vrf.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463
  1. /*
  2. * vrf.c: device driver to encapsulate a VRF space
  3. *
  4. * Copyright (c) 2015 Cumulus Networks. All rights reserved.
  5. * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
  6. * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
  7. *
  8. * Based on dummy, team and ipvlan drivers
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. */
  15. #include <linux/module.h>
  16. #include <linux/kernel.h>
  17. #include <linux/netdevice.h>
  18. #include <linux/etherdevice.h>
  19. #include <linux/ip.h>
  20. #include <linux/init.h>
  21. #include <linux/moduleparam.h>
  22. #include <linux/netfilter.h>
  23. #include <linux/rtnetlink.h>
  24. #include <net/rtnetlink.h>
  25. #include <linux/u64_stats_sync.h>
  26. #include <linux/hashtable.h>
  27. #include <linux/inetdevice.h>
  28. #include <net/arp.h>
  29. #include <net/ip.h>
  30. #include <net/ip_fib.h>
  31. #include <net/ip6_fib.h>
  32. #include <net/ip6_route.h>
  33. #include <net/route.h>
  34. #include <net/addrconf.h>
  35. #include <net/l3mdev.h>
  36. #include <net/fib_rules.h>
  37. #include <net/netns/generic.h>
  38. #define DRV_NAME "vrf"
  39. #define DRV_VERSION "1.0"
  40. #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
  41. static unsigned int vrf_net_id;
  42. struct net_vrf {
  43. struct rtable __rcu *rth;
  44. struct rt6_info __rcu *rt6;
  45. u32 tb_id;
  46. };
  47. struct pcpu_dstats {
  48. u64 tx_pkts;
  49. u64 tx_bytes;
  50. u64 tx_drps;
  51. u64 rx_pkts;
  52. u64 rx_bytes;
  53. u64 rx_drps;
  54. struct u64_stats_sync syncp;
  55. };
  56. static void vrf_rx_stats(struct net_device *dev, int len)
  57. {
  58. struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
  59. u64_stats_update_begin(&dstats->syncp);
  60. dstats->rx_pkts++;
  61. dstats->rx_bytes += len;
  62. u64_stats_update_end(&dstats->syncp);
  63. }
  64. static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
  65. {
  66. vrf_dev->stats.tx_errors++;
  67. kfree_skb(skb);
  68. }
  69. static void vrf_get_stats64(struct net_device *dev,
  70. struct rtnl_link_stats64 *stats)
  71. {
  72. int i;
  73. for_each_possible_cpu(i) {
  74. const struct pcpu_dstats *dstats;
  75. u64 tbytes, tpkts, tdrops, rbytes, rpkts;
  76. unsigned int start;
  77. dstats = per_cpu_ptr(dev->dstats, i);
  78. do {
  79. start = u64_stats_fetch_begin_irq(&dstats->syncp);
  80. tbytes = dstats->tx_bytes;
  81. tpkts = dstats->tx_pkts;
  82. tdrops = dstats->tx_drps;
  83. rbytes = dstats->rx_bytes;
  84. rpkts = dstats->rx_pkts;
  85. } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
  86. stats->tx_bytes += tbytes;
  87. stats->tx_packets += tpkts;
  88. stats->tx_dropped += tdrops;
  89. stats->rx_bytes += rbytes;
  90. stats->rx_packets += rpkts;
  91. }
  92. }
  93. /* by default VRF devices do not have a qdisc and are expected
  94. * to be created with only a single queue.
  95. */
  96. static bool qdisc_tx_is_default(const struct net_device *dev)
  97. {
  98. struct netdev_queue *txq;
  99. struct Qdisc *qdisc;
  100. if (dev->num_tx_queues > 1)
  101. return false;
  102. txq = netdev_get_tx_queue(dev, 0);
  103. qdisc = rcu_access_pointer(txq->qdisc);
  104. return !qdisc->enqueue;
  105. }
  106. /* Local traffic destined to local address. Reinsert the packet to rx
  107. * path, similar to loopback handling.
