aes-ce-glue.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524
  1. /*
  2. * aes-ce-glue.c - wrapper code for ARMv8 AES
  3. *
  4. * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <asm/hwcap.h>
  11. #include <asm/neon.h>
  12. #include <asm/hwcap.h>
  13. #include <crypto/aes.h>
  14. #include <crypto/ablk_helper.h>
  15. #include <crypto/algapi.h>
  16. #include <linux/module.h>
  17. MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
  18. MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
  19. MODULE_LICENSE("GPL v2");
  20. /* defined in aes-ce-core.S */
  21. asmlinkage u32 ce_aes_sub(u32 input);
  22. asmlinkage void ce_aes_invert(void *dst, void *src);
  23. asmlinkage void ce_aes_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
  24. int rounds, int blocks);
  25. asmlinkage void ce_aes_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
  26. int rounds, int blocks);
  27. asmlinkage void ce_aes_cbc_encrypt(u8 out[], u8 const in[], u8 const rk[],
  28. int rounds, int blocks, u8 iv[]);
  29. asmlinkage void ce_aes_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
  30. int rounds, int blocks, u8 iv[]);
  31. asmlinkage void ce_aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
  32. int rounds, int blocks, u8 ctr[]);
  33. asmlinkage void ce_aes_xts_encrypt(u8 out[], u8 const in[], u8 const rk1[],
  34. int rounds, int blocks, u8 iv[],
  35. u8 const rk2[], int first);
  36. asmlinkage void ce_aes_xts_decrypt(u8 out[], u8 const in[], u8 const rk1[],
  37. int rounds, int blocks, u8 iv[],
  38. u8 const rk2[], int first);
  39. struct aes_block {
  40. u8 b[AES_BLOCK_SIZE];
  41. };
  42. static int num_rounds(struct crypto_aes_ctx *ctx)
  43. {
  44. /*
  45. * # of rounds specified by AES:
  46. * 128 bit key 10 rounds
  47. * 192 bit key 12 rounds
  48. * 256 bit key 14 rounds
  49. * => n byte key => 6 + (n/4) rounds
  50. */
  51. return 6 + ctx->key_length / 4;
  52. }
  53. static int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
  54. unsigned int key_len)
  55. {
  56. /*
  57. * The AES key schedule round constants
  58. */
  59. static u8 const rcon[] = {
  60. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
  61. };
  62. u32 kwords = key_len / sizeof(u32);
  63. struct aes_block *key_enc, *key_dec;
  64. int i, j;
  65. if (key_len != AES_KEYSIZE_128 &&
  66. key_len != AES_KEYSIZE_192 &&
  67. key_len != AES_KEYSIZE_256)
  68. return -EINVAL;
  69. memcpy(ctx->key_enc, in_key, key_len);
  70. ctx->key_length = key_len;
  71. kernel_neon_begin();
  72. for (i = 0; i < sizeof(rcon); i++) {
  73. u32 *rki = ctx->key_enc + (i * kwords);
  74. u32 *rko = rki + kwords;
  75. rko[0] = ror32(ce_aes_sub(rki[kwords - 1]), 8);
  76. rko[0] = rko[0] ^ rki[0] ^ rcon[i];
  77. rko[1] = rko[0] ^ rki[1];
  78. rko[2] = rko[1] ^ rki[2];
  79. rko[3] = rko[2] ^ rki[3];
  80. if (key_len == AES_KEYSIZE_192) {
  81. if (i >= 7)
  82. break;
  83. rko[4] = rko[3] ^ rki[4];
  84. rko[5] = rko[4] ^ rki[5];
  85. } else if (key_len == AES_KEYSIZE_256) {
  86. if (i >= 6)
  87. break;
  88. rko[4] = ce_aes_sub(rko[3]) ^ rki[4];
  89. rko[5] = rko[4] ^ rki[5];
  90. rko[6] = rko[5] ^ rki[6];
  91. rko[7] = rko[6] ^ rki[7];
  92. }
  93. }
  94. /*
  95. * Generate the decryption keys for the Equivalent Inverse Cipher.
