mtk_nand.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604
  1. /*
  2. * MTK NAND Flash controller driver.
  3. * Copyright (C) 2016 MediaTek Inc.
  4. * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
  5. * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. */
  16. #include <linux/platform_device.h>
  17. #include <linux/dma-mapping.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/delay.h>
  20. #include <linux/clk.h>
  21. #include <linux/mtd/rawnand.h>
  22. #include <linux/mtd/mtd.h>
  23. #include <linux/module.h>
  24. #include <linux/iopoll.h>
  25. #include <linux/of.h>
  26. #include <linux/of_device.h>
  27. #include "mtk_ecc.h"
  28. /* NAND controller register definition */
  29. #define NFI_CNFG (0x00)
  30. #define CNFG_AHB BIT(0)
  31. #define CNFG_READ_EN BIT(1)
  32. #define CNFG_DMA_BURST_EN BIT(2)
  33. #define CNFG_BYTE_RW BIT(6)
  34. #define CNFG_HW_ECC_EN BIT(8)
  35. #define CNFG_AUTO_FMT_EN BIT(9)
  36. #define CNFG_OP_CUST (6 << 12)
  37. #define NFI_PAGEFMT (0x04)
  38. #define PAGEFMT_FDM_ECC_SHIFT (12)
  39. #define PAGEFMT_FDM_SHIFT (8)
  40. #define PAGEFMT_SEC_SEL_512 BIT(2)
  41. #define PAGEFMT_512_2K (0)
  42. #define PAGEFMT_2K_4K (1)
  43. #define PAGEFMT_4K_8K (2)
  44. #define PAGEFMT_8K_16K (3)
  45. /* NFI control */
  46. #define NFI_CON (0x08)
  47. #define CON_FIFO_FLUSH BIT(0)
  48. #define CON_NFI_RST BIT(1)
  49. #define CON_BRD BIT(8) /* burst read */
  50. #define CON_BWR BIT(9) /* burst write */
  51. #define CON_SEC_SHIFT (12)
  52. /* Timming control register */
  53. #define NFI_ACCCON (0x0C)
  54. #define NFI_INTR_EN (0x10)
  55. #define INTR_AHB_DONE_EN BIT(6)
  56. #define NFI_INTR_STA (0x14)
  57. #define NFI_CMD (0x20)
  58. #define NFI_ADDRNOB (0x30)
  59. #define NFI_COLADDR (0x34)
  60. #define NFI_ROWADDR (0x38)
  61. #define NFI_STRDATA (0x40)
  62. #define STAR_EN (1)
  63. #define STAR_DE (0)
  64. #define NFI_CNRNB (0x44)
  65. #define NFI_DATAW (0x50)
  66. #define NFI_DATAR (0x54)
  67. #define NFI_PIO_DIRDY (0x58)
  68. #define PIO_DI_RDY (0x01)
  69. #define NFI_STA (0x60)
  70. #define STA_CMD BIT(0)
  71. #define STA_ADDR BIT(1)
  72. #define STA_BUSY BIT(8)
  73. #define STA_EMP_PAGE BIT(12)
  74. #define NFI_FSM_CUSTDATA (0xe << 16)
  75. #define NFI_FSM_MASK (0xf << 16)
  76. #define NFI_ADDRCNTR (0x70)
  77. #define CNTR_MASK GENMASK(16, 12)
  78. #define ADDRCNTR_SEC_SHIFT (12)
  79. #define ADDRCNTR_SEC(val) \
  80. (((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
  81. #define NFI_STRADDR (0x80)
  82. #define NFI_BYTELEN (0x84)
  83. #define NFI_CSEL (0x90)
  84. #define NFI_FDML(x) (0xA0 + (x) * sizeof(u32) * 2)
  85. #define NFI_FDMM(x) (0xA4 + (x) * sizeof(u32) * 2)
  86. #define NFI_FDM_MAX_SIZE (8)
  87. #define NFI_FDM_MIN_SIZE (1)
  88. #define NFI_MASTER_STA (0x224)
  89. #define MASTER_STA_MASK (0x0FFF)
  90. #define NFI_EMPTY_THRESH (0x23C)
  91. #define MTK_NAME "mtk-nand"
  92. #define KB(x) ((x) * 1024UL)
  93. #define MB(x) (KB(x) * 1024UL)
  94. #define MTK_TIMEOUT (500000)
  95. #define MTK_RESET_TIMEOUT (1000000)
  96. #define MTK_NAND_MAX_NSELS (2)
  97. #define MTK_NFC_MIN_SPARE (16)
  98. #define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
  99. ((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \
  100. (tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt))
  101. struct mtk_nfc_caps {
  102. const u8 *spare_size;
  103. u8 num_spare_size;
  104. u8 pageformat_spare_shift;
  105. u8 nfi_clk_div;
  106. u8 max_sector;
  107. u32 max_sector_size;
  108. };
  109. struct mtk_nfc_bad_mark_ctl {
  110. void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
  111. u32 sec;
  112. u32 pos;
  113. };
  114. /*
  115. * FDM: region used to store free OOB data
  116. */
  117. struct mtk_nfc_fdm {
  118. u32 reg_size;
  119. u32 ecc_size;
  120. };
  121. struct mtk_nfc_nand_chip {
  122. struct list_head node;
  123. struct nand_chip nand;
  124. struct mtk_nfc_bad_mark_ctl bad_mark;
  125. struct mtk_nfc_fdm fdm;
  126. u32 spare_per_sector;
  127. int nsels;
  128. u8 sels[0];
  129. /* nothing after this field */
  130. };
  131. struct mtk_nfc_clk {
  132. struct clk *nfi_clk;
  133. struct clk *pad_clk;
  134. };
  135. struct mtk_nfc {
  136. struct nand_controller controller;
  137. struct mtk_ecc_config ecc_cfg;
  138. struct mtk_nfc_clk clk;
  139. struct mtk_ecc *ecc;
  140. struct device *dev;
  141. const struct mtk_nfc_caps *caps;
  142. void __iomem *regs;
  143. struct completion done;
  144. struct list_head chips;
  145. u8 *buffer;
  146. };
  147. /*
  148. * supported spare size of each IP.
