nand-controller.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552
  1. /*
  2. * Copyright 2017 ATMEL
  3. * Copyright 2017 Free Electrons
  4. *
  5. * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
  6. *
  7. * Derived from the atmel_nand.c driver which contained the following
  8. * copyrights:
  9. *
  10. * Copyright 2003 Rick Bronson
  11. *
  12. * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
  13. * Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
  14. *
  15. * Derived from drivers/mtd/spia.c (removed in v3.8)
  16. * Copyright 2000 Steven J. Hill (sjhill@cotw.com)
  17. *
  18. *
  19. * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
  20. * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
  21. *
  22. * Derived from Das U-Boot source code
  23. * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
  24. * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
  25. *
  26. * Add Programmable Multibit ECC support for various AT91 SoC
  27. * Copyright 2012 ATMEL, Hong Xu
  28. *
  29. * Add Nand Flash Controller support for SAMA5 SoC
  30. * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
  31. *
  32. * This program is free software; you can redistribute it and/or modify
  33. * it under the terms of the GNU General Public License version 2 as
  34. * published by the Free Software Foundation.
  35. *
  36. * A few words about the naming convention in this file. This convention
  37. * applies to structure and function names.
  38. *
  39. * Prefixes:
  40. *
  41. * - atmel_nand_: all generic structures/functions
  42. * - atmel_smc_nand_: all structures/functions specific to the SMC interface
  43. * (at91sam9 and avr32 SoCs)
  44. * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
  45. * (sama5 SoCs and later)
  46. * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
  47. * that is available in the HSMC block
  48. * - <soc>_nand_: all SoC specific structures/functions
  49. */
  50. #include <linux/clk.h>
  51. #include <linux/dma-mapping.h>
  52. #include <linux/dmaengine.h>
  53. #include <linux/genalloc.h>
  54. #include <linux/gpio/consumer.h>
  55. #include <linux/interrupt.h>
  56. #include <linux/mfd/syscon.h>
  57. #include <linux/mfd/syscon/atmel-matrix.h>
  58. #include <linux/mfd/syscon/atmel-smc.h>
  59. #include <linux/module.h>
  60. #include <linux/mtd/rawnand.h>
  61. #include <linux/of_address.h>
  62. #include <linux/of_irq.h>
  63. #include <linux/of_platform.h>
  64. #include <linux/iopoll.h>
  65. #include <linux/platform_device.h>
  66. #include <linux/regmap.h>
  67. #include "pmecc.h"
  68. #define ATMEL_HSMC_NFC_CFG 0x0
  69. #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
  70. #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
  71. #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
  72. #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
  73. #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
  74. #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
  75. #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
  76. #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
  77. #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
  78. #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
  79. #define ATMEL_HSMC_NFC_CTRL 0x4
  80. #define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
  81. #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
  82. #define ATMEL_HSMC_NFC_SR 0x8
  83. #define ATMEL_HSMC_NFC_IER 0xc
  84. #define ATMEL_HSMC_NFC_IDR 0x10
  85. #define ATMEL_HSMC_NFC_IMR 0x14
  86. #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
  87. #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
  88. #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
  89. #define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
  90. #define ATMEL_HSMC_NFC_SR_WR BIT(11)
  91. #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
  92. #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
  93. #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
  94. #define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
  95. #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
  96. #define ATMEL_HSMC_NFC_SR_AWB BIT(22)
  97. #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
  98. #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
  99. ATMEL_HSMC_NFC_SR_UNDEF | \
  100. ATMEL_HSMC_NFC_SR_AWB | \
  101. ATMEL_HSMC_NFC_SR_NFCASE)
  102. #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
  103. #define ATMEL_HSMC_NFC_ADDR 0x18
  104. #define ATMEL_HSMC_NFC_BANK 0x1c
  105. #define ATMEL_NFC_MAX_RB_ID 7
  106. #define ATMEL_NFC_SRAM_SIZE 0x2400
  107. #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
  108. #define ATMEL_NFC_VCMD2 BIT(18)
  109. #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
  110. #define ATMEL_NFC_CSID(cs) ((cs) << 22)
  111. #define ATMEL_NFC_DATAEN BIT(25)
  112. #define ATMEL_NFC_NFCWR BIT(26)
  113. #define ATMEL_NFC_MAX_ADDR_CYCLES 5
  114. #define ATMEL_NAND_ALE_OFFSET BIT(21)
  115. #define ATMEL_NAND_CLE_OFFSET BIT(22)
  116. #define DEFAULT_TIMEOUT_MS 1000
  117. #define MIN_DMA_LEN 128
  118. static bool atmel_nand_avoid_dma __read_mostly;
  119. MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
  120. module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
  121. enum atmel_nand_rb_type {
  122. ATMEL_NAND_NO_RB,
  123. ATMEL_NAND_NATIVE_RB,
  124. ATMEL_NAND_GPIO_RB,
  125. };
  126. struct atmel_nand_rb {
  127. enum atmel_nand_rb_type type;
  128. union {
  129. struct gpio_desc *gpio;
  130. int id;
  131. };
  132. };
  133. struct atmel_nand_cs {
  134. int id;
  135. struct atmel_nand_rb rb;
  136. struct gpio_desc *csgpio;
  137. struct {
  138. void __iomem *virt;
  139. dma_addr_t dma;
  140. } io;
  141. struct atmel_smc_cs_conf smcconf;
  142. };
  143. struct atmel_nand {
  144. struct list_head node;
  145. struct device *dev;
  146. struct nand_chip base;
  147. struct atmel_nand_cs *activecs;
  148. struct atmel_pmecc_user *pmecc;
  149. struct gpio_desc *cdgpio;
  150. int numcs;
  151. struct atmel_nand_cs cs[];
  152. };
  153. static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
  154. {
  155. return container_of(chip, struct atmel_nand, base);
  156. }
  157. enum atmel_nfc_data_xfer {
  158. ATMEL_NFC_NO_DATA,
  159. ATMEL_NFC_READ_DATA,
  160. ATMEL_NFC_WRITE_DATA,
  161. };
  162. struct atmel_nfc_op {
  163. u8 cs;
  164. u8 ncmds;
  165. u8 cmds[2];
  166. u8 naddrs;
  167. u8 addrs[5];
  168. enum atmel_nfc_data_xfer data;
  169. u32 wait;
  170. u32 errors;
  171. };
  172. struct atmel_nand_controller;
  173. struct atmel_nand_controller_caps;
  174. struct atmel_nand_controller_ops {
  175. int (*probe)(struct platform_device *pdev,
  176. const struct atmel_nand_controller_caps *caps);
  177. int (*remove)(struct atmel_nand_controller *nc);
  178. void (*nand_init)(struct atmel_nand_controller *nc,
  179. struct atmel_nand *nand);
  180. int (*ecc_init)(struct nand_chip *chip);
  181. int (*setup_data_interface)(struct atmel_nand *nand, int csline,
  182. const struct nand_data_interface *conf);
  183. };
  184. struct atmel_nand_controller_caps {
  185. bool has_dma;
  186. bool legacy_of_bindings;
  187. u32 ale_offs;
  188. u32 cle_offs;
  189. const struct atmel_nand_controller_ops *ops;
  190. };
  191. struct atmel_nand_controller {
  192. struct nand_controller base;
  193. const struct atmel_nand_controller_caps *caps;
  194. struct device *dev;
  195. struct regmap *smc;
  196. struct dma_chan *dmac;
  197. struct atmel_pmecc *pmecc;
  198. struct list_head chips;
  199. struct clk *mck;
  200. };
  201. static inline struct atmel_nand_controller *
  202. to_nand_controller(struct nand_controller *ctl)
  203. {
  204. return container_of(ctl, struct atmel_nand_controller, base);
  205. }
  206. struct atmel_smc_nand_controller {
  207. struct atmel_nand_controller base;
  208. struct regmap *matrix;
  209. unsigned int ebi_csa_offs;
  210. };
  211. static inline struct atmel_smc_nand_controller *
  212. to_smc_nand_controller(struct nand_controller *ctl)
  213. {
  214. return container_of(to_nand_controller(ctl),
  215. struct atmel_smc_nand_controller, base);
  216. }
  217. struct atmel_hsmc_nand_controller {
  218. struct atmel_nand_controller base;
  219. struct {
  220. struct gen_pool *pool;
  221. void __iomem *virt;
  222. dma_addr_t dma;
  223. } sram;
  224. const struct atmel_hsmc_reg_layout *hsmc_layout;
  225. struct regmap *io;
  226. struct atmel_nfc_op op;
  227. struct completion complete;
  228. int irq;
  229. /* Only used when instantiating from legacy DT bindings. */
  230. struct clk *clk;
  231. };
  232. static inline struct atmel_hsmc_nand_controller *
  233. to_hsmc_nand_controller(struct nand_controller *ctl)
  234. {
  235. return container_of(to_nand_controller(ctl),
  236. struct atmel_hsmc_nand_controller, base);
  237. }
  238. static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
  239. {
  240. op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
  241. op->wait ^= status & op->wait;
  242. return !op->wait || op->errors;
  243. }
  244. static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
  245. {
  246. struct atmel_hsmc_nand_controller *nc = data;
  247. u32 sr, rcvd;
  248. bool done;
  249. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
  250. rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
  251. done = atmel_nfc_op_done(&nc->op, sr);
  252. if (rcvd)
  253. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
  254. if (done)
  255. complete(&nc->complete);
  256. return rcvd ? IRQ_HANDLED : IRQ_NONE;
  257. }
  258. static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
  259. unsigned int timeout_ms)
  260. {
  261. int ret;
  262. if (!timeout_ms)
  263. timeout_ms = DEFAULT_TIMEOUT_MS;
  264. if (poll) {
  265. u32 status;
  266. ret = regmap_read_poll_timeout(nc->base.smc,
  267. ATMEL_HSMC_NFC_SR, status,
  268. atmel_nfc_op_done(&nc->op,
  269. status),
  270. 0, timeout_ms * 1000);
  271. } else {
  272. init_completion(&nc->complete);
  273. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
  274. nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
  275. ret = wait_for_completion_timeout(&nc->complete,
  276. msecs_to_jiffies(timeout_ms));
  277. if (!ret)
  278. ret = -ETIMEDOUT;
  279. else
  280. ret = 0;
  281. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
  282. }
  283. if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
  284. dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
  285. ret = -ETIMEDOUT;
  286. }
  287. if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
  288. dev_err(nc->base.dev, "Access to an undefined area\n");
  289. ret = -EIO;
  290. }
  291. if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
  292. dev_err(nc->base.dev, "Access while busy\n");
  293. ret = -EIO;
  294. }
