coproc.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262
  1. /*
  2. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3. * Authors: Rusty Russell <rusty@rustcorp.com.au>
  4. * Christoffer Dall <c.dall@virtualopensystems.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License, version 2, as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  18. */
  19. #include <linux/mm.h>
  20. #include <linux/kvm_host.h>
  21. #include <linux/uaccess.h>
  22. #include <asm/kvm_arm.h>
  23. #include <asm/kvm_host.h>
  24. #include <asm/kvm_emulate.h>
  25. #include <asm/kvm_coproc.h>
  26. #include <asm/kvm_mmu.h>
  27. #include <asm/cacheflush.h>
  28. #include <asm/cputype.h>
  29. #include <trace/events/kvm.h>
  30. #include <asm/vfp.h>
  31. #include "../vfp/vfpinstr.h"
  32. #include "trace.h"
  33. #include "coproc.h"
  34. /******************************************************************************
  35. * Co-processor emulation
  36. *****************************************************************************/
  37. /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  38. static u32 cache_levels;
  39. /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  40. #define CSSELR_MAX 12
  41. /*
  42. * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
  43. * of cp15 registers can be viewed either as couple of two u32 registers
  44. * or one u64 register. Current u64 register encoding is that least
  45. * significant u32 word is followed by most significant u32 word.
  46. */
  47. static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
  48. const struct coproc_reg *r,
  49. u64 val)
  50. {
  51. vcpu->arch.cp15[r->reg] = val & 0xffffffff;
  52. vcpu->arch.cp15[r->reg + 1] = val >> 32;
  53. }
  54. static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
  55. const struct coproc_reg *r)
  56. {
  57. u64 val;
  58. val = vcpu->arch.cp15[r->reg + 1];
  59. val = val << 32;
  60. val = val | vcpu->arch.cp15[r->reg];
  61. return val;
  62. }
  63. int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
  64. {
  65. kvm_inject_undefined(vcpu);
  66. return 1;
  67. }
  68. int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  69. {
  70. /*
  71. * We can get here, if the host has been built without VFPv3 support,
  72. * but the guest attempted a floating point operation.
  73. */
  74. kvm_inject_undefined(vcpu);
  75. return 1;
  76. }
  77. int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
  78. {
  79. kvm_inject_undefined(vcpu);
  80. return 1;
  81. }
  82. int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  83. {
  84. kvm_inject_undefined(vcpu);
  85. return 1;
  86. }
  87. static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  88. {
  89. /*
  90. * Compute guest MPIDR. We build a virtual cluster out of the
  91. * vcpu_id, but we read the 'U' bit from the underlying
  92. * hardware directly.
  93. */
  94. vcpu->arch.cp15[c0_MPIDR] = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
  95. ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
  96. (vcpu->vcpu_id & 3));
  97. }
  98. /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
  99. static bool access_actlr(struct kvm_vcpu *vcpu,
  100. const struct coproc_params *p,
  101. const struct coproc_reg *r)
  102. {
  103. if (p->is_write)
  104. return ignore_write(vcpu, p);
  105. *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c1_ACTLR];
  106. return true;
  107. }
  108. /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
  109. static bool access_cbar(struct kvm_vcpu *vcpu,
  110. const struct coproc_params *p,
  111. const struct coproc_reg *r)
  112. {
  113. if (p->is_write)
  114. return write_to_read_only(vcpu, p);
  115. return read_zero(vcpu, p);
  116. }
  117. /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
  118. static bool access_l2ctlr(struct kvm_vcpu *vcpu,
  119. const struct coproc_params *p,
  120. const struct coproc_reg *r)
  121. {
  122. if (p->is_write)
  123. return ignore_write(vcpu, p);
  124. *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c9_L2CTLR];
  125. return true;
  126. }
  127. static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  128. {
  129. u32 l2ctlr, ncores;
  130. asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
  131. l2ctlr &= ~(3 << 24);
  132. ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
  133. /* How many cores in the current cluster and the next ones */
  134. ncores -= (vcpu->vcpu_id & ~3);
  135. /* Cap it to the maximum number of cores in a single cluster */
  136. ncores = min(ncores, 3U);
  137. l2ctlr |= (ncores & 3) << 24;
  138. vcpu->arch.cp15[c9_L2CTLR] = l2ctlr;
  139. }
  140. static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  141. {
  142. u32 actlr;
  143. /* ACTLR contains SMP bit: make sure you create all cpus first! */
  144. asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
  145. /* Make the SMP bit consistent with the guest configuration */
  146. if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
  147. actlr |= 1U << 6;
  148. else
  149. actlr &= ~(1U << 6);
  150. vcpu->arch.cp15[c1_ACTLR] = actlr;
  151. }
  152. /*
  153. * TRM entries: A7:4.3.50, A15:4.3.49
  154. * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
  155. */
  156. static bool access_l2ectlr(struct kvm_vcpu *vcpu,
  157. const struct coproc_params *p,
  158. const struct coproc_reg *r)
  159. {
  160. if (p->is_write)
  161. return ignore_write(vcpu, p);
  162. *vcpu_reg(vcpu, p->Rt1) = 0;
  163. return true;
  164. }
  165. /*
  166. * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
  167. */
  168. static bool access_dcsw(struct kvm_vcpu *vcpu,
  169. const struct coproc_params *p,
  170. const struct coproc_reg *r)
  171. {
  172. if (!p->is_write)
  173. return read_from_write_only(vcpu, p);
  174. kvm_set_way_flush(vcpu);
  175. return true;
  176. }
  177. /*
  178. * Generic accessor for VM registers. Only called as long as HCR_TVM
  179. * is set. If the guest enables the MMU, we stop trapping the VM
  180. * sys_regs and leave it in complete control of the caches.
