sstep.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015
  1. /*
  2. * Single-step support.
  3. *
  4. * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/kprobes.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/prefetch.h>
  15. #include <asm/sstep.h>
  16. #include <asm/processor.h>
  17. #include <asm/uaccess.h>
  18. #include <asm/cputable.h>
  19. extern char system_call_common[];
  20. #ifdef CONFIG_PPC64
  21. /* Bits in SRR1 that are copied from MSR */
  22. #define MSR_MASK 0xffffffff87c0ffffUL
  23. #else
  24. #define MSR_MASK 0x87c0ffff
  25. #endif
  26. /* Bits in XER */
  27. #define XER_SO 0x80000000U
  28. #define XER_OV 0x40000000U
  29. #define XER_CA 0x20000000U
  30. #ifdef CONFIG_PPC_FPU
  31. /*
  32. * Functions in ldstfp.S
  33. */
  34. extern int do_lfs(int rn, unsigned long ea);
  35. extern int do_lfd(int rn, unsigned long ea);
  36. extern int do_stfs(int rn, unsigned long ea);
  37. extern int do_stfd(int rn, unsigned long ea);
  38. extern int do_lvx(int rn, unsigned long ea);
  39. extern int do_stvx(int rn, unsigned long ea);
  40. extern int do_lxvd2x(int rn, unsigned long ea);
  41. extern int do_stxvd2x(int rn, unsigned long ea);
  42. #endif
  43. /*
  44. * Emulate the truncation of 64 bit values in 32-bit mode.
  45. */
  46. static unsigned long truncate_if_32bit(unsigned long msr, unsigned long val)
  47. {
  48. #ifdef __powerpc64__
  49. if ((msr & MSR_64BIT) == 0)
  50. val &= 0xffffffffUL;
  51. #endif
  52. return val;
  53. }
  54. /*
  55. * Determine whether a conditional branch instruction would branch.
  56. */
  57. static int __kprobes branch_taken(unsigned int instr, struct pt_regs *regs)
  58. {
  59. unsigned int bo = (instr >> 21) & 0x1f;
  60. unsigned int bi;
  61. if ((bo & 4) == 0) {
  62. /* decrement counter */
  63. --regs->ctr;
  64. if (((bo >> 1) & 1) ^ (regs->ctr == 0))
  65. return 0;
  66. }
  67. if ((bo & 0x10) == 0) {
  68. /* check bit from CR */
  69. bi = (instr >> 16) & 0x1f;
  70. if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
  71. return 0;
  72. }
  73. return 1;
  74. }
  75. static long __kprobes address_ok(struct pt_regs *regs, unsigned long ea, int nb)
  76. {
  77. if (!user_mode(regs))
  78. return 1;
  79. return __access_ok(ea, nb, USER_DS);
  80. }
  81. /*
  82. * Calculate effective address for a D-form instruction
  83. */
  84. static unsigned long __kprobes dform_ea(unsigned int instr, struct pt_regs *regs)
  85. {
  86. int ra;
  87. unsigned long ea;
  88. ra = (instr >> 16) & 0x1f;
  89. ea = (signed short) instr; /* sign-extend */
  90. if (ra)
  91. ea += regs->gpr[ra];
  92. return truncate_if_32bit(regs->msr, ea);
  93. }
  94. #ifdef __powerpc64__
  95. /*
  96. * Calculate effective address for a DS-form instruction
  97. */
  98. static unsigned long __kprobes dsform_ea(unsigned int instr, struct pt_regs *regs)
  99. {
  100. int ra;
  101. unsigned long ea;
  102. ra = (instr >> 16) & 0x1f;
  103. ea = (signed short) (instr & ~3); /* sign-extend */
  104. if (ra)
  105. ea += regs->gpr[ra];
  106. return truncate_if_32bit(regs->msr, ea);
  107. }
  108. #endif /* __powerpc64 */
  109. /*
  110. * Calculate effective address for an X-form instruction
  111. */
  112. static unsigned long __kprobes xform_ea(unsigned int instr,
  113. struct pt_regs *regs)
  114. {
  115. int ra, rb;
  116. unsigned long ea;
  117. ra = (instr >> 16) & 0x1f;
  118. rb = (instr >> 11) & 0x1f;
  119. ea = regs->gpr[rb];
  120. if (ra)
  121. ea += regs->gpr[ra];
  122. return truncate_if_32bit(regs->msr, ea);
  123. }
  124. /*
  125. * Return the largest power of 2, not greater than sizeof(unsigned long),
  126. * such that x is a multiple of it.
  127. */
  128. static inline unsigned long max_align(unsigned long x)
  129. {
  130. x |= sizeof(unsigned long);
  131. return x & -x; /* isolates rightmost bit */
  132. }
  133. static inline unsigned long byterev_2(unsigned long x)
  134. {
  135. return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
  136. }
  137. static inline unsigned long byterev_4(unsigned long x)
  138. {
  139. return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
  140. ((x & 0xff00) << 8) | ((x & 0xff) << 24);
  141. }
  142. #ifdef __powerpc64__
  143. static inline unsigned long byterev_8(unsigned long x)
  144. {
  145. return (byterev_4(x) << 32) | byterev_4(x >> 32);
  146. }
  147. #endif
  148. static int __kprobes read_mem_aligned(unsigned long *dest, unsigned long ea,
  149. int nb)
  150. {
  151. int err = 0;
  152. unsigned long x = 0;
  153. switch (nb) {
  154. case 1:
  155. err = __get_user(x, (unsigned char __user *) ea);
  156. break;
  157. case 2:
  158. err = __get_user(x, (unsigned short __user *) ea);
  159. break;
  160. case 4:
  161. err = __get_user(x, (unsigned int __user *) ea);
  162. break;
  163. #ifdef __powerpc64__
  164. case 8:
  165. err = __get_user(x, (unsigned long __user *) ea);
  166. break;
  167. #endif
  168. }
  169. if (!err)
  170. *dest = x;
  171. return err;
  172. }
  173. static int __kprobes read_mem_unaligned(unsigned long *dest, unsigned long ea,
  174. int nb, struct pt_regs *regs)
  175. {
  176. int err;
  177. unsigned long x, b, c;
  178. #ifdef __LITTLE_ENDIAN__
  179. int len = nb; /* save a copy of the length for byte reversal */
  180. #endif
  181. /* unaligned, do this in pieces */
  182. x = 0;
  183. for (; nb > 0; nb -= c) {
  184. #ifdef __LITTLE_ENDIAN__
  185. c = 1;
  186. #endif
  187. #ifdef __BIG_ENDIAN__
  188. c = max_align(ea);
  189. #endif
  190. if (c > nb)
  191. c = max_align(nb);
  192. err = read_mem_aligned(&b, ea, c);
  193. if (err)
  194. return err;
  195. x = (x << (8 * c)) + b;
  196. ea += c;
  197. }
  198. #ifdef __LITTLE_ENDIAN__
  199. switch (len) {
  200. case 2:
  201. *dest = byterev_2(x);
  202. break;
  203. case 4:
  204. *dest = byterev_4(x);
  205. break;
  206. #ifdef __powerpc64__
  207. case 8:
  208. *dest = byterev_8(x);
  209. break;
  210. #endif
  211. }
  212. #endif
  213. #ifdef __BIG_ENDIAN__
  214. *dest = x;
  215. #endif
  216. return 0;
  217. }
  218. /*
  219. * Read memory at address ea for nb bytes, return 0 for success
  220. * or -EFAULT if an error occurred.
  221. */
  222. static int __kprobes read_mem(unsigned long *dest, unsigned long ea, int nb,
  223. struct pt_regs *regs)
  224. {
  225. if (!address_ok(regs, ea, nb))
  226. return -EFAULT;
  227. if ((ea & (nb - 1)) == 0)
  228. return read_mem_aligned(dest, ea, nb);
  229. return read_mem_unaligned(dest, ea, nb, regs);
  230. }
  231. static int __kprobes write_mem_aligned(unsigned long val, unsigned long ea,
  232. int nb)
  233. {
  234. int err = 0;
  235. switch (nb) {
  236. case 1:
  237. err = __put_user(val, (unsigned char __user *) ea);
  238. break;
  239. case 2:
  240. err = __put_user(val, (unsigned short __user *) ea);
  241. break;
  242. case 4:
  243. err = __put_user(val, (unsigned int __user *) ea);
  244. break;
  245. #ifdef __powerpc64__
  246. case 8:
  247. err = __put_user(val, (unsigned long __user *) ea);
  248. break;
  249. #endif
  250. }
  251. return err;
  252. }
  253. static int __kprobes write_mem_unaligned(unsigned long val, unsigned long ea,
  254. int nb, struct pt_regs *regs)
  255. {
  256. int err;
  257. unsigned long c;
  258. #ifdef __LITTLE_ENDIAN__
  259. switch (nb) {
  260. case 2:
  261. val = byterev_2(val);
  262. break;
  263. case 4:
  264. val = byterev_4(val);
  265. break;
  266. #ifdef __powerpc64__
  267. case 8:
  268. val = byterev_8(val);
  269. break;
  270. #endif
  271. }
  272. #endif
  273. /* unaligned or little-endian, do this in pieces */
  274. for (; nb > 0; nb -= c) {
  275. #ifdef __LITTLE_ENDIAN__
  276. c = 1;
  277. #endif
  278. #ifdef __BIG_ENDIAN__
  279. c = max_align(ea);
  280. #endif
  281. if (c > nb)
  282. c = max_align(nb);
  283. err = write_mem_aligned(val >> (nb - c) * 8, ea, c);
  284. if (err)
  285. return err;
  286. ea += c;
  287. }
  288. return 0;
  289. }
  290. /*
  291. * Write memory at address ea for nb bytes, return 0 for success
  292. * or -EFAULT if an error occurred.