  108. */
  109. static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
  110. struct dst_entry *dst)
  111. {
  112. int len = skb->len;
  113. skb_orphan(skb);
  114. skb_dst_set(skb, dst);
  115. /* set pkt_type to avoid skb hitting packet taps twice -
  116. * once on Tx and again in Rx processing
  117. */
  118. skb->pkt_type = PACKET_LOOPBACK;
  119. skb->protocol = eth_type_trans(skb, dev);
  120. if (likely(netif_rx(skb) == NET_RX_SUCCESS))
  121. vrf_rx_stats(dev, len);
  122. else
  123. this_cpu_inc(dev->dstats->rx_drps);
  124. return NETDEV_TX_OK;
  125. }
  126. #if IS_ENABLED(CONFIG_IPV6)
  127. static int vrf_ip6_local_out(struct net *net, struct sock *sk,
  128. struct sk_buff *skb)
  129. {
  130. int err;
  131. err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
  132. sk, skb, NULL, skb_dst(skb)->dev, dst_output);
  133. if (likely(err == 1))
  134. err = dst_output(net, sk, skb);
  135. return err;
  136. }
  137. static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
  138. struct net_device *dev)
  139. {
  140. const struct ipv6hdr *iph = ipv6_hdr(skb);
  141. struct net *net = dev_net(skb->dev);
  142. struct flowi6 fl6 = {
  143. /* needed to match OIF rule */
  144. .flowi6_oif = dev->ifindex,
  145. .flowi6_iif = LOOPBACK_IFINDEX,
  146. .daddr = iph->daddr,
  147. .saddr = iph->saddr,
  148. .flowlabel = ip6_flowinfo(iph),
  149. .flowi6_mark = skb->mark,
  150. .flowi6_proto = iph->nexthdr,
  151. .flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF,
  152. };
  153. int ret = NET_XMIT_DROP;
  154. struct dst_entry *dst;
  155. struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
  156. dst = ip6_route_output(net, NULL, &fl6);
  157. if (dst == dst_null)
  158. goto err;
  159. skb_dst_drop(skb);
  160. /* if dst.dev is loopback or the VRF device again this is locally
  161. * originated traffic destined to a local address. Short circuit
  162. * to Rx path
  163. */
  164. if (dst->dev == dev)
  165. return vrf_local_xmit(skb, dev, dst);
  166. skb_dst_set(skb, dst);
  167. /* strip the ethernet header added for pass through VRF device */
  168. __skb_pull(skb, skb_network_offset(skb));
  169. ret = vrf_ip6_local_out(net, skb->sk, skb);
  170. if (unlikely(net_xmit_eval(ret)))
  171. dev->stats.tx_errors++;
  172. else
  173. ret = NET_XMIT_SUCCESS;
  174. return ret;
  175. err:
  176. vrf_tx_error(dev, skb);
  177. return NET_XMIT_DROP;
  178. }
  179. #else
  180. static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
  181. struct net_device *dev)
  182. {
  183. vrf_tx_error(dev, skb);
  184. return NET_XMIT_DROP;
  185. }
  186. #endif
  187. /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
  188. static int vrf_ip_local_out(struct net *net, struct sock *sk,
  189. struct sk_buff *skb)
  190. {
  191. int err;
  192. err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
  193. skb, NULL, skb_dst(skb)->dev, dst_output);
  194. if (likely(err == 1))
  195. err = dst_output(net, sk, skb);
  196. return err;
  197. }
  198. static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
  199. struct net_device *vrf_dev)
  200. {
  201. struct iphdr *ip4h = ip_hdr(skb);
  202. int ret = NET_XMIT_DROP;
  203. struct flowi4 fl4 = {
  204. /* needed to match OIF rule */
  205. .flowi4_oif = vrf_dev->ifindex,
  206. .flowi4_iif = LOOPBACK_IFINDEX,
  207. .flowi4_tos = RT_TOS(ip4h->tos),
  208. .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF,
  209. .flowi4_proto = ip4h->protocol,
  210. .daddr = ip4h->daddr,
  211. .saddr = ip4h->saddr,
  212. };
  213. struct net *net = dev_net(vrf_dev);
  214. struct rtable *rt;
  215. rt = ip_route_output_flow(net, &fl4, NULL);
  216. if (IS_ERR(rt))
  217. goto err;
  218. skb_dst_drop(skb);
  219. /* if dst.dev is loopback or the VRF device again this is locally
  220. * originated traffic destined to a local address. Short circuit
  221. * to Rx path
  222. */
  223. if (rt->dst.dev == vrf_dev)
  224. return vrf_local_xmit(skb, vrf_dev, &rt->dst);
  225. skb_dst_set(skb, &rt->dst);
  226. /* strip the ethernet header added for pass through VRF device */
  227. __skb_pull(skb, skb_network_offset(skb));
  228. if (!ip4h->saddr) {
  229. ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
  230. RT_SCOPE_LINK);
  231. }
  232. ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
  233. if (unlikely(net_xmit_eval(ret)))
  234. vrf_dev->stats.tx_errors++;
  235. else
  236. ret = NET_XMIT_SUCCESS;
  237. out:
  238. return ret;
  239. err:
  240. vrf_tx_error(vrf_dev, skb);
  241. goto out;
  242. }
  243. static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
  244. {
  245. switch (skb->protocol) {
  246. case htons(ETH_P_IP):
  247. return vrf_process_v4_outbound(skb, dev);
  248. case htons(ETH_P_IPV6):
  249. return vrf_process_v6_outbound(skb, dev);
  250. default:
  251. vrf_tx_error(dev, skb);
  252. return NET_XMIT_DROP;
  253. }
  254. }
  255. static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
  256. {
  257. int len = skb->len;
  258. netdev_tx_t ret = is_ip_tx_frame(skb, dev);
  259. if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
  260. struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
  261. u64_stats_update_begin(&dstats->syncp);
  262. dstats->tx_pkts++;
  263. dstats->tx_bytes += len;
  264. u64_stats_update_end(&dstats->syncp);
  265. } else {
  266. this_cpu_inc(dev->dstats->tx_drps);
  267. }
  268. return ret;
  269. }
  270. static int vrf_finish_direct(struct net *net, struct sock *sk,
  271. struct sk_buff *skb)
  272. {
  273. struct net_device *vrf_dev = skb->dev;
  274. if (!list_empty(&vrf_dev->ptype_all) &&
  275. likely(skb_headroom(skb) >= ETH_HLEN)) {
  276. struct ethhdr *eth = skb_push(skb, ETH_HLEN);
  277. ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
  278. eth_zero_addr(eth->h_dest);
  279. eth->h_proto = skb->protocol;
  280. rcu_read_lock_bh();
  281. dev_queue_xmit_nit(skb, vrf_dev);
  282. rcu_read_unlock_bh();
  283. skb_pull(skb, ETH_HLEN);
  284. }
  285. return 1;
  286. }
  287. #if IS_ENABLED(CONFIG_IPV6)
  288. /* modelled after ip6_finish_output2 */
  289. static int vrf_finish_output6(struct net *net, struct sock *sk,
  290. struct sk_buff *skb)
  291. {
  292. struct dst_entry *dst = skb_dst(skb);
  293. struct net_device *dev = dst->dev;
  294. struct neighbour *neigh;
  295. struct in6_addr *nexthop;
  296. int ret;
  297. nf_reset(skb);
  298. skb->protocol = htons(ETH_P_IPV6);
  299. skb->dev = dev;
  300. rcu_read_lock_bh();
  301. nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
  302. neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
  303. if (unlikely(!neigh))
  304. neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
  305. if (!IS_ERR(neigh)) {
  306. sock_confirm_neigh(skb, neigh);
  307. ret = neigh_output(neigh, skb);
  308. rcu_read_unlock_bh();
  309. return ret;
  310. }
  311. rcu_read_unlock_bh();
  312. IP6_INC_STATS(dev_net(dst->dev),
  313. ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
  314. kfree_skb(skb);
  315. return -EINVAL;
  316. }
  317. /* modelled after ip6_output */
  318. static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
  319. {
  320. return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
  321. net, sk, skb, NULL, skb_dst(skb)->dev,
  322. vrf_finish_output6,
  323. !(IP6CB(skb)->flags & IP6SKB_REROUTED));
  324. }
  325. /* set dst on skb to send packet to us via dev_xmit path. Allows
  326. * packet to go through device based features such as qdisc, netfilter
  327. * hooks and packet sockets with skb->dev set to vrf device.