  295. if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
  296. dev_err(nc->base.dev, "Wrong access size\n");
  297. ret = -EIO;
  298. }
  299. return ret;
  300. }
  301. static void atmel_nand_dma_transfer_finished(void *data)
  302. {
  303. struct completion *finished = data;
  304. complete(finished);
  305. }
  306. static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
  307. void *buf, dma_addr_t dev_dma, size_t len,
  308. enum dma_data_direction dir)
  309. {
  310. DECLARE_COMPLETION_ONSTACK(finished);
  311. dma_addr_t src_dma, dst_dma, buf_dma;
  312. struct dma_async_tx_descriptor *tx;
  313. dma_cookie_t cookie;
  314. buf_dma = dma_map_single(nc->dev, buf, len, dir);
  315. if (dma_mapping_error(nc->dev, dev_dma)) {
  316. dev_err(nc->dev,
  317. "Failed to prepare a buffer for DMA access\n");
  318. goto err;
  319. }
  320. if (dir == DMA_FROM_DEVICE) {
  321. src_dma = dev_dma;
  322. dst_dma = buf_dma;
  323. } else {
  324. src_dma = buf_dma;
  325. dst_dma = dev_dma;
  326. }
  327. tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
  328. DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
  329. if (!tx) {
  330. dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
  331. goto err_unmap;
  332. }
  333. tx->callback = atmel_nand_dma_transfer_finished;
  334. tx->callback_param = &finished;
  335. cookie = dmaengine_submit(tx);
  336. if (dma_submit_error(cookie)) {
  337. dev_err(nc->dev, "Failed to do DMA tx_submit\n");
  338. goto err_unmap;
  339. }
  340. dma_async_issue_pending(nc->dmac);
  341. wait_for_completion(&finished);
  342. return 0;
  343. err_unmap:
  344. dma_unmap_single(nc->dev, buf_dma, len, dir);
  345. err:
  346. dev_dbg(nc->dev, "Fall back to CPU I/O\n");
  347. return -EIO;
  348. }
  349. static u8 atmel_nand_read_byte(struct mtd_info *mtd)
  350. {
  351. struct nand_chip *chip = mtd_to_nand(mtd);
  352. struct atmel_nand *nand = to_atmel_nand(chip);
  353. return ioread8(nand->activecs->io.virt);
  354. }
  355. static u16 atmel_nand_read_word(struct mtd_info *mtd)
  356. {
  357. struct nand_chip *chip = mtd_to_nand(mtd);
  358. struct atmel_nand *nand = to_atmel_nand(chip);
  359. return ioread16(nand->activecs->io.virt);
  360. }
  361. static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte)
  362. {
  363. struct nand_chip *chip = mtd_to_nand(mtd);
  364. struct atmel_nand *nand = to_atmel_nand(chip);
  365. if (chip->options & NAND_BUSWIDTH_16)
  366. iowrite16(byte | (byte << 8), nand->activecs->io.virt);
  367. else
  368. iowrite8(byte, nand->activecs->io.virt);
  369. }
  370. static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
  371. {
  372. struct nand_chip *chip = mtd_to_nand(mtd);
  373. struct atmel_nand *nand = to_atmel_nand(chip);
  374. struct atmel_nand_controller *nc;
  375. nc = to_nand_controller(chip->controller);
  376. /*
  377. * If the controller supports DMA, the buffer address is DMA-able and
  378. * len is long enough to make DMA transfers profitable, let's trigger
  379. * a DMA transfer. If it fails, fallback to PIO mode.
  380. */
  381. if (nc->dmac && virt_addr_valid(buf) &&
  382. len >= MIN_DMA_LEN &&
  383. !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
  384. DMA_FROM_DEVICE))
  385. return;
  386. if (chip->options & NAND_BUSWIDTH_16)
  387. ioread16_rep(nand->activecs->io.virt, buf, len / 2);
  388. else
  389. ioread8_rep(nand->activecs->io.virt, buf, len);
  390. }
  391. static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
  392. {
  393. struct nand_chip *chip = mtd_to_nand(mtd);
  394. struct atmel_nand *nand = to_atmel_nand(chip);
  395. struct atmel_nand_controller *nc;
  396. nc = to_nand_controller(chip->controller);
  397. /*
  398. * If the controller supports DMA, the buffer address is DMA-able and
  399. * len is long enough to make DMA transfers profitable, let's trigger
  400. * a DMA transfer. If it fails, fallback to PIO mode.
  401. */
  402. if (nc->dmac && virt_addr_valid(buf) &&
  403. len >= MIN_DMA_LEN &&
  404. !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
  405. len, DMA_TO_DEVICE))
  406. return;
  407. if (chip->options & NAND_BUSWIDTH_16)
  408. iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
  409. else
  410. iowrite8_rep(nand->activecs->io.virt, buf, len);
  411. }
  412. static int atmel_nand_dev_ready(struct mtd_info *mtd)
  413. {
  414. struct nand_chip *chip = mtd_to_nand(mtd);
  415. struct atmel_nand *nand = to_atmel_nand(chip);
  416. return gpiod_get_value(nand->activecs->rb.gpio);
  417. }
  418. static void atmel_nand_select_chip(struct mtd_info *mtd, int cs)
  419. {
  420. struct nand_chip *chip = mtd_to_nand(mtd);
  421. struct atmel_nand *nand = to_atmel_nand(chip);
  422. if (cs < 0 || cs >= nand->numcs) {
  423. nand->activecs = NULL;
  424. chip->dev_ready = NULL;
  425. return;
  426. }
  427. nand->activecs = &nand->cs[cs];
  428. if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
  429. chip->dev_ready = atmel_nand_dev_ready;
  430. }
  431. static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
  432. {
  433. struct nand_chip *chip = mtd_to_nand(mtd);
  434. struct atmel_nand *nand = to_atmel_nand(chip);
  435. struct atmel_hsmc_nand_controller *nc;
  436. u32 status;
  437. nc = to_hsmc_nand_controller(chip->controller);
  438. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
  439. return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
  440. }
  441. static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs)
  442. {
  443. struct nand_chip *chip = mtd_to_nand(mtd);
  444. struct atmel_nand *nand = to_atmel_nand(chip);
  445. struct atmel_hsmc_nand_controller *nc;
  446. nc = to_hsmc_nand_controller(chip->controller);
  447. atmel_nand_select_chip(mtd, cs);
  448. if (!nand->activecs) {
  449. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
  450. ATMEL_HSMC_NFC_CTRL_DIS);
  451. return;
  452. }
  453. if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
  454. chip->dev_ready = atmel_hsmc_nand_dev_ready;
  455. regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
  456. ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
  457. ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
  458. ATMEL_HSMC_NFC_CFG_RSPARE |
  459. ATMEL_HSMC_NFC_CFG_WSPARE,
  460. ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
  461. ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
  462. ATMEL_HSMC_NFC_CFG_RSPARE);
  463. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
  464. ATMEL_HSMC_NFC_CTRL_EN);
  465. }
  466. static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
  467. {
  468. u8 *addrs = nc->op.addrs;
  469. unsigned int op = 0;
  470. u32 addr, val;
  471. int i, ret;
  472. nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
  473. for (i = 0; i < nc->op.ncmds; i++)
  474. op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
  475. if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
  476. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
  477. op |= ATMEL_NFC_CSID(nc->op.cs) |
  478. ATMEL_NFC_ACYCLE(nc->op.naddrs);
  479. if (nc->op.ncmds > 1)
  480. op |= ATMEL_NFC_VCMD2;
  481. addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
  482. (addrs[3] << 24);
  483. if (nc->op.data != ATMEL_NFC_NO_DATA) {
  484. op |= ATMEL_NFC_DATAEN;
  485. nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
  486. if (nc->op.data == ATMEL_NFC_WRITE_DATA)
  487. op |= ATMEL_NFC_NFCWR;
  488. }
  489. /* Clear all flags. */
  490. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
  491. /* Send the command. */
  492. regmap_write(nc->io, op, addr);
  493. ret = atmel_nfc_wait(nc, poll, 0);
  494. if (ret)
  495. dev_err(nc->base.dev,
  496. "Failed to send NAND command (err = %d)!",
  497. ret);
  498. /* Reset the op state. */
  499. memset(&nc->op, 0, sizeof(nc->op));
  500. return ret;
  501. }
  502. static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
  503. unsigned int ctrl)
  504. {
  505. struct nand_chip *chip = mtd_to_nand(mtd);
  506. struct atmel_nand *nand = to_atmel_nand(chip);
  507. struct atmel_hsmc_nand_controller *nc;
  508. nc = to_hsmc_nand_controller(chip->controller);
  509. if (ctrl & NAND_ALE) {
  510. if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
  511. return;
  512. nc->op.addrs[nc->op.naddrs++] = dat;
  513. } else if (ctrl & NAND_CLE) {
  514. if (nc->op.ncmds > 1)
  515. return;
  516. nc->op.cmds[nc->op.ncmds++] = dat;
  517. }
  518. if (dat == NAND_CMD_NONE) {
  519. nc->op.cs = nand->activecs->id;
  520. atmel_nfc_exec_op(nc, true);
  521. }
  522. }
  523. static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
  524. unsigned int ctrl)
  525. {
  526. struct nand_chip *chip = mtd_to_nand(mtd);
  527. struct atmel_nand *nand = to_atmel_nand(chip);
  528. struct atmel_nand_controller *nc;
  529. nc = to_nand_controller(chip->controller);
  530. if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) {
  531. if (ctrl & NAND_NCE)
  532. gpiod_set_value(nand->activecs->csgpio, 0);
  533. else
  534. gpiod_set_value(nand->activecs->csgpio, 1);
  535. }
  536. if (ctrl & NAND_ALE)
  537. writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
  538. else if (ctrl & NAND_CLE)
  539. writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
  540. }
  541. static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
  542. bool oob_required)
  543. {
  544. struct mtd_info *mtd = nand_to_mtd(chip);
  545. struct atmel_hsmc_nand_controller *nc;
  546. int ret = -EIO;
  547. nc = to_hsmc_nand_controller(chip->controller);
  548. if (nc->base.dmac)
  549. ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
  550. nc->sram.dma, mtd->writesize,
  551. DMA_TO_DEVICE);
  552. /* Falling back to CPU copy. */
  553. if (ret)
  554. memcpy_toio(nc->sram.virt, buf, mtd->writesize);
  555. if (oob_required)
  556. memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
  557. mtd->oobsize);
  558. }
  559. static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
  560. bool oob_required)
  561. {
  562. struct mtd_info *mtd = nand_to_mtd(chip);
  563. struct atmel_hsmc_nand_controller *nc;
  564. int ret = -EIO;
  565. nc = to_hsmc_nand_controller(chip->controller);
  566. if (nc->base.dmac)
  567. ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
  568. mtd->writesize, DMA_FROM_DEVICE);
  569. /* Falling back to CPU copy. */
  570. if (ret)
  571. memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
  572. if (oob_required)
  573. memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
  574. mtd->oobsize);
  575. }
  576. static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
  577. {
  578. struct mtd_info *mtd = nand_to_mtd(chip);
  579. struct atmel_hsmc_nand_controller *nc;
  580. nc = to_hsmc_nand_controller(chip->controller);
  581. if (column >= 0) {
  582. nc->op.addrs[nc->op.naddrs++] = column;
  583. /*
  584. * 2 address cycles for the column offset on large page NANDs.