  181. *
  182. * Used by the cpu-specific code.
  183. */
  184. bool access_vm_reg(struct kvm_vcpu *vcpu,
  185. const struct coproc_params *p,
  186. const struct coproc_reg *r)
  187. {
  188. bool was_enabled = vcpu_has_cache_enabled(vcpu);
  189. BUG_ON(!p->is_write);
  190. vcpu->arch.cp15[r->reg] = *vcpu_reg(vcpu, p->Rt1);
  191. if (p->is_64bit)
  192. vcpu->arch.cp15[r->reg + 1] = *vcpu_reg(vcpu, p->Rt2);
  193. kvm_toggle_cache(vcpu, was_enabled);
  194. return true;
  195. }
  196. /*
  197. * We could trap ID_DFR0 and tell the guest we don't support performance
  198. * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
  199. * NAKed, so it will read the PMCR anyway.
  200. *
  201. * Therefore we tell the guest we have 0 counters. Unfortunately, we
  202. * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
  203. * all PM registers, which doesn't crash the guest kernel at least.
  204. */
  205. static bool pm_fake(struct kvm_vcpu *vcpu,
  206. const struct coproc_params *p,
  207. const struct coproc_reg *r)
  208. {
  209. if (p->is_write)
  210. return ignore_write(vcpu, p);
  211. else
  212. return read_zero(vcpu, p);
  213. }
  214. #define access_pmcr pm_fake
  215. #define access_pmcntenset pm_fake
  216. #define access_pmcntenclr pm_fake
  217. #define access_pmovsr pm_fake
  218. #define access_pmselr pm_fake
  219. #define access_pmceid0 pm_fake
  220. #define access_pmceid1 pm_fake
  221. #define access_pmccntr pm_fake
  222. #define access_pmxevtyper pm_fake
  223. #define access_pmxevcntr pm_fake
  224. #define access_pmuserenr pm_fake
  225. #define access_pmintenset pm_fake
  226. #define access_pmintenclr pm_fake
  227. /* Architected CP15 registers.
  228. * CRn denotes the primary register number, but is copied to the CRm in the
  229. * user space API for 64-bit register access in line with the terminology used
  230. * in the ARM ARM.
  231. * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
  232. * registers preceding 32-bit ones.
  233. */
  234. static const struct coproc_reg cp15_regs[] = {
  235. /* MPIDR: we use VMPIDR for guest access. */
  236. { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
  237. NULL, reset_mpidr, c0_MPIDR },
  238. /* CSSELR: swapped by interrupt.S. */
  239. { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
  240. NULL, reset_unknown, c0_CSSELR },
  241. /* ACTLR: trapped by HCR.TAC bit. */
  242. { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
  243. access_actlr, reset_actlr, c1_ACTLR },
  244. /* CPACR: swapped by interrupt.S. */
  245. { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
  246. NULL, reset_val, c1_CPACR, 0x00000000 },
  247. /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
  248. { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
  249. { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
  250. access_vm_reg, reset_unknown, c2_TTBR0 },
  251. { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
  252. access_vm_reg, reset_unknown, c2_TTBR1 },
  253. { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
  254. access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
  255. { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
  256. /* DACR: swapped by interrupt.S. */
  257. { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
  258. access_vm_reg, reset_unknown, c3_DACR },
  259. /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
  260. { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
  261. access_vm_reg, reset_unknown, c5_DFSR },
  262. { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
  263. access_vm_reg, reset_unknown, c5_IFSR },
  264. { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
  265. access_vm_reg, reset_unknown, c5_ADFSR },
  266. { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
  267. access_vm_reg, reset_unknown, c5_AIFSR },
  268. /* DFAR/IFAR: swapped by interrupt.S. */
  269. { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
  270. access_vm_reg, reset_unknown, c6_DFAR },
  271. { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
  272. access_vm_reg, reset_unknown, c6_IFAR },
  273. /* PAR swapped by interrupt.S */
  274. { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
  275. /*
  276. * DC{C,I,CI}SW operations:
  277. */
  278. { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
  279. { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
  280. { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
  281. /*
  282. * L2CTLR access (guest wants to know #CPUs).