  328. */
  329. static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
  330. struct sk_buff *skb)
  331. {
  332. struct net_vrf *vrf = netdev_priv(vrf_dev);
  333. struct dst_entry *dst = NULL;
  334. struct rt6_info *rt6;
  335. rcu_read_lock();
  336. rt6 = rcu_dereference(vrf->rt6);
  337. if (likely(rt6)) {
  338. dst = &rt6->dst;
  339. dst_hold(dst);
  340. }
  341. rcu_read_unlock();
  342. if (unlikely(!dst)) {
  343. vrf_tx_error(vrf_dev, skb);
  344. return NULL;
  345. }
  346. skb_dst_drop(skb);
  347. skb_dst_set(skb, dst);
  348. return skb;
  349. }
  350. static int vrf_output6_direct(struct net *net, struct sock *sk,
  351. struct sk_buff *skb)
  352. {
  353. skb->protocol = htons(ETH_P_IPV6);
  354. return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
  355. net, sk, skb, NULL, skb->dev,
  356. vrf_finish_direct,
  357. !(IPCB(skb)->flags & IPSKB_REROUTED));
  358. }
  359. static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
  360. struct sock *sk,
  361. struct sk_buff *skb)
  362. {
  363. struct net *net = dev_net(vrf_dev);
  364. int err;
  365. skb->dev = vrf_dev;
  366. err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
  367. skb, NULL, vrf_dev, vrf_output6_direct);
  368. if (likely(err == 1))
  369. err = vrf_output6_direct(net, sk, skb);
  370. /* reset skb device */
  371. if (likely(err == 1))
  372. nf_reset(skb);
  373. else
  374. skb = NULL;
  375. return skb;
  376. }
  377. static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
  378. struct sock *sk,
  379. struct sk_buff *skb)
  380. {
  381. /* don't divert link scope packets */
  382. if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
  383. return skb;
  384. if (qdisc_tx_is_default(vrf_dev))
  385. return vrf_ip6_out_direct(vrf_dev, sk, skb);
  386. return vrf_ip6_out_redirect(vrf_dev, skb);
  387. }
  388. /* holding rtnl */
  389. static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
  390. {
  391. struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
  392. struct net *net = dev_net(dev);
  393. struct dst_entry *dst;
  394. RCU_INIT_POINTER(vrf->rt6, NULL);
  395. synchronize_rcu();
  396. /* move dev in dst's to loopback so this VRF device can be deleted
  397. * - based on dst_ifdown
  398. */
  399. if (rt6) {
  400. dst = &rt6->dst;
  401. dev_put(dst->dev);
  402. dst->dev = net->loopback_dev;
  403. dev_hold(dst->dev);
  404. dst_release(dst);
  405. }
  406. }
  407. static int vrf_rt6_create(struct net_device *dev)
  408. {
  409. int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM;
  410. struct net_vrf *vrf = netdev_priv(dev);
  411. struct net *net = dev_net(dev);
  412. struct fib6_table *rt6i_table;
  413. struct rt6_info *rt6;
  414. int rc = -ENOMEM;
  415. /* IPv6 can be CONFIG enabled and then disabled runtime */
  416. if (!ipv6_mod_enabled())
  417. return 0;
  418. rt6i_table = fib6_new_table(net, vrf->tb_id);
  419. if (!rt6i_table)
  420. goto out;
  421. /* create a dst for routing packets out a VRF device */
  422. rt6 = ip6_dst_alloc(net, dev, flags);
  423. if (!rt6)
  424. goto out;
  425. rt6->rt6i_table = rt6i_table;
  426. rt6->dst.output = vrf_output6;
  427. rcu_assign_pointer(vrf->rt6, rt6);
  428. rc = 0;
  429. out:
  430. return rc;
  431. }
  432. #else
  433. static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
  434. struct sock *sk,
  435. struct sk_buff *skb)
  436. {
  437. return skb;
  438. }
  439. static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
  440. {
  441. }
  442. static int vrf_rt6_create(struct net_device *dev)
  443. {
  444. return 0;
  445. }
  446. #endif
  447. /* modelled after ip_finish_output2 */
  448. static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
  449. {
  450. struct dst_entry *dst = skb_dst(skb);
  451. struct rtable *rt = (struct rtable *)dst;
  452. struct net_device *dev = dst->dev;
  453. unsigned int hh_len = LL_RESERVED_SPACE(dev);
  454. struct neighbour *neigh;
  455. u32 nexthop;
  456. int ret = -EINVAL;
  457. nf_reset(skb);
  458. /* Be paranoid, rather than too clever. */
  459. if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
  460. struct sk_buff *skb2;
  461. skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
  462. if (!skb2) {
  463. ret = -ENOMEM;
  464. goto err;
  465. }
  466. if (skb->sk)
  467. skb_set_owner_w(skb2, skb->sk);
  468. consume_skb(skb);
  469. skb = skb2;
  470. }
  471. rcu_read_lock_bh();
  472. nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
  473. neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
  474. if (unlikely(!neigh))
  475. neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
  476. if (!IS_ERR(neigh)) {
  477. sock_confirm_neigh(skb, neigh);
  478. ret = neigh_output(neigh, skb);
  479. }
  480. rcu_read_unlock_bh();
  481. err:
