perf_event.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334
  1. /*
  2. * PMU support
  3. *
  4. * Copyright (C) 2012 ARM Limited
  5. * Author: Will Deacon <will.deacon@arm.com>
  6. *
  7. * This code is based heavily on the ARMv7 perf event code.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. */
  21. #define pr_fmt(fmt) "hw perfevents: " fmt
  22. #include <linux/bitmap.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/irq.h>
  25. #include <linux/kernel.h>
  26. #include <linux/export.h>
  27. #include <linux/of_device.h>
  28. #include <linux/perf_event.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/slab.h>
  31. #include <linux/spinlock.h>
  32. #include <linux/uaccess.h>
  33. #include <asm/cputype.h>
  34. #include <asm/irq.h>
  35. #include <asm/irq_regs.h>
  36. #include <asm/pmu.h>
  37. /*
  38. * ARMv8 supports a maximum of 32 events.
  39. * The cycle counter is included in this total.
  40. */
  41. #define ARMPMU_MAX_HWEVENTS 32
  42. static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
  43. static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
  44. static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
  45. #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
  46. /* Set at runtime when we know what CPU type we are. */
  47. static struct arm_pmu *cpu_pmu;
  48. int
  49. armpmu_get_max_events(void)
  50. {
  51. int max_events = 0;
  52. if (cpu_pmu != NULL)
  53. max_events = cpu_pmu->num_events;
  54. return max_events;
  55. }
  56. EXPORT_SYMBOL_GPL(armpmu_get_max_events);
  57. int perf_num_counters(void)
  58. {
  59. return armpmu_get_max_events();
  60. }
  61. EXPORT_SYMBOL_GPL(perf_num_counters);
  62. #define HW_OP_UNSUPPORTED 0xFFFF
  63. #define C(_x) \
  64. PERF_COUNT_HW_CACHE_##_x
  65. #define CACHE_OP_UNSUPPORTED 0xFFFF
  66. #define PERF_MAP_ALL_UNSUPPORTED \
  67. [0 ... PERF_COUNT_HW_MAX - 1] = HW_OP_UNSUPPORTED
  68. #define PERF_CACHE_MAP_ALL_UNSUPPORTED \
  69. [0 ... C(MAX) - 1] = { \
  70. [0 ... C(OP_MAX) - 1] = { \
  71. [0 ... C(RESULT_MAX) - 1] = CACHE_OP_UNSUPPORTED, \
  72. }, \
  73. }
  74. static int
  75. armpmu_map_cache_event(const unsigned (*cache_map)
  76. [PERF_COUNT_HW_CACHE_MAX]
  77. [PERF_COUNT_HW_CACHE_OP_MAX]
  78. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  79. u64 config)
  80. {
  81. unsigned int cache_type, cache_op, cache_result, ret;
  82. cache_type = (config >> 0) & 0xff;
  83. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  84. return -EINVAL;
  85. cache_op = (config >> 8) & 0xff;
  86. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  87. return -EINVAL;
  88. cache_result = (config >> 16) & 0xff;
  89. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  90. return -EINVAL;
  91. ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  92. if (ret == CACHE_OP_UNSUPPORTED)
  93. return -ENOENT;
  94. return ret;
  95. }
  96. static int
  97. armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  98. {
  99. int mapping;
  100. if (config >= PERF_COUNT_HW_MAX)
  101. return -EINVAL;
  102. mapping = (*event_map)[config];
  103. return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  104. }
  105. static int
  106. armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  107. {
  108. return (int)(config & raw_event_mask);
  109. }
  110. static int map_cpu_event(struct perf_event *event,
  111. const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  112. const unsigned (*cache_map)
  113. [PERF_COUNT_HW_CACHE_MAX]
  114. [PERF_COUNT_HW_CACHE_OP_MAX]
  115. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  116. u32 raw_event_mask)
  117. {
  118. u64 config = event->attr.config;
  119. switch (event->attr.type) {
  120. case PERF_TYPE_HARDWARE:
  121. return armpmu_map_event(event_map, config);
  122. case PERF_TYPE_HW_CACHE:
  123. return armpmu_map_cache_event(cache_map, config);
  124. case PERF_TYPE_RAW:
  125. return armpmu_map_raw_event(raw_event_mask, config);
  126. }
  127. return -ENOENT;
  128. }
  129. int
  130. armpmu_event_set_period(struct perf_event *event,
  131. struct hw_perf_event *hwc,
  132. int idx)
  133. {
  134. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  135. s64 left = local64_read(&hwc->period_left);
  136. s64 period = hwc->sample_period;
  137. int ret = 0;
  138. if (unlikely(left <= -period)) {
  139. left = period;
  140. local64_set(&hwc->period_left, left);
  141. hwc->last_period = period;
  142. ret = 1;
  143. }
  144. if (unlikely(left <= 0)) {
  145. left += period;
  146. local64_set(&hwc->period_left, left);
  147. hwc->last_period = period;
  148. ret = 1;
  149. }
  150. /*
  151. * Limit the maximum period to prevent the counter value
  152. * from overtaking the one we are about to program. In
  153. * effect we are reducing max_period to account for
  154. * interrupt latency (and we are being very conservative).