  293. */
  294. static int __kprobes write_mem(unsigned long val, unsigned long ea, int nb,
  295. struct pt_regs *regs)
  296. {
  297. if (!address_ok(regs, ea, nb))
  298. return -EFAULT;
  299. if ((ea & (nb - 1)) == 0)
  300. return write_mem_aligned(val, ea, nb);
  301. return write_mem_unaligned(val, ea, nb, regs);
  302. }
  303. #ifdef CONFIG_PPC_FPU
  304. /*
  305. * Check the address and alignment, and call func to do the actual
  306. * load or store.
  307. */
  308. static int __kprobes do_fp_load(int rn, int (*func)(int, unsigned long),
  309. unsigned long ea, int nb,
  310. struct pt_regs *regs)
  311. {
  312. int err;
  313. union {
  314. double dbl;
  315. unsigned long ul[2];
  316. struct {
  317. #ifdef __BIG_ENDIAN__
  318. unsigned _pad_;
  319. unsigned word;
  320. #endif
  321. #ifdef __LITTLE_ENDIAN__
  322. unsigned word;
  323. unsigned _pad_;
  324. #endif
  325. } single;
  326. } data;
  327. unsigned long ptr;
  328. if (!address_ok(regs, ea, nb))
  329. return -EFAULT;
  330. if ((ea & 3) == 0)
  331. return (*func)(rn, ea);
  332. ptr = (unsigned long) &data.ul;
  333. if (sizeof(unsigned long) == 8 || nb == 4) {
  334. err = read_mem_unaligned(&data.ul[0], ea, nb, regs);
  335. if (nb == 4)
  336. ptr = (unsigned long)&(data.single.word);
  337. } else {
  338. /* reading a double on 32-bit */
  339. err = read_mem_unaligned(&data.ul[0], ea, 4, regs);
  340. if (!err)
  341. err = read_mem_unaligned(&data.ul[1], ea + 4, 4, regs);
  342. }
  343. if (err)
  344. return err;
  345. return (*func)(rn, ptr);
  346. }
  347. static int __kprobes do_fp_store(int rn, int (*func)(int, unsigned long),
  348. unsigned long ea, int nb,
  349. struct pt_regs *regs)
  350. {
  351. int err;
  352. union {
  353. double dbl;
  354. unsigned long ul[2];
  355. struct {
  356. #ifdef __BIG_ENDIAN__
  357. unsigned _pad_;
  358. unsigned word;
  359. #endif
  360. #ifdef __LITTLE_ENDIAN__
  361. unsigned word;
  362. unsigned _pad_;
  363. #endif
  364. } single;
  365. } data;
  366. unsigned long ptr;
  367. if (!address_ok(regs, ea, nb))
  368. return -EFAULT;
  369. if ((ea & 3) == 0)
  370. return (*func)(rn, ea);
  371. ptr = (unsigned long) &data.ul[0];
  372. if (sizeof(unsigned long) == 8 || nb == 4) {
  373. if (nb == 4)
  374. ptr = (unsigned long)&(data.single.word);
  375. err = (*func)(rn, ptr);
  376. if (err)
  377. return err;
  378. err = write_mem_unaligned(data.ul[0], ea, nb, regs);
  379. } else {
  380. /* writing a double on 32-bit */
  381. err = (*func)(rn, ptr);
  382. if (err)
  383. return err;
  384. err = write_mem_unaligned(data.ul[0], ea, 4, regs);
  385. if (!err)
  386. err = write_mem_unaligned(data.ul[1], ea + 4, 4, regs);
  387. }
  388. return err;
  389. }
  390. #endif
  391. #ifdef CONFIG_ALTIVEC
  392. /* For Altivec/VMX, no need to worry about alignment */
  393. static int __kprobes do_vec_load(int rn, int (*func)(int, unsigned long),
  394. unsigned long ea, struct pt_regs *regs)
  395. {
  396. if (!address_ok(regs, ea & ~0xfUL, 16))
  397. return -EFAULT;
  398. return (*func)(rn, ea);
  399. }
  400. static int __kprobes do_vec_store(int rn, int (*func)(int, unsigned long),
  401. unsigned long ea, struct pt_regs *regs)
  402. {
  403. if (!address_ok(regs, ea & ~0xfUL, 16))
  404. return -EFAULT;
  405. return (*func)(rn, ea);
  406. }
  407. #endif /* CONFIG_ALTIVEC */
  408. #ifdef CONFIG_VSX
  409. static int __kprobes do_vsx_load(int rn, int (*func)(int, unsigned long),
  410. unsigned long ea, struct pt_regs *regs)
  411. {
  412. int err;
  413. unsigned long val[2];
  414. if (!address_ok(regs, ea, 16))
  415. return -EFAULT;
  416. if ((ea & 3) == 0)
  417. return (*func)(rn, ea);
  418. err = read_mem_unaligned(&val[0], ea, 8, regs);
  419. if (!err)
  420. err = read_mem_unaligned(&val[1], ea + 8, 8, regs);
  421. if (!err)
  422. err = (*func)(rn, (unsigned long) &val[0]);
  423. return err;
  424. }
  425. static int __kprobes do_vsx_store(int rn, int (*func)(int, unsigned long),
  426. unsigned long ea, struct pt_regs *regs)
  427. {
  428. int err;
  429. unsigned long val[2];
  430. if (!address_ok(regs, ea, 16))
  431. return -EFAULT;
  432. if ((ea & 3) == 0)
  433. return (*func)(rn, ea);
  434. err = (*func)(rn, (unsigned long) &val[0]);
  435. if (err)
  436. return err;
  437. err = write_mem_unaligned(val[0], ea, 8, regs);
  438. if (!err)
  439. err = write_mem_unaligned(val[1], ea + 8, 8, regs);
  440. return err;
  441. }
  442. #endif /* CONFIG_VSX */
  443. #define __put_user_asmx(x, addr, err, op, cr) \
  444. __asm__ __volatile__( \
  445. "1: " op " %2,0,%3\n" \
  446. " mfcr %1\n" \
  447. "2:\n" \
  448. ".section .fixup,\"ax\"\n" \
  449. "3: li %0,%4\n" \
  450. " b 2b\n" \
  451. ".previous\n" \
  452. ".section __ex_table,\"a\"\n" \
  453. PPC_LONG_ALIGN "\n" \
  454. PPC_LONG "1b,3b\n" \
  455. ".previous" \
  456. : "=r" (err), "=r" (cr) \
  457. : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
  458. #define __get_user_asmx(x, addr, err, op) \
  459. __asm__ __volatile__( \
  460. "1: "op" %1,0,%2\n" \
  461. "2:\n" \
  462. ".section .fixup,\"ax\"\n" \
  463. "3: li %0,%3\n" \
  464. " b 2b\n" \
  465. ".previous\n" \
  466. ".section __ex_table,\"a\"\n" \
  467. PPC_LONG_ALIGN "\n" \
  468. PPC_LONG "1b,3b\n" \
  469. ".previous" \
  470. : "=r" (err), "=r" (x) \
  471. : "r" (addr), "i" (-EFAULT), "0" (err))
  472. #define __cacheop_user_asmx(addr, err, op) \
  473. __asm__ __volatile__( \
  474. "1: "op" 0,%1\n" \
  475. "2:\n" \
  476. ".section .fixup,\"ax\"\n" \
  477. "3: li %0,%3\n" \
  478. " b 2b\n" \
  479. ".previous\n" \
  480. ".section __ex_table,\"a\"\n" \
  481. PPC_LONG_ALIGN "\n" \
  482. PPC_LONG "1b,3b\n" \
  483. ".previous" \
  484. : "=r" (err) \
  485. : "r" (addr), "i" (-EFAULT), "0" (err))
  486. static void __kprobes set_cr0(struct pt_regs *regs, int rd)
  487. {
  488. long val = regs->gpr[rd];
  489. regs->ccr = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
  490. #ifdef __powerpc64__
  491. if (!(regs->msr & MSR_64BIT))
  492. val = (int) val;
  493. #endif
  494. if (val < 0)
  495. regs->ccr |= 0x80000000;
  496. else if (val > 0)
  497. regs->ccr |= 0x40000000;
  498. else
  499. regs->ccr |= 0x20000000;
  500. }
  501. static void __kprobes add_with_carry(struct pt_regs *regs, int rd,
  502. unsigned long val1, unsigned long val2,
  503. unsigned long carry_in)
  504. {
  505. unsigned long val = val1 + val2;
  506. if (carry_in)
  507. ++val;
  508. regs->gpr[rd] = val;
  509. #ifdef __powerpc64__
  510. if (!(regs->msr & MSR_64BIT)) {
  511. val = (unsigned int) val;
  512. val1 = (unsigned int) val1;
  513. }
  514. #endif
  515. if (val < val1 || (carry_in && val == val1))
  516. regs->xer |= XER_CA;
  517. else
  518. regs->xer &= ~XER_CA;
  519. }
  520. static void __kprobes do_cmp_signed(struct pt_regs *regs, long v1, long v2,
  521. int crfld)
  522. {
  523. unsigned int crval, shift;
  524. crval = (regs->xer >> 31) & 1; /* get SO bit */
