sdma_v3_0.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  51. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  52. {
  53. SDMA0_REGISTER_OFFSET,
  54. SDMA1_REGISTER_OFFSET
  55. };
  56. static const u32 golden_settings_tonga_a11[] =
  57. {
  58. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  59. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  60. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  61. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  62. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  63. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  64. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  65. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  66. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  67. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  68. };
  69. static const u32 tonga_mgcg_cgcg_init[] =
  70. {
  71. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  72. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  73. };
  74. static const u32 golden_settings_fiji_a10[] =
  75. {
  76. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  77. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  78. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  79. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  80. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  81. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  82. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  83. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  84. };
  85. static const u32 fiji_mgcg_cgcg_init[] =
  86. {
  87. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  88. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  89. };
  90. static const u32 cz_golden_settings_a11[] =
  91. {
  92. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  93. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  94. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  95. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  96. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  97. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  98. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  99. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  100. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  101. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  102. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  103. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  104. };
  105. static const u32 cz_mgcg_cgcg_init[] =
  106. {
  107. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  108. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  109. };
  110. /*
  111. * sDMA - System DMA
  112. * Starting with CIK, the GPU has new asynchronous
  113. * DMA engines. These engines are used for compute
  114. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  115. * and each one supports 1 ring buffer used for gfx
  116. * and 2 queues used for compute.
  117. *
  118. * The programming model is very similar to the CP
  119. * (ring buffer, IBs, etc.), but sDMA has it's own
  120. * packet format that is different from the PM4 format
  121. * used by the CP. sDMA supports copying data, writing
  122. * embedded data, solid fills, and a number of other
  123. * things. It also has support for tiling/detiling of
  124. * buffers.
  125. */
  126. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  127. {
  128. switch (adev->asic_type) {
  129. case CHIP_FIJI:
  130. amdgpu_program_register_sequence(adev,
  131. fiji_mgcg_cgcg_init,
  132. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  133. amdgpu_program_register_sequence(adev,
  134. golden_settings_fiji_a10,
  135. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  136. break;
  137. case CHIP_TONGA:
  138. amdgpu_program_register_sequence(adev,
  139. tonga_mgcg_cgcg_init,
  140. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  141. amdgpu_program_register_sequence(adev,
  142. golden_settings_tonga_a11,
  143. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  144. break;
  145. case CHIP_CARRIZO:
  146. amdgpu_program_register_sequence(adev,
  147. cz_mgcg_cgcg_init,
  148. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  149. amdgpu_program_register_sequence(adev,
  150. cz_golden_settings_a11,
  151. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  152. break;
  153. default:
  154. break;
  155. }
  156. }
  157. /**
  158. * sdma_v3_0_init_microcode - load ucode images from disk
  159. *
  160. * @adev: amdgpu_device pointer
  161. *
  162. * Use the firmware interface to load the ucode images into
  163. * the driver (not loaded into hw).
  164. * Returns 0 on success, error on failure.
  165. */
  166. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  167. {
  168. const char *chip_name;
  169. char fw_name[30];
  170. int err, i;
  171. struct amdgpu_firmware_info *info = NULL;
  172. const struct common_firmware_header *header = NULL;
  173. const struct sdma_firmware_header_v1_0 *hdr;
  174. DRM_DEBUG("\n");
  175. switch (adev->asic_type) {
  176. case CHIP_TONGA:
  177. chip_name = "tonga";
  178. break;
  179. case CHIP_FIJI:
  180. chip_name = "fiji";
  181. break;
  182. case CHIP_CARRIZO:
  183. chip_name = "carrizo";
  184. break;
  185. default: BUG();
  186. }
  187. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  188. if (i == 0)
  189. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  190. else
  191. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  192. err = request_firmware(&adev->sdma[i].fw, fw_name, adev->dev);
  193. if (err)
  194. goto out;
  195. err = amdgpu_ucode_validate(adev->sdma[i].fw);
  196. if (err)
  197. goto out;
  198. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma[i].fw->data;
  199. adev->sdma[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  200. adev->sdma[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  201. if (adev->firmware.smu_load) {
  202. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  203. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  204. info->fw = adev->sdma[i].fw;
  205. header = (const struct common_firmware_header *)info->fw->data;
  206. adev->firmware.fw_size +=
  207. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  208. }
  209. }
  210. out:
  211. if (err) {
  212. printk(KERN_ERR
  213. "sdma_v3_0: Failed to load firmware \"%s\"\n",
  214. fw_name);
  215. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  216. release_firmware(adev->sdma[i].fw);
  217. adev->sdma[i].fw = NULL;
  218. }
  219. }
  220. return err;
  221. }
  222. /**
  223. * sdma_v3_0_ring_get_rptr - get the current read pointer
  224. *
  225. * @ring: amdgpu ring pointer
  226. *
  227. * Get the current rptr from the hardware (VI+).