  482. if (unlikely(ret < 0))
  483. vrf_tx_error(skb->dev, skb);
  484. return ret;
  485. }
  486. static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
  487. {
  488. struct net_device *dev = skb_dst(skb)->dev;
  489. IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
  490. skb->dev = dev;
  491. skb->protocol = htons(ETH_P_IP);
  492. return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
  493. net, sk, skb, NULL, dev,
  494. vrf_finish_output,
  495. !(IPCB(skb)->flags & IPSKB_REROUTED));
  496. }
  497. /* set dst on skb to send packet to us via dev_xmit path. Allows
  498. * packet to go through device based features such as qdisc, netfilter
  499. * hooks and packet sockets with skb->dev set to vrf device.
  500. */
  501. static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
  502. struct sk_buff *skb)
  503. {
  504. struct net_vrf *vrf = netdev_priv(vrf_dev);
  505. struct dst_entry *dst = NULL;
  506. struct rtable *rth;
  507. rcu_read_lock();
  508. rth = rcu_dereference(vrf->rth);
  509. if (likely(rth)) {
  510. dst = &rth->dst;
  511. dst_hold(dst);
  512. }
  513. rcu_read_unlock();
  514. if (unlikely(!dst)) {
  515. vrf_tx_error(vrf_dev, skb);
  516. return NULL;
  517. }
  518. skb_dst_drop(skb);
  519. skb_dst_set(skb, dst);
  520. return skb;
  521. }
  522. static int vrf_output_direct(struct net *net, struct sock *sk,
  523. struct sk_buff *skb)
  524. {
  525. skb->protocol = htons(ETH_P_IP);
  526. return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
  527. net, sk, skb, NULL, skb->dev,
  528. vrf_finish_direct,
  529. !(IPCB(skb)->flags & IPSKB_REROUTED));
  530. }
  531. static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
  532. struct sock *sk,
  533. struct sk_buff *skb)
  534. {
  535. struct net *net = dev_net(vrf_dev);
  536. int err;
  537. skb->dev = vrf_dev;
  538. err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
  539. skb, NULL, vrf_dev, vrf_output_direct);
  540. if (likely(err == 1))
  541. err = vrf_output_direct(net, sk, skb);
  542. /* reset skb device */
  543. if (likely(err == 1))
  544. nf_reset(skb);
  545. else
  546. skb = NULL;
  547. return skb;
  548. }
  549. static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
  550. struct sock *sk,
  551. struct sk_buff *skb)
  552. {
  553. /* don't divert multicast */
  554. if (ipv4_is_multicast(ip_hdr(skb)->daddr))
  555. return skb;
  556. if (qdisc_tx_is_default(vrf_dev))
  557. return vrf_ip_out_direct(vrf_dev, sk, skb);
  558. return vrf_ip_out_redirect(vrf_dev, skb);
  559. }
  560. /* called with rcu lock held */
  561. static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
  562. struct sock *sk,
  563. struct sk_buff *skb,
  564. u16 proto)
  565. {
  566. switch (proto) {
  567. case AF_INET:
  568. return vrf_ip_out(vrf_dev, sk, skb);
  569. case AF_INET6:
  570. return vrf_ip6_out(vrf_dev, sk, skb);
  571. }
  572. return skb;
  573. }
  574. /* holding rtnl */
  575. static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
  576. {
  577. struct rtable *rth = rtnl_dereference(vrf->rth);
  578. struct net *net = dev_net(dev);
  579. struct dst_entry *dst;
  580. RCU_INIT_POINTER(vrf->rth, NULL);
  581. synchronize_rcu();
  582. /* move dev in dst's to loopback so this VRF device can be deleted
  583. * - based on dst_ifdown
  584. */
  585. if (rth) {
  586. dst = &rth->dst;
  587. dev_put(dst->dev);
  588. dst->dev = net->loopback_dev;
  589. dev_hold(dst->dev);
  590. dst_release(dst);
  591. }
  592. }
  593. static int vrf_rtable_create(struct net_device *dev)
  594. {
  595. struct net_vrf *vrf = netdev_priv(dev);
  596. struct rtable *rth;
  597. if (!fib_new_table(dev_net(dev), vrf->tb_id))
  598. return -ENOMEM;
  599. /* create a dst for routing packets out through a VRF device */
  600. rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
  601. if (!rth)
  602. return -ENOMEM;
  603. rth->dst.output = vrf_output;
  604. rth->rt_table_id = vrf->tb_id;
  605. rcu_assign_pointer(vrf->rth, rth);
  606. return 0;
  607. }
  608. /**************************** device handling ********************/
  609. /* cycle interface to flush neighbor cache and move routes across tables */
  610. static void cycle_netdev(struct net_device *dev)
  611. {
  612. unsigned int flags = dev->flags;
  613. int ret;
  614. if (!netif_running(dev))
  615. return;
  616. ret = dev_change_flags(dev, flags & ~IFF_UP);
  617. if (ret >= 0)
  618. ret = dev_change_flags(dev, flags);
  619. if (ret < 0) {
  620. netdev_err(dev,
  621. "Failed to cycle device %s; route tables might be wrong!\n",
  622. dev->name);
  623. }
  624. }
  625. static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
  626. struct netlink_ext_ack *extack)
  627. {
  628. int ret;
  629. /* do not allow loopback device to be enslaved to a VRF.