  283. */
  284. { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
  285. access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
  286. { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
  287. /*
  288. * Dummy performance monitor implementation.
  289. */
  290. { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
  291. { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
  292. { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
  293. { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
  294. { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
  295. { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
  296. { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
  297. { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
  298. { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
  299. { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
  300. { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
  301. { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
  302. { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
  303. /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
  304. { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
  305. access_vm_reg, reset_unknown, c10_PRRR},
  306. { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
  307. access_vm_reg, reset_unknown, c10_NMRR},
  308. /* AMAIR0/AMAIR1: swapped by interrupt.S. */
  309. { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
  310. access_vm_reg, reset_unknown, c10_AMAIR0},
  311. { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
  312. access_vm_reg, reset_unknown, c10_AMAIR1},
  313. /* VBAR: swapped by interrupt.S. */
  314. { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
  315. NULL, reset_val, c12_VBAR, 0x00000000 },
  316. /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
  317. { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
  318. access_vm_reg, reset_val, c13_CID, 0x00000000 },
  319. { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
  320. NULL, reset_unknown, c13_TID_URW },
  321. { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
  322. NULL, reset_unknown, c13_TID_URO },
  323. { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
  324. NULL, reset_unknown, c13_TID_PRIV },
  325. /* CNTKCTL: swapped by interrupt.S. */
  326. { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
  327. NULL, reset_val, c14_CNTKCTL, 0x00000000 },
  328. /* The Configuration Base Address Register. */
  329. { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
  330. };
  331. /* Target specific emulation tables */
  332. static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
  333. void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
  334. {
  335. unsigned int i;
  336. for (i = 1; i < table->num; i++)
  337. BUG_ON(cmp_reg(&table->table[i-1],
  338. &table->table[i]) >= 0);
  339. target_tables[table->target] = table;
  340. }
  341. /* Get specific register table for this target. */
  342. static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
  343. {
  344. struct kvm_coproc_target_table *table;
  345. table = target_tables[target];
  346. *num = table->num;
  347. return table->table;
  348. }
  349. static const struct coproc_reg *find_reg(const struct coproc_params *params,
  350. const struct coproc_reg table[],
  351. unsigned int num)
  352. {
  353. unsigned int i;
  354. for (i = 0; i < num; i++) {
  355. const struct coproc_reg *r = &table[i];
  356. if (params->is_64bit != r->is_64)
  357. continue;
  358. if (params->CRn != r->CRn)
  359. continue;
  360. if (params->CRm != r->CRm)
  361. continue;
  362. if (params->Op1 != r->Op1)
  363. continue;
  364. if (params->Op2 != r->Op2)
  365. continue;
  366. return r;
  367. }
  368. return NULL;
  369. }
  370. static int emulate_cp15(struct kvm_vcpu *vcpu,
  371. const struct coproc_params *params)
  372. {
  373. size_t num;
  374. const struct coproc_reg *table, *r;
  375. trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
  376. params->CRm, params->Op2, params->is_write);
  377. table = get_target_table(vcpu->arch.target, &num);
  378. /* Search target-specific then generic table. */
  379. r = find_reg(params, table, num);
  380. if (!r)
  381. r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
  382. if (likely(r)) {
  383. /* If we don't have an accessor, we should never get here! */
  384. BUG_ON(!r->access);
  385. if (likely(r->access(vcpu, params, r))) {
  386. /* Skip instruction, since it was emulated */
  387. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  388. return 1;
  389. }
  390. /* If access function fails, it should complain. */