  228. */
  229. static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  230. {
  231. u32 rptr;
  232. /* XXX check if swapping is necessary on BE */
  233. rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
  234. return rptr;
  235. }
  236. /**
  237. * sdma_v3_0_ring_get_wptr - get the current write pointer
  238. *
  239. * @ring: amdgpu ring pointer
  240. *
  241. * Get the current wptr from the hardware (VI+).
  242. */
  243. static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  244. {
  245. struct amdgpu_device *adev = ring->adev;
  246. u32 wptr;
  247. if (ring->use_doorbell) {
  248. /* XXX check if swapping is necessary on BE */
  249. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  250. } else {
  251. int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
  252. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  253. }
  254. return wptr;
  255. }
  256. /**
  257. * sdma_v3_0_ring_set_wptr - commit the write pointer
  258. *
  259. * @ring: amdgpu ring pointer
  260. *
  261. * Write the wptr back to the hardware (VI+).
  262. */
  263. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  264. {
  265. struct amdgpu_device *adev = ring->adev;
  266. if (ring->use_doorbell) {
  267. /* XXX check if swapping is necessary on BE */
  268. adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
  269. WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
  270. } else {
  271. int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
  272. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  273. }
  274. }
  275. /**
  276. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  277. *
  278. * @ring: amdgpu ring pointer
  279. * @ib: IB object to schedule
  280. *
  281. * Schedule an IB in the DMA ring (VI).
  282. */
  283. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  284. struct amdgpu_ib *ib)
  285. {
  286. u32 vmid = (ib->vm ? ib->vm->ids[ring->idx].id : 0) & 0xf;
  287. u32 next_rptr = ring->wptr + 5;
  288. while ((next_rptr & 7) != 2)
  289. next_rptr++;
  290. next_rptr += 6;
  291. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  292. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  293. amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
  294. amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
  295. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  296. amdgpu_ring_write(ring, next_rptr);
  297. /* IB packet must end on a 8 DW boundary */
  298. while ((ring->wptr & 7) != 2)
  299. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_NOP));
  300. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  301. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  302. /* base must be 32 byte aligned */
  303. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  304. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  305. amdgpu_ring_write(ring, ib->length_dw);
  306. amdgpu_ring_write(ring, 0);
  307. amdgpu_ring_write(ring, 0);
  308. }
  309. /**
  310. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  311. *
  312. * @ring: amdgpu ring pointer
  313. *
  314. * Emit an hdp flush packet on the requested DMA ring.
  315. */
  316. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  317. {
  318. u32 ref_and_mask = 0;
  319. if (ring == &ring->adev->sdma[0].ring)
  320. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  321. else
  322. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  323. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  324. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  325. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  326. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  327. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  328. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  329. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  330. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  331. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  332. }
  333. /**
  334. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  335. *
  336. * @ring: amdgpu ring pointer
  337. * @fence: amdgpu fence object
  338. *
  339. * Add a DMA fence packet to the ring to write
  340. * the fence seq number and DMA trap packet to generate
  341. * an interrupt if needed (VI).
  342. */
  343. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  344. unsigned flags)
  345. {
  346. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  347. /* write the fence */
  348. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  349. amdgpu_ring_write(ring, lower_32_bits(addr));
  350. amdgpu_ring_write(ring, upper_32_bits(addr));
  351. amdgpu_ring_write(ring, lower_32_bits(seq));
  352. /* optionally write high bits as well */
  353. if (write64bit) {
  354. addr += 4;
  355. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  356. amdgpu_ring_write(ring, lower_32_bits(addr));
  357. amdgpu_ring_write(ring, upper_32_bits(addr));
  358. amdgpu_ring_write(ring, upper_32_bits(seq));
  359. }
  360. /* generate an interrupt */
  361. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  362. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  363. }
  364. /**
  365. * sdma_v3_0_ring_emit_semaphore - emit a semaphore on the dma ring
  366. *
  367. * @ring: amdgpu_ring structure holding ring information
  368. * @semaphore: amdgpu semaphore object
  369. * @emit_wait: wait or signal semaphore
  370. *
  371. * Add a DMA semaphore packet to the ring wait on or signal
  372. * other rings (VI).