  149. * order should be the same with the spare size bitfiled defination of
  150. * register NFI_PAGEFMT.
  151. */
  152. static const u8 spare_size_mt2701[] = {
  153. 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 63, 64
  154. };
  155. static const u8 spare_size_mt2712[] = {
  156. 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
  157. 74
  158. };
  159. static const u8 spare_size_mt7622[] = {
  160. 16, 26, 27, 28
  161. };
  162. static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
  163. {
  164. return container_of(nand, struct mtk_nfc_nand_chip, nand);
  165. }
  166. static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
  167. {
  168. return (u8 *)p + i * chip->ecc.size;
  169. }
  170. static inline u8 *oob_ptr(struct nand_chip *chip, int i)
  171. {
  172. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  173. u8 *poi;
  174. /* map the sector's FDM data to free oob:
  175. * the beginning of the oob area stores the FDM data of bad mark sectors
  176. */
  177. if (i < mtk_nand->bad_mark.sec)
  178. poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
  179. else if (i == mtk_nand->bad_mark.sec)
  180. poi = chip->oob_poi;
  181. else
  182. poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;
  183. return poi;
  184. }
  185. static inline int mtk_data_len(struct nand_chip *chip)
  186. {
  187. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  188. return chip->ecc.size + mtk_nand->spare_per_sector;
  189. }
  190. static inline u8 *mtk_data_ptr(struct nand_chip *chip, int i)
  191. {
  192. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  193. return nfc->buffer + i * mtk_data_len(chip);
  194. }
  195. static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
  196. {
  197. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  198. return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
  199. }
  200. static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
  201. {
  202. writel(val, nfc->regs + reg);
  203. }
  204. static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
  205. {
  206. writew(val, nfc->regs + reg);
  207. }
  208. static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
  209. {
  210. writeb(val, nfc->regs + reg);
  211. }
  212. static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
  213. {
  214. return readl_relaxed(nfc->regs + reg);
  215. }
  216. static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
  217. {
  218. return readw_relaxed(nfc->regs + reg);
  219. }
  220. static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
  221. {
  222. return readb_relaxed(nfc->regs + reg);
  223. }
  224. static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
  225. {
  226. struct device *dev = nfc->dev;
  227. u32 val;
  228. int ret;
  229. /* reset all registers and force the NFI master to terminate */
  230. nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
  231. /* wait for the master to finish the last transaction */
  232. ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
  233. !(val & MASTER_STA_MASK), 50,
  234. MTK_RESET_TIMEOUT);
  235. if (ret)
  236. dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
  237. NFI_MASTER_STA, val);
  238. /* ensure any status register affected by the NFI master is reset */
  239. nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
  240. nfi_writew(nfc, STAR_DE, NFI_STRDATA);
  241. }
  242. static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
  243. {
  244. struct device *dev = nfc->dev;
  245. u32 val;
  246. int ret;
  247. nfi_writel(nfc, command, NFI_CMD);
  248. ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
  249. !(val & STA_CMD), 10, MTK_TIMEOUT);
  250. if (ret) {
  251. dev_warn(dev, "nfi core timed out entering command mode\n");
  252. return -EIO;
  253. }
  254. return 0;
  255. }
  256. static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
  257. {
  258. struct device *dev = nfc->dev;
  259. u32 val;
  260. int ret;
  261. nfi_writel(nfc, addr, NFI_COLADDR);
  262. nfi_writel(nfc, 0, NFI_ROWADDR);
  263. nfi_writew(nfc, 1, NFI_ADDRNOB);
  264. ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
  265. !(val & STA_ADDR), 10, MTK_TIMEOUT);
  266. if (ret) {
  267. dev_warn(dev, "nfi core timed out entering address mode\n");
  268. return -EIO;
  269. }
  270. return 0;
  271. }
  272. static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
  273. {
  274. struct nand_chip *chip = mtd_to_nand(mtd);
  275. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  276. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  277. u32 fmt, spare, i;
  278. if (!mtd->writesize)
  279. return 0;
  280. spare = mtk_nand->spare_per_sector;
  281. switch (mtd->writesize) {
  282. case 512:
  283. fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
  284. break;
  285. case KB(2):
  286. if (chip->ecc.size == 512)
  287. fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
  288. else
  289. fmt = PAGEFMT_512_2K;
  290. break;
  291. case KB(4):
  292. if (chip->ecc.size == 512)
  293. fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
  294. else
  295. fmt = PAGEFMT_2K_4K;
  296. break;
  297. case KB(8):
  298. if (chip->ecc.size == 512)
  299. fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
  300. else
  301. fmt = PAGEFMT_4K_8K;
  302. break;
  303. case KB(16):
  304. fmt = PAGEFMT_8K_16K;
  305. break;
  306. default:
  307. dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
  308. return -EINVAL;
  309. }
  310. /*
  311. * the hardware will double the value for this eccsize, so we need to
  312. * halve it
  313. */
  314. if (chip->ecc.size == 1024)
  315. spare >>= 1;
  316. for (i = 0; i < nfc->caps->num_spare_size; i++) {
  317. if (nfc->caps->spare_size[i] == spare)