  96. * This involves reversing the order of the round keys, and applying
  97. * the Inverse Mix Columns transformation on all but the first and
  98. * the last one.
  99. */
  100. key_enc = (struct aes_block *)ctx->key_enc;
  101. key_dec = (struct aes_block *)ctx->key_dec;
  102. j = num_rounds(ctx);
  103. key_dec[0] = key_enc[j];
  104. for (i = 1, j--; j > 0; i++, j--)
  105. ce_aes_invert(key_dec + i, key_enc + j);
  106. key_dec[i] = key_enc[0];
  107. kernel_neon_end();
  108. return 0;
  109. }
  110. static int ce_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key,
  111. unsigned int key_len)
  112. {
  113. struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  114. int ret;
  115. ret = ce_aes_expandkey(ctx, in_key, key_len);
  116. if (!ret)
  117. return 0;
  118. tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
  119. return -EINVAL;
  120. }
  121. struct crypto_aes_xts_ctx {
  122. struct crypto_aes_ctx key1;
  123. struct crypto_aes_ctx __aligned(8) key2;
  124. };
  125. static int xts_set_key(struct crypto_tfm *tfm, const u8 *in_key,
  126. unsigned int key_len)
  127. {
  128. struct crypto_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
  129. int ret;
  130. ret = ce_aes_expandkey(&ctx->key1, in_key, key_len / 2);
  131. if (!ret)
  132. ret = ce_aes_expandkey(&ctx->key2, &in_key[key_len / 2],
  133. key_len / 2);
  134. if (!ret)
  135. return 0;
  136. tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
  137. return -EINVAL;
  138. }
  139. static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  140. struct scatterlist *src, unsigned int nbytes)
  141. {
  142. struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  143. struct blkcipher_walk walk;
  144. unsigned int blocks;
  145. int err;
  146. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  147. blkcipher_walk_init(&walk, dst, src, nbytes);
  148. err = blkcipher_walk_virt(desc, &walk);
  149. kernel_neon_begin();
  150. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  151. ce_aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  152. (u8 *)ctx->key_enc, num_rounds(ctx), blocks);
  153. err = blkcipher_walk_done(desc, &walk,
  154. walk.nbytes % AES_BLOCK_SIZE);
  155. }
  156. kernel_neon_end();
  157. return err;
  158. }
  159. static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  160. struct scatterlist *src, unsigned int nbytes)
  161. {
  162. struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  163. struct blkcipher_walk walk;
  164. unsigned int blocks;
  165. int err;
  166. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  167. blkcipher_walk_init(&walk, dst, src, nbytes);
  168. err = blkcipher_walk_virt(desc, &walk);
  169. kernel_neon_begin();
  170. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  171. ce_aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  172. (u8 *)ctx->key_dec, num_rounds(ctx), blocks);
  173. err = blkcipher_walk_done(desc, &walk,
  174. walk.nbytes % AES_BLOCK_SIZE);
  175. }
  176. kernel_neon_end();
  177. return err;
  178. }
  179. static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  180. struct scatterlist *src, unsigned int nbytes)
  181. {
  182. struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  183. struct blkcipher_walk walk;
  184. unsigned int blocks;
  185. int err;
  186. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  187. blkcipher_walk_init(&walk, dst, src, nbytes);