  525. if (v1 < v2)
  526. crval |= 8;
  527. else if (v1 > v2)
  528. crval |= 4;
  529. else
  530. crval |= 2;
  531. shift = (7 - crfld) * 4;
  532. regs->ccr = (regs->ccr & ~(0xf << shift)) | (crval << shift);
  533. }
  534. static void __kprobes do_cmp_unsigned(struct pt_regs *regs, unsigned long v1,
  535. unsigned long v2, int crfld)
  536. {
  537. unsigned int crval, shift;
  538. crval = (regs->xer >> 31) & 1; /* get SO bit */
  539. if (v1 < v2)
  540. crval |= 8;
  541. else if (v1 > v2)
  542. crval |= 4;
  543. else
  544. crval |= 2;
  545. shift = (7 - crfld) * 4;
  546. regs->ccr = (regs->ccr & ~(0xf << shift)) | (crval << shift);
  547. }
  548. static int __kprobes trap_compare(long v1, long v2)
  549. {
  550. int ret = 0;
  551. if (v1 < v2)
  552. ret |= 0x10;
  553. else if (v1 > v2)
  554. ret |= 0x08;
  555. else
  556. ret |= 0x04;
  557. if ((unsigned long)v1 < (unsigned long)v2)
  558. ret |= 0x02;
  559. else if ((unsigned long)v1 > (unsigned long)v2)
  560. ret |= 0x01;
  561. return ret;
  562. }
  563. /*
  564. * Elements of 32-bit rotate and mask instructions.
  565. */
  566. #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
  567. ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
  568. #ifdef __powerpc64__
  569. #define MASK64_L(mb) (~0UL >> (mb))
  570. #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
  571. #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
  572. #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
  573. #else
  574. #define DATA32(x) (x)
  575. #endif
  576. #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
  577. /*
  578. * Decode an instruction, and execute it if that can be done just by
  579. * modifying *regs (i.e. integer arithmetic and logical instructions,
  580. * branches, and barrier instructions).
  581. * Returns 1 if the instruction has been executed, or 0 if not.
  582. * Sets *op to indicate what the instruction does.
  583. */
  584. int __kprobes analyse_instr(struct instruction_op *op, struct pt_regs *regs,
  585. unsigned int instr)
  586. {
  587. unsigned int opcode, ra, rb, rd, spr, u;
  588. unsigned long int imm;
  589. unsigned long int val, val2;
  590. unsigned int mb, me, sh;
  591. long ival;
  592. op->type = COMPUTE;
  593. opcode = instr >> 26;
  594. switch (opcode) {
  595. case 16: /* bc */
  596. op->type = BRANCH;
  597. imm = (signed short)(instr & 0xfffc);
  598. if ((instr & 2) == 0)
  599. imm += regs->nip;
  600. regs->nip += 4;
  601. regs->nip = truncate_if_32bit(regs->msr, regs->nip);
  602. if (instr & 1)
  603. regs->link = regs->nip;
  604. if (branch_taken(instr, regs))
  605. regs->nip = truncate_if_32bit(regs->msr, imm);
  606. return 1;
  607. #ifdef CONFIG_PPC64
  608. case 17: /* sc */
  609. if ((instr & 0xfe2) == 2)
  610. op->type = SYSCALL;
  611. else
  612. op->type = UNKNOWN;
  613. return 0;
  614. #endif
  615. case 18: /* b */
  616. op->type = BRANCH;
  617. imm = instr & 0x03fffffc;
  618. if (imm & 0x02000000)
  619. imm -= 0x04000000;
  620. if ((instr & 2) == 0)
  621. imm += regs->nip;
  622. if (instr & 1)
  623. regs->link = truncate_if_32bit(regs->msr, regs->nip + 4);
  624. imm = truncate_if_32bit(regs->msr, imm);
  625. regs->nip = imm;
  626. return 1;
  627. case 19:
  628. switch ((instr >> 1) & 0x3ff) {
  629. case 0: /* mcrf */
  630. rd = (instr >> 21) & 0x1c;
  631. ra = (instr >> 16) & 0x1c;
  632. val = (regs->ccr >> ra) & 0xf;
  633. regs->ccr = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
  634. goto instr_done;
  635. case 16: /* bclr */
  636. case 528: /* bcctr */
  637. op->type = BRANCH;
  638. imm = (instr & 0x400)? regs->ctr: regs->link;
  639. regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
  640. imm = truncate_if_32bit(regs->msr, imm);
  641. if (instr & 1)
  642. regs->link = regs->nip;
  643. if (branch_taken(instr, regs))
  644. regs->nip = imm;
  645. return 1;
  646. case 18: /* rfid, scary */
  647. if (regs->msr & MSR_PR)
  648. goto priv;
  649. op->type = RFI;
  650. return 0;
  651. case 150: /* isync */
  652. op->type = BARRIER;
  653. isync();
  654. goto instr_done;
  655. case 33: /* crnor */
  656. case 129: /* crandc */
  657. case 193: /* crxor */
  658. case 225: /* crnand */
  659. case 257: /* crand */
  660. case 289: /* creqv */
  661. case 417: /* crorc */
  662. case 449: /* cror */
  663. ra = (instr >> 16) & 0x1f;
  664. rb = (instr >> 11) & 0x1f;
  665. rd = (instr >> 21) & 0x1f;
  666. ra = (regs->ccr >> (31 - ra)) & 1;
  667. rb = (regs->ccr >> (31 - rb)) & 1;
  668. val = (instr >> (6 + ra * 2 + rb)) & 1;
  669. regs->ccr = (regs->ccr & ~(1UL << (31 - rd))) |
  670. (val << (31 - rd));
  671. goto instr_done;
  672. }
  673. break;
  674. case 31:
  675. switch ((instr >> 1) & 0x3ff) {
  676. case 598: /* sync */
  677. op->type = BARRIER;
  678. #ifdef __powerpc64__
  679. switch ((instr >> 21) & 3) {
  680. case 1: /* lwsync */
  681. asm volatile("lwsync" : : : "memory");
  682. goto instr_done;
  683. case 2: /* ptesync */
  684. asm volatile("ptesync" : : : "memory");
  685. goto instr_done;
  686. }
  687. #endif
  688. mb();
  689. goto instr_done;
  690. case 854: /* eieio */
  691. op->type = BARRIER;
  692. eieio();
  693. goto instr_done;
  694. }
  695. break;
  696. }
  697. /* Following cases refer to regs->gpr[], so we need all regs */
  698. if (!FULL_REGS(regs))
  699. return 0;
  700. rd = (instr >> 21) & 0x1f;
  701. ra = (instr >> 16) & 0x1f;
  702. rb = (instr >> 11) & 0x1f;
  703. switch (opcode) {
  704. #ifdef __powerpc64__
  705. case 2: /* tdi */
  706. if (rd & trap_compare(regs->gpr[ra], (short) instr))
  707. goto trap;
  708. goto instr_done;
  709. #endif
  710. case 3: /* twi */
  711. if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
  712. goto trap;
  713. goto instr_done;
  714. case 7: /* mulli */
  715. regs->gpr[rd] = regs->gpr[ra] * (short) instr;
  716. goto instr_done;
  717. case 8: /* subfic */
  718. imm = (short) instr;
  719. add_with_carry(regs, rd, ~regs->gpr[ra], imm, 1);
  720. goto instr_done;
  721. case 10: /* cmpli */
  722. imm = (unsigned short) instr;
  723. val = regs->gpr[ra];
  724. #ifdef __powerpc64__
  725. if ((rd & 1) == 0)
  726. val = (unsigned int) val;
  727. #endif
  728. do_cmp_unsigned(regs, val, imm, rd >> 2);
  729. goto instr_done;
  730. case 11: /* cmpi */
  731. imm = (short) instr;
  732. val = regs->gpr[ra];
  733. #ifdef __powerpc64__
  734. if ((rd & 1) == 0)
  735. val = (int) val;
  736. #endif
  737. do_cmp_signed(regs, val, imm, rd >> 2);
  738. goto instr_done;
  739. case 12: /* addic */
  740. imm = (short) instr;
  741. add_with_carry(regs, rd, regs->gpr[ra], imm, 0);
  742. goto instr_done;
  743. case 13: /* addic. */
  744. imm = (short) instr;
  745. add_with_carry(regs, rd, regs->gpr[ra], imm, 0);
  746. set_cr0(regs, rd);
  747. goto instr_done;
  748. case 14: /* addi */
  749. imm = (short) instr;
  750. if (ra)
  751. imm += regs->gpr[ra];