  585. */
  586. if (mtd->writesize > 512)
  587. nc->op.addrs[nc->op.naddrs++] = column >> 8;
  588. }
  589. if (page >= 0) {
  590. nc->op.addrs[nc->op.naddrs++] = page;
  591. nc->op.addrs[nc->op.naddrs++] = page >> 8;
  592. if (chip->options & NAND_ROW_ADDR_3)
  593. nc->op.addrs[nc->op.naddrs++] = page >> 16;
  594. }
  595. }
  596. static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
  597. {
  598. struct atmel_nand *nand = to_atmel_nand(chip);
  599. struct atmel_nand_controller *nc;
  600. int ret;
  601. nc = to_nand_controller(chip->controller);
  602. if (raw)
  603. return 0;
  604. ret = atmel_pmecc_enable(nand->pmecc, op);
  605. if (ret)
  606. dev_err(nc->dev,
  607. "Failed to enable ECC engine (err = %d)\n", ret);
  608. return ret;
  609. }
  610. static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
  611. {
  612. struct atmel_nand *nand = to_atmel_nand(chip);
  613. if (!raw)
  614. atmel_pmecc_disable(nand->pmecc);
  615. }
  616. static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
  617. {
  618. struct atmel_nand *nand = to_atmel_nand(chip);
  619. struct mtd_info *mtd = nand_to_mtd(chip);
  620. struct atmel_nand_controller *nc;
  621. struct mtd_oob_region oobregion;
  622. void *eccbuf;
  623. int ret, i;
  624. nc = to_nand_controller(chip->controller);
  625. if (raw)
  626. return 0;
  627. ret = atmel_pmecc_wait_rdy(nand->pmecc);
  628. if (ret) {
  629. dev_err(nc->dev,
  630. "Failed to transfer NAND page data (err = %d)\n",
  631. ret);
  632. return ret;
  633. }
  634. mtd_ooblayout_ecc(mtd, 0, &oobregion);
  635. eccbuf = chip->oob_poi + oobregion.offset;
  636. for (i = 0; i < chip->ecc.steps; i++) {
  637. atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
  638. eccbuf);
  639. eccbuf += chip->ecc.bytes;
  640. }
  641. return 0;
  642. }
  643. static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
  644. bool raw)
  645. {
  646. struct atmel_nand *nand = to_atmel_nand(chip);
  647. struct mtd_info *mtd = nand_to_mtd(chip);
  648. struct atmel_nand_controller *nc;
  649. struct mtd_oob_region oobregion;
  650. int ret, i, max_bitflips = 0;
  651. void *databuf, *eccbuf;
  652. nc = to_nand_controller(chip->controller);
  653. if (raw)
  654. return 0;
  655. ret = atmel_pmecc_wait_rdy(nand->pmecc);
  656. if (ret) {
  657. dev_err(nc->dev,
  658. "Failed to read NAND page data (err = %d)\n",
  659. ret);
  660. return ret;
  661. }
  662. mtd_ooblayout_ecc(mtd, 0, &oobregion);
  663. eccbuf = chip->oob_poi + oobregion.offset;
  664. databuf = buf;
  665. for (i = 0; i < chip->ecc.steps; i++) {
  666. ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
  667. eccbuf);
  668. if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
  669. ret = nand_check_erased_ecc_chunk(databuf,
  670. chip->ecc.size,
  671. eccbuf,
  672. chip->ecc.bytes,
  673. NULL, 0,
  674. chip->ecc.strength);
  675. if (ret >= 0)
  676. max_bitflips = max(ret, max_bitflips);
  677. else
  678. mtd->ecc_stats.failed++;
  679. databuf += chip->ecc.size;
  680. eccbuf += chip->ecc.bytes;
  681. }
  682. return max_bitflips;
  683. }
  684. static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
  685. bool oob_required, int page, bool raw)
  686. {
  687. struct mtd_info *mtd = nand_to_mtd(chip);
  688. struct atmel_nand *nand = to_atmel_nand(chip);
  689. int ret;
  690. nand_prog_page_begin_op(chip, page, 0, NULL, 0);
  691. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
  692. if (ret)
  693. return ret;
  694. atmel_nand_write_buf(mtd, buf, mtd->writesize);
  695. ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
  696. if (ret) {
  697. atmel_pmecc_disable(nand->pmecc);
  698. return ret;
  699. }
  700. atmel_nand_pmecc_disable(chip, raw);
  701. atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
  702. return nand_prog_page_end_op(chip);
  703. }
  704. static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
  705. struct nand_chip *chip, const u8 *buf,
  706. int oob_required, int page)
  707. {
  708. return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
  709. }
  710. static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd,
  711. struct nand_chip *chip,
  712. const u8 *buf, int oob_required,
  713. int page)
  714. {
  715. return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
  716. }
  717. static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
  718. bool oob_required, int page, bool raw)
  719. {
  720. struct mtd_info *mtd = nand_to_mtd(chip);
  721. int ret;
  722. nand_read_page_op(chip, page, 0, NULL, 0);
  723. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
  724. if (ret)
  725. return ret;
  726. atmel_nand_read_buf(mtd, buf, mtd->writesize);
  727. atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
  728. ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
  729. atmel_nand_pmecc_disable(chip, raw);
  730. return ret;
  731. }
  732. static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
  733. struct nand_chip *chip, u8 *buf,
  734. int oob_required, int page)
  735. {
  736. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
  737. }
  738. static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd,
  739. struct nand_chip *chip, u8 *buf,
  740. int oob_required, int page)
  741. {
  742. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
  743. }
  744. static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
  745. const u8 *buf, bool oob_required,
  746. int page, bool raw)
  747. {
  748. struct mtd_info *mtd = nand_to_mtd(chip);
  749. struct atmel_nand *nand = to_atmel_nand(chip);
  750. struct atmel_hsmc_nand_controller *nc;
  751. int ret, status;
  752. nc = to_hsmc_nand_controller(chip->controller);
  753. atmel_nfc_copy_to_sram(chip, buf, false);
  754. nc->op.cmds[0] = NAND_CMD_SEQIN;
  755. nc->op.ncmds = 1;
  756. atmel_nfc_set_op_addr(chip, page, 0x0);
  757. nc->op.cs = nand->activecs->id;
  758. nc->op.data = ATMEL_NFC_WRITE_DATA;
  759. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
  760. if (ret)
  761. return ret;
  762. ret = atmel_nfc_exec_op(nc, false);
  763. if (ret) {
  764. atmel_nand_pmecc_disable(chip, raw);
  765. dev_err(nc->base.dev,
  766. "Failed to transfer NAND page data (err = %d)\n",
  767. ret);
  768. return ret;
  769. }
  770. ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
  771. atmel_nand_pmecc_disable(chip, raw);
  772. if (ret)
  773. return ret;
  774. atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
  775. nc->op.cmds[0] = NAND_CMD_PAGEPROG;
  776. nc->op.ncmds = 1;
  777. nc->op.cs = nand->activecs->id;
  778. ret = atmel_nfc_exec_op(nc, false);
  779. if (ret)
  780. dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
  781. ret);
  782. status = chip->waitfunc(mtd, chip);
  783. if (status & NAND_STATUS_FAIL)
  784. return -EIO;
  785. return ret;
  786. }
  787. static int atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd,
  788. struct nand_chip *chip,
  789. const u8 *buf, int oob_required,
  790. int page)
  791. {
  792. return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
  793. false);
  794. }
  795. static int atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd,
  796. struct nand_chip *chip,
  797. const u8 *buf,
  798. int oob_required, int page)
  799. {
  800. return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
  801. true);
  802. }
  803. static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
  804. bool oob_required, int page,
  805. bool raw)
  806. {
  807. struct mtd_info *mtd = nand_to_mtd(chip);
  808. struct atmel_nand *nand = to_atmel_nand(chip);
  809. struct atmel_hsmc_nand_controller *nc;
  810. int ret;
  811. nc = to_hsmc_nand_controller(chip->controller);
  812. /*
  813. * Optimized read page accessors only work when the NAND R/B pin is
  814. * connected to a native SoC R/B pin. If that's not the case, fallback
  815. * to the non-optimized one.