  155. */
  156. if (left > (armpmu->max_period >> 1))
  157. left = armpmu->max_period >> 1;
  158. local64_set(&hwc->prev_count, (u64)-left);
  159. armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
  160. perf_event_update_userpage(event);
  161. return ret;
  162. }
  163. u64
  164. armpmu_event_update(struct perf_event *event,
  165. struct hw_perf_event *hwc,
  166. int idx)
  167. {
  168. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  169. u64 delta, prev_raw_count, new_raw_count;
  170. again:
  171. prev_raw_count = local64_read(&hwc->prev_count);
  172. new_raw_count = armpmu->read_counter(idx);
  173. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  174. new_raw_count) != prev_raw_count)
  175. goto again;
  176. delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
  177. local64_add(delta, &event->count);
  178. local64_sub(delta, &hwc->period_left);
  179. return new_raw_count;
  180. }
  181. static void
  182. armpmu_read(struct perf_event *event)
  183. {
  184. struct hw_perf_event *hwc = &event->hw;
  185. /* Don't read disabled counters! */
  186. if (hwc->idx < 0)
  187. return;
  188. armpmu_event_update(event, hwc, hwc->idx);
  189. }
  190. static void
  191. armpmu_stop(struct perf_event *event, int flags)
  192. {
  193. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  194. struct hw_perf_event *hwc = &event->hw;
  195. /*
  196. * ARM pmu always has to update the counter, so ignore
  197. * PERF_EF_UPDATE, see comments in armpmu_start().
  198. */
  199. if (!(hwc->state & PERF_HES_STOPPED)) {
  200. armpmu->disable(hwc, hwc->idx);
  201. barrier(); /* why? */
  202. armpmu_event_update(event, hwc, hwc->idx);
  203. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  204. }
  205. }
  206. static void
  207. armpmu_start(struct perf_event *event, int flags)
  208. {
  209. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  210. struct hw_perf_event *hwc = &event->hw;
  211. /*
  212. * ARM pmu always has to reprogram the period, so ignore
  213. * PERF_EF_RELOAD, see the comment below.
  214. */
  215. if (flags & PERF_EF_RELOAD)
  216. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  217. hwc->state = 0;
  218. /*
  219. * Set the period again. Some counters can't be stopped, so when we
  220. * were stopped we simply disabled the IRQ source and the counter
  221. * may have been left counting. If we don't do this step then we may
  222. * get an interrupt too soon or *way* too late if the overflow has
  223. * happened since disabling.
  224. */
  225. armpmu_event_set_period(event, hwc, hwc->idx);
  226. armpmu->enable(hwc, hwc->idx);
  227. }
  228. static void
  229. armpmu_del(struct perf_event *event, int flags)
  230. {
  231. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  232. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  233. struct hw_perf_event *hwc = &event->hw;
  234. int idx = hwc->idx;
  235. WARN_ON(idx < 0);
  236. armpmu_stop(event, PERF_EF_UPDATE);
  237. hw_events->events[idx] = NULL;
  238. clear_bit(idx, hw_events->used_mask);
  239. perf_event_update_userpage(event);
  240. }
  241. static int
  242. armpmu_add(struct perf_event *event, int flags)
  243. {
  244. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  245. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  246. struct hw_perf_event *hwc = &event->hw;
  247. int idx;
  248. int err = 0;
  249. perf_pmu_disable(event->pmu);
  250. /* If we don't have a space for the counter then finish early. */
  251. idx = armpmu->get_event_idx(hw_events, hwc);
  252. if (idx < 0) {
  253. err = idx;
  254. goto out;
  255. }
  256. /*
  257. * If there is an event in the counter we are going to use then make
  258. * sure it is disabled.
  259. */
  260. event->hw.idx = idx;
  261. armpmu->disable(hwc, idx);
  262. hw_events->events[idx] = event;
  263. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  264. if (flags & PERF_EF_START)
  265. armpmu_start(event, PERF_EF_RELOAD);
  266. /* Propagate our changes to the userspace mapping. */
  267. perf_event_update_userpage(event);
  268. out:
  269. perf_pmu_enable(event->pmu);
  270. return err;
  271. }
  272. static int
  273. validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
  274. struct perf_event *event)
  275. {
  276. struct arm_pmu *armpmu;
  277. struct hw_perf_event fake_event = event->hw;
  278. struct pmu *leader_pmu = event->group_leader->pmu;
  279. if (is_software_event(event))
  280. return 1;
  281. /*
  282. * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
  283. * core perf code won't check that the pmu->ctx == leader->ctx
  284. * until after pmu->event_init(event).
  285. */
  286. if (event->pmu != pmu)
  287. return 0;
  288. if (event->pmu != leader_pmu || event->state < PERF_EVENT_STATE_OFF)
  289. return 1;
  290. if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
  291. return 1;
  292. armpmu = to_arm_pmu(event->pmu);
  293. return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
  294. }
  295. static int
  296. validate_group(struct perf_event *event)
  297. {
  298. struct perf_event *sibling, *leader = event->group_leader;
  299. struct pmu_hw_events fake_pmu;
  300. DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
  301. /*
  302. * Initialise the fake PMU. We only need to populate the
  303. * used_mask for the purposes of validation.