  752. regs->gpr[rd] = imm;
  753. goto instr_done;
  754. case 15: /* addis */
  755. imm = ((short) instr) << 16;
  756. if (ra)
  757. imm += regs->gpr[ra];
  758. regs->gpr[rd] = imm;
  759. goto instr_done;
  760. case 20: /* rlwimi */
  761. mb = (instr >> 6) & 0x1f;
  762. me = (instr >> 1) & 0x1f;
  763. val = DATA32(regs->gpr[rd]);
  764. imm = MASK32(mb, me);
  765. regs->gpr[ra] = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
  766. goto logical_done;
  767. case 21: /* rlwinm */
  768. mb = (instr >> 6) & 0x1f;
  769. me = (instr >> 1) & 0x1f;
  770. val = DATA32(regs->gpr[rd]);
  771. regs->gpr[ra] = ROTATE(val, rb) & MASK32(mb, me);
  772. goto logical_done;
  773. case 23: /* rlwnm */
  774. mb = (instr >> 6) & 0x1f;
  775. me = (instr >> 1) & 0x1f;
  776. rb = regs->gpr[rb] & 0x1f;
  777. val = DATA32(regs->gpr[rd]);
  778. regs->gpr[ra] = ROTATE(val, rb) & MASK32(mb, me);
  779. goto logical_done;
  780. case 24: /* ori */
  781. imm = (unsigned short) instr;
  782. regs->gpr[ra] = regs->gpr[rd] | imm;
  783. goto instr_done;
  784. case 25: /* oris */
  785. imm = (unsigned short) instr;
  786. regs->gpr[ra] = regs->gpr[rd] | (imm << 16);
  787. goto instr_done;
  788. case 26: /* xori */
  789. imm = (unsigned short) instr;
  790. regs->gpr[ra] = regs->gpr[rd] ^ imm;
  791. goto instr_done;
  792. case 27: /* xoris */
  793. imm = (unsigned short) instr;
  794. regs->gpr[ra] = regs->gpr[rd] ^ (imm << 16);
  795. goto instr_done;
  796. case 28: /* andi. */
  797. imm = (unsigned short) instr;
  798. regs->gpr[ra] = regs->gpr[rd] & imm;
  799. set_cr0(regs, ra);
  800. goto instr_done;
  801. case 29: /* andis. */
  802. imm = (unsigned short) instr;
  803. regs->gpr[ra] = regs->gpr[rd] & (imm << 16);
  804. set_cr0(regs, ra);
  805. goto instr_done;
  806. #ifdef __powerpc64__
  807. case 30: /* rld* */
  808. mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
  809. val = regs->gpr[rd];
  810. if ((instr & 0x10) == 0) {
  811. sh = rb | ((instr & 2) << 4);
  812. val = ROTATE(val, sh);
  813. switch ((instr >> 2) & 3) {
  814. case 0: /* rldicl */
  815. regs->gpr[ra] = val & MASK64_L(mb);
  816. goto logical_done;
  817. case 1: /* rldicr */
  818. regs->gpr[ra] = val & MASK64_R(mb);
  819. goto logical_done;
  820. case 2: /* rldic */
  821. regs->gpr[ra] = val & MASK64(mb, 63 - sh);
  822. goto logical_done;
  823. case 3: /* rldimi */
  824. imm = MASK64(mb, 63 - sh);
  825. regs->gpr[ra] = (regs->gpr[ra] & ~imm) |
  826. (val & imm);
  827. goto logical_done;
  828. }
  829. } else {
  830. sh = regs->gpr[rb] & 0x3f;
  831. val = ROTATE(val, sh);
  832. switch ((instr >> 1) & 7) {
  833. case 0: /* rldcl */
  834. regs->gpr[ra] = val & MASK64_L(mb);
  835. goto logical_done;
  836. case 1: /* rldcr */
  837. regs->gpr[ra] = val & MASK64_R(mb);
  838. goto logical_done;
  839. }
  840. }
  841. #endif
  842. case 31:
  843. switch ((instr >> 1) & 0x3ff) {
  844. case 4: /* tw */
  845. if (rd == 0x1f ||
  846. (rd & trap_compare((int)regs->gpr[ra],
  847. (int)regs->gpr[rb])))
  848. goto trap;
  849. goto instr_done;
  850. #ifdef __powerpc64__
  851. case 68: /* td */
  852. if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
  853. goto trap;
  854. goto instr_done;
  855. #endif
  856. case 83: /* mfmsr */
  857. if (regs->msr & MSR_PR)
  858. goto priv;
  859. op->type = MFMSR;
  860. op->reg = rd;
  861. return 0;
  862. case 146: /* mtmsr */
  863. if (regs->msr & MSR_PR)
  864. goto priv;
  865. op->type = MTMSR;
  866. op->reg = rd;
  867. op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
  868. return 0;
  869. #ifdef CONFIG_PPC64
  870. case 178: /* mtmsrd */
  871. if (regs->msr & MSR_PR)
  872. goto priv;
  873. op->type = MTMSR;
  874. op->reg = rd;
  875. /* only MSR_EE and MSR_RI get changed if bit 15 set */
  876. /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
  877. imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
  878. op->val = imm;
  879. return 0;
  880. #endif
  881. case 19: /* mfcr */
  882. regs->gpr[rd] = regs->ccr;
  883. regs->gpr[rd] &= 0xffffffffUL;
  884. goto instr_done;
  885. case 144: /* mtcrf */
  886. imm = 0xf0000000UL;
  887. val = regs->gpr[rd];
  888. for (sh = 0; sh < 8; ++sh) {
  889. if (instr & (0x80000 >> sh))
  890. regs->ccr = (regs->ccr & ~imm) |
  891. (val & imm);
  892. imm >>= 4;
  893. }
  894. goto instr_done;
  895. case 339: /* mfspr */
  896. spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
  897. switch (spr) {
  898. case SPRN_XER: /* mfxer */
  899. regs->gpr[rd] = regs->xer;
  900. regs->gpr[rd] &= 0xffffffffUL;
  901. goto instr_done;
  902. case SPRN_LR: /* mflr */
  903. regs->gpr[rd] = regs->link;
  904. goto instr_done;
  905. case SPRN_CTR: /* mfctr */
  906. regs->gpr[rd] = regs->ctr;
  907. goto instr_done;
  908. default:
  909. op->type = MFSPR;
  910. op->reg = rd;
  911. op->spr = spr;
  912. return 0;
  913. }
  914. break;
  915. case 467: /* mtspr */
  916. spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
  917. switch (spr) {
  918. case SPRN_XER: /* mtxer */
  919. regs->xer = (regs->gpr[rd] & 0xffffffffUL);
  920. goto instr_done;
  921. case SPRN_LR: /* mtlr */
  922. regs->link = regs->gpr[rd];
  923. goto instr_done;
  924. case SPRN_CTR: /* mtctr */
  925. regs->ctr = regs->gpr[rd];
  926. goto instr_done;
  927. default:
  928. op->type = MTSPR;
  929. op->val = regs->gpr[rd];
  930. op->spr = spr;
  931. return 0;
  932. }
  933. break;
  934. /*
  935. * Compare instructions
  936. */
  937. case 0: /* cmp */
  938. val = regs->gpr[ra];
  939. val2 = regs->gpr[rb];
  940. #ifdef __powerpc64__
  941. if ((rd & 1) == 0) {
  942. /* word (32-bit) compare */
  943. val = (int) val;
  944. val2 = (int) val2;
  945. }
  946. #endif
  947. do_cmp_signed(regs, val, val2, rd >> 2);
  948. goto instr_done;
  949. case 32: /* cmpl */
  950. val = regs->gpr[ra];
  951. val2 = regs->gpr[rb];
  952. #ifdef __powerpc64__
  953. if ((rd & 1) == 0) {
  954. /* word (32-bit) compare */
  955. val = (unsigned int) val;
  956. val2 = (unsigned int) val2;
  957. }
  958. #endif
  959. do_cmp_unsigned(regs, val, val2, rd >> 2);
  960. goto instr_done;
  961. /*
  962. * Arithmetic instructions
  963. */
  964. case 8: /* subfc */
  965. add_with_carry(regs, rd, ~regs->gpr[ra],
  966. regs->gpr[rb], 1);
  967. goto arith_done;
  968. #ifdef __powerpc64__
  969. case 9: /* mulhdu */
  970. asm("mulhdu %0,%1,%2" : "=r" (regs->gpr[rd]) :
  971. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  972. goto arith_done;
  973. #endif
  974. case 10: /* addc */
  975. add_with_carry(regs, rd, regs->gpr[ra],
  976. regs->gpr[rb], 0);
  977. goto arith_done;
  978. case 11: /* mulhwu */
  979. asm("mulhwu %0,%1,%2" : "=r" (regs->gpr[rd]) :
  980. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  981. goto arith_done;
  982. case 40: /* subf */
  983. regs->gpr[rd] = regs->gpr[rb] - regs->gpr[ra];
  984. goto arith_done;
  985. #ifdef __powerpc64__