  188. err = blkcipher_walk_virt(desc, &walk);
  189. kernel_neon_begin();
  190. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  191. ce_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  192. (u8 *)ctx->key_enc, num_rounds(ctx), blocks,
  193. walk.iv);
  194. err = blkcipher_walk_done(desc, &walk,
  195. walk.nbytes % AES_BLOCK_SIZE);
  196. }
  197. kernel_neon_end();
  198. return err;
  199. }
  200. static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  201. struct scatterlist *src, unsigned int nbytes)
  202. {
  203. struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  204. struct blkcipher_walk walk;
  205. unsigned int blocks;
  206. int err;
  207. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  208. blkcipher_walk_init(&walk, dst, src, nbytes);
  209. err = blkcipher_walk_virt(desc, &walk);
  210. kernel_neon_begin();
  211. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  212. ce_aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  213. (u8 *)ctx->key_dec, num_rounds(ctx), blocks,
  214. walk.iv);
  215. err = blkcipher_walk_done(desc, &walk,
  216. walk.nbytes % AES_BLOCK_SIZE);
  217. }
  218. kernel_neon_end();
  219. return err;
  220. }
  221. static int ctr_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  222. struct scatterlist *src, unsigned int nbytes)
  223. {
  224. struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  225. struct blkcipher_walk walk;
  226. int err, blocks;
  227. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  228. blkcipher_walk_init(&walk, dst, src, nbytes);
  229. err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
  230. kernel_neon_begin();
  231. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  232. ce_aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  233. (u8 *)ctx->key_enc, num_rounds(ctx), blocks,
  234. walk.iv);
  235. nbytes -= blocks * AES_BLOCK_SIZE;
  236. if (nbytes && nbytes == walk.nbytes % AES_BLOCK_SIZE)
  237. break;
  238. err = blkcipher_walk_done(desc, &walk,
  239. walk.nbytes % AES_BLOCK_SIZE);
  240. }
  241. if (nbytes) {
  242. u8 *tdst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
  243. u8 *tsrc = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
  244. u8 __aligned(8) tail[AES_BLOCK_SIZE];
  245. /*
  246. * Minimum alignment is 8 bytes, so if nbytes is <= 8, we need
  247. * to tell aes_ctr_encrypt() to only read half a block.
  248. */
  249. blocks = (nbytes <= 8) ? -1 : 1;
  250. ce_aes_ctr_encrypt(tail, tsrc, (u8 *)ctx->key_enc,
  251. num_rounds(ctx), blocks, walk.iv);
  252. memcpy(tdst, tail, nbytes);
  253. err = blkcipher_walk_done(desc, &walk, 0);
  254. }
  255. kernel_neon_end();
  256. return err;
  257. }
  258. static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  259. struct scatterlist *src, unsigned int nbytes)
  260. {
  261. struct crypto_aes_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  262. int err, first, rounds = num_rounds(&ctx->key1);
  263. struct blkcipher_walk walk;
  264. unsigned int blocks;
  265. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  266. blkcipher_walk_init(&walk, dst, src, nbytes);
  267. err = blkcipher_walk_virt(desc, &walk);
  268. kernel_neon_begin();
  269. for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
  270. ce_aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  271. (u8 *)ctx->key1.key_enc, rounds, blocks,