  318. break;
  319. }
  320. if (i == nfc->caps->num_spare_size) {
  321. dev_err(nfc->dev, "invalid spare size %d\n", spare);
  322. return -EINVAL;
  323. }
  324. fmt |= i << nfc->caps->pageformat_spare_shift;
  325. fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
  326. fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
  327. nfi_writel(nfc, fmt, NFI_PAGEFMT);
  328. nfc->ecc_cfg.strength = chip->ecc.strength;
  329. nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
  330. return 0;
  331. }
  332. static void mtk_nfc_select_chip(struct mtd_info *mtd, int chip)
  333. {
  334. struct nand_chip *nand = mtd_to_nand(mtd);
  335. struct mtk_nfc *nfc = nand_get_controller_data(nand);
  336. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
  337. if (chip < 0)
  338. return;
  339. mtk_nfc_hw_runtime_config(mtd);
  340. nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL);
  341. }
  342. static int mtk_nfc_dev_ready(struct mtd_info *mtd)
  343. {
  344. struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
  345. if (nfi_readl(nfc, NFI_STA) & STA_BUSY)
  346. return 0;
  347. return 1;
  348. }
  349. static void mtk_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
  350. {
  351. struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
  352. if (ctrl & NAND_ALE) {
  353. mtk_nfc_send_address(nfc, dat);
  354. } else if (ctrl & NAND_CLE) {
  355. mtk_nfc_hw_reset(nfc);
  356. nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
  357. mtk_nfc_send_command(nfc, dat);
  358. }
  359. }
  360. static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
  361. {
  362. int rc;
  363. u8 val;
  364. rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
  365. val & PIO_DI_RDY, 10, MTK_TIMEOUT);
  366. if (rc < 0)
  367. dev_err(nfc->dev, "data not ready\n");
  368. }
  369. static inline u8 mtk_nfc_read_byte(struct mtd_info *mtd)
  370. {
  371. struct nand_chip *chip = mtd_to_nand(mtd);
  372. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  373. u32 reg;
  374. /* after each byte read, the NFI_STA reg is reset by the hardware */
  375. reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
  376. if (reg != NFI_FSM_CUSTDATA) {
  377. reg = nfi_readw(nfc, NFI_CNFG);
  378. reg |= CNFG_BYTE_RW | CNFG_READ_EN;
  379. nfi_writew(nfc, reg, NFI_CNFG);
  380. /*
  381. * set to max sector to allow the HW to continue reading over
  382. * unaligned accesses
  383. */
  384. reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD;
  385. nfi_writel(nfc, reg, NFI_CON);
  386. /* trigger to fetch data */
  387. nfi_writew(nfc, STAR_EN, NFI_STRDATA);
  388. }
  389. mtk_nfc_wait_ioready(nfc);
  390. return nfi_readb(nfc, NFI_DATAR);
  391. }
  392. static void mtk_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
  393. {
  394. int i;
  395. for (i = 0; i < len; i++)
  396. buf[i] = mtk_nfc_read_byte(mtd);
  397. }
  398. static void mtk_nfc_write_byte(struct mtd_info *mtd, u8 byte)
  399. {
  400. struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
  401. u32 reg;
  402. reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
  403. if (reg != NFI_FSM_CUSTDATA) {
  404. reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
  405. nfi_writew(nfc, reg, NFI_CNFG);
  406. reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR;
  407. nfi_writel(nfc, reg, NFI_CON);
  408. nfi_writew(nfc, STAR_EN, NFI_STRDATA);
  409. }
  410. mtk_nfc_wait_ioready(nfc);
  411. nfi_writeb(nfc, byte, NFI_DATAW);
  412. }
  413. static void mtk_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
  414. {
  415. int i;
  416. for (i = 0; i < len; i++)
  417. mtk_nfc_write_byte(mtd, buf[i]);
  418. }
  419. static int mtk_nfc_setup_data_interface(struct mtd_info *mtd, int csline,
  420. const struct nand_data_interface *conf)
  421. {
  422. struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
  423. const struct nand_sdr_timings *timings;
  424. u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt;
  425. timings = nand_get_sdr_timings(conf);
  426. if (IS_ERR(timings))
  427. return -ENOTSUPP;
  428. if (csline == NAND_DATA_IFACE_CHECK_ONLY)
  429. return 0;
  430. rate = clk_get_rate(nfc->clk.nfi_clk);
  431. /* There is a frequency divider in some IPs */
  432. rate /= nfc->caps->nfi_clk_div;
  433. /* turn clock rate into KHZ */
  434. rate /= 1000;
  435. tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
  436. tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
  437. tpoecs &= 0xf;
  438. tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
  439. tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
  440. tprecs &= 0x3f;
  441. /* sdr interface has no tCR which means CE# low to RE# low */
  442. tc2r = 0;
  443. tw2r = timings->tWHR_min / 1000;
  444. tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
  445. tw2r = DIV_ROUND_UP(tw2r - 1, 2);
  446. tw2r &= 0xf;
  447. twh = max(timings->tREH_min, timings->tWH_min) / 1000;
  448. twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
  449. twh &= 0xf;
  450. twst = timings->tWP_min / 1000;
  451. twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
  452. twst &= 0xf;
  453. trlt = max(timings->tREA_max, timings->tRP_min) / 1000;
  454. trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
  455. trlt &= 0xf;
  456. /*
  457. * ACCON: access timing control register
  458. * -------------------------------------
  459. * 31:28: tpoecs, minimum required time for CS post pulling down after
  460. * accessing the device
  461. * 27:22: tprecs, minimum required time for CS pre pulling down before
  462. * accessing the device
  463. * 21:16: tc2r, minimum required time from NCEB low to NREB low
  464. * 15:12: tw2r, minimum required time from NWEB high to NREB low.