  304. */
  305. memset(fake_used_mask, 0, sizeof(fake_used_mask));
  306. fake_pmu.used_mask = fake_used_mask;
  307. if (!validate_event(event->pmu, &fake_pmu, leader))
  308. return -EINVAL;
  309. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  310. if (!validate_event(event->pmu, &fake_pmu, sibling))
  311. return -EINVAL;
  312. }
  313. if (!validate_event(event->pmu, &fake_pmu, event))
  314. return -EINVAL;
  315. return 0;
  316. }
  317. static void
  318. armpmu_disable_percpu_irq(void *data)
  319. {
  320. unsigned int irq = *(unsigned int *)data;
  321. disable_percpu_irq(irq);
  322. }
  323. static void
  324. armpmu_release_hardware(struct arm_pmu *armpmu)
  325. {
  326. int irq;
  327. unsigned int i, irqs;
  328. struct platform_device *pmu_device = armpmu->plat_device;
  329. irqs = min(pmu_device->num_resources, num_possible_cpus());
  330. if (!irqs)
  331. return;
  332. irq = platform_get_irq(pmu_device, 0);
  333. if (irq <= 0)
  334. return;
  335. if (irq_is_percpu(irq)) {
  336. on_each_cpu(armpmu_disable_percpu_irq, &irq, 1);
  337. free_percpu_irq(irq, &cpu_hw_events);
  338. } else {
  339. for (i = 0; i < irqs; ++i) {
  340. int cpu = i;
  341. if (armpmu->irq_affinity)
  342. cpu = armpmu->irq_affinity[i];
  343. if (!cpumask_test_and_clear_cpu(cpu, &armpmu->active_irqs))
  344. continue;
  345. irq = platform_get_irq(pmu_device, i);
  346. if (irq > 0)
  347. free_irq(irq, armpmu);
  348. }
  349. }
  350. }
  351. static void
  352. armpmu_enable_percpu_irq(void *data)
  353. {
  354. unsigned int irq = *(unsigned int *)data;
  355. enable_percpu_irq(irq, IRQ_TYPE_NONE);
  356. }
  357. static int
  358. armpmu_reserve_hardware(struct arm_pmu *armpmu)
  359. {
  360. int err, irq;
  361. unsigned int i, irqs;
  362. struct platform_device *pmu_device = armpmu->plat_device;
  363. if (!pmu_device)
  364. return -ENODEV;
  365. irqs = min(pmu_device->num_resources, num_possible_cpus());
  366. if (!irqs) {
  367. pr_err("no irqs for PMUs defined\n");
  368. return -ENODEV;
  369. }
  370. irq = platform_get_irq(pmu_device, 0);
  371. if (irq <= 0) {
  372. pr_err("failed to get valid irq for PMU device\n");
  373. return -ENODEV;
  374. }
  375. if (irq_is_percpu(irq)) {
  376. err = request_percpu_irq(irq, armpmu->handle_irq,
  377. "arm-pmu", &cpu_hw_events);
  378. if (err) {
  379. pr_err("unable to request percpu IRQ%d for ARM PMU counters\n",
  380. irq);
  381. armpmu_release_hardware(armpmu);
  382. return err;
  383. }
  384. on_each_cpu(armpmu_enable_percpu_irq, &irq, 1);
  385. } else {
  386. for (i = 0; i < irqs; ++i) {
  387. int cpu = i;
  388. err = 0;
  389. irq = platform_get_irq(pmu_device, i);
  390. if (irq <= 0)
  391. continue;
  392. if (armpmu->irq_affinity)
  393. cpu = armpmu->irq_affinity[i];
  394. /*
  395. * If we have a single PMU interrupt that we can't shift,
  396. * assume that we're running on a uniprocessor machine and
  397. * continue. Otherwise, continue without this interrupt.
  398. */
  399. if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
  400. pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
  401. irq, cpu);
  402. continue;
  403. }
  404. err = request_irq(irq, armpmu->handle_irq,
  405. IRQF_NOBALANCING | IRQF_NO_THREAD,
  406. "arm-pmu", armpmu);
  407. if (err) {
  408. pr_err("unable to request IRQ%d for ARM PMU counters\n",
  409. irq);
  410. armpmu_release_hardware(armpmu);
  411. return err;
  412. }
  413. cpumask_set_cpu(cpu, &armpmu->active_irqs);
  414. }
  415. }
  416. return 0;
  417. }
  418. static void
  419. hw_perf_event_destroy(struct perf_event *event)
  420. {
  421. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  422. atomic_t *active_events = &armpmu->active_events;
  423. struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
  424. if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
  425. armpmu_release_hardware(armpmu);
  426. mutex_unlock(pmu_reserve_mutex);
  427. }
  428. }
  429. static int
  430. event_requires_mode_exclusion(struct perf_event_attr *attr)
  431. {
  432. return attr->exclude_idle || attr->exclude_user ||
  433. attr->exclude_kernel || attr->exclude_hv;
  434. }
  435. static int
  436. __hw_perf_event_init(struct perf_event *event)
  437. {
  438. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  439. struct hw_perf_event *hwc = &event->hw;
  440. int mapping, err;
  441. mapping = armpmu->map_event(event);
  442. if (mapping < 0) {
  443. pr_debug("event %x:%llx not supported\n", event->attr.type,
  444. event->attr.config);
  445. return mapping;
  446. }
  447. /*
  448. * We don't assign an index until we actually place the event onto
  449. * hardware. Use -1 to signify that we haven't decided where to put it
  450. * yet. For SMP systems, each core has it's own PMU so we can't do any
  451. * clever allocation or constraints checking at this point.
  452. */
  453. hwc->idx = -1;
  454. hwc->config_base = 0;
  455. hwc->config = 0;
  456. hwc->event_base = 0;
  457. /*
  458. * Check whether we need to exclude the counter from certain modes.
  459. */
  460. if ((!armpmu->set_event_filter ||
  461. armpmu->set_event_filter(hwc, &event->attr)) &&
  462. event_requires_mode_exclusion(&event->attr)) {
  463. pr_debug("ARM performance counters do not support mode exclusion\n");
  464. return -EPERM;
  465. }
  466. /*
  467. * Store the event encoding into the config_base field.