  272. walk.iv, (u8 *)ctx->key2.key_enc, first);
  273. err = blkcipher_walk_done(desc, &walk,
  274. walk.nbytes % AES_BLOCK_SIZE);
  275. }
  276. kernel_neon_end();
  277. return err;
  278. }
  279. static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  280. struct scatterlist *src, unsigned int nbytes)
  281. {
  282. struct crypto_aes_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  283. int err, first, rounds = num_rounds(&ctx->key1);
  284. struct blkcipher_walk walk;
  285. unsigned int blocks;
  286. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  287. blkcipher_walk_init(&walk, dst, src, nbytes);
  288. err = blkcipher_walk_virt(desc, &walk);
  289. kernel_neon_begin();
  290. for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
  291. ce_aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  292. (u8 *)ctx->key1.key_dec, rounds, blocks,
  293. walk.iv, (u8 *)ctx->key2.key_enc, first);
  294. err = blkcipher_walk_done(desc, &walk,
  295. walk.nbytes % AES_BLOCK_SIZE);
  296. }
  297. kernel_neon_end();
  298. return err;
  299. }
  300. static struct crypto_alg aes_algs[] = { {
  301. .cra_name = "__ecb-aes-ce",
  302. .cra_driver_name = "__driver-ecb-aes-ce",
  303. .cra_priority = 0,
  304. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
  305. CRYPTO_ALG_INTERNAL,
  306. .cra_blocksize = AES_BLOCK_SIZE,
  307. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  308. .cra_alignmask = 7,
  309. .cra_type = &crypto_blkcipher_type,
  310. .cra_module = THIS_MODULE,
  311. .cra_blkcipher = {
  312. .min_keysize = AES_MIN_KEY_SIZE,
  313. .max_keysize = AES_MAX_KEY_SIZE,
  314. .ivsize = AES_BLOCK_SIZE,
  315. .setkey = ce_aes_setkey,
  316. .encrypt = ecb_encrypt,
  317. .decrypt = ecb_decrypt,
  318. },
  319. }, {
  320. .cra_name = "__cbc-aes-ce",
  321. .cra_driver_name = "__driver-cbc-aes-ce",
  322. .cra_priority = 0,
  323. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
  324. CRYPTO_ALG_INTERNAL,
  325. .cra_blocksize = AES_BLOCK_SIZE,
  326. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  327. .cra_alignmask = 7,
  328. .cra_type = &crypto_blkcipher_type,
  329. .cra_module = THIS_MODULE,
  330. .cra_blkcipher = {
  331. .min_keysize = AES_MIN_KEY_SIZE,
  332. .max_keysize = AES_MAX_KEY_SIZE,
  333. .ivsize = AES_BLOCK_SIZE,
  334. .setkey = ce_aes_setkey,
  335. .encrypt = cbc_encrypt,
  336. .decrypt = cbc_decrypt,
  337. },
  338. }, {
  339. .cra_name = "__ctr-aes-ce",
  340. .cra_driver_name = "__driver-ctr-aes-ce",
  341. .cra_priority = 0,
  342. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
  343. CRYPTO_ALG_INTERNAL,
  344. .cra_blocksize = 1,
  345. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  346. .cra_alignmask = 7,
  347. .cra_type = &crypto_blkcipher_type,
  348. .cra_module = THIS_MODULE,
  349. .cra_blkcipher = {
  350. .min_keysize = AES_MIN_KEY_SIZE,
  351. .max_keysize = AES_MAX_KEY_SIZE,
  352. .ivsize = AES_BLOCK_SIZE,
  353. .setkey = ce_aes_setkey,
  354. .encrypt = ctr_encrypt,
  355. .decrypt = ctr_encrypt,
  356. },
  357. }, {
  358. .cra_name = "__xts-aes-ce",
  359. .cra_driver_name = "__driver-xts-aes-ce",
  360. .cra_priority = 0,
  361. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
  362. CRYPTO_ALG_INTERNAL,
  363. .cra_blocksize = AES_BLOCK_SIZE,
  364. .cra_ctxsize = sizeof(struct crypto_aes_xts_ctx),