  630. * The vrf device acts as the loopback for the vrf.
  631. */
  632. if (port_dev == dev_net(dev)->loopback_dev) {
  633. NL_SET_ERR_MSG(extack,
  634. "Can not enslave loopback device to a VRF");
  635. return -EOPNOTSUPP;
  636. }
  637. port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
  638. ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
  639. if (ret < 0)
  640. goto err;
  641. cycle_netdev(port_dev);
  642. return 0;
  643. err:
  644. port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
  645. return ret;
  646. }
  647. static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
  648. struct netlink_ext_ack *extack)
  649. {
  650. if (netif_is_l3_master(port_dev)) {
  651. NL_SET_ERR_MSG(extack,
  652. "Can not enslave an L3 master device to a VRF");
  653. return -EINVAL;
  654. }
  655. if (netif_is_l3_slave(port_dev))
  656. return -EINVAL;
  657. return do_vrf_add_slave(dev, port_dev, extack);
  658. }
  659. /* inverse of do_vrf_add_slave */
  660. static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
  661. {
  662. netdev_upper_dev_unlink(port_dev, dev);
  663. port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
  664. cycle_netdev(port_dev);
  665. return 0;
  666. }
  667. static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
  668. {
  669. return do_vrf_del_slave(dev, port_dev);
  670. }
  671. static void vrf_dev_uninit(struct net_device *dev)
  672. {
  673. struct net_vrf *vrf = netdev_priv(dev);
  674. vrf_rtable_release(dev, vrf);
  675. vrf_rt6_release(dev, vrf);
  676. free_percpu(dev->dstats);
  677. dev->dstats = NULL;
  678. }
  679. static int vrf_dev_init(struct net_device *dev)
  680. {
  681. struct net_vrf *vrf = netdev_priv(dev);
  682. dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
  683. if (!dev->dstats)
  684. goto out_nomem;
  685. /* create the default dst which points back to us */
  686. if (vrf_rtable_create(dev) != 0)
  687. goto out_stats;
  688. if (vrf_rt6_create(dev) != 0)
  689. goto out_rth;
  690. dev->flags = IFF_MASTER | IFF_NOARP;
  691. /* MTU is irrelevant for VRF device; set to 64k similar to lo */
  692. dev->mtu = 64 * 1024;
  693. /* similarly, oper state is irrelevant; set to up to avoid confusion */
  694. dev->operstate = IF_OPER_UP;
  695. netdev_lockdep_set_classes(dev);
  696. return 0;
  697. out_rth:
  698. vrf_rtable_release(dev, vrf);
  699. out_stats:
  700. free_percpu(dev->dstats);
  701. dev->dstats = NULL;
  702. out_nomem:
  703. return -ENOMEM;
  704. }
  705. static const struct net_device_ops vrf_netdev_ops = {
  706. .ndo_init = vrf_dev_init,
  707. .ndo_uninit = vrf_dev_uninit,
  708. .ndo_start_xmit = vrf_xmit,
  709. .ndo_get_stats64 = vrf_get_stats64,
  710. .ndo_add_slave = vrf_add_slave,
  711. .ndo_del_slave = vrf_del_slave,
  712. };
  713. static u32 vrf_fib_table(const struct net_device *dev)
  714. {
  715. struct net_vrf *vrf = netdev_priv(dev);
  716. return vrf->tb_id;
  717. }
  718. static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
  719. {
  720. kfree_skb(skb);
  721. return 0;
  722. }
  723. static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
  724. struct sk_buff *skb,
  725. struct net_device *dev)
  726. {
  727. struct net *net = dev_net(dev);
  728. if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
  729. skb = NULL; /* kfree_skb(skb) handled by nf code */
  730. return skb;
  731. }
  732. #if IS_ENABLED(CONFIG_IPV6)
  733. /* neighbor handling is done with actual device; do not want
  734. * to flip skb->dev for those ndisc packets. This really fails
  735. * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
  736. * a start.