  816. */
  817. if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
  818. nand_read_page_op(chip, page, 0, NULL, 0);
  819. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
  820. raw);
  821. }
  822. nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
  823. if (mtd->writesize > 512)
  824. nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
  825. atmel_nfc_set_op_addr(chip, page, 0x0);
  826. nc->op.cs = nand->activecs->id;
  827. nc->op.data = ATMEL_NFC_READ_DATA;
  828. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
  829. if (ret)
  830. return ret;
  831. ret = atmel_nfc_exec_op(nc, false);
  832. if (ret) {
  833. atmel_nand_pmecc_disable(chip, raw);
  834. dev_err(nc->base.dev,
  835. "Failed to load NAND page data (err = %d)\n",
  836. ret);
  837. return ret;
  838. }
  839. atmel_nfc_copy_from_sram(chip, buf, true);
  840. ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
  841. atmel_nand_pmecc_disable(chip, raw);
  842. return ret;
  843. }
  844. static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd,
  845. struct nand_chip *chip, u8 *buf,
  846. int oob_required, int page)
  847. {
  848. return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
  849. false);
  850. }
  851. static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd,
  852. struct nand_chip *chip,
  853. u8 *buf, int oob_required,
  854. int page)
  855. {
  856. return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
  857. true);
  858. }
  859. static int atmel_nand_pmecc_init(struct nand_chip *chip)
  860. {
  861. struct mtd_info *mtd = nand_to_mtd(chip);
  862. struct atmel_nand *nand = to_atmel_nand(chip);
  863. struct atmel_nand_controller *nc;
  864. struct atmel_pmecc_user_req req;
  865. nc = to_nand_controller(chip->controller);
  866. if (!nc->pmecc) {
  867. dev_err(nc->dev, "HW ECC not supported\n");
  868. return -ENOTSUPP;
  869. }
  870. if (nc->caps->legacy_of_bindings) {
  871. u32 val;
  872. if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
  873. &val))
  874. chip->ecc.strength = val;
  875. if (!of_property_read_u32(nc->dev->of_node,
  876. "atmel,pmecc-sector-size",
  877. &val))
  878. chip->ecc.size = val;
  879. }
  880. if (chip->ecc.options & NAND_ECC_MAXIMIZE)
  881. req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
  882. else if (chip->ecc.strength)
  883. req.ecc.strength = chip->ecc.strength;
  884. else if (chip->ecc_strength_ds)
  885. req.ecc.strength = chip->ecc_strength_ds;
  886. else
  887. req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
  888. if (chip->ecc.size)
  889. req.ecc.sectorsize = chip->ecc.size;
  890. else if (chip->ecc_step_ds)
  891. req.ecc.sectorsize = chip->ecc_step_ds;
  892. else
  893. req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
  894. req.pagesize = mtd->writesize;
  895. req.oobsize = mtd->oobsize;
  896. if (mtd->writesize <= 512) {
  897. req.ecc.bytes = 4;
  898. req.ecc.ooboffset = 0;
  899. } else {
  900. req.ecc.bytes = mtd->oobsize - 2;
  901. req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
  902. }
  903. nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
  904. if (IS_ERR(nand->pmecc))
  905. return PTR_ERR(nand->pmecc);
  906. chip->ecc.algo = NAND_ECC_BCH;
  907. chip->ecc.size = req.ecc.sectorsize;
  908. chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
  909. chip->ecc.strength = req.ecc.strength;
  910. chip->options |= NAND_NO_SUBPAGE_WRITE;
  911. mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
  912. return 0;
  913. }
  914. static int atmel_nand_ecc_init(struct nand_chip *chip)
  915. {
  916. struct atmel_nand_controller *nc;
  917. int ret;
  918. nc = to_nand_controller(chip->controller);
  919. switch (chip->ecc.mode) {
  920. case NAND_ECC_NONE:
  921. case NAND_ECC_SOFT:
  922. /*
  923. * Nothing to do, the core will initialize everything for us.
  924. */
  925. break;
  926. case NAND_ECC_HW:
  927. ret = atmel_nand_pmecc_init(chip);
  928. if (ret)
  929. return ret;
  930. chip->ecc.read_page = atmel_nand_pmecc_read_page;
  931. chip->ecc.write_page = atmel_nand_pmecc_write_page;
  932. chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
  933. chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
  934. break;
  935. default:
  936. /* Other modes are not supported. */
  937. dev_err(nc->dev, "Unsupported ECC mode: %d\n",
  938. chip->ecc.mode);
  939. return -ENOTSUPP;
  940. }
  941. return 0;
  942. }
  943. static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
  944. {
  945. int ret;
  946. ret = atmel_nand_ecc_init(chip);
  947. if (ret)
  948. return ret;
  949. if (chip->ecc.mode != NAND_ECC_HW)
  950. return 0;
  951. /* Adjust the ECC operations for the HSMC IP. */
  952. chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
  953. chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
  954. chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
  955. chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
  956. return 0;
  957. }
  958. static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
  959. const struct nand_data_interface *conf,
  960. struct atmel_smc_cs_conf *smcconf)
  961. {
  962. u32 ncycles, totalcycles, timeps, mckperiodps;
  963. struct atmel_nand_controller *nc;
  964. int ret;
  965. nc = to_nand_controller(nand->base.controller);
  966. /* DDR interface not supported. */
  967. if (conf->type != NAND_SDR_IFACE)
  968. return -ENOTSUPP;
  969. /*
  970. * tRC < 30ns implies EDO mode. This controller does not support this
  971. * mode.
  972. */
  973. if (conf->timings.sdr.tRC_min < 30000)
  974. return -ENOTSUPP;
  975. atmel_smc_cs_conf_init(smcconf);
  976. mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
  977. mckperiodps *= 1000;
  978. /*
  979. * Set write pulse timing. This one is easy to extract:
  980. *
  981. * NWE_PULSE = tWP
  982. */
  983. ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
  984. totalcycles = ncycles;
  985. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
  986. ncycles);
  987. if (ret)
  988. return ret;
  989. /*
  990. * The write setup timing depends on the operation done on the NAND.
  991. * All operations goes through the same data bus, but the operation
  992. * type depends on the address we are writing to (ALE/CLE address
  993. * lines).
  994. * Since we have no way to differentiate the different operations at
  995. * the SMC level, we must consider the worst case (the biggest setup
  996. * time among all operation types):
  997. *
  998. * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
  999. */
  1000. timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
  1001. conf->timings.sdr.tALS_min);
  1002. timeps = max(timeps, conf->timings.sdr.tDS_min);
  1003. ncycles = DIV_ROUND_UP(timeps, mckperiodps);
  1004. ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
  1005. totalcycles += ncycles;
  1006. ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
  1007. ncycles);
  1008. if (ret)
  1009. return ret;
  1010. /*
  1011. * As for the write setup timing, the write hold timing depends on the
  1012. * operation done on the NAND:
  1013. *
  1014. * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
  1015. */
  1016. timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
  1017. conf->timings.sdr.tALH_min);
  1018. timeps = max3(timeps, conf->timings.sdr.tDH_min,
  1019. conf->timings.sdr.tWH_min);
  1020. ncycles = DIV_ROUND_UP(timeps, mckperiodps);
  1021. totalcycles += ncycles;
  1022. /*
  1023. * The write cycle timing is directly matching tWC, but is also
  1024. * dependent on the other timings on the setup and hold timings we
  1025. * calculated earlier, which gives:
  1026. *
  1027. * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
  1028. */
  1029. ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
  1030. ncycles = max(totalcycles, ncycles);
  1031. ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
  1032. ncycles);
  1033. if (ret)
  1034. return ret;
  1035. /*
  1036. * We don't want the CS line to be toggled between each byte/word
  1037. * transfer to the NAND. The only way to guarantee that is to have the
  1038. * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
  1039. *
  1040. * NCS_WR_PULSE = NWE_CYCLE
  1041. */
  1042. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
  1043. ncycles);
  1044. if (ret)
  1045. return ret;
  1046. /*
  1047. * As for the write setup timing, the read hold timing depends on the
  1048. * operation done on the NAND:
  1049. *
  1050. * NRD_HOLD = max(tREH, tRHOH)
  1051. */
  1052. timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
  1053. ncycles = DIV_ROUND_UP(timeps, mckperiodps);
  1054. totalcycles = ncycles;
  1055. /*
  1056. * TDF = tRHZ - NRD_HOLD
  1057. */
  1058. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
  1059. ncycles -= totalcycles;
  1060. /*
  1061. * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
  1062. * we might end up with a config that does not fit in the TDF field.
  1063. * Just take the max value in this case and hope that the NAND is more
  1064. * tolerant than advertised.
