slb.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344
  1. /*
  2. * PowerPC64 SLB support.
  3. *
  4. * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
  5. * Based on earlier code written by:
  6. * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
  7. * Copyright (c) 2001 Dave Engebretsen
  8. * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
  9. *
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version
  14. * 2 of the License, or (at your option) any later version.
  15. */
  16. #include <asm/pgtable.h>
  17. #include <asm/mmu.h>
  18. #include <asm/mmu_context.h>
  19. #include <asm/paca.h>
  20. #include <asm/cputable.h>
  21. #include <asm/cacheflush.h>
  22. #include <asm/smp.h>
  23. #include <linux/compiler.h>
  24. #include <asm/udbg.h>
  25. #include <asm/code-patching.h>
  26. extern void slb_allocate_realmode(unsigned long ea);
  27. extern void slb_allocate_user(unsigned long ea);
  28. static void slb_allocate(unsigned long ea)
  29. {
  30. /* Currently, we do real mode for all SLBs including user, but
  31. * that will change if we bring back dynamic VSIDs
  32. */
  33. slb_allocate_realmode(ea);
  34. }
  35. #define slb_esid_mask(ssize) \
  36. (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
  37. static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
  38. unsigned long entry)
  39. {
  40. return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | entry;
  41. }
  42. static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
  43. unsigned long flags)
  44. {
  45. return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
  46. ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
  47. }
  48. static inline void slb_shadow_update(unsigned long ea, int ssize,
  49. unsigned long flags,
  50. unsigned long entry)
  51. {
  52. /*
  53. * Clear the ESID first so the entry is not valid while we are
  54. * updating it. No write barriers are needed here, provided
  55. * we only update the current CPU's SLB shadow buffer.
  56. */
  57. get_slb_shadow()->save_area[entry].esid = 0;
  58. get_slb_shadow()->save_area[entry].vsid =
  59. cpu_to_be64(mk_vsid_data(ea, ssize, flags));
  60. get_slb_shadow()->save_area[entry].esid =
  61. cpu_to_be64(mk_esid_data(ea, ssize, entry));
  62. }
  63. static inline void slb_shadow_clear(unsigned long entry)
  64. {
  65. get_slb_shadow()->save_area[entry].esid = 0;
  66. }
  67. static inline void create_shadowed_slbe(unsigned long ea, int ssize,
  68. unsigned long flags,
  69. unsigned long entry)
  70. {
  71. /*
  72. * Updating the shadow buffer before writing the SLB ensures
  73. * we don't get a stale entry here if we get preempted by PHYP
  74. * between these two statements.
  75. */
  76. slb_shadow_update(ea, ssize, flags, entry);
  77. asm volatile("slbmte %0,%1" :
  78. : "r" (mk_vsid_data(ea, ssize, flags)),
  79. "r" (mk_esid_data(ea, ssize, entry))
  80. : "memory" );
  81. }
  82. static void __slb_flush_and_rebolt(void)
  83. {
  84. /* If you change this make sure you change SLB_NUM_BOLTED
  85. * and PR KVM appropriately too. */
  86. unsigned long linear_llp, vmalloc_llp, lflags, vflags;
  87. unsigned long ksp_esid_data, ksp_vsid_data;
  88. linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
  89. vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
  90. lflags = SLB_VSID_KERNEL | linear_llp;
  91. vflags = SLB_VSID_KERNEL | vmalloc_llp;
  92. ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, 2);
  93. if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
  94. ksp_esid_data &= ~SLB_ESID_V;
  95. ksp_vsid_data = 0;
  96. slb_shadow_clear(2);
  97. } else {
  98. /* Update stack entry; others don't change */
  99. slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, 2);
  100. ksp_vsid_data =
  101. be64_to_cpu(get_slb_shadow()->save_area[2].vsid);
  102. }
  103. /* We need to do this all in asm, so we're sure we don't touch
  104. * the stack between the slbia and rebolting it. */
  105. asm volatile("isync\n"
  106. "slbia\n"
  107. /* Slot 1 - first VMALLOC segment */
  108. "slbmte %0,%1\n"
  109. /* Slot 2 - kernel stack */
  110. "slbmte %2,%3\n"
  111. "isync"
  112. :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
  113. "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, 1)),
  114. "r"(ksp_vsid_data),
  115. "r"(ksp_esid_data)
  116. : "memory");
  117. }
  118. void slb_flush_and_rebolt(void)
  119. {
  120. WARN_ON(!irqs_disabled());
  121. /*
  122. * We can't take a PMU exception in the following code, so hard
  123. * disable interrupts.