  737. */
  738. static bool ipv6_ndisc_frame(const struct sk_buff *skb)
  739. {
  740. const struct ipv6hdr *iph = ipv6_hdr(skb);
  741. bool rc = false;
  742. if (iph->nexthdr == NEXTHDR_ICMP) {
  743. const struct icmp6hdr *icmph;
  744. struct icmp6hdr _icmph;
  745. icmph = skb_header_pointer(skb, sizeof(*iph),
  746. sizeof(_icmph), &_icmph);
  747. if (!icmph)
  748. goto out;
  749. switch (icmph->icmp6_type) {
  750. case NDISC_ROUTER_SOLICITATION:
  751. case NDISC_ROUTER_ADVERTISEMENT:
  752. case NDISC_NEIGHBOUR_SOLICITATION:
  753. case NDISC_NEIGHBOUR_ADVERTISEMENT:
  754. case NDISC_REDIRECT:
  755. rc = true;
  756. break;
  757. }
  758. }
  759. out:
  760. return rc;
  761. }
  762. static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
  763. const struct net_device *dev,
  764. struct flowi6 *fl6,
  765. int ifindex,
  766. int flags)
  767. {
  768. struct net_vrf *vrf = netdev_priv(dev);
  769. struct fib6_table *table = NULL;
  770. struct rt6_info *rt6;
  771. rcu_read_lock();
  772. /* fib6_table does not have a refcnt and can not be freed */
  773. rt6 = rcu_dereference(vrf->rt6);
  774. if (likely(rt6))
  775. table = rt6->rt6i_table;
  776. rcu_read_unlock();
  777. if (!table)
  778. return NULL;
  779. return ip6_pol_route(net, table, ifindex, fl6, flags);
  780. }
  781. static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
  782. int ifindex)
  783. {
  784. const struct ipv6hdr *iph = ipv6_hdr(skb);
  785. struct flowi6 fl6 = {
  786. .flowi6_iif = ifindex,
  787. .flowi6_mark = skb->mark,
  788. .flowi6_proto = iph->nexthdr,
  789. .daddr = iph->daddr,
  790. .saddr = iph->saddr,
  791. .flowlabel = ip6_flowinfo(iph),
  792. };
  793. struct net *net = dev_net(vrf_dev);
  794. struct rt6_info *rt6;
  795. rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex,
  796. RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
  797. if (unlikely(!rt6))
  798. return;
  799. if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
  800. return;
  801. skb_dst_set(skb, &rt6->dst);
  802. }
  803. static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
  804. struct sk_buff *skb)
  805. {
  806. int orig_iif = skb->skb_iif;
  807. bool need_strict;
  808. /* loopback traffic; do not push through packet taps again.
  809. * Reset pkt_type for upper layers to process skb
  810. */
  811. if (skb->pkt_type == PACKET_LOOPBACK) {
  812. skb->dev = vrf_dev;
  813. skb->skb_iif = vrf_dev->ifindex;
  814. IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
  815. skb->pkt_type = PACKET_HOST;
  816. goto out;
  817. }
  818. /* if packet is NDISC or addressed to multicast or link-local
  819. * then keep the ingress interface
  820. */
  821. need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
  822. if (!ipv6_ndisc_frame(skb) && !need_strict) {
  823. vrf_rx_stats(vrf_dev, skb->len);
  824. skb->dev = vrf_dev;
  825. skb->skb_iif = vrf_dev->ifindex;
  826. if (!list_empty(&vrf_dev->ptype_all)) {
  827. skb_push(skb, skb->mac_len);
  828. dev_queue_xmit_nit(skb, vrf_dev);
  829. skb_pull(skb, skb->mac_len);
  830. }
  831. IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
  832. }
  833. if (need_strict)
  834. vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
  835. skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
  836. out:
  837. return skb;
  838. }
  839. #else
  840. static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
  841. struct sk_buff *skb)
  842. {
  843. return skb;
  844. }
  845. #endif
  846. static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
  847. struct sk_buff *skb)
  848. {
  849. skb->dev = vrf_dev;
  850. skb->skb_iif = vrf_dev->ifindex;
  851. IPCB(skb)->flags |= IPSKB_L3SLAVE;
  852. if (ipv4_is_multicast(ip_hdr(skb)->daddr))
  853. goto out;
  854. /* loopback traffic; do not push through packet taps again.
  855. * Reset pkt_type for upper layers to process skb
  856. */
  857. if (skb->pkt_type == PACKET_LOOPBACK) {
  858. skb->pkt_type = PACKET_HOST;
  859. goto out;
  860. }
  861. vrf_rx_stats(vrf_dev, skb->len);
  862. if (!list_empty(&vrf_dev->ptype_all)) {
  863. skb_push(skb, skb->mac_len);
  864. dev_queue_xmit_nit(skb, vrf_dev);
  865. skb_pull(skb, skb->mac_len);
  866. }
  867. skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
  868. out:
  869. return skb;
  870. }
  871. /* called with rcu lock held */
  872. static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
  873. struct sk_buff *skb,
  874. u16 proto)
  875. {
  876. switch (proto) {
  877. case AF_INET:
  878. return vrf_ip_rcv(vrf_dev, skb);
  879. case AF_INET6:
  880. return vrf_ip6_rcv(vrf_dev, skb);
  881. }
  882. return skb;
  883. }
  884. #if IS_ENABLED(CONFIG_IPV6)
  885. /* send to link-local or multicast address via interface enslaved to
  886. * VRF device. Force lookup to VRF table without changing flow struct
  887. */
  888. static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
  889. struct flowi6 *fl6)
  890. {
  891. struct net *net = dev_net(dev);