  468. */
  469. hwc->config_base |= (unsigned long)mapping;
  470. if (!hwc->sample_period) {
  471. /*
  472. * For non-sampling runs, limit the sample_period to half
  473. * of the counter width. That way, the new counter value
  474. * is far less likely to overtake the previous one unless
  475. * you have some serious IRQ latency issues.
  476. */
  477. hwc->sample_period = armpmu->max_period >> 1;
  478. hwc->last_period = hwc->sample_period;
  479. local64_set(&hwc->period_left, hwc->sample_period);
  480. }
  481. err = 0;
  482. if (event->group_leader != event) {
  483. err = validate_group(event);
  484. if (err)
  485. return -EINVAL;
  486. }
  487. return err;
  488. }
  489. static int armpmu_event_init(struct perf_event *event)
  490. {
  491. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  492. int err = 0;
  493. atomic_t *active_events = &armpmu->active_events;
  494. if (armpmu->map_event(event) == -ENOENT)
  495. return -ENOENT;
  496. event->destroy = hw_perf_event_destroy;
  497. if (!atomic_inc_not_zero(active_events)) {
  498. mutex_lock(&armpmu->reserve_mutex);
  499. if (atomic_read(active_events) == 0)
  500. err = armpmu_reserve_hardware(armpmu);
  501. if (!err)
  502. atomic_inc(active_events);
  503. mutex_unlock(&armpmu->reserve_mutex);
  504. }
  505. if (err)
  506. return err;
  507. err = __hw_perf_event_init(event);
  508. if (err)
  509. hw_perf_event_destroy(event);
  510. return err;
  511. }
  512. static void armpmu_enable(struct pmu *pmu)
  513. {
  514. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  515. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  516. int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
  517. if (enabled)
  518. armpmu->start();
  519. }
  520. static void armpmu_disable(struct pmu *pmu)
  521. {
  522. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  523. armpmu->stop();
  524. }
  525. static void __init armpmu_init(struct arm_pmu *armpmu)
  526. {
  527. atomic_set(&armpmu->active_events, 0);
  528. mutex_init(&armpmu->reserve_mutex);
  529. armpmu->pmu = (struct pmu) {
  530. .pmu_enable = armpmu_enable,
  531. .pmu_disable = armpmu_disable,
  532. .event_init = armpmu_event_init,
  533. .add = armpmu_add,
  534. .del = armpmu_del,
  535. .start = armpmu_start,
  536. .stop = armpmu_stop,
  537. .read = armpmu_read,
  538. };
  539. }
  540. int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
  541. {
  542. armpmu_init(armpmu);
  543. return perf_pmu_register(&armpmu->pmu, name, type);
  544. }
  545. /*
  546. * ARMv8 PMUv3 Performance Events handling code.
  547. * Common event types.
  548. */
  549. enum armv8_pmuv3_perf_types {
  550. /* Required events. */
  551. ARMV8_PMUV3_PERFCTR_PMNC_SW_INCR = 0x00,
  552. ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL = 0x03,
  553. ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS = 0x04,
  554. ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED = 0x10,
  555. ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES = 0x11,
  556. ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED = 0x12,
  557. /* At least one of the following is required. */
  558. ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED = 0x08,
  559. ARMV8_PMUV3_PERFCTR_OP_SPEC = 0x1B,
  560. /* Common architectural events. */
  561. ARMV8_PMUV3_PERFCTR_MEM_READ = 0x06,
  562. ARMV8_PMUV3_PERFCTR_MEM_WRITE = 0x07,
  563. ARMV8_PMUV3_PERFCTR_EXC_TAKEN = 0x09,
  564. ARMV8_PMUV3_PERFCTR_EXC_EXECUTED = 0x0A,
  565. ARMV8_PMUV3_PERFCTR_CID_WRITE = 0x0B,
  566. ARMV8_PMUV3_PERFCTR_PC_WRITE = 0x0C,
  567. ARMV8_PMUV3_PERFCTR_PC_IMM_BRANCH = 0x0D,
  568. ARMV8_PMUV3_PERFCTR_PC_PROC_RETURN = 0x0E,
  569. ARMV8_PMUV3_PERFCTR_MEM_UNALIGNED_ACCESS = 0x0F,
  570. ARMV8_PMUV3_PERFCTR_TTBR_WRITE = 0x1C,
  571. /* Common microarchitectural events. */
  572. ARMV8_PMUV3_PERFCTR_L1_ICACHE_REFILL = 0x01,
  573. ARMV8_PMUV3_PERFCTR_ITLB_REFILL = 0x02,
  574. ARMV8_PMUV3_PERFCTR_DTLB_REFILL = 0x05,
  575. ARMV8_PMUV3_PERFCTR_MEM_ACCESS = 0x13,
  576. ARMV8_PMUV3_PERFCTR_L1_ICACHE_ACCESS = 0x14,
  577. ARMV8_PMUV3_PERFCTR_L1_DCACHE_WB = 0x15,
  578. ARMV8_PMUV3_PERFCTR_L2_CACHE_ACCESS = 0x16,