  373. */
  374. static bool sdma_v3_0_ring_emit_semaphore(struct amdgpu_ring *ring,
  375. struct amdgpu_semaphore *semaphore,
  376. bool emit_wait)
  377. {
  378. u64 addr = semaphore->gpu_addr;
  379. u32 sig = emit_wait ? 0 : 1;
  380. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SEM) |
  381. SDMA_PKT_SEMAPHORE_HEADER_SIGNAL(sig));
  382. amdgpu_ring_write(ring, lower_32_bits(addr) & 0xfffffff8);
  383. amdgpu_ring_write(ring, upper_32_bits(addr));
  384. return true;
  385. }
  386. /**
  387. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  388. *
  389. * @adev: amdgpu_device pointer
  390. *
  391. * Stop the gfx async dma ring buffers (VI).
  392. */
  393. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  394. {
  395. struct amdgpu_ring *sdma0 = &adev->sdma[0].ring;
  396. struct amdgpu_ring *sdma1 = &adev->sdma[1].ring;
  397. u32 rb_cntl, ib_cntl;
  398. int i;
  399. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  400. (adev->mman.buffer_funcs_ring == sdma1))
  401. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  402. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  403. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  404. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  405. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  406. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  407. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  408. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  409. }
  410. sdma0->ready = false;
  411. sdma1->ready = false;
  412. }
  413. /**
  414. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  415. *
  416. * @adev: amdgpu_device pointer
  417. *
  418. * Stop the compute async dma queues (VI).
  419. */
  420. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  421. {
  422. /* XXX todo */
  423. }
  424. /**
  425. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  426. *
  427. * @adev: amdgpu_device pointer
  428. * @enable: enable/disable the DMA MEs context switch.
  429. *
  430. * Halt or unhalt the async dma engines context switch (VI).
  431. */
  432. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  433. {
  434. u32 f32_cntl;
  435. int i;
  436. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  437. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  438. if (enable)
  439. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  440. AUTO_CTXSW_ENABLE, 1);
  441. else
  442. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  443. AUTO_CTXSW_ENABLE, 0);
  444. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  445. }
  446. }
  447. /**
  448. * sdma_v3_0_enable - stop the async dma engines
  449. *
  450. * @adev: amdgpu_device pointer
  451. * @enable: enable/disable the DMA MEs.
  452. *
  453. * Halt or unhalt the async dma engines (VI).
  454. */
  455. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  456. {
  457. u32 f32_cntl;
  458. int i;
  459. if (enable == false) {
  460. sdma_v3_0_gfx_stop(adev);
  461. sdma_v3_0_rlc_stop(adev);
  462. }
  463. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  464. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  465. if (enable)
  466. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  467. else
  468. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  469. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  470. }
  471. }
  472. /**
  473. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  474. *
  475. * @adev: amdgpu_device pointer
  476. *
  477. * Set up the gfx DMA ring buffers and enable them (VI).
  478. * Returns 0 for success, error for failure.
  479. */
  480. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  481. {
  482. struct amdgpu_ring *ring;
  483. u32 rb_cntl, ib_cntl;
  484. u32 rb_bufsz;
  485. u32 wb_offset;
  486. u32 doorbell;
  487. int i, j, r;
  488. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  489. ring = &adev->sdma[i].ring;
  490. wb_offset = (ring->rptr_offs * 4);
  491. mutex_lock(&adev->srbm_mutex);
  492. for (j = 0; j < 16; j++) {
  493. vi_srbm_select(adev, 0, 0, 0, j);
  494. /* SDMA GFX */
  495. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  496. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  497. }
  498. vi_srbm_select(adev, 0, 0, 0, 0);
  499. mutex_unlock(&adev->srbm_mutex);
  500. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  501. /* Set ring buffer size in dwords */
  502. rb_bufsz = order_base_2(ring->ring_size / 4);
  503. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  504. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  505. #ifdef __BIG_ENDIAN
  506. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  507. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  508. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  509. #endif
  510. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  511. /* Initialize the ring buffer's read and write pointers */
  512. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  513. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  514. /* set the wb address whether it's enabled or not */
  515. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  516. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  517. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  518. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  519. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  520. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  521. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  522. ring->wptr = 0;
  523. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  524. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  525. if (ring->use_doorbell) {
  526. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  527. OFFSET, ring->doorbell_index);
  528. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  529. } else {
  530. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  531. }
  532. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  533. /* enable DMA RB */
  534. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  535. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  536. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  537. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  538. #ifdef __BIG_ENDIAN
  539. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  540. #endif
  541. /* enable DMA IBs */
  542. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  543. ring->ready = true;
  544. r = amdgpu_ring_test_ring(ring);
  545. if (r) {
  546. ring->ready = false;
  547. return r;
  548. }
  549. if (adev->mman.buffer_funcs_ring == ring)
  550. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  551. }
  552. return 0;
  553. }
  554. /**
  555. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  556. *
  557. * @adev: amdgpu_device pointer
  558. *
  559. * Set up the compute DMA queues and enable them (VI).