  465. * 11:08: twh, write enable hold time
  466. * 07:04: twst, write wait states
  467. * 03:00: trlt, read wait states
  468. */
  469. trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
  470. nfi_writel(nfc, trlt, NFI_ACCCON);
  471. return 0;
  472. }
  473. static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
  474. {
  475. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  476. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  477. int size = chip->ecc.size + mtk_nand->fdm.reg_size;
  478. nfc->ecc_cfg.mode = ECC_DMA_MODE;
  479. nfc->ecc_cfg.op = ECC_ENCODE;
  480. return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
  481. }
  482. static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
  483. {
  484. /* nop */
  485. }
  486. static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
  487. {
  488. struct nand_chip *chip = mtd_to_nand(mtd);
  489. struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
  490. u32 bad_pos = nand->bad_mark.pos;
  491. if (raw)
  492. bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
  493. else
  494. bad_pos += nand->bad_mark.sec * chip->ecc.size;
  495. swap(chip->oob_poi[0], buf[bad_pos]);
  496. }
  497. static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
  498. u32 len, const u8 *buf)
  499. {
  500. struct nand_chip *chip = mtd_to_nand(mtd);
  501. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  502. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  503. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  504. u32 start, end;
  505. int i, ret;
  506. start = offset / chip->ecc.size;
  507. end = DIV_ROUND_UP(offset + len, chip->ecc.size);
  508. memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
  509. for (i = 0; i < chip->ecc.steps; i++) {
  510. memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
  511. chip->ecc.size);
  512. if (start > i || i >= end)
  513. continue;
  514. if (i == mtk_nand->bad_mark.sec)
  515. mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
  516. memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
  517. /* program the CRC back to the OOB */
  518. ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
  519. if (ret < 0)
  520. return ret;
  521. }
  522. return 0;
  523. }
  524. static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
  525. {
  526. struct nand_chip *chip = mtd_to_nand(mtd);
  527. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  528. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  529. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  530. u32 i;
  531. memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
  532. for (i = 0; i < chip->ecc.steps; i++) {
  533. if (buf)
  534. memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
  535. chip->ecc.size);
  536. if (i == mtk_nand->bad_mark.sec)
  537. mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
  538. memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
  539. }
  540. }
  541. static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
  542. u32 sectors)
  543. {
  544. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  545. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  546. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  547. u32 vall, valm;
  548. u8 *oobptr;
  549. int i, j;
  550. for (i = 0; i < sectors; i++) {
  551. oobptr = oob_ptr(chip, start + i);
  552. vall = nfi_readl(nfc, NFI_FDML(i));
  553. valm = nfi_readl(nfc, NFI_FDMM(i));
  554. for (j = 0; j < fdm->reg_size; j++)
  555. oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
  556. }
  557. }
  558. static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
  559. {
  560. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  561. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  562. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  563. u32 vall, valm;
  564. u8 *oobptr;
  565. int i, j;
  566. for (i = 0; i < chip->ecc.steps; i++) {
  567. oobptr = oob_ptr(chip, i);
  568. vall = 0;
  569. valm = 0;
  570. for (j = 0; j < 8; j++) {
  571. if (j < 4)
  572. vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
  573. << (j * 8);
  574. else
  575. valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
  576. << ((j - 4) * 8);
  577. }
  578. nfi_writel(nfc, vall, NFI_FDML(i));
  579. nfi_writel(nfc, valm, NFI_FDMM(i));
  580. }
  581. }
  582. static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
  583. const u8 *buf, int page, int len)
  584. {
  585. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  586. struct device *dev = nfc->dev;
  587. dma_addr_t addr;
  588. u32 reg;
  589. int ret;
  590. addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
  591. ret = dma_mapping_error(nfc->dev, addr);
  592. if (ret) {
  593. dev_err(nfc->dev, "dma mapping error\n");
  594. return -EINVAL;
  595. }
  596. reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
  597. nfi_writew(nfc, reg, NFI_CNFG);
  598. nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
  599. nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
  600. nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
  601. init_completion(&nfc->done);
  602. reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
  603. nfi_writel(nfc, reg, NFI_CON);
  604. nfi_writew(nfc, STAR_EN, NFI_STRDATA);
  605. ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
  606. if (!ret) {
  607. dev_err(dev, "program ahb done timeout\n");
  608. nfi_writew(nfc, 0, NFI_INTR_EN);
  609. ret = -ETIMEDOUT;
  610. goto timeout;
  611. }
  612. ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
  613. ADDRCNTR_SEC(reg) >= chip->ecc.steps,
  614. 10, MTK_TIMEOUT);
  615. if (ret)
  616. dev_err(dev, "hwecc write timeout\n");
  617. timeout:
  618. dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
  619. nfi_writel(nfc, 0, NFI_CON);
  620. return ret;
  621. }
  622. static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
  623. const u8 *buf, int page, int raw)
  624. {
  625. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  626. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  627. size_t len;
  628. const u8 *bufpoi;
  629. u32 reg;
  630. int ret;
  631. nand_prog_page_begin_op(chip, page, 0, NULL, 0);
  632. if (!raw) {
  633. /* OOB => FDM: from register, ECC: from HW */
  634. reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
  635. nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);
  636. nfc->ecc_cfg.op = ECC_ENCODE;
  637. nfc->ecc_cfg.mode = ECC_NFI_MODE;
  638. ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
  639. if (ret) {
  640. /* clear NFI config */
  641. reg = nfi_readw(nfc, NFI_CNFG);
  642. reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
  643. nfi_writew(nfc, reg, NFI_CNFG);
  644. return ret;
  645. }
  646. memcpy(nfc->buffer, buf, mtd->writesize);
  647. mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
  648. bufpoi = nfc->buffer;
  649. /* write OOB into the FDM registers (OOB area in MTK NAND) */
  650. mtk_nfc_write_fdm(chip);
  651. } else {
  652. bufpoi = buf;
  653. }