  124. */
  125. hard_irq_disable();
  126. __slb_flush_and_rebolt();
  127. get_paca()->slb_cache_ptr = 0;
  128. }
  129. void slb_vmalloc_update(void)
  130. {
  131. unsigned long vflags;
  132. vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
  133. slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
  134. slb_flush_and_rebolt();
  135. }
  136. /* Helper function to compare esids. There are four cases to handle.
  137. * 1. The system is not 1T segment size capable. Use the GET_ESID compare.
  138. * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
  139. * 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match.
  140. * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
  141. */
  142. static inline int esids_match(unsigned long addr1, unsigned long addr2)
  143. {
  144. int esid_1t_count;
  145. /* System is not 1T segment size capable. */
  146. if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
  147. return (GET_ESID(addr1) == GET_ESID(addr2));
  148. esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
  149. ((addr2 >> SID_SHIFT_1T) != 0));
  150. /* both addresses are < 1T */
  151. if (esid_1t_count == 0)
  152. return (GET_ESID(addr1) == GET_ESID(addr2));
  153. /* One address < 1T, the other > 1T. Not a match */
  154. if (esid_1t_count == 1)
  155. return 0;
  156. /* Both addresses are > 1T. */
  157. return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
  158. }
  159. /* Flush all user entries from the segment table of the current processor. */
  160. void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
  161. {
  162. unsigned long offset;
  163. unsigned long slbie_data = 0;
  164. unsigned long pc = KSTK_EIP(tsk);
  165. unsigned long stack = KSTK_ESP(tsk);
  166. unsigned long exec_base;
  167. /*
  168. * We need interrupts hard-disabled here, not just soft-disabled,
  169. * so that a PMU interrupt can't occur, which might try to access
  170. * user memory (to get a stack trace) and possible cause an SLB miss
  171. * which would update the slb_cache/slb_cache_ptr fields in the PACA.
  172. */
  173. hard_irq_disable();
  174. offset = get_paca()->slb_cache_ptr;
  175. if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
  176. offset <= SLB_CACHE_ENTRIES) {
  177. int i;
  178. asm volatile("isync" : : : "memory");
  179. for (i = 0; i < offset; i++) {
  180. slbie_data = (unsigned long)get_paca()->slb_cache[i]
  181. << SID_SHIFT; /* EA */
  182. slbie_data |= user_segment_size(slbie_data)
  183. << SLBIE_SSIZE_SHIFT;
  184. slbie_data |= SLBIE_C; /* C set for user addresses */
  185. asm volatile("slbie %0" : : "r" (slbie_data));
  186. }
  187. asm volatile("isync" : : : "memory");
  188. } else {
  189. __slb_flush_and_rebolt();
  190. }
  191. /* Workaround POWER5 < DD2.1 issue */
  192. if (offset == 1 || offset > SLB_CACHE_ENTRIES)
  193. asm volatile("slbie %0" : : "r" (slbie_data));
  194. get_paca()->slb_cache_ptr = 0;
  195. get_paca()->context = mm->context;
  196. /*
  197. * preload some userspace segments into the SLB.
  198. * Almost all 32 and 64bit PowerPC executables are linked at
  199. * 0x10000000 so it makes sense to preload this segment.