  560. * Returns 0 for success, error for failure.
  561. */
  562. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  563. {
  564. /* XXX todo */
  565. return 0;
  566. }
  567. /**
  568. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  569. *
  570. * @adev: amdgpu_device pointer
  571. *
  572. * Loads the sDMA0/1 ucode.
  573. * Returns 0 for success, -EINVAL if the ucode is not available.
  574. */
  575. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  576. {
  577. const struct sdma_firmware_header_v1_0 *hdr;
  578. const __le32 *fw_data;
  579. u32 fw_size;
  580. int i, j;
  581. if (!adev->sdma[0].fw || !adev->sdma[1].fw)
  582. return -EINVAL;
  583. /* halt the MEs */
  584. sdma_v3_0_enable(adev, false);
  585. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  586. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma[i].fw->data;
  587. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  588. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  589. fw_data = (const __le32 *)
  590. (adev->sdma[i].fw->data +
  591. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  592. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  593. for (j = 0; j < fw_size; j++)
  594. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  595. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma[i].fw_version);
  596. }
  597. return 0;
  598. }
  599. /**
  600. * sdma_v3_0_start - setup and start the async dma engines
  601. *
  602. * @adev: amdgpu_device pointer
  603. *
  604. * Set up the DMA engines and enable them (VI).
  605. * Returns 0 for success, error for failure.
  606. */
  607. static int sdma_v3_0_start(struct amdgpu_device *adev)
  608. {
  609. int r;
  610. if (!adev->firmware.smu_load) {
  611. r = sdma_v3_0_load_microcode(adev);
  612. if (r)
  613. return r;
  614. } else {
  615. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  616. AMDGPU_UCODE_ID_SDMA0);
  617. if (r)
  618. return -EINVAL;
  619. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  620. AMDGPU_UCODE_ID_SDMA1);
  621. if (r)
  622. return -EINVAL;
  623. }
  624. /* unhalt the MEs */
  625. sdma_v3_0_enable(adev, true);
  626. /* enable sdma ring preemption */
  627. sdma_v3_0_ctx_switch_enable(adev, true);
  628. /* start the gfx rings and rlc compute queues */
  629. r = sdma_v3_0_gfx_resume(adev);
  630. if (r)
  631. return r;
  632. r = sdma_v3_0_rlc_resume(adev);
  633. if (r)
  634. return r;
  635. return 0;
  636. }
  637. /**
  638. * sdma_v3_0_ring_test_ring - simple async dma engine test
  639. *
  640. * @ring: amdgpu_ring structure holding ring information
  641. *
  642. * Test the DMA engine by writing using it to write an
  643. * value to memory. (VI).
  644. * Returns 0 for success, error for failure.
  645. */
  646. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  647. {
  648. struct amdgpu_device *adev = ring->adev;
  649. unsigned i;
  650. unsigned index;
  651. int r;
  652. u32 tmp;
  653. u64 gpu_addr;
  654. r = amdgpu_wb_get(adev, &index);
  655. if (r) {
  656. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  657. return r;
  658. }
  659. gpu_addr = adev->wb.gpu_addr + (index * 4);
  660. tmp = 0xCAFEDEAD;
  661. adev->wb.wb[index] = cpu_to_le32(tmp);
  662. r = amdgpu_ring_lock(ring, 5);
  663. if (r) {
  664. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  665. amdgpu_wb_free(adev, index);
  666. return r;
  667. }
  668. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  669. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  670. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  671. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  672. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  673. amdgpu_ring_write(ring, 0xDEADBEEF);
  674. amdgpu_ring_unlock_commit(ring);
  675. for (i = 0; i < adev->usec_timeout; i++) {
  676. tmp = le32_to_cpu(adev->wb.wb[index]);
  677. if (tmp == 0xDEADBEEF)
  678. break;
  679. DRM_UDELAY(1);
  680. }
  681. if (i < adev->usec_timeout) {
  682. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  683. } else {
  684. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  685. ring->idx, tmp);
  686. r = -EINVAL;
  687. }
  688. amdgpu_wb_free(adev, index);
  689. return r;
  690. }
  691. /**
  692. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  693. *
  694. * @ring: amdgpu_ring structure holding ring information
  695. *
  696. * Test a simple IB in the DMA ring (VI).
  697. * Returns 0 on success, error on failure.