  391. } else {
  392. kvm_err("Unsupported guest CP15 access at: %08lx\n",
  393. *vcpu_pc(vcpu));
  394. print_cp_instr(params);
  395. }
  396. kvm_inject_undefined(vcpu);
  397. return 1;
  398. }
  399. /**
  400. * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
  401. * @vcpu: The VCPU pointer
  402. * @run: The kvm_run struct
  403. */
  404. int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  405. {
  406. struct coproc_params params;
  407. params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  408. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  409. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  410. params.is_64bit = true;
  411. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
  412. params.Op2 = 0;
  413. params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  414. params.CRm = 0;
  415. return emulate_cp15(vcpu, &params);
  416. }
  417. static void reset_coproc_regs(struct kvm_vcpu *vcpu,
  418. const struct coproc_reg *table, size_t num)
  419. {
  420. unsigned long i;
  421. for (i = 0; i < num; i++)
  422. if (table[i].reset)
  423. table[i].reset(vcpu, &table[i]);
  424. }
  425. /**
  426. * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
  427. * @vcpu: The VCPU pointer
  428. * @run: The kvm_run struct
  429. */
  430. int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  431. {
  432. struct coproc_params params;
  433. params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  434. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  435. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  436. params.is_64bit = false;
  437. params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  438. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
  439. params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
  440. params.Rt2 = 0;
  441. return emulate_cp15(vcpu, &params);
  442. }
  443. /******************************************************************************
  444. * Userspace API
  445. *****************************************************************************/
  446. static bool index_to_params(u64 id, struct coproc_params *params)
  447. {
  448. switch (id & KVM_REG_SIZE_MASK) {
  449. case KVM_REG_SIZE_U32:
  450. /* Any unused index bits means it's not valid. */
  451. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  452. | KVM_REG_ARM_COPROC_MASK
  453. | KVM_REG_ARM_32_CRN_MASK
  454. | KVM_REG_ARM_CRM_MASK
  455. | KVM_REG_ARM_OPC1_MASK
  456. | KVM_REG_ARM_32_OPC2_MASK))
  457. return false;
  458. params->is_64bit = false;
  459. params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
  460. >> KVM_REG_ARM_32_CRN_SHIFT);
  461. params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
  462. >> KVM_REG_ARM_CRM_SHIFT);
  463. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  464. >> KVM_REG_ARM_OPC1_SHIFT);
  465. params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
  466. >> KVM_REG_ARM_32_OPC2_SHIFT);
  467. return true;
  468. case KVM_REG_SIZE_U64:
  469. /* Any unused index bits means it's not valid. */
  470. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  471. | KVM_REG_ARM_COPROC_MASK
  472. | KVM_REG_ARM_CRM_MASK
  473. | KVM_REG_ARM_OPC1_MASK))
  474. return false;
  475. params->is_64bit = true;
  476. /* CRm to CRn: see cp15_to_index for details */
  477. params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
  478. >> KVM_REG_ARM_CRM_SHIFT);
  479. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  480. >> KVM_REG_ARM_OPC1_SHIFT);
  481. params->Op2 = 0;
  482. params->CRm = 0;
  483. return true;
  484. default:
  485. return false;
  486. }
  487. }
  488. /* Decode an index value, and find the cp15 coproc_reg entry. */
  489. static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
  490. u64 id)
  491. {
  492. size_t num;
  493. const struct coproc_reg *table, *r;
  494. struct coproc_params params;
  495. /* We only do cp15 for now. */
  496. if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
  497. return NULL;
  498. if (!index_to_params(id, &params))
  499. return NULL;
  500. table = get_target_table(vcpu->arch.target, &num);
  501. r = find_reg(&params, table, num);
  502. if (!r)
  503. r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
  504. /* Not saved in the cp15 array? */
  505. if (r && !r->reg)
  506. r = NULL;
  507. return r;
  508. }
  509. /*
  510. * These are the invariant cp15 registers: we let the guest see the host
  511. * versions of these, so they're part of the guest state.
  512. *
  513. * A future CPU may provide a mechanism to present different values to
  514. * the guest, or a future kvm may trap them.