  1065. */
  1066. if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
  1067. ncycles = ATMEL_SMC_MODE_TDF_MAX;
  1068. else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
  1069. ncycles = ATMEL_SMC_MODE_TDF_MIN;
  1070. smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
  1071. ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
  1072. /*
  1073. * Read pulse timing directly matches tRP:
  1074. *
  1075. * NRD_PULSE = tRP
  1076. */
  1077. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
  1078. totalcycles += ncycles;
  1079. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
  1080. ncycles);
  1081. if (ret)
  1082. return ret;
  1083. /*
  1084. * The write cycle timing is directly matching tWC, but is also
  1085. * dependent on the setup and hold timings we calculated earlier,
  1086. * which gives:
  1087. *
  1088. * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
  1089. *
  1090. * NRD_SETUP is always 0.
  1091. */
  1092. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
  1093. ncycles = max(totalcycles, ncycles);
  1094. ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
  1095. ncycles);
  1096. if (ret)
  1097. return ret;
  1098. /*
  1099. * We don't want the CS line to be toggled between each byte/word
  1100. * transfer from the NAND. The only way to guarantee that is to have
  1101. * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
  1102. *
  1103. * NCS_RD_PULSE = NRD_CYCLE
  1104. */
  1105. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
  1106. ncycles);
  1107. if (ret)
  1108. return ret;
  1109. /* Txxx timings are directly matching tXXX ones. */
  1110. ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
  1111. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1112. ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
  1113. ncycles);
  1114. if (ret)
  1115. return ret;
  1116. ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
  1117. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1118. ATMEL_HSMC_TIMINGS_TADL_SHIFT,
  1119. ncycles);
  1120. /*
  1121. * Version 4 of the ONFI spec mandates that tADL be at least 400
  1122. * nanoseconds, but, depending on the master clock rate, 400 ns may not
  1123. * fit in the tADL field of the SMC reg. We need to relax the check and
  1124. * accept the -ERANGE return code.
  1125. *
  1126. * Note that previous versions of the ONFI spec had a lower tADL_min
  1127. * (100 or 200 ns). It's not clear why this timing constraint got
  1128. * increased but it seems most NANDs are fine with values lower than
  1129. * 400ns, so we should be safe.
  1130. */
  1131. if (ret && ret != -ERANGE)
  1132. return ret;
  1133. ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
  1134. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1135. ATMEL_HSMC_TIMINGS_TAR_SHIFT,
  1136. ncycles);
  1137. if (ret)
  1138. return ret;
  1139. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
  1140. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1141. ATMEL_HSMC_TIMINGS_TRR_SHIFT,
  1142. ncycles);
  1143. if (ret)
  1144. return ret;
  1145. ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
  1146. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1147. ATMEL_HSMC_TIMINGS_TWB_SHIFT,
  1148. ncycles);
  1149. if (ret)
  1150. return ret;
  1151. /* Attach the CS line to the NFC logic. */
  1152. smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
  1153. /* Set the appropriate data bus width. */
  1154. if (nand->base.options & NAND_BUSWIDTH_16)
  1155. smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
  1156. /* Operate in NRD/NWE READ/WRITEMODE. */
  1157. smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
  1158. ATMEL_SMC_MODE_WRITEMODE_NWE;
  1159. return 0;
  1160. }
  1161. static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
  1162. int csline,
  1163. const struct nand_data_interface *conf)
  1164. {
  1165. struct atmel_nand_controller *nc;
  1166. struct atmel_smc_cs_conf smcconf;
  1167. struct atmel_nand_cs *cs;
  1168. int ret;
  1169. nc = to_nand_controller(nand->base.controller);
  1170. ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
  1171. if (ret)
  1172. return ret;
  1173. if (csline == NAND_DATA_IFACE_CHECK_ONLY)
  1174. return 0;
  1175. cs = &nand->cs[csline];
  1176. cs->smcconf = smcconf;
  1177. atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
  1178. return 0;
  1179. }
  1180. static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
  1181. int csline,
  1182. const struct nand_data_interface *conf)
  1183. {
  1184. struct atmel_hsmc_nand_controller *nc;
  1185. struct atmel_smc_cs_conf smcconf;
  1186. struct atmel_nand_cs *cs;
  1187. int ret;
  1188. nc = to_hsmc_nand_controller(nand->base.controller);
  1189. ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
  1190. if (ret)
  1191. return ret;
  1192. if (csline == NAND_DATA_IFACE_CHECK_ONLY)
  1193. return 0;
  1194. cs = &nand->cs[csline];
  1195. cs->smcconf = smcconf;
  1196. if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
  1197. cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
  1198. atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
  1199. &cs->smcconf);
  1200. return 0;
  1201. }
  1202. static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline,
  1203. const struct nand_data_interface *conf)
  1204. {
  1205. struct nand_chip *chip = mtd_to_nand(mtd);
  1206. struct atmel_nand *nand = to_atmel_nand(chip);
  1207. struct atmel_nand_controller *nc;
  1208. nc = to_nand_controller(nand->base.controller);
  1209. if (csline >= nand->numcs ||
  1210. (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
  1211. return -EINVAL;
  1212. return nc->caps->ops->setup_data_interface(nand, csline, conf);
  1213. }
  1214. static void atmel_nand_init(struct atmel_nand_controller *nc,
  1215. struct atmel_nand *nand)
  1216. {
  1217. struct nand_chip *chip = &nand->base;
  1218. struct mtd_info *mtd = nand_to_mtd(chip);
  1219. mtd->dev.parent = nc->dev;
  1220. nand->base.controller = &nc->base;
  1221. chip->cmd_ctrl = atmel_nand_cmd_ctrl;
  1222. chip->read_byte = atmel_nand_read_byte;
  1223. chip->read_word = atmel_nand_read_word;
  1224. chip->write_byte = atmel_nand_write_byte;
  1225. chip->read_buf = atmel_nand_read_buf;
  1226. chip->write_buf = atmel_nand_write_buf;
  1227. chip->select_chip = atmel_nand_select_chip;
  1228. if (nc->mck && nc->caps->ops->setup_data_interface)
  1229. chip->setup_data_interface = atmel_nand_setup_data_interface;
  1230. /* Some NANDs require a longer delay than the default one (20us). */
  1231. chip->chip_delay = 40;
  1232. /*
  1233. * Use a bounce buffer when the buffer passed by the MTD user is not
  1234. * suitable for DMA.
  1235. */
  1236. if (nc->dmac)
  1237. chip->options |= NAND_USE_BOUNCE_BUFFER;
  1238. /* Default to HW ECC if pmecc is available. */
  1239. if (nc->pmecc)
  1240. chip->ecc.mode = NAND_ECC_HW;
  1241. }
  1242. static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
  1243. struct atmel_nand *nand)
  1244. {
  1245. struct nand_chip *chip = &nand->base;
  1246. struct atmel_smc_nand_controller *smc_nc;
  1247. int i;
  1248. atmel_nand_init(nc, nand);
  1249. smc_nc = to_smc_nand_controller(chip->controller);
  1250. if (!smc_nc->matrix)
  1251. return;
  1252. /* Attach the CS to the NAND Flash logic. */
  1253. for (i = 0; i < nand->numcs; i++)
  1254. regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs,
  1255. BIT(nand->cs[i].id), BIT(nand->cs[i].id));
  1256. }
  1257. static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
  1258. struct atmel_nand *nand)
  1259. {
  1260. struct nand_chip *chip = &nand->base;
  1261. atmel_nand_init(nc, nand);
  1262. /* Overload some methods for the HSMC controller. */
  1263. chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
  1264. chip->select_chip = atmel_hsmc_nand_select_chip;
  1265. }
  1266. static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
  1267. {
  1268. struct nand_chip *chip = &nand->base;
  1269. struct mtd_info *mtd = nand_to_mtd(chip);
  1270. int ret;
  1271. ret = mtd_device_unregister(mtd);
  1272. if (ret)
  1273. return ret;
  1274. nand_cleanup(chip);
  1275. list_del(&nand->node);
  1276. return 0;
  1277. }
  1278. static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
  1279. struct device_node *np,
  1280. int reg_cells)
  1281. {
  1282. struct atmel_nand *nand;
  1283. struct gpio_desc *gpio;
  1284. int numcs, ret, i;
  1285. numcs = of_property_count_elems_of_size(np, "reg",
  1286. reg_cells * sizeof(u32));
  1287. if (numcs < 1) {
  1288. dev_err(nc->dev, "Missing or invalid reg property\n");
  1289. return ERR_PTR(-EINVAL);
  1290. }
  1291. nand = devm_kzalloc(nc->dev,
  1292. sizeof(*nand) + (numcs * sizeof(*nand->cs)),
  1293. GFP_KERNEL);
  1294. if (!nand) {
  1295. dev_err(nc->dev, "Failed to allocate NAND object\n");
  1296. return ERR_PTR(-ENOMEM);
  1297. }
  1298. nand->numcs = numcs;
  1299. gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0,
  1300. &np->fwnode, GPIOD_IN,