  579. ARMV8_PMUV3_PERFCTR_L2_CACHE_REFILL = 0x17,
  580. ARMV8_PMUV3_PERFCTR_L2_CACHE_WB = 0x18,
  581. ARMV8_PMUV3_PERFCTR_BUS_ACCESS = 0x19,
  582. ARMV8_PMUV3_PERFCTR_MEM_ERROR = 0x1A,
  583. ARMV8_PMUV3_PERFCTR_BUS_CYCLES = 0x1D,
  584. };
  585. /* PMUv3 HW events mapping. */
  586. static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
  587. PERF_MAP_ALL_UNSUPPORTED,
  588. [PERF_COUNT_HW_CPU_CYCLES] = ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES,
  589. [PERF_COUNT_HW_INSTRUCTIONS] = ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED,
  590. [PERF_COUNT_HW_CACHE_REFERENCES] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
  591. [PERF_COUNT_HW_CACHE_MISSES] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
  592. [PERF_COUNT_HW_BRANCH_MISSES] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
  593. };
  594. static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
  595. [PERF_COUNT_HW_CACHE_OP_MAX]
  596. [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
  597. PERF_CACHE_MAP_ALL_UNSUPPORTED,
  598. [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
  599. [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
  600. [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
  601. [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
  602. [C(BPU)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
  603. [C(BPU)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
  604. [C(BPU)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
  605. [C(BPU)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
  606. };
  607. /*
  608. * Perf Events' indices
  609. */
  610. #define ARMV8_IDX_CYCLE_COUNTER 0
  611. #define ARMV8_IDX_COUNTER0 1
  612. #define ARMV8_IDX_COUNTER_LAST (ARMV8_IDX_CYCLE_COUNTER + cpu_pmu->num_events - 1)
  613. #define ARMV8_MAX_COUNTERS 32
  614. #define ARMV8_COUNTER_MASK (ARMV8_MAX_COUNTERS - 1)
  615. /*
  616. * ARMv8 low level PMU access
  617. */
  618. /*
  619. * Perf Event to low level counters mapping
  620. */
  621. #define ARMV8_IDX_TO_COUNTER(x) \
  622. (((x) - ARMV8_IDX_COUNTER0) & ARMV8_COUNTER_MASK)
  623. /*
  624. * Per-CPU PMCR: config reg
  625. */
  626. #define ARMV8_PMCR_E (1 << 0) /* Enable all counters */
  627. #define ARMV8_PMCR_P (1 << 1) /* Reset all counters */
  628. #define ARMV8_PMCR_C (1 << 2) /* Cycle counter reset */
  629. #define ARMV8_PMCR_D (1 << 3) /* CCNT counts every 64th cpu cycle */
  630. #define ARMV8_PMCR_X (1 << 4) /* Export to ETM */
  631. #define ARMV8_PMCR_DP (1 << 5) /* Disable CCNT if non-invasive debug*/
  632. #define ARMV8_PMCR_N_SHIFT 11 /* Number of counters supported */
  633. #define ARMV8_PMCR_N_MASK 0x1f
  634. #define ARMV8_PMCR_MASK 0x3f /* Mask for writable bits */
  635. /*
  636. * PMOVSR: counters overflow flag status reg
  637. */
  638. #define ARMV8_OVSR_MASK 0xffffffff /* Mask for writable bits */
  639. #define ARMV8_OVERFLOWED_MASK ARMV8_OVSR_MASK
  640. /*
  641. * PMXEVTYPER: Event selection reg
  642. */
  643. #define ARMV8_EVTYPE_MASK 0xc80003ff /* Mask for writable bits */
  644. #define ARMV8_EVTYPE_EVENT 0x3ff /* Mask for EVENT bits */
  645. /*
  646. * Event filters for PMUv3
  647. */
  648. #define ARMV8_EXCLUDE_EL1 (1 << 31)
  649. #define ARMV8_EXCLUDE_EL0 (1 << 30)
  650. #define ARMV8_INCLUDE_EL2 (1 << 27)
  651. static inline u32 armv8pmu_pmcr_read(void)
  652. {
  653. u32 val;
  654. asm volatile("mrs %0, pmcr_el0" : "=r" (val));
  655. return val;
  656. }
  657. static inline void armv8pmu_pmcr_write(u32 val)
  658. {
  659. val &= ARMV8_PMCR_MASK;
  660. isb();
  661. asm volatile("msr pmcr_el0, %0" :: "r" (val));
  662. }
  663. static inline int armv8pmu_has_overflowed(u32 pmovsr)
  664. {
  665. return pmovsr & ARMV8_OVERFLOWED_MASK;
  666. }
  667. static inline int armv8pmu_counter_valid(int idx)
  668. {
  669. return idx >= ARMV8_IDX_CYCLE_COUNTER && idx <= ARMV8_IDX_COUNTER_LAST;
  670. }
  671. static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
  672. {
  673. int ret = 0;
  674. u32 counter;
  675. if (!armv8pmu_counter_valid(idx)) {
  676. pr_err("CPU%u checking wrong counter %d overflow status\n",
  677. smp_processor_id(), idx);
  678. } else {