  515. */
  516. /* Unfortunately, there's no register-argument for mrc, so generate. */
  517. #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
  518. static void get_##name(struct kvm_vcpu *v, \
  519. const struct coproc_reg *r) \
  520. { \
  521. u32 val; \
  522. \
  523. asm volatile("mrc p15, " __stringify(op1) \
  524. ", %0, c" __stringify(crn) \
  525. ", c" __stringify(crm) \
  526. ", " __stringify(op2) "\n" : "=r" (val)); \
  527. ((struct coproc_reg *)r)->val = val; \
  528. }
  529. FUNCTION_FOR32(0, 0, 0, 0, MIDR)
  530. FUNCTION_FOR32(0, 0, 0, 1, CTR)
  531. FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
  532. FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
  533. FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
  534. FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
  535. FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
  536. FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
  537. FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
  538. FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
  539. FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
  540. FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
  541. FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
  542. FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
  543. FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
  544. FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
  545. FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
  546. FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
  547. FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
  548. FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
  549. FUNCTION_FOR32(0, 0, 1, 7, AIDR)
  550. /* ->val is filled in by kvm_invariant_coproc_table_init() */
  551. static struct coproc_reg invariant_cp15[] = {
  552. { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
  553. { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
  554. { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
  555. { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
  556. { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
  557. { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
  558. { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
  559. { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
  560. { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
  561. { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
  562. { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
  563. { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
  564. { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
  565. { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
  566. { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
  567. { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
  568. { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
  569. { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
  570. { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
  571. { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
  572. { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
  573. };
  574. /*
  575. * Reads a register value from a userspace address to a kernel
  576. * variable. Make sure that register size matches sizeof(*__val).
  577. */
  578. static int reg_from_user(void *val, const void __user *uaddr, u64 id)
  579. {
  580. if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
  581. return -EFAULT;
  582. return 0;
  583. }
  584. /*
  585. * Writes a register value to a userspace address from a kernel variable.
  586. * Make sure that register size matches sizeof(*__val).
  587. */
  588. static int reg_to_user(void __user *uaddr, const void *val, u64 id)
  589. {
  590. if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
  591. return -EFAULT;
  592. return 0;
  593. }
  594. static int get_invariant_cp15(u64 id, void __user *uaddr)
  595. {
  596. struct coproc_params params;
  597. const struct coproc_reg *r;
  598. int ret;
  599. if (!index_to_params(id, &params))
  600. return -ENOENT;
  601. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  602. if (!r)
  603. return -ENOENT;
  604. ret = -ENOENT;
  605. if (KVM_REG_SIZE(id) == 4) {
  606. u32 val = r->val;
  607. ret = reg_to_user(uaddr, &val, id);
  608. } else if (KVM_REG_SIZE(id) == 8) {
  609. ret = reg_to_user(uaddr, &r->val, id);
  610. }
  611. return ret;
  612. }
  613. static int set_invariant_cp15(u64 id, void __user *uaddr)
  614. {
  615. struct coproc_params params;
  616. const struct coproc_reg *r;
  617. int err;
  618. u64 val;
  619. if (!index_to_params(id, &params))
  620. return -ENOENT;
  621. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  622. if (!r)
  623. return -ENOENT;
  624. err = -ENOENT;
  625. if (KVM_REG_SIZE(id) == 4) {
  626. u32 val32;
  627. err = reg_from_user(&val32, uaddr, id);
  628. if (!err)
  629. val = val32;
  630. } else if (KVM_REG_SIZE(id) == 8) {
  631. err = reg_from_user(&val, uaddr, id);
  632. }
  633. if (err)
  634. return err;
  635. /* This is what we mean by invariant: you can't change it. */