  698. */
  699. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
  700. {
  701. struct amdgpu_device *adev = ring->adev;
  702. struct amdgpu_ib ib;
  703. struct fence *f = NULL;
  704. unsigned i;
  705. unsigned index;
  706. int r;
  707. u32 tmp = 0;
  708. u64 gpu_addr;
  709. r = amdgpu_wb_get(adev, &index);
  710. if (r) {
  711. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  712. return r;
  713. }
  714. gpu_addr = adev->wb.gpu_addr + (index * 4);
  715. tmp = 0xCAFEDEAD;
  716. adev->wb.wb[index] = cpu_to_le32(tmp);
  717. memset(&ib, 0, sizeof(ib));
  718. r = amdgpu_ib_get(ring, NULL, 256, &ib);
  719. if (r) {
  720. DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
  721. goto err0;
  722. }
  723. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  724. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  725. ib.ptr[1] = lower_32_bits(gpu_addr);
  726. ib.ptr[2] = upper_32_bits(gpu_addr);
  727. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  728. ib.ptr[4] = 0xDEADBEEF;
  729. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  730. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  731. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  732. ib.length_dw = 8;
  733. r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, &ib, 1, NULL,
  734. AMDGPU_FENCE_OWNER_UNDEFINED,
  735. &f);
  736. if (r)
  737. goto err1;
  738. r = fence_wait(f, false);
  739. if (r) {
  740. DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
  741. goto err1;
  742. }
  743. for (i = 0; i < adev->usec_timeout; i++) {
  744. tmp = le32_to_cpu(adev->wb.wb[index]);
  745. if (tmp == 0xDEADBEEF)
  746. break;
  747. DRM_UDELAY(1);
  748. }
  749. if (i < adev->usec_timeout) {
  750. DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
  751. ring->idx, i);
  752. goto err1;
  753. } else {
  754. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  755. r = -EINVAL;
  756. }
  757. err1:
  758. fence_put(f);
  759. amdgpu_ib_free(adev, &ib);
  760. err0:
  761. amdgpu_wb_free(adev, index);
  762. return r;
  763. }
  764. /**
  765. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  766. *
  767. * @ib: indirect buffer to fill with commands
  768. * @pe: addr of the page entry
  769. * @src: src addr to copy from
  770. * @count: number of page entries to update
  771. *
  772. * Update PTEs by copying them from the GART using sDMA (CIK).
  773. */
  774. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  775. uint64_t pe, uint64_t src,
  776. unsigned count)
  777. {
  778. while (count) {
  779. unsigned bytes = count * 8;
  780. if (bytes > 0x1FFFF8)
  781. bytes = 0x1FFFF8;
  782. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  783. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  784. ib->ptr[ib->length_dw++] = bytes;
  785. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  786. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  787. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  788. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  789. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  790. pe += bytes;
  791. src += bytes;
  792. count -= bytes / 8;
  793. }
  794. }
  795. /**
  796. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  797. *
  798. * @ib: indirect buffer to fill with commands
  799. * @pe: addr of the page entry
  800. * @addr: dst addr to write into pe
  801. * @count: number of page entries to update
  802. * @incr: increase next addr by incr bytes
  803. * @flags: access flags
  804. *
  805. * Update PTEs by writing them manually using sDMA (CIK).
  806. */
  807. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
  808. uint64_t pe,
  809. uint64_t addr, unsigned count,
  810. uint32_t incr, uint32_t flags)
  811. {
  812. uint64_t value;
  813. unsigned ndw;
  814. while (count) {
  815. ndw = count * 2;
  816. if (ndw > 0xFFFFE)
  817. ndw = 0xFFFFE;
  818. /* for non-physically contiguous pages (system) */
  819. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  820. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  821. ib->ptr[ib->length_dw++] = pe;
  822. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  823. ib->ptr[ib->length_dw++] = ndw;
  824. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  825. if (flags & AMDGPU_PTE_SYSTEM) {
  826. value = amdgpu_vm_map_gart(ib->ring->adev, addr);
  827. value &= 0xFFFFFFFFFFFFF000ULL;
  828. } else if (flags & AMDGPU_PTE_VALID) {
  829. value = addr;
  830. } else {
  831. value = 0;
  832. }
  833. addr += incr;
  834. value |= flags;
  835. ib->ptr[ib->length_dw++] = value;
  836. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  837. }
  838. }
  839. }
  840. /**
  841. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  842. *
  843. * @ib: indirect buffer to fill with commands
  844. * @pe: addr of the page entry
  845. * @addr: dst addr to write into pe
  846. * @count: number of page entries to update
  847. * @incr: increase next addr by incr bytes
  848. * @flags: access flags
  849. *
  850. * Update the page tables using sDMA (CIK).