  1301. "nand-det");
  1302. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1303. dev_err(nc->dev,
  1304. "Failed to get detect gpio (err = %ld)\n",
  1305. PTR_ERR(gpio));
  1306. return ERR_CAST(gpio);
  1307. }
  1308. if (!IS_ERR(gpio))
  1309. nand->cdgpio = gpio;
  1310. for (i = 0; i < numcs; i++) {
  1311. struct resource res;
  1312. u32 val;
  1313. ret = of_address_to_resource(np, 0, &res);
  1314. if (ret) {
  1315. dev_err(nc->dev, "Invalid reg property (err = %d)\n",
  1316. ret);
  1317. return ERR_PTR(ret);
  1318. }
  1319. ret = of_property_read_u32_index(np, "reg", i * reg_cells,
  1320. &val);
  1321. if (ret) {
  1322. dev_err(nc->dev, "Invalid reg property (err = %d)\n",
  1323. ret);
  1324. return ERR_PTR(ret);
  1325. }
  1326. nand->cs[i].id = val;
  1327. nand->cs[i].io.dma = res.start;
  1328. nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
  1329. if (IS_ERR(nand->cs[i].io.virt))
  1330. return ERR_CAST(nand->cs[i].io.virt);
  1331. if (!of_property_read_u32(np, "atmel,rb", &val)) {
  1332. if (val > ATMEL_NFC_MAX_RB_ID)
  1333. return ERR_PTR(-EINVAL);
  1334. nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
  1335. nand->cs[i].rb.id = val;
  1336. } else {
  1337. gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev,
  1338. "rb", i, &np->fwnode,
  1339. GPIOD_IN, "nand-rb");
  1340. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1341. dev_err(nc->dev,
  1342. "Failed to get R/B gpio (err = %ld)\n",
  1343. PTR_ERR(gpio));
  1344. return ERR_CAST(gpio);
  1345. }
  1346. if (!IS_ERR(gpio)) {
  1347. nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
  1348. nand->cs[i].rb.gpio = gpio;
  1349. }
  1350. }
  1351. gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs",
  1352. i, &np->fwnode,
  1353. GPIOD_OUT_HIGH,
  1354. "nand-cs");
  1355. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1356. dev_err(nc->dev,
  1357. "Failed to get CS gpio (err = %ld)\n",
  1358. PTR_ERR(gpio));
  1359. return ERR_CAST(gpio);
  1360. }
  1361. if (!IS_ERR(gpio))
  1362. nand->cs[i].csgpio = gpio;
  1363. }
  1364. nand_set_flash_node(&nand->base, np);
  1365. return nand;
  1366. }
  1367. static int
  1368. atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
  1369. struct atmel_nand *nand)
  1370. {
  1371. struct nand_chip *chip = &nand->base;
  1372. struct mtd_info *mtd = nand_to_mtd(chip);
  1373. int ret;
  1374. /* No card inserted, skip this NAND. */
  1375. if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
  1376. dev_info(nc->dev, "No SmartMedia card inserted.\n");
  1377. return 0;
  1378. }
  1379. nc->caps->ops->nand_init(nc, nand);
  1380. ret = nand_scan(mtd, nand->numcs);
  1381. if (ret) {
  1382. dev_err(nc->dev, "NAND scan failed: %d\n", ret);
  1383. return ret;
  1384. }
  1385. ret = mtd_device_register(mtd, NULL, 0);
  1386. if (ret) {
  1387. dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
  1388. nand_cleanup(chip);
  1389. return ret;
  1390. }
  1391. list_add_tail(&nand->node, &nc->chips);
  1392. return 0;
  1393. }
  1394. static int
  1395. atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
  1396. {
  1397. struct atmel_nand *nand, *tmp;
  1398. int ret;
  1399. list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
  1400. ret = atmel_nand_controller_remove_nand(nand);
  1401. if (ret)
  1402. return ret;
  1403. }
  1404. return 0;
  1405. }
  1406. static int
  1407. atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
  1408. {
  1409. struct device *dev = nc->dev;
  1410. struct platform_device *pdev = to_platform_device(dev);
  1411. struct atmel_nand *nand;
  1412. struct gpio_desc *gpio;
  1413. struct resource *res;
  1414. /*
  1415. * Legacy bindings only allow connecting a single NAND with a unique CS
  1416. * line to the controller.
  1417. */
  1418. nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
  1419. GFP_KERNEL);
  1420. if (!nand)
  1421. return -ENOMEM;
  1422. nand->numcs = 1;
  1423. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1424. nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
  1425. if (IS_ERR(nand->cs[0].io.virt))
  1426. return PTR_ERR(nand->cs[0].io.virt);
  1427. nand->cs[0].io.dma = res->start;
  1428. /*
  1429. * The old driver was hardcoding the CS id to 3 for all sama5
  1430. * controllers. Since this id is only meaningful for the sama5
  1431. * controller we can safely assign this id to 3 no matter the
  1432. * controller.
  1433. * If one wants to connect a NAND to a different CS line, he will
  1434. * have to use the new bindings.
  1435. */
  1436. nand->cs[0].id = 3;
  1437. /* R/B GPIO. */
  1438. gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN);
  1439. if (IS_ERR(gpio)) {
  1440. dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
  1441. PTR_ERR(gpio));
  1442. return PTR_ERR(gpio);
  1443. }
  1444. if (gpio) {
  1445. nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
  1446. nand->cs[0].rb.gpio = gpio;
  1447. }
  1448. /* CS GPIO. */
  1449. gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
  1450. if (IS_ERR(gpio)) {
  1451. dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
  1452. PTR_ERR(gpio));
  1453. return PTR_ERR(gpio);
  1454. }
  1455. nand->cs[0].csgpio = gpio;
  1456. /* Card detect GPIO. */
  1457. gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
  1458. if (IS_ERR(gpio)) {
  1459. dev_err(dev,
  1460. "Failed to get detect gpio (err = %ld)\n",
  1461. PTR_ERR(gpio));
  1462. return PTR_ERR(gpio);
  1463. }
  1464. nand->cdgpio = gpio;
  1465. nand_set_flash_node(&nand->base, nc->dev->of_node);
  1466. return atmel_nand_controller_add_nand(nc, nand);
  1467. }
  1468. static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
  1469. {
  1470. struct device_node *np, *nand_np;
  1471. struct device *dev = nc->dev;
  1472. int ret, reg_cells;
  1473. u32 val;
  1474. /* We do not retrieve the SMC syscon when parsing old DTs. */
  1475. if (nc->caps->legacy_of_bindings)
  1476. return atmel_nand_controller_legacy_add_nands(nc);
  1477. np = dev->of_node;
  1478. ret = of_property_read_u32(np, "#address-cells", &val);
  1479. if (ret) {
  1480. dev_err(dev, "missing #address-cells property\n");
  1481. return ret;
  1482. }
  1483. reg_cells = val;
  1484. ret = of_property_read_u32(np, "#size-cells", &val);
  1485. if (ret) {
  1486. dev_err(dev, "missing #address-cells property\n");
  1487. return ret;
  1488. }
  1489. reg_cells += val;
  1490. for_each_child_of_node(np, nand_np) {
  1491. struct atmel_nand *nand;
  1492. nand = atmel_nand_create(nc, nand_np, reg_cells);
  1493. if (IS_ERR(nand)) {
  1494. ret = PTR_ERR(nand);
  1495. goto err;
  1496. }
  1497. ret = atmel_nand_controller_add_nand(nc, nand);
  1498. if (ret)
  1499. goto err;
  1500. }
  1501. return 0;
  1502. err:
  1503. atmel_nand_controller_remove_nands(nc);
  1504. return ret;
  1505. }
  1506. static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
  1507. {
  1508. if (nc->dmac)
  1509. dma_release_channel(nc->dmac);
  1510. clk_put(nc->mck);
  1511. }
  1512. static const struct of_device_id atmel_matrix_of_ids[] = {
  1513. {
  1514. .compatible = "atmel,at91sam9260-matrix",
  1515. .data = (void *)AT91SAM9260_MATRIX_EBICSA,
  1516. },
  1517. {
  1518. .compatible = "atmel,at91sam9261-matrix",
  1519. .data = (void *)AT91SAM9261_MATRIX_EBICSA,
  1520. },
  1521. {
  1522. .compatible = "atmel,at91sam9263-matrix",
  1523. .data = (void *)AT91SAM9263_MATRIX_EBI0CSA,
  1524. },
  1525. {
  1526. .compatible = "atmel,at91sam9rl-matrix",
  1527. .data = (void *)AT91SAM9RL_MATRIX_EBICSA,
  1528. },
  1529. {
  1530. .compatible = "atmel,at91sam9g45-matrix",
  1531. .data = (void *)AT91SAM9G45_MATRIX_EBICSA,
  1532. },
  1533. {
  1534. .compatible = "atmel,at91sam9n12-matrix",
  1535. .data = (void *)AT91SAM9N12_MATRIX_EBICSA,
  1536. },
  1537. {
  1538. .compatible = "atmel,at91sam9x5-matrix",
  1539. .data = (void *)AT91SAM9X5_MATRIX_EBICSA,
  1540. },
  1541. { /* sentinel */ },
  1542. };
  1543. static int atmel_nand_attach_chip(struct nand_chip *chip)
  1544. {
  1545. struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
  1546. struct atmel_nand *nand = to_atmel_nand(chip);
  1547. struct mtd_info *mtd = nand_to_mtd(chip);
  1548. int ret;
  1549. ret = nc->caps->ops->ecc_init(chip);
  1550. if (ret)
  1551. return ret;
  1552. if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
  1553. /*
  1554. * We keep the MTD name unchanged to avoid breaking platforms
  1555. * where the MTD cmdline parser is used and the bootloader
  1556. * has not been updated to use the new naming scheme.
  1557. */
  1558. mtd->name = "atmel_nand";
  1559. } else if (!mtd->name) {
  1560. /*
  1561. * If the new bindings are used and the bootloader has not been
  1562. * updated to pass a new mtdparts parameter on the cmdline, you
  1563. * should define the following property in your nand node:
  1564. *
  1565. * label = "atmel_nand";
  1566. *
  1567. * This way, mtd->name will be set by the core when
  1568. * nand_set_flash_node() is called.