  986. case 73: /* mulhd */
  987. asm("mulhd %0,%1,%2" : "=r" (regs->gpr[rd]) :
  988. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  989. goto arith_done;
  990. #endif
  991. case 75: /* mulhw */
  992. asm("mulhw %0,%1,%2" : "=r" (regs->gpr[rd]) :
  993. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  994. goto arith_done;
  995. case 104: /* neg */
  996. regs->gpr[rd] = -regs->gpr[ra];
  997. goto arith_done;
  998. case 136: /* subfe */
  999. add_with_carry(regs, rd, ~regs->gpr[ra], regs->gpr[rb],
  1000. regs->xer & XER_CA);
  1001. goto arith_done;
  1002. case 138: /* adde */
  1003. add_with_carry(regs, rd, regs->gpr[ra], regs->gpr[rb],
  1004. regs->xer & XER_CA);
  1005. goto arith_done;
  1006. case 200: /* subfze */
  1007. add_with_carry(regs, rd, ~regs->gpr[ra], 0L,
  1008. regs->xer & XER_CA);
  1009. goto arith_done;
  1010. case 202: /* addze */
  1011. add_with_carry(regs, rd, regs->gpr[ra], 0L,
  1012. regs->xer & XER_CA);
  1013. goto arith_done;
  1014. case 232: /* subfme */
  1015. add_with_carry(regs, rd, ~regs->gpr[ra], -1L,
  1016. regs->xer & XER_CA);
  1017. goto arith_done;
  1018. #ifdef __powerpc64__
  1019. case 233: /* mulld */
  1020. regs->gpr[rd] = regs->gpr[ra] * regs->gpr[rb];
  1021. goto arith_done;
  1022. #endif
  1023. case 234: /* addme */
  1024. add_with_carry(regs, rd, regs->gpr[ra], -1L,
  1025. regs->xer & XER_CA);
  1026. goto arith_done;
  1027. case 235: /* mullw */
  1028. regs->gpr[rd] = (unsigned int) regs->gpr[ra] *
  1029. (unsigned int) regs->gpr[rb];
  1030. goto arith_done;
  1031. case 266: /* add */
  1032. regs->gpr[rd] = regs->gpr[ra] + regs->gpr[rb];
  1033. goto arith_done;
  1034. #ifdef __powerpc64__
  1035. case 457: /* divdu */
  1036. regs->gpr[rd] = regs->gpr[ra] / regs->gpr[rb];
  1037. goto arith_done;
  1038. #endif
  1039. case 459: /* divwu */
  1040. regs->gpr[rd] = (unsigned int) regs->gpr[ra] /
  1041. (unsigned int) regs->gpr[rb];
  1042. goto arith_done;
  1043. #ifdef __powerpc64__
  1044. case 489: /* divd */
  1045. regs->gpr[rd] = (long int) regs->gpr[ra] /
  1046. (long int) regs->gpr[rb];
  1047. goto arith_done;
  1048. #endif
  1049. case 491: /* divw */
  1050. regs->gpr[rd] = (int) regs->gpr[ra] /
  1051. (int) regs->gpr[rb];
  1052. goto arith_done;
  1053. /*
  1054. * Logical instructions
  1055. */
  1056. case 26: /* cntlzw */
  1057. asm("cntlzw %0,%1" : "=r" (regs->gpr[ra]) :
  1058. "r" (regs->gpr[rd]));
  1059. goto logical_done;
  1060. #ifdef __powerpc64__
  1061. case 58: /* cntlzd */
  1062. asm("cntlzd %0,%1" : "=r" (regs->gpr[ra]) :
  1063. "r" (regs->gpr[rd]));
  1064. goto logical_done;
  1065. #endif
  1066. case 28: /* and */
  1067. regs->gpr[ra] = regs->gpr[rd] & regs->gpr[rb];
  1068. goto logical_done;
  1069. case 60: /* andc */
  1070. regs->gpr[ra] = regs->gpr[rd] & ~regs->gpr[rb];
  1071. goto logical_done;
  1072. case 124: /* nor */
  1073. regs->gpr[ra] = ~(regs->gpr[rd] | regs->gpr[rb]);
  1074. goto logical_done;
  1075. case 284: /* xor */
  1076. regs->gpr[ra] = ~(regs->gpr[rd] ^ regs->gpr[rb]);
  1077. goto logical_done;
  1078. case 316: /* xor */
  1079. regs->gpr[ra] = regs->gpr[rd] ^ regs->gpr[rb];
  1080. goto logical_done;
  1081. case 412: /* orc */
  1082. regs->gpr[ra] = regs->gpr[rd] | ~regs->gpr[rb];
  1083. goto logical_done;
  1084. case 444: /* or */
  1085. regs->gpr[ra] = regs->gpr[rd] | regs->gpr[rb];
  1086. goto logical_done;
  1087. case 476: /* nand */
  1088. regs->gpr[ra] = ~(regs->gpr[rd] & regs->gpr[rb]);
  1089. goto logical_done;
  1090. case 922: /* extsh */
  1091. regs->gpr[ra] = (signed short) regs->gpr[rd];
  1092. goto logical_done;
  1093. case 954: /* extsb */
  1094. regs->gpr[ra] = (signed char) regs->gpr[rd];
  1095. goto logical_done;
  1096. #ifdef __powerpc64__
  1097. case 986: /* extsw */
  1098. regs->gpr[ra] = (signed int) regs->gpr[rd];
  1099. goto logical_done;
  1100. #endif
  1101. /*
  1102. * Shift instructions
  1103. */
  1104. case 24: /* slw */
  1105. sh = regs->gpr[rb] & 0x3f;
  1106. if (sh < 32)
  1107. regs->gpr[ra] = (regs->gpr[rd] << sh) & 0xffffffffUL;
  1108. else
  1109. regs->gpr[ra] = 0;
  1110. goto logical_done;
  1111. case 536: /* srw */
  1112. sh = regs->gpr[rb] & 0x3f;
  1113. if (sh < 32)
  1114. regs->gpr[ra] = (regs->gpr[rd] & 0xffffffffUL) >> sh;
  1115. else
  1116. regs->gpr[ra] = 0;
  1117. goto logical_done;
  1118. case 792: /* sraw */
  1119. sh = regs->gpr[rb] & 0x3f;
  1120. ival = (signed int) regs->gpr[rd];
  1121. regs->gpr[ra] = ival >> (sh < 32 ? sh : 31);
  1122. if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
  1123. regs->xer |= XER_CA;
  1124. else
  1125. regs->xer &= ~XER_CA;
  1126. goto logical_done;
  1127. case 824: /* srawi */
  1128. sh = rb;
  1129. ival = (signed int) regs->gpr[rd];
  1130. regs->gpr[ra] = ival >> sh;
  1131. if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
  1132. regs->xer |= XER_CA;
  1133. else
  1134. regs->xer &= ~XER_CA;
  1135. goto logical_done;
  1136. #ifdef __powerpc64__
  1137. case 27: /* sld */
  1138. sh = regs->gpr[rb] & 0x7f;
  1139. if (sh < 64)
  1140. regs->gpr[ra] = regs->gpr[rd] << sh;
  1141. else
  1142. regs->gpr[ra] = 0;
  1143. goto logical_done;
  1144. case 539: /* srd */
  1145. sh = regs->gpr[rb] & 0x7f;
  1146. if (sh < 64)
  1147. regs->gpr[ra] = regs->gpr[rd] >> sh;
  1148. else
  1149. regs->gpr[ra] = 0;
  1150. goto logical_done;
  1151. case 794: /* srad */
  1152. sh = regs->gpr[rb] & 0x7f;
  1153. ival = (signed long int) regs->gpr[rd];
  1154. regs->gpr[ra] = ival >> (sh < 64 ? sh : 63);
  1155. if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
  1156. regs->xer |= XER_CA;
  1157. else
  1158. regs->xer &= ~XER_CA;
  1159. goto logical_done;
  1160. case 826: /* sradi with sh_5 = 0 */
  1161. case 827: /* sradi with sh_5 = 1 */
  1162. sh = rb | ((instr & 2) << 4);
  1163. ival = (signed long int) regs->gpr[rd];
  1164. regs->gpr[ra] = ival >> sh;
  1165. if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
  1166. regs->xer |= XER_CA;
  1167. else
  1168. regs->xer &= ~XER_CA;
  1169. goto logical_done;
  1170. #endif /* __powerpc64__ */
  1171. /*
  1172. * Cache instructions
  1173. */
  1174. case 54: /* dcbst */
  1175. op->type = MKOP(CACHEOP, DCBST, 0);
  1176. op->ea = xform_ea(instr, regs);
  1177. return 0;
  1178. case 86: /* dcbf */
  1179. op->type = MKOP(CACHEOP, DCBF, 0);
  1180. op->ea = xform_ea(instr, regs);
  1181. return 0;
  1182. case 246: /* dcbtst */
  1183. op->type = MKOP(CACHEOP, DCBTST, 0);
  1184. op->ea = xform_ea(instr, regs);
  1185. op->reg = rd;
  1186. return 0;
  1187. case 278: /* dcbt */
  1188. op->type = MKOP(CACHEOP, DCBTST, 0);
  1189. op->ea = xform_ea(instr, regs);
  1190. op->reg = rd;
  1191. return 0;
  1192. case 982: /* icbi */
  1193. op->type = MKOP(CACHEOP, ICBI, 0);
  1194. op->ea = xform_ea(instr, regs);
  1195. return 0;
  1196. }
  1197. break;
  1198. }
  1199. /*
  1200. * Loads and stores.