  679. counter = ARMV8_IDX_TO_COUNTER(idx);
  680. ret = pmnc & BIT(counter);
  681. }
  682. return ret;
  683. }
  684. static inline int armv8pmu_select_counter(int idx)
  685. {
  686. u32 counter;
  687. if (!armv8pmu_counter_valid(idx)) {
  688. pr_err("CPU%u selecting wrong PMNC counter %d\n",
  689. smp_processor_id(), idx);
  690. return -EINVAL;
  691. }
  692. counter = ARMV8_IDX_TO_COUNTER(idx);
  693. asm volatile("msr pmselr_el0, %0" :: "r" (counter));
  694. isb();
  695. return idx;
  696. }
  697. static inline u32 armv8pmu_read_counter(int idx)
  698. {
  699. u32 value = 0;
  700. if (!armv8pmu_counter_valid(idx))
  701. pr_err("CPU%u reading wrong counter %d\n",
  702. smp_processor_id(), idx);
  703. else if (idx == ARMV8_IDX_CYCLE_COUNTER)
  704. asm volatile("mrs %0, pmccntr_el0" : "=r" (value));
  705. else if (armv8pmu_select_counter(idx) == idx)
  706. asm volatile("mrs %0, pmxevcntr_el0" : "=r" (value));
  707. return value;
  708. }
  709. static inline void armv8pmu_write_counter(int idx, u32 value)
  710. {
  711. if (!armv8pmu_counter_valid(idx))
  712. pr_err("CPU%u writing wrong counter %d\n",
  713. smp_processor_id(), idx);
  714. else if (idx == ARMV8_IDX_CYCLE_COUNTER)
  715. asm volatile("msr pmccntr_el0, %0" :: "r" (value));
  716. else if (armv8pmu_select_counter(idx) == idx)
  717. asm volatile("msr pmxevcntr_el0, %0" :: "r" (value));
  718. }
  719. static inline void armv8pmu_write_evtype(int idx, u32 val)
  720. {
  721. if (armv8pmu_select_counter(idx) == idx) {
  722. val &= ARMV8_EVTYPE_MASK;
  723. asm volatile("msr pmxevtyper_el0, %0" :: "r" (val));
  724. }
  725. }
  726. static inline int armv8pmu_enable_counter(int idx)
  727. {
  728. u32 counter;
  729. if (!armv8pmu_counter_valid(idx)) {
  730. pr_err("CPU%u enabling wrong PMNC counter %d\n",
  731. smp_processor_id(), idx);
  732. return -EINVAL;
  733. }
  734. counter = ARMV8_IDX_TO_COUNTER(idx);
  735. asm volatile("msr pmcntenset_el0, %0" :: "r" (BIT(counter)));
  736. return idx;
  737. }
  738. static inline int armv8pmu_disable_counter(int idx)
  739. {
  740. u32 counter;
  741. if (!armv8pmu_counter_valid(idx)) {
  742. pr_err("CPU%u disabling wrong PMNC counter %d\n",
  743. smp_processor_id(), idx);
  744. return -EINVAL;
  745. }
  746. counter = ARMV8_IDX_TO_COUNTER(idx);
  747. asm volatile("msr pmcntenclr_el0, %0" :: "r" (BIT(counter)));
  748. return idx;
  749. }
  750. static inline int armv8pmu_enable_intens(int idx)
  751. {
  752. u32 counter;
  753. if (!armv8pmu_counter_valid(idx)) {
  754. pr_err("CPU%u enabling wrong PMNC counter IRQ enable %d\n",
  755. smp_processor_id(), idx);
  756. return -EINVAL;
  757. }
  758. counter = ARMV8_IDX_TO_COUNTER(idx);
  759. asm volatile("msr pmintenset_el1, %0" :: "r" (BIT(counter)));
  760. return idx;
  761. }
  762. static inline int armv8pmu_disable_intens(int idx)
  763. {
  764. u32 counter;
  765. if (!armv8pmu_counter_valid(idx)) {
  766. pr_err("CPU%u disabling wrong PMNC counter IRQ enable %d\n",
  767. smp_processor_id(), idx);
  768. return -EINVAL;
  769. }
  770. counter = ARMV8_IDX_TO_COUNTER(idx);
  771. asm volatile("msr pmintenclr_el1, %0" :: "r" (BIT(counter)));
  772. isb();
  773. /* Clear the overflow flag in case an interrupt is pending. */
  774. asm volatile("msr pmovsclr_el0, %0" :: "r" (BIT(counter)));
  775. isb();
  776. return idx;
  777. }
  778. static inline u32 armv8pmu_getreset_flags(void)
  779. {
  780. u32 value;
  781. /* Read */
  782. asm volatile("mrs %0, pmovsclr_el0" : "=r" (value));
  783. /* Write to clear flags */
  784. value &= ARMV8_OVSR_MASK;
  785. asm volatile("msr pmovsclr_el0, %0" :: "r" (value));
  786. return value;
  787. }
  788. static void armv8pmu_enable_event(struct hw_perf_event *hwc, int idx)
  789. {
  790. unsigned long flags;
  791. struct pmu_hw_events *events = cpu_pmu->get_hw_events();
  792. /*
  793. * Enable counter and interrupt, and set the counter to count
  794. * the event that we're interested in.
  795. */
  796. raw_spin_lock_irqsave(&events->pmu_lock, flags);
  797. /*
  798. * Disable counter
  799. */
  800. armv8pmu_disable_counter(idx);
  801. /*
  802. * Set event (if destined for PMNx counters).