  892. int flags = RT6_LOOKUP_F_IFACE;
  893. struct dst_entry *dst = NULL;
  894. struct rt6_info *rt;
  895. /* VRF device does not have a link-local address and
  896. * sending packets to link-local or mcast addresses over
  897. * a VRF device does not make sense
  898. */
  899. if (fl6->flowi6_oif == dev->ifindex) {
  900. dst = &net->ipv6.ip6_null_entry->dst;
  901. dst_hold(dst);
  902. return dst;
  903. }
  904. if (!ipv6_addr_any(&fl6->saddr))
  905. flags |= RT6_LOOKUP_F_HAS_SADDR;
  906. rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags);
  907. if (rt)
  908. dst = &rt->dst;
  909. return dst;
  910. }
  911. #endif
  912. static const struct l3mdev_ops vrf_l3mdev_ops = {
  913. .l3mdev_fib_table = vrf_fib_table,
  914. .l3mdev_l3_rcv = vrf_l3_rcv,
  915. .l3mdev_l3_out = vrf_l3_out,
  916. #if IS_ENABLED(CONFIG_IPV6)
  917. .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
  918. #endif
  919. };
  920. static void vrf_get_drvinfo(struct net_device *dev,
  921. struct ethtool_drvinfo *info)
  922. {
  923. strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
  924. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  925. }
  926. static const struct ethtool_ops vrf_ethtool_ops = {
  927. .get_drvinfo = vrf_get_drvinfo,
  928. };
  929. static inline size_t vrf_fib_rule_nl_size(void)
  930. {
  931. size_t sz;
  932. sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
  933. sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
  934. sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
  935. return sz;
  936. }
  937. static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
  938. {
  939. struct fib_rule_hdr *frh;
  940. struct nlmsghdr *nlh;
  941. struct sk_buff *skb;
  942. int err;
  943. if (family == AF_INET6 && !ipv6_mod_enabled())
  944. return 0;
  945. skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
  946. if (!skb)
  947. return -ENOMEM;
  948. nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
  949. if (!nlh)
  950. goto nla_put_failure;
  951. /* rule only needs to appear once */
  952. nlh->nlmsg_flags |= NLM_F_EXCL;
  953. frh = nlmsg_data(nlh);
  954. memset(frh, 0, sizeof(*frh));
  955. frh->family = family;
  956. frh->action = FR_ACT_TO_TBL;
  957. if (nla_put_u8(skb, FRA_L3MDEV, 1))
  958. goto nla_put_failure;
  959. if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
  960. goto nla_put_failure;
  961. nlmsg_end(skb, nlh);
  962. /* fib_nl_{new,del}rule handling looks for net from skb->sk */
  963. skb->sk = dev_net(dev)->rtnl;
  964. if (add_it) {
  965. err = fib_nl_newrule(skb, nlh, NULL);
  966. if (err == -EEXIST)
  967. err = 0;
  968. } else {
  969. err = fib_nl_delrule(skb, nlh, NULL);
  970. if (err == -ENOENT)
  971. err = 0;
  972. }
  973. nlmsg_free(skb);
  974. return err;
  975. nla_put_failure:
  976. nlmsg_free(skb);
  977. return -EMSGSIZE;
  978. }
  979. static int vrf_add_fib_rules(const struct net_device *dev)
  980. {
  981. int err;
  982. err = vrf_fib_rule(dev, AF_INET, true);
  983. if (err < 0)
  984. goto out_err;
  985. err = vrf_fib_rule(dev, AF_INET6, true);
  986. if (err < 0)
  987. goto ipv6_err;
  988. #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
  989. err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
  990. if (err < 0)
  991. goto ipmr_err;
  992. #endif
  993. return 0;
  994. #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
  995. ipmr_err:
  996. vrf_fib_rule(dev, AF_INET6, false);
  997. #endif
  998. ipv6_err:
  999. vrf_fib_rule(dev, AF_INET, false);
  1000. out_err:
  1001. netdev_err(dev, "Failed to add FIB rules.\n");
  1002. return err;
  1003. }
  1004. static void vrf_setup(struct net_device *dev)
  1005. {
  1006. ether_setup(dev);
  1007. /* Initialize the device structure. */
  1008. dev->netdev_ops = &vrf_netdev_ops;
  1009. dev->l3mdev_ops = &vrf_l3mdev_ops;
  1010. dev->ethtool_ops = &vrf_ethtool_ops;
  1011. dev->needs_free_netdev = true;
  1012. /* Fill in device structure with ethernet-generic values. */
  1013. eth_hw_addr_random(dev);
  1014. /* don't acquire vrf device's netif_tx_lock when transmitting */
  1015. dev->features |= NETIF_F_LLTX;
  1016. /* don't allow vrf devices to change network namespaces. */
  1017. dev->features |= NETIF_F_NETNS_LOCAL;
  1018. /* does not make sense for a VLAN to be added to a vrf device */
  1019. dev->features |= NETIF_F_VLAN_CHALLENGED;
  1020. /* enable offload features */
  1021. dev->features |= NETIF_F_GSO_SOFTWARE;
  1022. dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
  1023. dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
  1024. dev->hw_features = dev->features;
  1025. dev->hw_enc_features = dev->features;
  1026. /* default to no qdisc; user can add if desired */
  1027. dev->priv_flags |= IFF_NO_QUEUE;
  1028. }
  1029. static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
  1030. struct netlink_ext_ack *extack)
  1031. {
  1032. if (tb[IFLA_ADDRESS]) {
  1033. if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
  1034. NL_SET_ERR_MSG(extack, "Invalid hardware address");