  636. if (r->val != val)
  637. return -EINVAL;
  638. return 0;
  639. }
  640. static bool is_valid_cache(u32 val)
  641. {
  642. u32 level, ctype;
  643. if (val >= CSSELR_MAX)
  644. return false;
  645. /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
  646. level = (val >> 1);
  647. ctype = (cache_levels >> (level * 3)) & 7;
  648. switch (ctype) {
  649. case 0: /* No cache */
  650. return false;
  651. case 1: /* Instruction cache only */
  652. return (val & 1);
  653. case 2: /* Data cache only */
  654. case 4: /* Unified cache */
  655. return !(val & 1);
  656. case 3: /* Separate instruction and data caches */
  657. return true;
  658. default: /* Reserved: we can't know instruction or data. */
  659. return false;
  660. }
  661. }
  662. /* Which cache CCSIDR represents depends on CSSELR value. */
  663. static u32 get_ccsidr(u32 csselr)
  664. {
  665. u32 ccsidr;
  666. /* Make sure noone else changes CSSELR during this! */
  667. local_irq_disable();
  668. /* Put value into CSSELR */
  669. asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
  670. isb();
  671. /* Read result out of CCSIDR */
  672. asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
  673. local_irq_enable();
  674. return ccsidr;
  675. }
  676. static int demux_c15_get(u64 id, void __user *uaddr)
  677. {
  678. u32 val;
  679. u32 __user *uval = uaddr;
  680. /* Fail if we have unknown bits set. */
  681. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  682. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  683. return -ENOENT;
  684. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  685. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  686. if (KVM_REG_SIZE(id) != 4)
  687. return -ENOENT;
  688. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  689. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  690. if (!is_valid_cache(val))
  691. return -ENOENT;
  692. return put_user(get_ccsidr(val), uval);
  693. default:
  694. return -ENOENT;
  695. }
  696. }
  697. static int demux_c15_set(u64 id, void __user *uaddr)
  698. {
  699. u32 val, newval;
  700. u32 __user *uval = uaddr;
  701. /* Fail if we have unknown bits set. */
  702. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  703. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  704. return -ENOENT;
  705. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  706. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  707. if (KVM_REG_SIZE(id) != 4)
  708. return -ENOENT;
  709. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  710. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  711. if (!is_valid_cache(val))
  712. return -ENOENT;
  713. if (get_user(newval, uval))
  714. return -EFAULT;
  715. /* This is also invariant: you can't change it. */
  716. if (newval != get_ccsidr(val))
  717. return -EINVAL;
  718. return 0;
  719. default:
  720. return -ENOENT;
  721. }
  722. }
  723. #ifdef CONFIG_VFPv3
  724. static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
  725. KVM_REG_ARM_VFP_FPSCR,
  726. KVM_REG_ARM_VFP_FPINST,
  727. KVM_REG_ARM_VFP_FPINST2,
  728. KVM_REG_ARM_VFP_MVFR0,
  729. KVM_REG_ARM_VFP_MVFR1,
  730. KVM_REG_ARM_VFP_FPSID };
  731. static unsigned int num_fp_regs(void)
  732. {
  733. if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
  734. return 32;
  735. else
  736. return 16;
  737. }
  738. static unsigned int num_vfp_regs(void)
  739. {
  740. /* Normal FP regs + control regs. */
  741. return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
  742. }
  743. static int copy_vfp_regids(u64 __user *uindices)
  744. {
  745. unsigned int i;
  746. const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
  747. const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
  748. for (i = 0; i < num_fp_regs(); i++) {
  749. if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
  750. uindices))
  751. return -EFAULT;
  752. uindices++;
  753. }
  754. for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
  755. if (put_user(u32reg | vfp_sysregs[i], uindices))
  756. return -EFAULT;
  757. uindices++;
  758. }
  759. return num_vfp_regs();
  760. }
  761. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  762. {
  763. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  764. u32 val;
  765. /* Fail if we have unknown bits set. */
  766. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  767. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  768. return -ENOENT;
  769. if (vfpid < num_fp_regs()) {
  770. if (KVM_REG_SIZE(id) != 8)
  771. return -ENOENT;
  772. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
  773. id);
  774. }
  775. /* FP control registers are all 32 bit. */
  776. if (KVM_REG_SIZE(id) != 4)
  777. return -ENOENT;
  778. switch (vfpid) {
  779. case KVM_REG_ARM_VFP_FPEXC:
  780. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
  781. case KVM_REG_ARM_VFP_FPSCR:
  782. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
  783. case KVM_REG_ARM_VFP_FPINST:
  784. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