  851. */
  852. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  853. uint64_t pe,
  854. uint64_t addr, unsigned count,
  855. uint32_t incr, uint32_t flags)
  856. {
  857. uint64_t value;
  858. unsigned ndw;
  859. while (count) {
  860. ndw = count;
  861. if (ndw > 0x7FFFF)
  862. ndw = 0x7FFFF;
  863. if (flags & AMDGPU_PTE_VALID)
  864. value = addr;
  865. else
  866. value = 0;
  867. /* for physically contiguous pages (vram) */
  868. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  869. ib->ptr[ib->length_dw++] = pe; /* dst addr */
  870. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  871. ib->ptr[ib->length_dw++] = flags; /* mask */
  872. ib->ptr[ib->length_dw++] = 0;
  873. ib->ptr[ib->length_dw++] = value; /* value */
  874. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  875. ib->ptr[ib->length_dw++] = incr; /* increment size */
  876. ib->ptr[ib->length_dw++] = 0;
  877. ib->ptr[ib->length_dw++] = ndw; /* number of entries */
  878. pe += ndw * 8;
  879. addr += ndw * incr;
  880. count -= ndw;
  881. }
  882. }
  883. /**
  884. * sdma_v3_0_vm_pad_ib - pad the IB to the required number of dw
  885. *
  886. * @ib: indirect buffer to fill with padding
  887. *
  888. */
  889. static void sdma_v3_0_vm_pad_ib(struct amdgpu_ib *ib)
  890. {
  891. while (ib->length_dw & 0x7)
  892. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  893. }
  894. /**
  895. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  896. *
  897. * @ring: amdgpu_ring pointer
  898. * @vm: amdgpu_vm pointer
  899. *
  900. * Update the page table base and flush the VM TLB
  901. * using sDMA (VI).
  902. */
  903. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  904. unsigned vm_id, uint64_t pd_addr)
  905. {
  906. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  907. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  908. if (vm_id < 8) {
  909. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  910. } else {
  911. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  912. }
  913. amdgpu_ring_write(ring, pd_addr >> 12);
  914. /* flush TLB */
  915. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  916. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  917. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  918. amdgpu_ring_write(ring, 1 << vm_id);
  919. /* wait for flush */
  920. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  921. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  922. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  923. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  924. amdgpu_ring_write(ring, 0);
  925. amdgpu_ring_write(ring, 0); /* reference */
  926. amdgpu_ring_write(ring, 0); /* mask */
  927. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  928. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  929. }
  930. static int sdma_v3_0_early_init(void *handle)
  931. {
  932. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  933. sdma_v3_0_set_ring_funcs(adev);
  934. sdma_v3_0_set_buffer_funcs(adev);
  935. sdma_v3_0_set_vm_pte_funcs(adev);
  936. sdma_v3_0_set_irq_funcs(adev);
  937. return 0;
  938. }
  939. static int sdma_v3_0_sw_init(void *handle)
  940. {
  941. struct amdgpu_ring *ring;
  942. int r;
  943. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  944. /* SDMA trap event */
  945. r = amdgpu_irq_add_id(adev, 224, &adev->sdma_trap_irq);
  946. if (r)
  947. return r;
  948. /* SDMA Privileged inst */
  949. r = amdgpu_irq_add_id(adev, 241, &adev->sdma_illegal_inst_irq);
  950. if (r)
  951. return r;
  952. /* SDMA Privileged inst */
  953. r = amdgpu_irq_add_id(adev, 247, &adev->sdma_illegal_inst_irq);
  954. if (r)
  955. return r;
  956. r = sdma_v3_0_init_microcode(adev);
  957. if (r) {
  958. DRM_ERROR("Failed to load sdma firmware!\n");
  959. return r;
  960. }
  961. ring = &adev->sdma[0].ring;
  962. ring->ring_obj = NULL;
  963. ring->use_doorbell = true;
  964. ring->doorbell_index = AMDGPU_DOORBELL_sDMA_ENGINE0;
  965. ring = &adev->sdma[1].ring;
  966. ring->ring_obj = NULL;
  967. ring->use_doorbell = true;
  968. ring->doorbell_index = AMDGPU_DOORBELL_sDMA_ENGINE1;
  969. ring = &adev->sdma[0].ring;
  970. sprintf(ring->name, "sdma0");
  971. r = amdgpu_ring_init(adev, ring, 256 * 1024,
  972. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  973. &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP0,
  974. AMDGPU_RING_TYPE_SDMA);
  975. if (r)
  976. return r;
  977. ring = &adev->sdma[1].ring;
  978. sprintf(ring->name, "sdma1");
  979. r = amdgpu_ring_init(adev, ring, 256 * 1024,
  980. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  981. &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP1,
  982. AMDGPU_RING_TYPE_SDMA);
