589. #endif
  590. }
  591. void free_initmem(void)
  592. {
  593. free_init_pages("unused kernel",
  594. (unsigned long)(&__init_begin),
  595. (unsigned long)(&__init_end));
  596. }
  597. #ifdef CONFIG_BLK_DEV_INITRD
  598. void __init free_initrd_mem(unsigned long start, unsigned long end)
  599. {
  600. #ifdef CONFIG_MICROCODE_EARLY
  601. /*
  602. * Remember, initrd memory may contain microcode or other useful things.
  603. * Before we lose initrd mem, we need to find a place to hold them
  604. * now that normal virtual memory is enabled.
  605. */
  606. save_microcode_in_initrd();
  607. #endif
  608. /*
  609. * end could be not aligned, and We can not align that,
  610. * decompresser could be confused by aligned initrd_end
  611. * We already reserve the end partial page before in
  612. * - i386_start_kernel()
  613. * - x86_64_start_kernel()
  614. * - relocate_initrd()
  615. * So here We can do PAGE_ALIGN() safely to get partial page to be freed
  616. */
  617. free_init_pages("initrd", start, PAGE_ALIGN(end));
  618. }
  619. #endif
  620. void __init zone_sizes_init(void)
  621. {
  622. unsigned long max_zone_pfns[MAX_NR_ZONES];
  623. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  624. #ifdef CONFIG_ZONE_DMA
  625. max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
  626. #endif
  627. #ifdef CONFIG_ZONE_DMA32
  628. max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
  629. #endif
  630. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  631. #ifdef CONFIG_HIGHMEM
  632. max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
  633. #endif
  634. free_area_init_nodes(max_zone_pfns);
  635. }
  636. DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
  637. #ifdef CONFIG_SMP
  638. .active_mm = &init_mm,
  639. .state = 0,
  640. #endif
  641. .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
  642. };
  643. EXPORT_SYMBOL_GPL(cpu_tlbstate);
  644. void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
  645. {
  646. /* entry 0 MUST be WB (hardwired to speed up translations) */
  647. BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
  648. __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
  649. __pte2cachemode_tbl[entry] = cache;
  650. }