  654. len = mtd->writesize + (raw ? mtd->oobsize : 0);
  655. ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);
  656. if (!raw)
  657. mtk_ecc_disable(nfc->ecc);
  658. if (ret)
  659. return ret;
  660. return nand_prog_page_end_op(chip);
  661. }
  662. static int mtk_nfc_write_page_hwecc(struct mtd_info *mtd,
  663. struct nand_chip *chip, const u8 *buf,
  664. int oob_on, int page)
  665. {
  666. return mtk_nfc_write_page(mtd, chip, buf, page, 0);
  667. }
  668. static int mtk_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
  669. const u8 *buf, int oob_on, int pg)
  670. {
  671. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  672. mtk_nfc_format_page(mtd, buf);
  673. return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
  674. }
  675. static int mtk_nfc_write_subpage_hwecc(struct mtd_info *mtd,
  676. struct nand_chip *chip, u32 offset,
  677. u32 data_len, const u8 *buf,
  678. int oob_on, int page)
  679. {
  680. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  681. int ret;
  682. ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
  683. if (ret < 0)
  684. return ret;
  685. /* use the data in the private buffer (now with FDM and CRC) */
  686. return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
  687. }
  688. static int mtk_nfc_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
  689. int page)
  690. {
  691. return mtk_nfc_write_page_raw(mtd, chip, NULL, 1, page);
  692. }
  693. static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors)
  694. {
  695. struct nand_chip *chip = mtd_to_nand(mtd);
  696. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  697. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  698. struct mtk_ecc_stats stats;
  699. int rc, i;
  700. rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
  701. if (rc) {
  702. memset(buf, 0xff, sectors * chip->ecc.size);
  703. for (i = 0; i < sectors; i++)
  704. memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size);
  705. return 0;
  706. }
  707. mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
  708. mtd->ecc_stats.corrected += stats.corrected;
  709. mtd->ecc_stats.failed += stats.failed;
  710. return stats.bitflips;
  711. }
  712. static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
  713. u32 data_offs, u32 readlen,
  714. u8 *bufpoi, int page, int raw)
  715. {
  716. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  717. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  718. u32 spare = mtk_nand->spare_per_sector;
  719. u32 column, sectors, start, end, reg;
  720. dma_addr_t addr;
  721. int bitflips;
  722. size_t len;
  723. u8 *buf;
  724. int rc;
  725. start = data_offs / chip->ecc.size;
  726. end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
  727. sectors = end - start;
  728. column = start * (chip->ecc.size + spare);
  729. len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
  730. buf = bufpoi + start * chip->ecc.size;
  731. nand_read_page_op(chip, page, column, NULL, 0);
  732. addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
  733. rc = dma_mapping_error(nfc->dev, addr);
  734. if (rc) {
  735. dev_err(nfc->dev, "dma mapping error\n");
  736. return -EINVAL;
  737. }
  738. reg = nfi_readw(nfc, NFI_CNFG);
  739. reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
  740. if (!raw) {
  741. reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
  742. nfi_writew(nfc, reg, NFI_CNFG);
  743. nfc->ecc_cfg.mode = ECC_NFI_MODE;
  744. nfc->ecc_cfg.sectors = sectors;
  745. nfc->ecc_cfg.op = ECC_DECODE;
  746. rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
  747. if (rc) {
  748. dev_err(nfc->dev, "ecc enable\n");
  749. /* clear NFI_CNFG */
  750. reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
  751. CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
  752. nfi_writew(nfc, reg, NFI_CNFG);
  753. dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
  754. return rc;
  755. }
  756. } else {
  757. nfi_writew(nfc, reg, NFI_CNFG);
  758. }
  759. nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
  760. nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
  761. nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
  762. init_completion(&nfc->done);
  763. reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
  764. nfi_writel(nfc, reg, NFI_CON);
  765. nfi_writew(nfc, STAR_EN, NFI_STRDATA);
  766. rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
  767. if (!rc)
  768. dev_warn(nfc->dev, "read ahb/dma done timeout\n");
  769. rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
  770. ADDRCNTR_SEC(reg) >= sectors, 10,
  771. MTK_TIMEOUT);
  772. if (rc < 0) {
  773. dev_err(nfc->dev, "subpage done timeout\n");
  774. bitflips = -EIO;
  775. } else {
  776. bitflips = 0;
  777. if (!raw) {
  778. rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
  779. bitflips = rc < 0 ? -ETIMEDOUT :
  780. mtk_nfc_update_ecc_stats(mtd, buf, sectors);
  781. mtk_nfc_read_fdm(chip, start, sectors);
  782. }
  783. }
  784. dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
  785. if (raw)
  786. goto done;
  787. mtk_ecc_disable(nfc->ecc);
  788. if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
  789. mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
  790. done:
  791. nfi_writel(nfc, 0, NFI_CON);
  792. return bitflips;
  793. }
  794. static int mtk_nfc_read_subpage_hwecc(struct mtd_info *mtd,
  795. struct nand_chip *chip, u32 off,
  796. u32 len, u8 *p, int pg)
  797. {
  798. return mtk_nfc_read_subpage(mtd, chip, off, len, p, pg, 0);
  799. }
  800. static int mtk_nfc_read_page_hwecc(struct mtd_info *mtd,
  801. struct nand_chip *chip, u8 *p,
  802. int oob_on, int pg)
  803. {
  804. return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
  805. }
  806. static int mtk_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
  807. u8 *buf, int oob_on, int page)
  808. {
  809. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  810. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  811. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  812. int i, ret;
  813. memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
  814. ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
  815. page, 1);
  816. if (ret < 0)
  817. return ret;
  818. for (i = 0; i < chip->ecc.steps; i++) {
  819. memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);
  820. if (i == mtk_nand->bad_mark.sec)
  821. mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
  822. if (buf)
  823. memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
  824. chip->ecc.size);
  825. }
  826. return ret;
  827. }
  828. static int mtk_nfc_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
  829. int page)
  830. {
  831. return mtk_nfc_read_page_raw(mtd, chip, NULL, 1, page);
  832. }
  833. static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
  834. {
  835. /*
  836. * CNRNB: nand ready/busy register
  837. * -------------------------------
  838. * 7:4: timeout register for polling the NAND busy/ready signal
  839. * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles.