  365. .cra_alignmask = 7,
  366. .cra_type = &crypto_blkcipher_type,
  367. .cra_module = THIS_MODULE,
  368. .cra_blkcipher = {
  369. .min_keysize = 2 * AES_MIN_KEY_SIZE,
  370. .max_keysize = 2 * AES_MAX_KEY_SIZE,
  371. .ivsize = AES_BLOCK_SIZE,
  372. .setkey = xts_set_key,
  373. .encrypt = xts_encrypt,
  374. .decrypt = xts_decrypt,
  375. },
  376. }, {
  377. .cra_name = "ecb(aes)",
  378. .cra_driver_name = "ecb-aes-ce",
  379. .cra_priority = 300,
  380. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
  381. .cra_blocksize = AES_BLOCK_SIZE,
  382. .cra_ctxsize = sizeof(struct async_helper_ctx),
  383. .cra_alignmask = 7,
  384. .cra_type = &crypto_ablkcipher_type,
  385. .cra_module = THIS_MODULE,
  386. .cra_init = ablk_init,
  387. .cra_exit = ablk_exit,
  388. .cra_ablkcipher = {
  389. .min_keysize = AES_MIN_KEY_SIZE,
  390. .max_keysize = AES_MAX_KEY_SIZE,
  391. .ivsize = AES_BLOCK_SIZE,
  392. .setkey = ablk_set_key,
  393. .encrypt = ablk_encrypt,
  394. .decrypt = ablk_decrypt,
  395. }
  396. }, {
  397. .cra_name = "cbc(aes)",
  398. .cra_driver_name = "cbc-aes-ce",
  399. .cra_priority = 300,
  400. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
  401. .cra_blocksize = AES_BLOCK_SIZE,
  402. .cra_ctxsize = sizeof(struct async_helper_ctx),
  403. .cra_alignmask = 7,
  404. .cra_type = &crypto_ablkcipher_type,
  405. .cra_module = THIS_MODULE,
  406. .cra_init = ablk_init,
  407. .cra_exit = ablk_exit,
  408. .cra_ablkcipher = {
  409. .min_keysize = AES_MIN_KEY_SIZE,
  410. .max_keysize = AES_MAX_KEY_SIZE,
  411. .ivsize = AES_BLOCK_SIZE,
  412. .setkey = ablk_set_key,
  413. .encrypt = ablk_encrypt,
  414. .decrypt = ablk_decrypt,
  415. }
  416. }, {
  417. .cra_name = "ctr(aes)",
  418. .cra_driver_name = "ctr-aes-ce",
  419. .cra_priority = 300,
  420. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
  421. .cra_blocksize = 1,
  422. .cra_ctxsize = sizeof(struct async_helper_ctx),
  423. .cra_alignmask = 7,
  424. .cra_type = &crypto_ablkcipher_type,
  425. .cra_module = THIS_MODULE,
  426. .cra_init = ablk_init,
  427. .cra_exit = ablk_exit,
  428. .cra_ablkcipher = {
  429. .min_keysize = AES_MIN_KEY_SIZE,
  430. .max_keysize = AES_MAX_KEY_SIZE,
  431. .ivsize = AES_BLOCK_SIZE,
  432. .setkey = ablk_set_key,
  433. .encrypt = ablk_encrypt,
  434. .decrypt = ablk_decrypt,
  435. }
  436. }, {
  437. .cra_name = "xts(aes)",
  438. .cra_driver_name = "xts-aes-ce",
  439. .cra_priority = 300,
  440. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
  441. .cra_blocksize = AES_BLOCK_SIZE,
  442. .cra_ctxsize = sizeof(struct async_helper_ctx),
  443. .cra_alignmask = 7,
  444. .cra_type = &crypto_ablkcipher_type,
  445. .cra_module = THIS_MODULE,
  446. .cra_init = ablk_init,
  447. .cra_exit = ablk_exit,
  448. .cra_ablkcipher = {
  449. .min_keysize = 2 * AES_MIN_KEY_SIZE,
  450. .max_keysize = 2 * AES_MAX_KEY_SIZE,
  451. .ivsize = AES_BLOCK_SIZE,
  452. .setkey = ablk_set_key,
  453. .encrypt = ablk_encrypt,
  454. .decrypt = ablk_decrypt,
  455. }
  456. } };
  457. static int __init aes_init(void)
  458. {
  459. if (!(elf_hwcap2 & HWCAP2_AES))
  460. return -ENODEV;
  461. return crypto_register_algs(aes_algs, ARRAY_SIZE(aes_algs));
  462. }
  463. static void __exit aes_exit(void)
  464. {
  465. crypto_unregister_algs(aes_algs, ARRAY_SIZE(aes_algs));
  466. }
  467. module_init(aes_init);
  468. module_exit(aes_exit);