  1201. */
  1202. op->type = UNKNOWN;
  1203. op->update_reg = ra;
  1204. op->reg = rd;
  1205. op->val = regs->gpr[rd];
  1206. u = (instr >> 20) & UPDATE;
  1207. switch (opcode) {
  1208. case 31:
  1209. u = instr & UPDATE;
  1210. op->ea = xform_ea(instr, regs);
  1211. switch ((instr >> 1) & 0x3ff) {
  1212. case 20: /* lwarx */
  1213. op->type = MKOP(LARX, 0, 4);
  1214. break;
  1215. case 150: /* stwcx. */
  1216. op->type = MKOP(STCX, 0, 4);
  1217. break;
  1218. #ifdef __powerpc64__
  1219. case 84: /* ldarx */
  1220. op->type = MKOP(LARX, 0, 8);
  1221. break;
  1222. case 214: /* stdcx. */
  1223. op->type = MKOP(STCX, 0, 8);
  1224. break;
  1225. case 21: /* ldx */
  1226. case 53: /* ldux */
  1227. op->type = MKOP(LOAD, u, 8);
  1228. break;
  1229. #endif
  1230. case 23: /* lwzx */
  1231. case 55: /* lwzux */
  1232. op->type = MKOP(LOAD, u, 4);
  1233. break;
  1234. case 87: /* lbzx */
  1235. case 119: /* lbzux */
  1236. op->type = MKOP(LOAD, u, 1);
  1237. break;
  1238. #ifdef CONFIG_ALTIVEC
  1239. case 103: /* lvx */
  1240. case 359: /* lvxl */
  1241. if (!(regs->msr & MSR_VEC))
  1242. goto vecunavail;
  1243. op->type = MKOP(LOAD_VMX, 0, 16);
  1244. break;
  1245. case 231: /* stvx */
  1246. case 487: /* stvxl */
  1247. if (!(regs->msr & MSR_VEC))
  1248. goto vecunavail;
  1249. op->type = MKOP(STORE_VMX, 0, 16);
  1250. break;
  1251. #endif /* CONFIG_ALTIVEC */
  1252. #ifdef __powerpc64__
  1253. case 149: /* stdx */
  1254. case 181: /* stdux */
  1255. op->type = MKOP(STORE, u, 8);
  1256. break;
  1257. #endif
  1258. case 151: /* stwx */
  1259. case 183: /* stwux */
  1260. op->type = MKOP(STORE, u, 4);
  1261. break;
  1262. case 215: /* stbx */
  1263. case 247: /* stbux */
  1264. op->type = MKOP(STORE, u, 1);
  1265. break;
  1266. case 279: /* lhzx */
  1267. case 311: /* lhzux */
  1268. op->type = MKOP(LOAD, u, 2);
  1269. break;
  1270. #ifdef __powerpc64__
  1271. case 341: /* lwax */
  1272. case 373: /* lwaux */
  1273. op->type = MKOP(LOAD, SIGNEXT | u, 4);
  1274. break;
  1275. #endif
  1276. case 343: /* lhax */
  1277. case 375: /* lhaux */
  1278. op->type = MKOP(LOAD, SIGNEXT | u, 2);
  1279. break;
  1280. case 407: /* sthx */
  1281. case 439: /* sthux */
  1282. op->type = MKOP(STORE, u, 2);
  1283. break;
  1284. #ifdef __powerpc64__
  1285. case 532: /* ldbrx */
  1286. op->type = MKOP(LOAD, BYTEREV, 8);
  1287. break;
  1288. #endif
  1289. case 533: /* lswx */
  1290. op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
  1291. break;
  1292. case 534: /* lwbrx */
  1293. op->type = MKOP(LOAD, BYTEREV, 4);
  1294. break;
  1295. case 597: /* lswi */
  1296. if (rb == 0)
  1297. rb = 32; /* # bytes to load */
  1298. op->type = MKOP(LOAD_MULTI, 0, rb);
  1299. op->ea = 0;
  1300. if (ra)
  1301. op->ea = truncate_if_32bit(regs->msr,
  1302. regs->gpr[ra]);
  1303. break;
  1304. #ifdef CONFIG_PPC_FPU
  1305. case 535: /* lfsx */
  1306. case 567: /* lfsux */
  1307. if (!(regs->msr & MSR_FP))
  1308. goto fpunavail;
  1309. op->type = MKOP(LOAD_FP, u, 4);
  1310. break;
  1311. case 599: /* lfdx */
  1312. case 631: /* lfdux */
  1313. if (!(regs->msr & MSR_FP))
  1314. goto fpunavail;
  1315. op->type = MKOP(LOAD_FP, u, 8);
  1316. break;
  1317. case 663: /* stfsx */
  1318. case 695: /* stfsux */
  1319. if (!(regs->msr & MSR_FP))
  1320. goto fpunavail;
  1321. op->type = MKOP(STORE_FP, u, 4);
  1322. break;
  1323. case 727: /* stfdx */
  1324. case 759: /* stfdux */
  1325. if (!(regs->msr & MSR_FP))
  1326. goto fpunavail;
  1327. op->type = MKOP(STORE_FP, u, 8);
  1328. break;
  1329. #endif
  1330. #ifdef __powerpc64__
  1331. case 660: /* stdbrx */
  1332. op->type = MKOP(STORE, BYTEREV, 8);
  1333. op->val = byterev_8(regs->gpr[rd]);
  1334. break;
  1335. #endif
  1336. case 661: /* stswx */
  1337. op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
  1338. break;
  1339. case 662: /* stwbrx */
  1340. op->type = MKOP(STORE, BYTEREV, 4);
  1341. op->val = byterev_4(regs->gpr[rd]);
  1342. break;
  1343. case 725:
  1344. if (rb == 0)
  1345. rb = 32; /* # bytes to store */
  1346. op->type = MKOP(STORE_MULTI, 0, rb);
  1347. op->ea = 0;
  1348. if (ra)
  1349. op->ea = truncate_if_32bit(regs->msr,
  1350. regs->gpr[ra]);
  1351. break;
  1352. case 790: /* lhbrx */
  1353. op->type = MKOP(LOAD, BYTEREV, 2);
  1354. break;
  1355. case 918: /* sthbrx */
  1356. op->type = MKOP(STORE, BYTEREV, 2);
  1357. op->val = byterev_2(regs->gpr[rd]);
  1358. break;
  1359. #ifdef CONFIG_VSX
  1360. case 844: /* lxvd2x */
  1361. case 876: /* lxvd2ux */
  1362. if (!(regs->msr & MSR_VSX))
  1363. goto vsxunavail;
  1364. op->reg = rd | ((instr & 1) << 5);
  1365. op->type = MKOP(LOAD_VSX, u, 16);
  1366. break;
  1367. case 972: /* stxvd2x */
  1368. case 1004: /* stxvd2ux */
  1369. if (!(regs->msr & MSR_VSX))
  1370. goto vsxunavail;
  1371. op->reg = rd | ((instr & 1) << 5);
  1372. op->type = MKOP(STORE_VSX, u, 16);
  1373. break;
  1374. #endif /* CONFIG_VSX */
  1375. }
  1376. break;
  1377. case 32: /* lwz */
  1378. case 33: /* lwzu */
  1379. op->type = MKOP(LOAD, u, 4);
  1380. op->ea = dform_ea(instr, regs);
  1381. break;
  1382. case 34: /* lbz */
  1383. case 35: /* lbzu */
  1384. op->type = MKOP(LOAD, u, 1);
  1385. op->ea = dform_ea(instr, regs);
  1386. break;
  1387. case 36: /* stw */
  1388. case 37: /* stwu */
  1389. op->type = MKOP(STORE, u, 4);
  1390. op->ea = dform_ea(instr, regs);
  1391. break;
  1392. case 38: /* stb */