  200. */
  201. exec_base = 0x10000000;
  202. if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
  203. is_kernel_addr(exec_base))
  204. return;
  205. slb_allocate(pc);
  206. if (!esids_match(pc, stack))
  207. slb_allocate(stack);
  208. if (!esids_match(pc, exec_base) &&
  209. !esids_match(stack, exec_base))
  210. slb_allocate(exec_base);
  211. }
  212. static inline void patch_slb_encoding(unsigned int *insn_addr,
  213. unsigned int immed)
  214. {
  215. /*
  216. * This function patches either an li or a cmpldi instruction with
  217. * a new immediate value. This relies on the fact that both li
  218. * (which is actually addi) and cmpldi both take a 16-bit immediate
  219. * value, and it is situated in the same location in the instruction,
  220. * ie. bits 16-31 (Big endian bit order) or the lower 16 bits.
  221. * The signedness of the immediate operand differs between the two
  222. * instructions however this code is only ever patching a small value,
  223. * much less than 1 << 15, so we can get away with it.
  224. * To patch the value we read the existing instruction, clear the
  225. * immediate value, and or in our new value, then write the instruction
  226. * back.
  227. */
  228. unsigned int insn = (*insn_addr & 0xffff0000) | immed;
  229. patch_instruction(insn_addr, insn);
  230. }
  231. extern u32 slb_miss_kernel_load_linear[];
  232. extern u32 slb_miss_kernel_load_io[];
  233. extern u32 slb_compare_rr_to_size[];
  234. extern u32 slb_miss_kernel_load_vmemmap[];
  235. void slb_set_size(u16 size)
  236. {
  237. if (mmu_slb_size == size)
  238. return;
  239. mmu_slb_size = size;
  240. patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
  241. }
  242. void slb_initialize(void)
  243. {
  244. unsigned long linear_llp, vmalloc_llp, io_llp;
  245. unsigned long lflags, vflags;
  246. static int slb_encoding_inited;
  247. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  248. unsigned long vmemmap_llp;
  249. #endif
  250. /* Prepare our SLB miss handler based on our page size */
  251. linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
  252. io_llp = mmu_psize_defs[mmu_io_psize].sllp;
  253. vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
  254. get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
  255. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  256. vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
  257. #endif
  258. if (!slb_encoding_inited) {
  259. slb_encoding_inited = 1;
  260. patch_slb_encoding(slb_miss_kernel_load_linear,
  261. SLB_VSID_KERNEL | linear_llp);
  262. patch_slb_encoding(slb_miss_kernel_load_io,
  263. SLB_VSID_KERNEL | io_llp);
  264. patch_slb_encoding(slb_compare_rr_to_size,
  265. mmu_slb_size);
  266. pr_devel("SLB: linear LLP = %04lx\n", linear_llp);
  267. pr_devel("SLB: io LLP = %04lx\n", io_llp);
  268. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  269. patch_slb_encoding(slb_miss_kernel_load_vmemmap,
  270. SLB_VSID_KERNEL | vmemmap_llp);
  271. pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
  272. #endif
  273. }
  274. get_paca()->stab_rr = SLB_NUM_BOLTED;
  275. lflags = SLB_VSID_KERNEL | linear_llp;
  276. vflags = SLB_VSID_KERNEL | vmalloc_llp;
  277. /* Invalidate the entire SLB (even entry 0) & all the ERATS */
  278. asm volatile("isync":::"memory");
  279. asm volatile("slbmte %0,%0"::"r" (0) : "memory");
  280. asm volatile("isync; slbia; isync":::"memory");
  281. create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, 0);
  282. create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
  283. /* For the boot cpu, we're running on the stack in init_thread_union,
  284. * which is in the first segment of the linear mapping, and also
  285. * get_paca()->kstack hasn't been initialized yet.
  286. * For secondary cpus, we need to bolt the kernel stack entry now.
  287. */
  288. slb_shadow_clear(2);
  289. if (raw_smp_processor_id() != boot_cpuid &&
  290. (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
  291. create_shadowed_slbe(get_paca()->kstack,
  292. mmu_kernel_ssize, lflags, 2);
  293. asm volatile("isync":::"memory");
  294. }