  840. */
  841. nfi_writew(nfc, 0xf1, NFI_CNRNB);
  842. nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
  843. mtk_nfc_hw_reset(nfc);
  844. nfi_readl(nfc, NFI_INTR_STA);
  845. nfi_writel(nfc, 0, NFI_INTR_EN);
  846. }
  847. static irqreturn_t mtk_nfc_irq(int irq, void *id)
  848. {
  849. struct mtk_nfc *nfc = id;
  850. u16 sta, ien;
  851. sta = nfi_readw(nfc, NFI_INTR_STA);
  852. ien = nfi_readw(nfc, NFI_INTR_EN);
  853. if (!(sta & ien))
  854. return IRQ_NONE;
  855. nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
  856. complete(&nfc->done);
  857. return IRQ_HANDLED;
  858. }
  859. static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk)
  860. {
  861. int ret;
  862. ret = clk_prepare_enable(clk->nfi_clk);
  863. if (ret) {
  864. dev_err(dev, "failed to enable nfi clk\n");
  865. return ret;
  866. }
  867. ret = clk_prepare_enable(clk->pad_clk);
  868. if (ret) {
  869. dev_err(dev, "failed to enable pad clk\n");
  870. clk_disable_unprepare(clk->nfi_clk);
  871. return ret;
  872. }
  873. return 0;
  874. }
  875. static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk)
  876. {
  877. clk_disable_unprepare(clk->nfi_clk);
  878. clk_disable_unprepare(clk->pad_clk);
  879. }
  880. static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
  881. struct mtd_oob_region *oob_region)
  882. {
  883. struct nand_chip *chip = mtd_to_nand(mtd);
  884. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  885. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  886. u32 eccsteps;
  887. eccsteps = mtd->writesize / chip->ecc.size;
  888. if (section >= eccsteps)
  889. return -ERANGE;
  890. oob_region->length = fdm->reg_size - fdm->ecc_size;
  891. oob_region->offset = section * fdm->reg_size + fdm->ecc_size;
  892. return 0;
  893. }
  894. static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
  895. struct mtd_oob_region *oob_region)
  896. {
  897. struct nand_chip *chip = mtd_to_nand(mtd);
  898. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  899. u32 eccsteps;
  900. if (section)
  901. return -ERANGE;
  902. eccsteps = mtd->writesize / chip->ecc.size;
  903. oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
  904. oob_region->length = mtd->oobsize - oob_region->offset;
  905. return 0;
  906. }
  907. static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
  908. .free = mtk_nfc_ooblayout_free,
  909. .ecc = mtk_nfc_ooblayout_ecc,
  910. };
  911. static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
  912. {
  913. struct nand_chip *nand = mtd_to_nand(mtd);
  914. struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
  915. struct mtk_nfc *nfc = nand_get_controller_data(nand);
  916. u32 ecc_bytes;
  917. ecc_bytes = DIV_ROUND_UP(nand->ecc.strength *
  918. mtk_ecc_get_parity_bits(nfc->ecc), 8);
  919. fdm->reg_size = chip->spare_per_sector - ecc_bytes;
  920. if (fdm->reg_size > NFI_FDM_MAX_SIZE)
  921. fdm->reg_size = NFI_FDM_MAX_SIZE;
  922. /* bad block mark storage */
  923. fdm->ecc_size = 1;
  924. }
  925. static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
  926. struct mtd_info *mtd)
  927. {
  928. struct nand_chip *nand = mtd_to_nand(mtd);
  929. if (mtd->writesize == 512) {
  930. bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
  931. } else {
  932. bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
  933. bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
  934. bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
  935. }
  936. }
  937. static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
  938. {
  939. struct nand_chip *nand = mtd_to_nand(mtd);
  940. struct mtk_nfc *nfc = nand_get_controller_data(nand);
  941. const u8 *spare = nfc->caps->spare_size;
  942. u32 eccsteps, i, closest_spare = 0;
  943. eccsteps = mtd->writesize / nand->ecc.size;
  944. *sps = mtd->oobsize / eccsteps;
  945. if (nand->ecc.size == 1024)
  946. *sps >>= 1;
  947. if (*sps < MTK_NFC_MIN_SPARE)
  948. return -EINVAL;
  949. for (i = 0; i < nfc->caps->num_spare_size; i++) {
  950. if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) {
  951. closest_spare = i;
  952. if (*sps == spare[i])
  953. break;
  954. }
  955. }
  956. *sps = spare[closest_spare];
  957. if (nand->ecc.size == 1024)
  958. *sps <<= 1;
  959. return 0;
  960. }
  961. static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
  962. {
  963. struct nand_chip *nand = mtd_to_nand(mtd);
  964. struct mtk_nfc *nfc = nand_get_controller_data(nand);
  965. u32 spare;
  966. int free, ret;
  967. /* support only ecc hw mode */
  968. if (nand->ecc.mode != NAND_ECC_HW) {
  969. dev_err(dev, "ecc.mode not supported\n");
  970. return -EINVAL;
  971. }
  972. /* if optional dt settings not present */
  973. if (!nand->ecc.size || !nand->ecc.strength) {
  974. /* use datasheet requirements */
  975. nand->ecc.strength = nand->ecc_strength_ds;
  976. nand->ecc.size = nand->ecc_step_ds;
  977. /*
  978. * align eccstrength and eccsize
  979. * this controller only supports 512 and 1024 sizes
  980. */
  981. if (nand->ecc.size < 1024) {
  982. if (mtd->writesize > 512 &&
  983. nfc->caps->max_sector_size > 512) {
  984. nand->ecc.size = 1024;
  985. nand->ecc.strength <<= 1;
  986. } else {
  987. nand->ecc.size = 512;
  988. }
  989. } else {
  990. nand->ecc.size = 1024;
  991. }
  992. ret = mtk_nfc_set_spare_per_sector(&spare, mtd);
  993. if (ret)
  994. return ret;
  995. /* calculate oob bytes except ecc parity data */
  996. free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc)
  997. + 7) >> 3;
  998. free = spare - free;
  999. /*
  1000. * enhance ecc strength if oob left is bigger than max FDM size
  1001. * or reduce ecc strength if oob size is not enough for ecc
  1002. * parity data.