  1569. */
  1570. mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
  1571. "%s:nand.%d", dev_name(nc->dev),
  1572. nand->cs[0].id);
  1573. if (!mtd->name) {
  1574. dev_err(nc->dev, "Failed to allocate mtd->name\n");
  1575. return -ENOMEM;
  1576. }
  1577. }
  1578. return 0;
  1579. }
  1580. static const struct nand_controller_ops atmel_nand_controller_ops = {
  1581. .attach_chip = atmel_nand_attach_chip,
  1582. };
  1583. static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
  1584. struct platform_device *pdev,
  1585. const struct atmel_nand_controller_caps *caps)
  1586. {
  1587. struct device *dev = &pdev->dev;
  1588. struct device_node *np = dev->of_node;
  1589. int ret;
  1590. nand_controller_init(&nc->base);
  1591. nc->base.ops = &atmel_nand_controller_ops;
  1592. INIT_LIST_HEAD(&nc->chips);
  1593. nc->dev = dev;
  1594. nc->caps = caps;
  1595. platform_set_drvdata(pdev, nc);
  1596. nc->pmecc = devm_atmel_pmecc_get(dev);
  1597. if (IS_ERR(nc->pmecc)) {
  1598. ret = PTR_ERR(nc->pmecc);
  1599. if (ret != -EPROBE_DEFER)
  1600. dev_err(dev, "Could not get PMECC object (err = %d)\n",
  1601. ret);
  1602. return ret;
  1603. }
  1604. if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
  1605. dma_cap_mask_t mask;
  1606. dma_cap_zero(mask);
  1607. dma_cap_set(DMA_MEMCPY, mask);
  1608. nc->dmac = dma_request_channel(mask, NULL, NULL);
  1609. if (!nc->dmac)
  1610. dev_err(nc->dev, "Failed to request DMA channel\n");
  1611. }
  1612. /* We do not retrieve the SMC syscon when parsing old DTs. */
  1613. if (nc->caps->legacy_of_bindings)
  1614. return 0;
  1615. nc->mck = of_clk_get(dev->parent->of_node, 0);
  1616. if (IS_ERR(nc->mck)) {
  1617. dev_err(dev, "Failed to retrieve MCK clk\n");
  1618. return PTR_ERR(nc->mck);
  1619. }
  1620. np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
  1621. if (!np) {
  1622. dev_err(dev, "Missing or invalid atmel,smc property\n");
  1623. return -EINVAL;
  1624. }
  1625. nc->smc = syscon_node_to_regmap(np);
  1626. of_node_put(np);
  1627. if (IS_ERR(nc->smc)) {
  1628. ret = PTR_ERR(nc->smc);
  1629. dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
  1630. return ret;
  1631. }
  1632. return 0;
  1633. }
  1634. static int
  1635. atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
  1636. {
  1637. struct device *dev = nc->base.dev;
  1638. const struct of_device_id *match;
  1639. struct device_node *np;
  1640. int ret;
  1641. /* We do not retrieve the matrix syscon when parsing old DTs. */
  1642. if (nc->base.caps->legacy_of_bindings)
  1643. return 0;
  1644. np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0);
  1645. if (!np)
  1646. return 0;
  1647. match = of_match_node(atmel_matrix_of_ids, np);
  1648. if (!match) {
  1649. of_node_put(np);
  1650. return 0;
  1651. }
  1652. nc->matrix = syscon_node_to_regmap(np);
  1653. of_node_put(np);
  1654. if (IS_ERR(nc->matrix)) {
  1655. ret = PTR_ERR(nc->matrix);
  1656. dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret);
  1657. return ret;
  1658. }
  1659. nc->ebi_csa_offs = (uintptr_t)match->data;
  1660. /*
  1661. * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
  1662. * add 4 to ->ebi_csa_offs.
  1663. */
  1664. if (of_device_is_compatible(dev->parent->of_node,
  1665. "atmel,at91sam9263-ebi1"))
  1666. nc->ebi_csa_offs += 4;
  1667. return 0;
  1668. }
  1669. static int
  1670. atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
  1671. {
  1672. struct regmap_config regmap_conf = {
  1673. .reg_bits = 32,
  1674. .val_bits = 32,
  1675. .reg_stride = 4,
  1676. };
  1677. struct device *dev = nc->base.dev;
  1678. struct device_node *nand_np, *nfc_np;
  1679. void __iomem *iomem;
  1680. struct resource res;
  1681. int ret;
  1682. nand_np = dev->of_node;
  1683. nfc_np = of_find_compatible_node(dev->of_node, NULL,
  1684. "atmel,sama5d3-nfc");
  1685. nc->clk = of_clk_get(nfc_np, 0);
  1686. if (IS_ERR(nc->clk)) {
  1687. ret = PTR_ERR(nc->clk);
  1688. dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
  1689. ret);
  1690. goto out;
  1691. }
  1692. ret = clk_prepare_enable(nc->clk);
  1693. if (ret) {
  1694. dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
  1695. ret);
  1696. goto out;
  1697. }
  1698. nc->irq = of_irq_get(nand_np, 0);
  1699. if (nc->irq <= 0) {
  1700. ret = nc->irq ?: -ENXIO;
  1701. if (ret != -EPROBE_DEFER)
  1702. dev_err(dev, "Failed to get IRQ number (err = %d)\n",
  1703. ret);
  1704. goto out;
  1705. }
  1706. ret = of_address_to_resource(nfc_np, 0, &res);
  1707. if (ret) {
  1708. dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
  1709. ret);
  1710. goto out;
  1711. }
  1712. iomem = devm_ioremap_resource(dev, &res);
  1713. if (IS_ERR(iomem)) {
  1714. ret = PTR_ERR(iomem);
  1715. goto out;
  1716. }
  1717. regmap_conf.name = "nfc-io";
  1718. regmap_conf.max_register = resource_size(&res) - 4;
  1719. nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
  1720. if (IS_ERR(nc->io)) {
  1721. ret = PTR_ERR(nc->io);
  1722. dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
  1723. ret);
  1724. goto out;
  1725. }
  1726. ret = of_address_to_resource(nfc_np, 1, &res);
  1727. if (ret) {
  1728. dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
  1729. ret);
  1730. goto out;
  1731. }
  1732. iomem = devm_ioremap_resource(dev, &res);
  1733. if (IS_ERR(iomem)) {
  1734. ret = PTR_ERR(iomem);
  1735. goto out;
  1736. }
  1737. regmap_conf.name = "smc";
  1738. regmap_conf.max_register = resource_size(&res) - 4;
  1739. nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
  1740. if (IS_ERR(nc->base.smc)) {
  1741. ret = PTR_ERR(nc->base.smc);
  1742. dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
  1743. ret);
  1744. goto out;
  1745. }
  1746. ret = of_address_to_resource(nfc_np, 2, &res);
  1747. if (ret) {
  1748. dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
  1749. ret);
  1750. goto out;
  1751. }
  1752. nc->sram.virt = devm_ioremap_resource(dev, &res);
  1753. if (IS_ERR(nc->sram.virt)) {
  1754. ret = PTR_ERR(nc->sram.virt);
  1755. goto out;
  1756. }
  1757. nc->sram.dma = res.start;
  1758. out:
  1759. of_node_put(nfc_np);
  1760. return ret;
  1761. }
  1762. static int
  1763. atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
  1764. {
  1765. struct device *dev = nc->base.dev;
  1766. struct device_node *np;
  1767. int ret;
  1768. np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
  1769. if (!np) {
  1770. dev_err(dev, "Missing or invalid atmel,smc property\n");
  1771. return -EINVAL;
  1772. }
  1773. nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
  1774. nc->irq = of_irq_get(np, 0);
  1775. of_node_put(np);
  1776. if (nc->irq <= 0) {
  1777. ret = nc->irq ?: -ENXIO;
  1778. if (ret != -EPROBE_DEFER)
  1779. dev_err(dev, "Failed to get IRQ number (err = %d)\n",
  1780. ret);
  1781. return ret;
  1782. }
  1783. np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
  1784. if (!np) {
  1785. dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
  1786. return -EINVAL;
  1787. }
  1788. nc->io = syscon_node_to_regmap(np);
  1789. of_node_put(np);
  1790. if (IS_ERR(nc->io)) {
  1791. ret = PTR_ERR(nc->io);
  1792. dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
  1793. return ret;
  1794. }
  1795. nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
  1796. "atmel,nfc-sram", 0);
  1797. if (!nc->sram.pool) {
  1798. dev_err(nc->base.dev, "Missing SRAM\n");
  1799. return -ENOMEM;
  1800. }
  1801. nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
  1802. ATMEL_NFC_SRAM_SIZE,
  1803. &nc->sram.dma);
  1804. if (!nc->sram.virt) {
  1805. dev_err(nc->base.dev,
  1806. "Could not allocate memory from the NFC SRAM pool\n");
  1807. return -ENOMEM;
  1808. }
  1809. return 0;
  1810. }
  1811. static int
  1812. atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
  1813. {
  1814. struct atmel_hsmc_nand_controller *hsmc_nc;
  1815. int ret;
  1816. ret = atmel_nand_controller_remove_nands(nc);
  1817. if (ret)
  1818. return ret;
  1819. hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
  1820. if (hsmc_nc->sram.pool)
  1821. gen_pool_free(hsmc_nc->sram.pool,
  1822. (unsigned long)hsmc_nc->sram.virt,
  1823. ATMEL_NFC_SRAM_SIZE);
  1824. if (hsmc_nc->clk) {
  1825. clk_disable_unprepare(hsmc_nc->clk);
  1826. clk_put(hsmc_nc->clk);
  1827. }
  1828. atmel_nand_controller_cleanup(nc);
  1829. return 0;
  1830. }
  1831. static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
  1832. const struct atmel_nand_controller_caps *caps)
  1833. {
  1834. struct device *dev = &pdev->dev;
  1835. struct atmel_hsmc_nand_controller *nc;
  1836. int ret;
  1837. nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
  1838. if (!nc)
  1839. return -ENOMEM;
  1840. ret = atmel_nand_controller_init(&nc->base, pdev, caps);
  1841. if (ret)
  1842. return ret;
  1843. if (caps->legacy_of_bindings)
  1844. ret = atmel_hsmc_nand_controller_legacy_init(nc);
  1845. else
  1846. ret = atmel_hsmc_nand_controller_init(nc);
  1847. if (ret)
  1848. return ret;
  1849. /* Make sure all irqs are masked before registering our IRQ handler. */
  1850. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
  1851. ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
  1852. IRQF_SHARED, "nfc", nc);
  1853. if (ret) {
  1854. dev_err(dev,
  1855. "Could not get register NFC interrupt handler (err = %d)\n",
  1856. ret);
  1857. goto err;
  1858. }
  1859. /* Initial NFC configuration. */
  1860. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
  1861. ATMEL_HSMC_NFC_CFG_DTO_MAX);
  1862. ret = atmel_nand_controller_add_nands(&nc->base);
  1863. if (ret)
  1864. goto err;
  1865. return 0;
  1866. err:
  1867. atmel_hsmc_nand_controller_remove(&nc->base);
  1868. return ret;
  1869. }
  1870. static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
  1871. .probe = atmel_hsmc_nand_controller_probe,
  1872. .remove = atmel_hsmc_nand_controller_remove,
  1873. .ecc_init = atmel_hsmc_nand_ecc_init,
  1874. .nand_init = atmel_hsmc_nand_init,
  1875. .setup_data_interface = atmel_hsmc_nand_setup_data_interface,
  1876. };
  1877. static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
  1878. .has_dma = true,
  1879. .ale_offs = BIT(21),
  1880. .cle_offs = BIT(22),
  1881. .ops = &atmel_hsmc_nc_ops,
  1882. };
  1883. /* Only used to parse old bindings. */
  1884. static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
  1885. .has_dma = true,
  1886. .ale_offs = BIT(21),
  1887. .cle_offs = BIT(22),
  1888. .ops = &atmel_hsmc_nc_ops,
  1889. .legacy_of_bindings = true,
  1890. };
  1891. static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
  1892. const struct atmel_nand_controller_caps *caps)
  1893. {
  1894. struct device *dev = &pdev->dev;
  1895. struct atmel_smc_nand_controller *nc;
  1896. int ret;
  1897. nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
  1898. if (!nc)
  1899. return -ENOMEM;
  1900. ret = atmel_nand_controller_init(&nc->base, pdev, caps);
  1901. if (ret)
  1902. return ret;
  1903. ret = atmel_smc_nand_controller_init(nc);
  1904. if (ret)
  1905. return ret;
  1906. return atmel_nand_controller_add_nands(&nc->base);
  1907. }
  1908. static int
  1909. atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
  1910. {
  1911. int ret;
  1912. ret = atmel_nand_controller_remove_nands(nc);
  1913. if (ret)
  1914. return ret;
  1915. atmel_nand_controller_cleanup(nc);
  1916. return 0;
  1917. }
  1918. /*
  1919. * The SMC reg layout of at91rm9200 is completely different which prevents us
  1920. * from re-using atmel_smc_nand_setup_data_interface() for the
  1921. * ->setup_data_interface() hook.