  785. case KVM_REG_ARM_VFP_FPINST2:
  786. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
  787. case KVM_REG_ARM_VFP_MVFR0:
  788. val = fmrx(MVFR0);
  789. return reg_to_user(uaddr, &val, id);
  790. case KVM_REG_ARM_VFP_MVFR1:
  791. val = fmrx(MVFR1);
  792. return reg_to_user(uaddr, &val, id);
  793. case KVM_REG_ARM_VFP_FPSID:
  794. val = fmrx(FPSID);
  795. return reg_to_user(uaddr, &val, id);
  796. default:
  797. return -ENOENT;
  798. }
  799. }
  800. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  801. {
  802. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  803. u32 val;
  804. /* Fail if we have unknown bits set. */
  805. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  806. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  807. return -ENOENT;
  808. if (vfpid < num_fp_regs()) {
  809. if (KVM_REG_SIZE(id) != 8)
  810. return -ENOENT;
  811. return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
  812. uaddr, id);
  813. }
  814. /* FP control registers are all 32 bit. */
  815. if (KVM_REG_SIZE(id) != 4)
  816. return -ENOENT;
  817. switch (vfpid) {
  818. case KVM_REG_ARM_VFP_FPEXC:
  819. return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
  820. case KVM_REG_ARM_VFP_FPSCR:
  821. return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
  822. case KVM_REG_ARM_VFP_FPINST:
  823. return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
  824. case KVM_REG_ARM_VFP_FPINST2:
  825. return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
  826. /* These are invariant. */
  827. case KVM_REG_ARM_VFP_MVFR0:
  828. if (reg_from_user(&val, uaddr, id))
  829. return -EFAULT;
  830. if (val != fmrx(MVFR0))
  831. return -EINVAL;
  832. return 0;
  833. case KVM_REG_ARM_VFP_MVFR1:
  834. if (reg_from_user(&val, uaddr, id))
  835. return -EFAULT;
  836. if (val != fmrx(MVFR1))
  837. return -EINVAL;
  838. return 0;
  839. case KVM_REG_ARM_VFP_FPSID:
  840. if (reg_from_user(&val, uaddr, id))
  841. return -EFAULT;
  842. if (val != fmrx(FPSID))
  843. return -EINVAL;
  844. return 0;
  845. default:
  846. return -ENOENT;
  847. }
  848. }
  849. #else /* !CONFIG_VFPv3 */
  850. static unsigned int num_vfp_regs(void)
  851. {
  852. return 0;
  853. }
  854. static int copy_vfp_regids(u64 __user *uindices)
  855. {
  856. return 0;
  857. }
  858. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  859. {
  860. return -ENOENT;
  861. }
  862. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  863. {
  864. return -ENOENT;
  865. }
  866. #endif /* !CONFIG_VFPv3 */
  867. int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  868. {
  869. const struct coproc_reg *r;
  870. void __user *uaddr = (void __user *)(long)reg->addr;
  871. int ret;
  872. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  873. return demux_c15_get(reg->id, uaddr);
  874. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  875. return vfp_get_reg(vcpu, reg->id, uaddr);
  876. r = index_to_coproc_reg(vcpu, reg->id);
  877. if (!r)
  878. return get_invariant_cp15(reg->id, uaddr);
  879. ret = -ENOENT;
  880. if (KVM_REG_SIZE(reg->id) == 8) {
  881. u64 val;
  882. val = vcpu_cp15_reg64_get(vcpu, r);
  883. ret = reg_to_user(uaddr, &val, reg->id);
  884. } else if (KVM_REG_SIZE(reg->id) == 4) {
  885. ret = reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
  886. }
  887. return ret;
  888. }
  889. int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  890. {
  891. const struct coproc_reg *r;
  892. void __user *uaddr = (void __user *)(long)reg->addr;
  893. int ret;
  894. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  895. return demux_c15_set(reg->id, uaddr);
  896. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  897. return vfp_set_reg(vcpu, reg->id, uaddr);
  898. r = index_to_coproc_reg(vcpu, reg->id);
  899. if (!r)
  900. return set_invariant_cp15(reg->id, uaddr);
  901. ret = -ENOENT;
  902. if (KVM_REG_SIZE(reg->id) == 8) {
  903. u64 val;
  904. ret = reg_from_user(&val, uaddr, reg->id);
  905. if (!ret)
  906. vcpu_cp15_reg64_set(vcpu, r, val);
  907. } else if (KVM_REG_SIZE(reg->id) == 4) {
  908. ret = reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
  909. }
  910. return ret;
  911. }
  912. static unsigned int num_demux_regs(void)
  913. {
  914. unsigned int i, count = 0;
  915. for (i = 0; i < CSSELR_MAX; i++)
  916. if (is_valid_cache(i))
  917. count++;
  918. return count;
  919. }
  920. static int write_demux_regids(u64 __user *uindices)
  921. {
  922. u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
  923. unsigned int i;
  924. val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
  925. for (i = 0; i < CSSELR_MAX; i++) {
  926. if (!is_valid_cache(i))
  927. continue;
  928. if (put_user(val | i, uindices))
  929. return -EFAULT;
  930. uindices++;
  931. }
  932. return 0;
  933. }
  934. static u64 cp15_to_index(const struct coproc_reg *reg)
  935. {
  936. u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
  937. if (reg->is_64) {
  938. val |= KVM_REG_SIZE_U64;
  939. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  940. /*