  803. */
  804. armv8pmu_write_evtype(idx, hwc->config_base);
  805. /*
  806. * Enable interrupt for this counter
  807. */
  808. armv8pmu_enable_intens(idx);
  809. /*
  810. * Enable counter
  811. */
  812. armv8pmu_enable_counter(idx);
  813. raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
  814. }
  815. static void armv8pmu_disable_event(struct hw_perf_event *hwc, int idx)
  816. {
  817. unsigned long flags;
  818. struct pmu_hw_events *events = cpu_pmu->get_hw_events();
  819. /*
  820. * Disable counter and interrupt
  821. */
  822. raw_spin_lock_irqsave(&events->pmu_lock, flags);
  823. /*
  824. * Disable counter
  825. */
  826. armv8pmu_disable_counter(idx);
  827. /*
  828. * Disable interrupt for this counter
  829. */
  830. armv8pmu_disable_intens(idx);
  831. raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
  832. }
  833. static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev)
  834. {
  835. u32 pmovsr;
  836. struct perf_sample_data data;
  837. struct pmu_hw_events *cpuc;
  838. struct pt_regs *regs;
  839. int idx;
  840. /*
  841. * Get and reset the IRQ flags
  842. */
  843. pmovsr = armv8pmu_getreset_flags();
  844. /*
  845. * Did an overflow occur?
  846. */
  847. if (!armv8pmu_has_overflowed(pmovsr))
  848. return IRQ_NONE;
  849. /*
  850. * Handle the counter(s) overflow(s)
  851. */
  852. regs = get_irq_regs();
  853. cpuc = this_cpu_ptr(&cpu_hw_events);
  854. for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
  855. struct perf_event *event = cpuc->events[idx];
  856. struct hw_perf_event *hwc;
  857. /* Ignore if we don't have an event. */
  858. if (!event)
  859. continue;
  860. /*
  861. * We have a single interrupt for all counters. Check that
  862. * each counter has overflowed before we process it.
  863. */
  864. if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
  865. continue;
  866. hwc = &event->hw;
  867. armpmu_event_update(event, hwc, idx);
  868. perf_sample_data_init(&data, 0, hwc->last_period);
  869. if (!armpmu_event_set_period(event, hwc, idx))
  870. continue;
  871. if (perf_event_overflow(event, &data, regs))
  872. cpu_pmu->disable(hwc, idx);
  873. }
  874. /*
  875. * Handle the pending perf events.
  876. *
  877. * Note: this call *must* be run with interrupts disabled. For
  878. * platforms that can have the PMU interrupts raised as an NMI, this
  879. * will not work.
  880. */
  881. irq_work_run();
  882. return IRQ_HANDLED;
  883. }
  884. static void armv8pmu_start(void)
  885. {
  886. unsigned long flags;
  887. struct pmu_hw_events *events = cpu_pmu->get_hw_events();
  888. raw_spin_lock_irqsave(&events->pmu_lock, flags);
  889. /* Enable all counters */
  890. armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMCR_E);
  891. raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
  892. }
  893. static void armv8pmu_stop(void)
  894. {
  895. unsigned long flags;
  896. struct pmu_hw_events *events = cpu_pmu->get_hw_events();
  897. raw_spin_lock_irqsave(&events->pmu_lock, flags);
  898. /* Disable all counters */
  899. armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMCR_E);
  900. raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
  901. }
  902. static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
  903. struct hw_perf_event *event)
  904. {
  905. int idx;
  906. unsigned long evtype = event->config_base & ARMV8_EVTYPE_EVENT;
  907. /* Always place a cycle counter into the cycle counter. */
  908. if (evtype == ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES) {
  909. if (test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
  910. return -EAGAIN;
  911. return ARMV8_IDX_CYCLE_COUNTER;
  912. }
  913. /*
  914. * For anything other than a cycle counter, try and use
  915. * the events counters
  916. */
  917. for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; ++idx) {
  918. if (!test_and_set_bit(idx, cpuc->used_mask))
  919. return idx;
  920. }
  921. /* The counters are all in use. */
  922. return -EAGAIN;
  923. }
  924. /*
  925. * Add an event filter to a given event. This will only work for PMUv2 PMUs.
  926. */
  927. static int armv8pmu_set_event_filter(struct hw_perf_event *event,
  928. struct perf_event_attr *attr)
  929. {
  930. unsigned long config_base = 0;
  931. if (attr->exclude_idle)
  932. return -EPERM;
  933. if (attr->exclude_user)
  934. config_base |= ARMV8_EXCLUDE_EL0;
  935. if (attr->exclude_kernel)
  936. config_base |= ARMV8_EXCLUDE_EL1;
  937. if (!attr->exclude_hv)
  938. config_base |= ARMV8_INCLUDE_EL2;
  939. /*
  940. * Install the filter into config_base as this is used to
  941. * construct the event type.