  1003. */
  1004. if (free > NFI_FDM_MAX_SIZE) {
  1005. spare -= NFI_FDM_MAX_SIZE;
  1006. nand->ecc.strength = (spare << 3) /
  1007. mtk_ecc_get_parity_bits(nfc->ecc);
  1008. } else if (free < 0) {
  1009. spare -= NFI_FDM_MIN_SIZE;
  1010. nand->ecc.strength = (spare << 3) /
  1011. mtk_ecc_get_parity_bits(nfc->ecc);
  1012. }
  1013. }
  1014. mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength);
  1015. dev_info(dev, "eccsize %d eccstrength %d\n",
  1016. nand->ecc.size, nand->ecc.strength);
  1017. return 0;
  1018. }
  1019. static int mtk_nfc_attach_chip(struct nand_chip *chip)
  1020. {
  1021. struct mtd_info *mtd = nand_to_mtd(chip);
  1022. struct device *dev = mtd->dev.parent;
  1023. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  1024. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  1025. int len;
  1026. int ret;
  1027. if (chip->options & NAND_BUSWIDTH_16) {
  1028. dev_err(dev, "16bits buswidth not supported");
  1029. return -EINVAL;
  1030. }
  1031. /* store bbt magic in page, cause OOB is not protected */
  1032. if (chip->bbt_options & NAND_BBT_USE_FLASH)
  1033. chip->bbt_options |= NAND_BBT_NO_OOB;
  1034. ret = mtk_nfc_ecc_init(dev, mtd);
  1035. if (ret)
  1036. return ret;
  1037. ret = mtk_nfc_set_spare_per_sector(&mtk_nand->spare_per_sector, mtd);
  1038. if (ret)
  1039. return ret;
  1040. mtk_nfc_set_fdm(&mtk_nand->fdm, mtd);
  1041. mtk_nfc_set_bad_mark_ctl(&mtk_nand->bad_mark, mtd);
  1042. len = mtd->writesize + mtd->oobsize;
  1043. nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
  1044. if (!nfc->buffer)
  1045. return -ENOMEM;
  1046. return 0;
  1047. }
  1048. static const struct nand_controller_ops mtk_nfc_controller_ops = {
  1049. .attach_chip = mtk_nfc_attach_chip,
  1050. };
  1051. static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
  1052. struct device_node *np)
  1053. {
  1054. struct mtk_nfc_nand_chip *chip;
  1055. struct nand_chip *nand;
  1056. struct mtd_info *mtd;
  1057. int nsels;
  1058. u32 tmp;
  1059. int ret;
  1060. int i;
  1061. if (!of_get_property(np, "reg", &nsels))
  1062. return -ENODEV;
  1063. nsels /= sizeof(u32);
  1064. if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
  1065. dev_err(dev, "invalid reg property size %d\n", nsels);
  1066. return -EINVAL;
  1067. }
  1068. chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
  1069. GFP_KERNEL);
  1070. if (!chip)
  1071. return -ENOMEM;
  1072. chip->nsels = nsels;
  1073. for (i = 0; i < nsels; i++) {
  1074. ret = of_property_read_u32_index(np, "reg", i, &tmp);
  1075. if (ret) {
  1076. dev_err(dev, "reg property failure : %d\n", ret);
  1077. return ret;
  1078. }
  1079. chip->sels[i] = tmp;
  1080. }
  1081. nand = &chip->nand;
  1082. nand->controller = &nfc->controller;
  1083. nand_set_flash_node(nand, np);
  1084. nand_set_controller_data(nand, nfc);
  1085. nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ;
  1086. nand->dev_ready = mtk_nfc_dev_ready;
  1087. nand->select_chip = mtk_nfc_select_chip;
  1088. nand->write_byte = mtk_nfc_write_byte;
  1089. nand->write_buf = mtk_nfc_write_buf;
  1090. nand->read_byte = mtk_nfc_read_byte;
  1091. nand->read_buf = mtk_nfc_read_buf;
  1092. nand->cmd_ctrl = mtk_nfc_cmd_ctrl;
  1093. nand->setup_data_interface = mtk_nfc_setup_data_interface;
  1094. /* set default mode in case dt entry is missing */
  1095. nand->ecc.mode = NAND_ECC_HW;
  1096. nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
  1097. nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
  1098. nand->ecc.write_page = mtk_nfc_write_page_hwecc;
  1099. nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
  1100. nand->ecc.write_oob = mtk_nfc_write_oob_std;
  1101. nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
  1102. nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
  1103. nand->ecc.read_page = mtk_nfc_read_page_hwecc;
  1104. nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
  1105. nand->ecc.read_oob = mtk_nfc_read_oob_std;
  1106. mtd = nand_to_mtd(nand);
  1107. mtd->owner = THIS_MODULE;
  1108. mtd->dev.parent = dev;
  1109. mtd->name = MTK_NAME;
  1110. mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);
  1111. mtk_nfc_hw_init(nfc);
  1112. ret = nand_scan(mtd, nsels);
  1113. if (ret)
  1114. return ret;
  1115. ret = mtd_device_register(mtd, NULL, 0);
  1116. if (ret) {
  1117. dev_err(dev, "mtd parse partition error\n");
  1118. nand_release(mtd);
  1119. return ret;
  1120. }
  1121. list_add_tail(&chip->node, &nfc->chips);
  1122. return 0;
  1123. }
  1124. static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
  1125. {
  1126. struct device_node *np = dev->of_node;
  1127. struct device_node *nand_np;
  1128. int ret;
  1129. for_each_child_of_node(np, nand_np) {
  1130. ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
  1131. if (ret) {
  1132. of_node_put(nand_np);
  1133. return ret;
  1134. }
  1135. }
  1136. return 0;
  1137. }
  1138. static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = {
  1139. .spare_size = spare_size_mt2701,
  1140. .num_spare_size = 16,
  1141. .pageformat_spare_shift = 4,
  1142. .nfi_clk_div = 1,
  1143. .max_sector = 16,
  1144. .max_sector_size = 1024,
  1145. };