  941. * CRn always denotes the primary coproc. reg. nr. for the
  942. * in-kernel representation, but the user space API uses the
  943. * CRm for the encoding, because it is modelled after the
  944. * MRRC/MCRR instructions: see the ARM ARM rev. c page
  945. * B3-1445
  946. */
  947. val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
  948. } else {
  949. val |= KVM_REG_SIZE_U32;
  950. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  951. val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
  952. val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
  953. val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
  954. }
  955. return val;
  956. }
  957. static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
  958. {
  959. if (!*uind)
  960. return true;
  961. if (put_user(cp15_to_index(reg), *uind))
  962. return false;
  963. (*uind)++;
  964. return true;
  965. }
  966. /* Assumed ordered tables, see kvm_coproc_table_init. */
  967. static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
  968. {
  969. const struct coproc_reg *i1, *i2, *end1, *end2;
  970. unsigned int total = 0;
  971. size_t num;
  972. /* We check for duplicates here, to allow arch-specific overrides. */
  973. i1 = get_target_table(vcpu->arch.target, &num);
  974. end1 = i1 + num;
  975. i2 = cp15_regs;
  976. end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
  977. BUG_ON(i1 == end1 || i2 == end2);
  978. /* Walk carefully, as both tables may refer to the same register. */
  979. while (i1 || i2) {
  980. int cmp = cmp_reg(i1, i2);
  981. /* target-specific overrides generic entry. */
  982. if (cmp <= 0) {
  983. /* Ignore registers we trap but don't save. */
  984. if (i1->reg) {
  985. if (!copy_reg_to_user(i1, &uind))
  986. return -EFAULT;
  987. total++;
  988. }
  989. } else {
  990. /* Ignore registers we trap but don't save. */
  991. if (i2->reg) {
  992. if (!copy_reg_to_user(i2, &uind))
  993. return -EFAULT;
  994. total++;
  995. }
  996. }
  997. if (cmp <= 0 && ++i1 == end1)
  998. i1 = NULL;
  999. if (cmp >= 0 && ++i2 == end2)
  1000. i2 = NULL;
  1001. }
  1002. return total;
  1003. }
  1004. unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
  1005. {
  1006. return ARRAY_SIZE(invariant_cp15)
  1007. + num_demux_regs()
  1008. + num_vfp_regs()
  1009. + walk_cp15(vcpu, (u64 __user *)NULL);
  1010. }
  1011. int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
  1012. {
  1013. unsigned int i;
  1014. int err;
  1015. /* Then give them all the invariant registers' indices. */
  1016. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
  1017. if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
  1018. return -EFAULT;
  1019. uindices++;
  1020. }
  1021. err = walk_cp15(vcpu, uindices);
  1022. if (err < 0)
  1023. return err;
  1024. uindices += err;
  1025. err = copy_vfp_regids(uindices);
  1026. if (err < 0)
  1027. return err;
  1028. uindices += err;
  1029. return write_demux_regids(uindices);
  1030. }
  1031. void kvm_coproc_table_init(void)
  1032. {
  1033. unsigned int i;
  1034. /* Make sure tables are unique and in order. */
  1035. for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
  1036. BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
  1037. /* We abuse the reset function to overwrite the table itself. */
  1038. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
  1039. invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
  1040. /*
  1041. * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
  1042. *
  1043. * If software reads the Cache Type fields from Ctype1
  1044. * upwards, once it has seen a value of 0b000, no caches
  1045. * exist at further-out levels of the hierarchy. So, for
  1046. * example, if Ctype3 is the first Cache Type field with a
  1047. * value of 0b000, the values of Ctype4 to Ctype7 must be
  1048. * ignored.
  1049. */
  1050. asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
  1051. for (i = 0; i < 7; i++)
  1052. if (((cache_levels >> (i*3)) & 7) == 0)
  1053. break;
  1054. /* Clear all higher bits. */
  1055. cache_levels &= (1 << (i*3))-1;
  1056. }
  1057. /**
  1058. * kvm_reset_coprocs - sets cp15 registers to reset value
  1059. * @vcpu: The VCPU pointer
  1060. *
  1061. * This function finds the right table above and sets the registers on the
  1062. * virtual CPU struct to their architecturally defined reset values.
  1063. */
  1064. void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
  1065. {
  1066. size_t num;
  1067. const struct coproc_reg *table;
  1068. /* Catch someone adding a register without putting in reset entry. */
  1069. memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
  1070. /* Generic chip reset first (so target could override). */
  1071. reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
  1072. table = get_target_table(vcpu->arch.target, &num);
  1073. reset_coproc_regs(vcpu, table, num);
  1074. for (num = 1; num < NR_CP15_REGS; num++)
  1075. if (vcpu->arch.cp15[num] == 0x42424242)
  1076. panic("Didn't reset vcpu->arch.cp15[%zi]", num);
  1077. }