  942. */
  943. event->config_base = config_base;
  944. return 0;
  945. }
  946. static void armv8pmu_reset(void *info)
  947. {
  948. u32 idx, nb_cnt = cpu_pmu->num_events;
  949. /* The counter and interrupt enable registers are unknown at reset. */
  950. for (idx = ARMV8_IDX_CYCLE_COUNTER; idx < nb_cnt; ++idx)
  951. armv8pmu_disable_event(NULL, idx);
  952. /* Initialize & Reset PMNC: C and P bits. */
  953. armv8pmu_pmcr_write(ARMV8_PMCR_P | ARMV8_PMCR_C);
  954. /* Disable access from userspace. */
  955. asm volatile("msr pmuserenr_el0, %0" :: "r" (0));
  956. }
  957. static int armv8_pmuv3_map_event(struct perf_event *event)
  958. {
  959. return map_cpu_event(event, &armv8_pmuv3_perf_map,
  960. &armv8_pmuv3_perf_cache_map,
  961. ARMV8_EVTYPE_EVENT);
  962. }
  963. static struct arm_pmu armv8pmu = {
  964. .handle_irq = armv8pmu_handle_irq,
  965. .enable = armv8pmu_enable_event,
  966. .disable = armv8pmu_disable_event,
  967. .read_counter = armv8pmu_read_counter,
  968. .write_counter = armv8pmu_write_counter,
  969. .get_event_idx = armv8pmu_get_event_idx,
  970. .start = armv8pmu_start,
  971. .stop = armv8pmu_stop,
  972. .reset = armv8pmu_reset,
  973. .max_period = (1LLU << 32) - 1,
  974. };
  975. static u32 __init armv8pmu_read_num_pmnc_events(void)
  976. {
  977. u32 nb_cnt;
  978. /* Read the nb of CNTx counters supported from PMNC */
  979. nb_cnt = (armv8pmu_pmcr_read() >> ARMV8_PMCR_N_SHIFT) & ARMV8_PMCR_N_MASK;
  980. /* Add the CPU cycles counter and return */
  981. return nb_cnt + 1;
  982. }
  983. static struct arm_pmu *__init armv8_pmuv3_pmu_init(void)
  984. {
  985. armv8pmu.name = "arm/armv8-pmuv3";
  986. armv8pmu.map_event = armv8_pmuv3_map_event;
  987. armv8pmu.num_events = armv8pmu_read_num_pmnc_events();
  988. armv8pmu.set_event_filter = armv8pmu_set_event_filter;
  989. return &armv8pmu;
  990. }
  991. /*
  992. * Ensure the PMU has sane values out of reset.
  993. * This requires SMP to be available, so exists as a separate initcall.
  994. */
  995. static int __init
  996. cpu_pmu_reset(void)
  997. {
  998. if (cpu_pmu && cpu_pmu->reset)
  999. return on_each_cpu(cpu_pmu->reset, NULL, 1);
  1000. return 0;
  1001. }
  1002. arch_initcall(cpu_pmu_reset);
  1003. /*
  1004. * PMU platform driver and devicetree bindings.
  1005. */
  1006. static const struct of_device_id armpmu_of_device_ids[] = {
  1007. {.compatible = "arm,armv8-pmuv3"},
  1008. {},
  1009. };
  1010. static int armpmu_device_probe(struct platform_device *pdev)
  1011. {
  1012. int i, irq, *irqs;
  1013. if (!cpu_pmu)
  1014. return -ENODEV;
  1015. /* Don't bother with PPIs; they're already affine */
  1016. irq = platform_get_irq(pdev, 0);
  1017. if (irq >= 0 && irq_is_percpu(irq))
  1018. goto out;
  1019. irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
  1020. if (!irqs)
  1021. return -ENOMEM;
  1022. for (i = 0; i < pdev->num_resources; ++i) {
  1023. struct device_node *dn;
  1024. int cpu;
  1025. dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity",
  1026. i);
  1027. if (!dn) {
  1028. pr_warn("Failed to parse %s/interrupt-affinity[%d]\n",
  1029. of_node_full_name(pdev->dev.of_node), i);
  1030. break;
  1031. }
  1032. for_each_possible_cpu(cpu)
  1033. if (dn == of_cpu_device_node_get(cpu))
  1034. break;
  1035. if (cpu >= nr_cpu_ids) {
  1036. pr_warn("Failed to find logical CPU for %s\n",
  1037. dn->name);
  1038. of_node_put(dn);
  1039. break;
  1040. }
  1041. of_node_put(dn);
  1042. irqs[i] = cpu;
  1043. }
  1044. if (i == pdev->num_resources)
  1045. cpu_pmu->irq_affinity = irqs;
  1046. else
  1047. kfree(irqs);
  1048. out:
  1049. cpu_pmu->plat_device = pdev;
  1050. return 0;
  1051. }
  1052. static struct platform_driver armpmu_driver = {
  1053. .driver = {
  1054. .name = "arm-pmu",
  1055. .of_match_table = armpmu_of_device_ids,
  1056. },
  1057. .probe = armpmu_device_probe,
  1058. };
  1059. static int __init register_pmu_driver(void)
  1060. {
  1061. return platform_driver_register(&armpmu_driver);
  1062. }
  1063. device_initcall(register_pmu_driver);
  1064. static struct pmu_hw_events *armpmu_get_cpu_events(void)
  1065. {
  1066. return this_cpu_ptr(&cpu_hw_events);
  1067. }
  1068. static void __init cpu_pmu_init(struct arm_pmu *armpmu)
  1069. {
  1070. int cpu;
  1071. for_each_possible_cpu(cpu) {
  1072. struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
  1073. events->events = per_cpu(hw_events, cpu);
  1074. events->used_mask = per_cpu(used_mask, cpu);
  1075. raw_spin_lock_init(&events->pmu_lock);
  1076. }
  1077. armpmu->get_hw_events = armpmu_get_cpu_events;
  1078. }
  1079. static int __init init_hw_perf_events(void)
  1080. {
  1081. u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
  1082. switch ((dfr >> 8) & 0xf) {
  1083. case 0x1: /* PMUv3 */
  1084. cpu_pmu = armv8_pmuv3_pmu_init();
  1085. break;
  1086. }
  1087. if (cpu_pmu) {
  1088. pr_info("enabled with %s PMU driver, %d counters available\n",
  1089. cpu_pmu->name, cpu_pmu->num_events);
  1090. cpu_pmu_init(cpu_pmu);
  1091. armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
  1092. } else {
  1093. pr_info("no hardware support available\n");
  1094. }
  1095. return 0;
  1096. }
  1097. early_initcall(init_hw_perf_events);