  1146. static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = {
  1147. .spare_size = spare_size_mt2712,
  1148. .num_spare_size = 19,
  1149. .pageformat_spare_shift = 16,
  1150. .nfi_clk_div = 2,
  1151. .max_sector = 16,
  1152. .max_sector_size = 1024,
  1153. };
  1154. static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = {
  1155. .spare_size = spare_size_mt7622,
  1156. .num_spare_size = 4,
  1157. .pageformat_spare_shift = 4,
  1158. .nfi_clk_div = 1,
  1159. .max_sector = 8,
  1160. .max_sector_size = 512,
  1161. };
  1162. static const struct of_device_id mtk_nfc_id_table[] = {
  1163. {
  1164. .compatible = "mediatek,mt2701-nfc",
  1165. .data = &mtk_nfc_caps_mt2701,
  1166. }, {
  1167. .compatible = "mediatek,mt2712-nfc",
  1168. .data = &mtk_nfc_caps_mt2712,
  1169. }, {
  1170. .compatible = "mediatek,mt7622-nfc",
  1171. .data = &mtk_nfc_caps_mt7622,
  1172. },
  1173. {}
  1174. };
  1175. MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
  1176. static int mtk_nfc_probe(struct platform_device *pdev)
  1177. {
  1178. struct device *dev = &pdev->dev;
  1179. struct device_node *np = dev->of_node;
  1180. struct mtk_nfc *nfc;
  1181. struct resource *res;
  1182. int ret, irq;
  1183. nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
  1184. if (!nfc)
  1185. return -ENOMEM;
  1186. spin_lock_init(&nfc->controller.lock);
  1187. init_waitqueue_head(&nfc->controller.wq);
  1188. INIT_LIST_HEAD(&nfc->chips);
  1189. nfc->controller.ops = &mtk_nfc_controller_ops;
  1190. /* probe defer if not ready */
  1191. nfc->ecc = of_mtk_ecc_get(np);
  1192. if (IS_ERR(nfc->ecc))
  1193. return PTR_ERR(nfc->ecc);
  1194. else if (!nfc->ecc)
  1195. return -ENODEV;
  1196. nfc->caps = of_device_get_match_data(dev);
  1197. nfc->dev = dev;
  1198. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1199. nfc->regs = devm_ioremap_resource(dev, res);
  1200. if (IS_ERR(nfc->regs)) {
  1201. ret = PTR_ERR(nfc->regs);
  1202. goto release_ecc;
  1203. }
  1204. nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
  1205. if (IS_ERR(nfc->clk.nfi_clk)) {
  1206. dev_err(dev, "no clk\n");
  1207. ret = PTR_ERR(nfc->clk.nfi_clk);
  1208. goto release_ecc;
  1209. }
  1210. nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk");
  1211. if (IS_ERR(nfc->clk.pad_clk)) {
  1212. dev_err(dev, "no pad clk\n");
  1213. ret = PTR_ERR(nfc->clk.pad_clk);
  1214. goto release_ecc;
  1215. }
  1216. ret = mtk_nfc_enable_clk(dev, &nfc->clk);
  1217. if (ret)
  1218. goto release_ecc;
  1219. irq = platform_get_irq(pdev, 0);
  1220. if (irq < 0) {
  1221. dev_err(dev, "no nfi irq resource\n");
  1222. ret = -EINVAL;
  1223. goto clk_disable;
  1224. }
  1225. ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
  1226. if (ret) {
  1227. dev_err(dev, "failed to request nfi irq\n");
  1228. goto clk_disable;
  1229. }
  1230. ret = dma_set_mask(dev, DMA_BIT_MASK(32));
  1231. if (ret) {
  1232. dev_err(dev, "failed to set dma mask\n");
  1233. goto clk_disable;
  1234. }
  1235. platform_set_drvdata(pdev, nfc);
  1236. ret = mtk_nfc_nand_chips_init(dev, nfc);
  1237. if (ret) {
  1238. dev_err(dev, "failed to init nand chips\n");
  1239. goto clk_disable;
  1240. }
  1241. return 0;
  1242. clk_disable:
  1243. mtk_nfc_disable_clk(&nfc->clk);
  1244. release_ecc:
  1245. mtk_ecc_release(nfc->ecc);
  1246. return ret;
  1247. }
  1248. static int mtk_nfc_remove(struct platform_device *pdev)
  1249. {
  1250. struct mtk_nfc *nfc = platform_get_drvdata(pdev);
  1251. struct mtk_nfc_nand_chip *chip;
  1252. while (!list_empty(&nfc->chips)) {
  1253. chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip,
  1254. node);
  1255. nand_release(nand_to_mtd(&chip->nand));
  1256. list_del(&chip->node);
  1257. }
  1258. mtk_ecc_release(nfc->ecc);
  1259. mtk_nfc_disable_clk(&nfc->clk);
  1260. return 0;
  1261. }
  1262. #ifdef CONFIG_PM_SLEEP
  1263. static int mtk_nfc_suspend(struct device *dev)
  1264. {
  1265. struct mtk_nfc *nfc = dev_get_drvdata(dev);
  1266. mtk_nfc_disable_clk(&nfc->clk);
  1267. return 0;
  1268. }
  1269. static int mtk_nfc_resume(struct device *dev)
  1270. {
  1271. struct mtk_nfc *nfc = dev_get_drvdata(dev);
  1272. struct mtk_nfc_nand_chip *chip;
  1273. struct nand_chip *nand;
  1274. int ret;
  1275. u32 i;
  1276. udelay(200);
  1277. ret = mtk_nfc_enable_clk(dev, &nfc->clk);
  1278. if (ret)
  1279. return ret;
  1280. /* reset NAND chip if VCC was powered off */
  1281. list_for_each_entry(chip, &nfc->chips, node) {
  1282. nand = &chip->nand;
  1283. for (i = 0; i < chip->nsels; i++)
  1284. nand_reset(nand, i);
  1285. }
  1286. return 0;
  1287. }
  1288. static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
  1289. #endif
  1290. static struct platform_driver mtk_nfc_driver = {
  1291. .probe = mtk_nfc_probe,
  1292. .remove = mtk_nfc_remove,
  1293. .driver = {
  1294. .name = MTK_NAME,
  1295. .of_match_table = mtk_nfc_id_table,
  1296. #ifdef CONFIG_PM_SLEEP
  1297. .pm = &mtk_nfc_pm_ops,
  1298. #endif
  1299. },
  1300. };
  1301. module_platform_driver(mtk_nfc_driver);
  1302. MODULE_LICENSE("GPL");
  1303. MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
  1304. MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");