  1393. case 39: /* stbu */
  1394. op->type = MKOP(STORE, u, 1);
  1395. op->ea = dform_ea(instr, regs);
  1396. break;
  1397. case 40: /* lhz */
  1398. case 41: /* lhzu */
  1399. op->type = MKOP(LOAD, u, 2);
  1400. op->ea = dform_ea(instr, regs);
  1401. break;
  1402. case 42: /* lha */
  1403. case 43: /* lhau */
  1404. op->type = MKOP(LOAD, SIGNEXT | u, 2);
  1405. op->ea = dform_ea(instr, regs);
  1406. break;
  1407. case 44: /* sth */
  1408. case 45: /* sthu */
  1409. op->type = MKOP(STORE, u, 2);
  1410. op->ea = dform_ea(instr, regs);
  1411. break;
  1412. case 46: /* lmw */
  1413. if (ra >= rd)
  1414. break; /* invalid form, ra in range to load */
  1415. op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
  1416. op->ea = dform_ea(instr, regs);
  1417. break;
  1418. case 47: /* stmw */
  1419. op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
  1420. op->ea = dform_ea(instr, regs);
  1421. break;
  1422. #ifdef CONFIG_PPC_FPU
  1423. case 48: /* lfs */
  1424. case 49: /* lfsu */
  1425. if (!(regs->msr & MSR_FP))
  1426. goto fpunavail;
  1427. op->type = MKOP(LOAD_FP, u, 4);
  1428. op->ea = dform_ea(instr, regs);
  1429. break;
  1430. case 50: /* lfd */
  1431. case 51: /* lfdu */
  1432. if (!(regs->msr & MSR_FP))
  1433. goto fpunavail;
  1434. op->type = MKOP(LOAD_FP, u, 8);
  1435. op->ea = dform_ea(instr, regs);
  1436. break;
  1437. case 52: /* stfs */
  1438. case 53: /* stfsu */
  1439. if (!(regs->msr & MSR_FP))
  1440. goto fpunavail;
  1441. op->type = MKOP(STORE_FP, u, 4);
  1442. op->ea = dform_ea(instr, regs);
  1443. break;
  1444. case 54: /* stfd */
  1445. case 55: /* stfdu */
  1446. if (!(regs->msr & MSR_FP))
  1447. goto fpunavail;
  1448. op->type = MKOP(STORE_FP, u, 8);
  1449. op->ea = dform_ea(instr, regs);
  1450. break;
  1451. #endif
  1452. #ifdef __powerpc64__
  1453. case 58: /* ld[u], lwa */
  1454. op->ea = dsform_ea(instr, regs);
  1455. switch (instr & 3) {
  1456. case 0: /* ld */
  1457. op->type = MKOP(LOAD, 0, 8);
  1458. break;
  1459. case 1: /* ldu */
  1460. op->type = MKOP(LOAD, UPDATE, 8);
  1461. break;
  1462. case 2: /* lwa */
  1463. op->type = MKOP(LOAD, SIGNEXT, 4);
  1464. break;
  1465. }
  1466. break;
  1467. case 62: /* std[u] */
  1468. op->ea = dsform_ea(instr, regs);
  1469. switch (instr & 3) {
  1470. case 0: /* std */
  1471. op->type = MKOP(STORE, 0, 8);
  1472. break;
  1473. case 1: /* stdu */
  1474. op->type = MKOP(STORE, UPDATE, 8);
  1475. break;
  1476. }
  1477. break;
  1478. #endif /* __powerpc64__ */
  1479. }
  1480. return 0;
  1481. logical_done:
  1482. if (instr & 1)
  1483. set_cr0(regs, ra);
  1484. goto instr_done;
  1485. arith_done:
  1486. if (instr & 1)
  1487. set_cr0(regs, rd);
  1488. instr_done:
  1489. regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
  1490. return 1;
  1491. priv:
  1492. op->type = INTERRUPT | 0x700;
  1493. op->val = SRR1_PROGPRIV;
  1494. return 0;
  1495. trap:
  1496. op->type = INTERRUPT | 0x700;
  1497. op->val = SRR1_PROGTRAP;
  1498. return 0;
  1499. #ifdef CONFIG_PPC_FPU
  1500. fpunavail:
  1501. op->type = INTERRUPT | 0x800;
  1502. return 0;
  1503. #endif
  1504. #ifdef CONFIG_ALTIVEC
  1505. vecunavail:
  1506. op->type = INTERRUPT | 0xf20;
  1507. return 0;
  1508. #endif
  1509. #ifdef CONFIG_VSX
  1510. vsxunavail:
  1511. op->type = INTERRUPT | 0xf40;
  1512. return 0;
  1513. #endif
  1514. }
  1515. EXPORT_SYMBOL_GPL(analyse_instr);
  1516. /*
  1517. * For PPC32 we always use stwu with r1 to change the stack pointer.
  1518. * So this emulated store may corrupt the exception frame, now we
  1519. * have to provide the exception frame trampoline, which is pushed
  1520. * below the kprobed function stack. So we only update gpr[1] but
  1521. * don't emulate the real store operation. We will do real store
  1522. * operation safely in exception return code by checking this flag.
  1523. */
  1524. static __kprobes int handle_stack_update(unsigned long ea, struct pt_regs *regs)
  1525. {
  1526. #ifdef CONFIG_PPC32
  1527. /*
  1528. * Check if we will touch kernel stack overflow
  1529. */
  1530. if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
  1531. printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
  1532. return -EINVAL;
  1533. }
  1534. #endif /* CONFIG_PPC32 */
  1535. /*
  1536. * Check if we already set since that means we'll
  1537. * lose the previous value.
  1538. */
  1539. WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
  1540. set_thread_flag(TIF_EMULATE_STACK_STORE);
  1541. return 0;
  1542. }
  1543. static __kprobes void do_signext(unsigned long *valp, int size)
  1544. {
  1545. switch (size) {
  1546. case 2:
  1547. *valp = (signed short) *valp;
  1548. break;
  1549. case 4:
  1550. *valp = (signed int) *valp;
  1551. break;
  1552. }
  1553. }
  1554. static __kprobes void do_byterev(unsigned long *valp, int size)
  1555. {
  1556. switch (size) {
  1557. case 2:
  1558. *valp = byterev_2(*valp);
  1559. break;
  1560. case 4:
  1561. *valp = byterev_4(*valp);
  1562. break;
  1563. #ifdef __powerpc64__
  1564. case 8:
  1565. *valp = byterev_8(*valp);
  1566. break;
  1567. #endif
  1568. }
  1569. }
  1570. /*
  1571. * Emulate instructions that cause a transfer of control,
  1572. * loads and stores, and a few other instructions.
  1573. * Returns 1 if the step was emulated, 0 if not,
  1574. * or -1 if the instruction is one that should not be stepped,
  1575. * such as an rfid, or a mtmsrd that would clear MSR_RI.