  1035. return -EINVAL;
  1036. }
  1037. if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
  1038. NL_SET_ERR_MSG(extack, "Invalid hardware address");
  1039. return -EADDRNOTAVAIL;
  1040. }
  1041. }
  1042. return 0;
  1043. }
  1044. static void vrf_dellink(struct net_device *dev, struct list_head *head)
  1045. {
  1046. struct net_device *port_dev;
  1047. struct list_head *iter;
  1048. netdev_for_each_lower_dev(dev, port_dev, iter)
  1049. vrf_del_slave(dev, port_dev);
  1050. unregister_netdevice_queue(dev, head);
  1051. }
  1052. static int vrf_newlink(struct net *src_net, struct net_device *dev,
  1053. struct nlattr *tb[], struct nlattr *data[],
  1054. struct netlink_ext_ack *extack)
  1055. {
  1056. struct net_vrf *vrf = netdev_priv(dev);
  1057. bool *add_fib_rules;
  1058. struct net *net;
  1059. int err;
  1060. if (!data || !data[IFLA_VRF_TABLE]) {
  1061. NL_SET_ERR_MSG(extack, "VRF table id is missing");
  1062. return -EINVAL;
  1063. }
  1064. vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
  1065. if (vrf->tb_id == RT_TABLE_UNSPEC) {
  1066. NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
  1067. "Invalid VRF table id");
  1068. return -EINVAL;
  1069. }
  1070. dev->priv_flags |= IFF_L3MDEV_MASTER;
  1071. err = register_netdevice(dev);
  1072. if (err)
  1073. goto out;
  1074. net = dev_net(dev);
  1075. add_fib_rules = net_generic(net, vrf_net_id);
  1076. if (*add_fib_rules) {
  1077. err = vrf_add_fib_rules(dev);
  1078. if (err) {
  1079. unregister_netdevice(dev);
  1080. goto out;
  1081. }
  1082. *add_fib_rules = false;
  1083. }
  1084. out:
  1085. return err;
  1086. }
  1087. static size_t vrf_nl_getsize(const struct net_device *dev)
  1088. {
  1089. return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
  1090. }
  1091. static int vrf_fillinfo(struct sk_buff *skb,
  1092. const struct net_device *dev)
  1093. {
  1094. struct net_vrf *vrf = netdev_priv(dev);
  1095. return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
  1096. }
  1097. static size_t vrf_get_slave_size(const struct net_device *bond_dev,
  1098. const struct net_device *slave_dev)
  1099. {
  1100. return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
  1101. }
  1102. static int vrf_fill_slave_info(struct sk_buff *skb,
  1103. const struct net_device *vrf_dev,
  1104. const struct net_device *slave_dev)
  1105. {
  1106. struct net_vrf *vrf = netdev_priv(vrf_dev);
  1107. if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
  1108. return -EMSGSIZE;
  1109. return 0;
  1110. }
  1111. static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
  1112. [IFLA_VRF_TABLE] = { .type = NLA_U32 },
  1113. };
  1114. static struct rtnl_link_ops vrf_link_ops __read_mostly = {
  1115. .kind = DRV_NAME,
  1116. .priv_size = sizeof(struct net_vrf),
  1117. .get_size = vrf_nl_getsize,
  1118. .policy = vrf_nl_policy,
  1119. .validate = vrf_validate,
  1120. .fill_info = vrf_fillinfo,
  1121. .get_slave_size = vrf_get_slave_size,
  1122. .fill_slave_info = vrf_fill_slave_info,
  1123. .newlink = vrf_newlink,
  1124. .dellink = vrf_dellink,
  1125. .setup = vrf_setup,
  1126. .maxtype = IFLA_VRF_MAX,
  1127. };
  1128. static int vrf_device_event(struct notifier_block *unused,
  1129. unsigned long event, void *ptr)
  1130. {
  1131. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1132. /* only care about unregister events to drop slave references */
  1133. if (event == NETDEV_UNREGISTER) {
  1134. struct net_device *vrf_dev;
  1135. if (!netif_is_l3_slave(dev))
  1136. goto out;
  1137. vrf_dev = netdev_master_upper_dev_get(dev);
  1138. vrf_del_slave(vrf_dev, dev);
  1139. }
  1140. out:
  1141. return NOTIFY_DONE;
  1142. }
  1143. static struct notifier_block vrf_notifier_block __read_mostly = {
  1144. .notifier_call = vrf_device_event,
  1145. };
  1146. /* Initialize per network namespace state */
  1147. static int __net_init vrf_netns_init(struct net *net)
  1148. {
  1149. bool *add_fib_rules = net_generic(net, vrf_net_id);
  1150. *add_fib_rules = true;
  1151. return 0;
  1152. }
  1153. static struct pernet_operations vrf_net_ops __net_initdata = {
  1154. .init = vrf_netns_init,
  1155. .id = &vrf_net_id,
  1156. .size = sizeof(bool),
  1157. };
  1158. static int __init vrf_init_module(void)
  1159. {
  1160. int rc;
  1161. register_netdevice_notifier(&vrf_notifier_block);
  1162. rc = register_pernet_subsys(&vrf_net_ops);
  1163. if (rc < 0)
  1164. goto error;
  1165. rc = rtnl_link_register(&vrf_link_ops);
  1166. if (rc < 0) {
  1167. unregister_pernet_subsys(&vrf_net_ops);
  1168. goto error;
  1169. }
  1170. return 0;
  1171. error:
  1172. unregister_netdevice_notifier(&vrf_notifier_block);
  1173. return rc;
  1174. }
  1175. module_init(vrf_init_module);
  1176. MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
  1177. MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
  1178. MODULE_LICENSE("GPL");
  1179. MODULE_ALIAS_RTNL_LINK(DRV_NAME);
  1180. MODULE_VERSION(DRV_VERSION);