  1922. * At this point, there's no support for the at91rm9200 SMC IP, so we leave
  1923. * ->setup_data_interface() unassigned.
  1924. */
  1925. static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
  1926. .probe = atmel_smc_nand_controller_probe,
  1927. .remove = atmel_smc_nand_controller_remove,
  1928. .ecc_init = atmel_nand_ecc_init,
  1929. .nand_init = atmel_smc_nand_init,
  1930. };
  1931. static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
  1932. .ale_offs = BIT(21),
  1933. .cle_offs = BIT(22),
  1934. .ops = &at91rm9200_nc_ops,
  1935. };
  1936. static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
  1937. .probe = atmel_smc_nand_controller_probe,
  1938. .remove = atmel_smc_nand_controller_remove,
  1939. .ecc_init = atmel_nand_ecc_init,
  1940. .nand_init = atmel_smc_nand_init,
  1941. .setup_data_interface = atmel_smc_nand_setup_data_interface,
  1942. };
  1943. static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
  1944. .ale_offs = BIT(21),
  1945. .cle_offs = BIT(22),
  1946. .ops = &atmel_smc_nc_ops,
  1947. };
  1948. static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
  1949. .ale_offs = BIT(22),
  1950. .cle_offs = BIT(21),
  1951. .ops = &atmel_smc_nc_ops,
  1952. };
  1953. static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
  1954. .has_dma = true,
  1955. .ale_offs = BIT(21),
  1956. .cle_offs = BIT(22),
  1957. .ops = &atmel_smc_nc_ops,
  1958. };
  1959. /* Only used to parse old bindings. */
  1960. static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
  1961. .ale_offs = BIT(21),
  1962. .cle_offs = BIT(22),
  1963. .ops = &atmel_smc_nc_ops,
  1964. .legacy_of_bindings = true,
  1965. };
  1966. static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
  1967. .ale_offs = BIT(22),
  1968. .cle_offs = BIT(21),
  1969. .ops = &atmel_smc_nc_ops,
  1970. .legacy_of_bindings = true,
  1971. };
  1972. static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
  1973. .has_dma = true,
  1974. .ale_offs = BIT(21),
  1975. .cle_offs = BIT(22),
  1976. .ops = &atmel_smc_nc_ops,
  1977. .legacy_of_bindings = true,
  1978. };
  1979. static const struct of_device_id atmel_nand_controller_of_ids[] = {
  1980. {
  1981. .compatible = "atmel,at91rm9200-nand-controller",
  1982. .data = &atmel_rm9200_nc_caps,
  1983. },
  1984. {
  1985. .compatible = "atmel,at91sam9260-nand-controller",
  1986. .data = &atmel_sam9260_nc_caps,
  1987. },
  1988. {
  1989. .compatible = "atmel,at91sam9261-nand-controller",
  1990. .data = &atmel_sam9261_nc_caps,
  1991. },
  1992. {
  1993. .compatible = "atmel,at91sam9g45-nand-controller",
  1994. .data = &atmel_sam9g45_nc_caps,
  1995. },
  1996. {
  1997. .compatible = "atmel,sama5d3-nand-controller",
  1998. .data = &atmel_sama5_nc_caps,
  1999. },
  2000. /* Support for old/deprecated bindings: */
  2001. {
  2002. .compatible = "atmel,at91rm9200-nand",
  2003. .data = &atmel_rm9200_nand_caps,
  2004. },
  2005. {
  2006. .compatible = "atmel,sama5d4-nand",
  2007. .data = &atmel_rm9200_nand_caps,
  2008. },
  2009. {
  2010. .compatible = "atmel,sama5d2-nand",
  2011. .data = &atmel_rm9200_nand_caps,
  2012. },
  2013. { /* sentinel */ },
  2014. };
  2015. MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
  2016. static int atmel_nand_controller_probe(struct platform_device *pdev)
  2017. {
  2018. const struct atmel_nand_controller_caps *caps;
  2019. if (pdev->id_entry)
  2020. caps = (void *)pdev->id_entry->driver_data;
  2021. else
  2022. caps = of_device_get_match_data(&pdev->dev);
  2023. if (!caps) {
  2024. dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
  2025. return -EINVAL;
  2026. }
  2027. if (caps->legacy_of_bindings) {
  2028. u32 ale_offs = 21;
  2029. /*
  2030. * If we are parsing legacy DT props and the DT contains a
  2031. * valid NFC node, forward the request to the sama5 logic.
  2032. */
  2033. if (of_find_compatible_node(pdev->dev.of_node, NULL,
  2034. "atmel,sama5d3-nfc"))
  2035. caps = &atmel_sama5_nand_caps;
  2036. /*
  2037. * Even if the compatible says we are dealing with an
  2038. * at91rm9200 controller, the atmel,nand-has-dma specify that
  2039. * this controller supports DMA, which means we are in fact
  2040. * dealing with an at91sam9g45+ controller.
  2041. */
  2042. if (!caps->has_dma &&
  2043. of_property_read_bool(pdev->dev.of_node,
  2044. "atmel,nand-has-dma"))
  2045. caps = &atmel_sam9g45_nand_caps;
  2046. /*
  2047. * All SoCs except the at91sam9261 are assigning ALE to A21 and
  2048. * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
  2049. * actually dealing with an at91sam9261 controller.
  2050. */
  2051. of_property_read_u32(pdev->dev.of_node,
  2052. "atmel,nand-addr-offset", &ale_offs);
  2053. if (ale_offs != 21)
  2054. caps = &atmel_sam9261_nand_caps;
  2055. }
  2056. return caps->ops->probe(pdev, caps);
  2057. }
  2058. static int atmel_nand_controller_remove(struct platform_device *pdev)
  2059. {
  2060. struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
  2061. return nc->caps->ops->remove(nc);
  2062. }
  2063. static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
  2064. {
  2065. struct atmel_nand_controller *nc = dev_get_drvdata(dev);
  2066. struct atmel_nand *nand;
  2067. if (nc->pmecc)
  2068. atmel_pmecc_reset(nc->pmecc);
  2069. list_for_each_entry(nand, &nc->chips, node) {
  2070. int i;
  2071. for (i = 0; i < nand->numcs; i++)
  2072. nand_reset(&nand->base, i);
  2073. }
  2074. return 0;
  2075. }
  2076. static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
  2077. atmel_nand_controller_resume);
  2078. static struct platform_driver atmel_nand_controller_driver = {
  2079. .driver = {
  2080. .name = "atmel-nand-controller",
  2081. .of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
  2082. .pm = &atmel_nand_controller_pm_ops,
  2083. },
  2084. .probe = atmel_nand_controller_probe,
  2085. .remove = atmel_nand_controller_remove,
  2086. };
  2087. module_platform_driver(atmel_nand_controller_driver);
  2088. MODULE_LICENSE("GPL");
  2089. MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
  2090. MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
  2091. MODULE_ALIAS("platform:atmel-nand-controller");