  983. if (r)
  984. return r;
  985. return r;
  986. }
  987. static int sdma_v3_0_sw_fini(void *handle)
  988. {
  989. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  990. amdgpu_ring_fini(&adev->sdma[0].ring);
  991. amdgpu_ring_fini(&adev->sdma[1].ring);
  992. return 0;
  993. }
  994. static int sdma_v3_0_hw_init(void *handle)
  995. {
  996. int r;
  997. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  998. sdma_v3_0_init_golden_registers(adev);
  999. r = sdma_v3_0_start(adev);
  1000. if (r)
  1001. return r;
  1002. return r;
  1003. }
  1004. static int sdma_v3_0_hw_fini(void *handle)
  1005. {
  1006. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1007. sdma_v3_0_ctx_switch_enable(adev, false);
  1008. sdma_v3_0_enable(adev, false);
  1009. return 0;
  1010. }
  1011. static int sdma_v3_0_suspend(void *handle)
  1012. {
  1013. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1014. return sdma_v3_0_hw_fini(adev);
  1015. }
  1016. static int sdma_v3_0_resume(void *handle)
  1017. {
  1018. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1019. return sdma_v3_0_hw_init(adev);
  1020. }
  1021. static bool sdma_v3_0_is_idle(void *handle)
  1022. {
  1023. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1024. u32 tmp = RREG32(mmSRBM_STATUS2);
  1025. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1026. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1027. return false;
  1028. return true;
  1029. }
  1030. static int sdma_v3_0_wait_for_idle(void *handle)
  1031. {
  1032. unsigned i;
  1033. u32 tmp;
  1034. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1035. for (i = 0; i < adev->usec_timeout; i++) {
  1036. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1037. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1038. if (!tmp)
  1039. return 0;
  1040. udelay(1);
  1041. }
  1042. return -ETIMEDOUT;
  1043. }
  1044. static void sdma_v3_0_print_status(void *handle)
  1045. {
  1046. int i, j;
  1047. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1048. dev_info(adev->dev, "VI SDMA registers\n");
  1049. dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
  1050. RREG32(mmSRBM_STATUS2));
  1051. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  1052. dev_info(adev->dev, " SDMA%d_STATUS_REG=0x%08X\n",
  1053. i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
  1054. dev_info(adev->dev, " SDMA%d_F32_CNTL=0x%08X\n",
  1055. i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
  1056. dev_info(adev->dev, " SDMA%d_CNTL=0x%08X\n",
  1057. i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
  1058. dev_info(adev->dev, " SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
  1059. i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
  1060. dev_info(adev->dev, " SDMA%d_GFX_IB_CNTL=0x%08X\n",
  1061. i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
  1062. dev_info(adev->dev, " SDMA%d_GFX_RB_CNTL=0x%08X\n",
  1063. i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
  1064. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR=0x%08X\n",
  1065. i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
  1066. dev_info(adev->dev, " SDMA%d_GFX_RB_WPTR=0x%08X\n",
  1067. i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
  1068. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
  1069. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
  1070. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
  1071. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
  1072. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE=0x%08X\n",
  1073. i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
  1074. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
  1075. i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
  1076. dev_info(adev->dev, " SDMA%d_GFX_DOORBELL=0x%08X\n",
  1077. i, RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]));
  1078. mutex_lock(&adev->srbm_mutex);
  1079. for (j = 0; j < 16; j++) {
  1080. vi_srbm_select(adev, 0, 0, 0, j);
  1081. dev_info(adev->dev, " VM %d:\n", j);
  1082. dev_info(adev->dev, " SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n",
  1083. i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
  1084. dev_info(adev->dev, " SDMA%d_GFX_APE1_CNTL=0x%08X\n",
  1085. i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
  1086. }
  1087. vi_srbm_select(adev, 0, 0, 0, 0);
  1088. mutex_unlock(&adev->srbm_mutex);
  1089. }
  1090. }
  1091. static int sdma_v3_0_soft_reset(void *handle)
  1092. {
  1093. u32 srbm_soft_reset = 0;
  1094. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1095. u32 tmp = RREG32(mmSRBM_STATUS2);
  1096. if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
  1097. /* sdma0 */
  1098. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