  1576. */
  1577. int __kprobes emulate_step(struct pt_regs *regs, unsigned int instr)
  1578. {
  1579. struct instruction_op op;
  1580. int r, err, size;
  1581. unsigned long val;
  1582. unsigned int cr;
  1583. int i, rd, nb;
  1584. r = analyse_instr(&op, regs, instr);
  1585. if (r != 0)
  1586. return r;
  1587. err = 0;
  1588. size = GETSIZE(op.type);
  1589. switch (op.type & INSTR_TYPE_MASK) {
  1590. case CACHEOP:
  1591. if (!address_ok(regs, op.ea, 8))
  1592. return 0;
  1593. switch (op.type & CACHEOP_MASK) {
  1594. case DCBST:
  1595. __cacheop_user_asmx(op.ea, err, "dcbst");
  1596. break;
  1597. case DCBF:
  1598. __cacheop_user_asmx(op.ea, err, "dcbf");
  1599. break;
  1600. case DCBTST:
  1601. if (op.reg == 0)
  1602. prefetchw((void *) op.ea);
  1603. break;
  1604. case DCBT:
  1605. if (op.reg == 0)
  1606. prefetch((void *) op.ea);
  1607. break;
  1608. case ICBI:
  1609. __cacheop_user_asmx(op.ea, err, "icbi");
  1610. break;
  1611. }
  1612. if (err)
  1613. return 0;
  1614. goto instr_done;
  1615. case LARX:
  1616. if (regs->msr & MSR_LE)
  1617. return 0;
  1618. if (op.ea & (size - 1))
  1619. break; /* can't handle misaligned */
  1620. err = -EFAULT;
  1621. if (!address_ok(regs, op.ea, size))
  1622. goto ldst_done;
  1623. err = 0;
  1624. switch (size) {
  1625. case 4:
  1626. __get_user_asmx(val, op.ea, err, "lwarx");
  1627. break;
  1628. case 8:
  1629. __get_user_asmx(val, op.ea, err, "ldarx");
  1630. break;
  1631. default:
  1632. return 0;
  1633. }
  1634. if (!err)
  1635. regs->gpr[op.reg] = val;
  1636. goto ldst_done;
  1637. case STCX:
  1638. if (regs->msr & MSR_LE)
  1639. return 0;
  1640. if (op.ea & (size - 1))
  1641. break; /* can't handle misaligned */
  1642. err = -EFAULT;
  1643. if (!address_ok(regs, op.ea, size))
  1644. goto ldst_done;
  1645. err = 0;
  1646. switch (size) {
  1647. case 4:
  1648. __put_user_asmx(op.val, op.ea, err, "stwcx.", cr);
  1649. break;
  1650. case 8:
  1651. __put_user_asmx(op.val, op.ea, err, "stdcx.", cr);
  1652. break;
  1653. default:
  1654. return 0;
  1655. }
  1656. if (!err)
  1657. regs->ccr = (regs->ccr & 0x0fffffff) |
  1658. (cr & 0xe0000000) |
  1659. ((regs->xer >> 3) & 0x10000000);
  1660. goto ldst_done;
  1661. case LOAD:
  1662. if (regs->msr & MSR_LE)
  1663. return 0;
  1664. err = read_mem(&regs->gpr[op.reg], op.ea, size, regs);
  1665. if (!err) {
  1666. if (op.type & SIGNEXT)
  1667. do_signext(&regs->gpr[op.reg], size);
  1668. if (op.type & BYTEREV)
  1669. do_byterev(&regs->gpr[op.reg], size);
  1670. }
  1671. goto ldst_done;
  1672. #ifdef CONFIG_PPC_FPU
  1673. case LOAD_FP:
  1674. if (regs->msr & MSR_LE)
  1675. return 0;
  1676. if (size == 4)
  1677. err = do_fp_load(op.reg, do_lfs, op.ea, size, regs);
  1678. else
  1679. err = do_fp_load(op.reg, do_lfd, op.ea, size, regs);
  1680. goto ldst_done;
  1681. #endif
  1682. #ifdef CONFIG_ALTIVEC
  1683. case LOAD_VMX:
  1684. if (regs->msr & MSR_LE)
  1685. return 0;
  1686. err = do_vec_load(op.reg, do_lvx, op.ea & ~0xfUL, regs);
  1687. goto ldst_done;
  1688. #endif
  1689. #ifdef CONFIG_VSX
  1690. case LOAD_VSX:
  1691. if (regs->msr & MSR_LE)
  1692. return 0;
  1693. err = do_vsx_load(op.reg, do_lxvd2x, op.ea, regs);
  1694. goto ldst_done;
  1695. #endif
  1696. case LOAD_MULTI:
  1697. if (regs->msr & MSR_LE)
  1698. return 0;
  1699. rd = op.reg;
  1700. for (i = 0; i < size; i += 4) {
  1701. nb = size - i;
  1702. if (nb > 4)
  1703. nb = 4;
  1704. err = read_mem(&regs->gpr[rd], op.ea, nb, regs);
  1705. if (err)
  1706. return 0;
  1707. if (nb < 4) /* left-justify last bytes */
  1708. regs->gpr[rd] <<= 32 - 8 * nb;
  1709. op.ea += 4;
  1710. ++rd;
  1711. }
  1712. goto instr_done;
  1713. case STORE:
  1714. if (regs->msr & MSR_LE)
  1715. return 0;
  1716. if ((op.type & UPDATE) && size == sizeof(long) &&
  1717. op.reg == 1 && op.update_reg == 1 &&
  1718. !(regs->msr & MSR_PR) &&
  1719. op.ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
  1720. err = handle_stack_update(op.ea, regs);
  1721. goto ldst_done;
  1722. }
  1723. err = write_mem(op.val, op.ea, size, regs);
  1724. goto ldst_done;
  1725. #ifdef CONFIG_PPC_FPU
  1726. case STORE_FP:
  1727. if (regs->msr & MSR_LE)
  1728. return 0;
  1729. if (size == 4)
  1730. err = do_fp_store(op.reg, do_stfs, op.ea, size, regs);
  1731. else
  1732. err = do_fp_store(op.reg, do_stfd, op.ea, size, regs);
  1733. goto ldst_done;
  1734. #endif
  1735. #ifdef CONFIG_ALTIVEC
  1736. case STORE_VMX:
  1737. if (regs->msr & MSR_LE)
  1738. return 0;
  1739. err = do_vec_store(op.reg, do_stvx, op.ea & ~0xfUL, regs);
  1740. goto ldst_done;
  1741. #endif
  1742. #ifdef CONFIG_VSX
  1743. case STORE_VSX:
  1744. if (regs->msr & MSR_LE)
  1745. return 0;
  1746. err = do_vsx_store(op.reg, do_stxvd2x, op.ea, regs);
  1747. goto ldst_done;
  1748. #endif
  1749. case STORE_MULTI:
  1750. if (regs->msr & MSR_LE)
  1751. return 0;
  1752. rd = op.reg;
  1753. for (i = 0; i < size; i += 4) {
  1754. val = regs->gpr[rd];
  1755. nb = size - i;
  1756. if (nb > 4)
  1757. nb = 4;
  1758. else
  1759. val >>= 32 - 8 * nb;
  1760. err = write_mem(val, op.ea, nb, regs);
  1761. if (err)
  1762. return 0;
  1763. op.ea += 4;
  1764. ++rd;
  1765. }
  1766. goto instr_done;
  1767. case MFMSR:
  1768. regs->gpr[op.reg] = regs->msr & MSR_MASK;
  1769. goto instr_done;
  1770. case MTMSR:
  1771. val = regs->gpr[op.reg];
  1772. if ((val & MSR_RI) == 0)
  1773. /* can't step mtmsr[d] that would clear MSR_RI */
  1774. return -1;
  1775. /* here op.val is the mask of bits to change */
  1776. regs->msr = (regs->msr & ~op.val) | (val & op.val);
  1777. goto instr_done;
  1778. #ifdef CONFIG_PPC64
  1779. case SYSCALL: /* sc */
  1780. /*
  1781. * N.B. this uses knowledge about how the syscall
  1782. * entry code works. If that is changed, this will
  1783. * need to be changed also.
  1784. */
  1785. if (regs->gpr[0] == 0x1ebe &&
  1786. cpu_has_feature(CPU_FTR_REAL_LE)) {
  1787. regs->msr ^= MSR_LE;
  1788. goto instr_done;
  1789. }
  1790. regs->gpr[9] = regs->gpr[13];
  1791. regs->gpr[10] = MSR_KERNEL;
  1792. regs->gpr[11] = regs->nip + 4;
  1793. regs->gpr[12] = regs->msr & MSR_MASK;
  1794. regs->gpr[13] = (unsigned long) get_paca();
  1795. regs->nip = (unsigned long) &system_call_common;
  1796. regs->msr = MSR_KERNEL;
  1797. return 1;
  1798. case RFI:
  1799. return -1;
  1800. #endif
  1801. }
  1802. return 0;
  1803. ldst_done:
  1804. if (err)
  1805. return 0;
  1806. if (op.type & UPDATE)
  1807. regs->gpr[op.update_reg] = op.ea;
  1808. instr_done:
  1809. regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
  1810. return 1;
  1811. }