  1099. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1100. WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
  1101. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1102. }
  1103. if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
  1104. /* sdma1 */
  1105. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
  1106. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1107. WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
  1108. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1109. }
  1110. if (srbm_soft_reset) {
  1111. sdma_v3_0_print_status((void *)adev);
  1112. tmp = RREG32(mmSRBM_SOFT_RESET);
  1113. tmp |= srbm_soft_reset;
  1114. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1115. WREG32(mmSRBM_SOFT_RESET, tmp);
  1116. tmp = RREG32(mmSRBM_SOFT_RESET);
  1117. udelay(50);
  1118. tmp &= ~srbm_soft_reset;
  1119. WREG32(mmSRBM_SOFT_RESET, tmp);
  1120. tmp = RREG32(mmSRBM_SOFT_RESET);
  1121. /* Wait a little for things to settle down */
  1122. udelay(50);
  1123. sdma_v3_0_print_status((void *)adev);
  1124. }
  1125. return 0;
  1126. }
  1127. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1128. struct amdgpu_irq_src *source,
  1129. unsigned type,
  1130. enum amdgpu_interrupt_state state)
  1131. {
  1132. u32 sdma_cntl;
  1133. switch (type) {
  1134. case AMDGPU_SDMA_IRQ_TRAP0:
  1135. switch (state) {
  1136. case AMDGPU_IRQ_STATE_DISABLE:
  1137. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1138. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1139. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1140. break;
  1141. case AMDGPU_IRQ_STATE_ENABLE:
  1142. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1143. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1144. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1145. break;
  1146. default:
  1147. break;
  1148. }
  1149. break;
  1150. case AMDGPU_SDMA_IRQ_TRAP1:
  1151. switch (state) {
  1152. case AMDGPU_IRQ_STATE_DISABLE:
  1153. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1154. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1155. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1156. break;
  1157. case AMDGPU_IRQ_STATE_ENABLE:
  1158. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1159. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1160. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1161. break;
  1162. default:
  1163. break;
  1164. }
  1165. break;
  1166. default:
  1167. break;
  1168. }
  1169. return 0;
  1170. }
  1171. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1172. struct amdgpu_irq_src *source,
  1173. struct amdgpu_iv_entry *entry)
  1174. {
  1175. u8 instance_id, queue_id;
  1176. instance_id = (entry->ring_id & 0x3) >> 0;
  1177. queue_id = (entry->ring_id & 0xc) >> 2;
  1178. DRM_DEBUG("IH: SDMA trap\n");
  1179. switch (instance_id) {
  1180. case 0:
  1181. switch (queue_id) {
  1182. case 0:
  1183. amdgpu_fence_process(&adev->sdma[0].ring);
  1184. break;
  1185. case 1:
  1186. /* XXX compute */
  1187. break;
  1188. case 2:
  1189. /* XXX compute */
  1190. break;
  1191. }
  1192. break;
  1193. case 1:
  1194. switch (queue_id) {
  1195. case 0:
  1196. amdgpu_fence_process(&adev->sdma[1].ring);
  1197. break;
  1198. case 1:
  1199. /* XXX compute */
  1200. break;
  1201. case 2:
  1202. /* XXX compute */
  1203. break;
  1204. }
  1205. break;
  1206. }
  1207. return 0;
  1208. }
  1209. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1210. struct amdgpu_irq_src *source,
  1211. struct amdgpu_iv_entry *entry)
  1212. {
  1213. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1214. schedule_work(&adev->reset_work);
  1215. return 0;
  1216. }
  1217. static int sdma_v3_0_set_clockgating_state(void *handle,
  1218. enum amd_clockgating_state state)
  1219. {
  1220. return 0;
  1221. }
  1222. static int sdma_v3_0_set_powergating_state(void *handle,
  1223. enum amd_powergating_state state)
  1224. {
  1225. return 0;
  1226. }
  1227. const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1228. .early_init = sdma_v3_0_early_init,
  1229. .late_init = NULL,
  1230. .sw_init = sdma_v3_0_sw_init,
  1231. .sw_fini = sdma_v3_0_sw_fini,
  1232. .hw_init = sdma_v3_0_hw_init,
  1233. .hw_fini = sdma_v3_0_hw_fini,
  1234. .suspend = sdma_v3_0_suspend,
  1235. .resume = sdma_v3_0_resume,
  1236. .is_idle = sdma_v3_0_is_idle,
  1237. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1238. .soft_reset = sdma_v3_0_soft_reset,
  1239. .print_status = sdma_v3_0_print_status,
  1240. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1241. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1242. };
  1243. /**
  1244. * sdma_v3_0_ring_is_lockup - Check if the DMA engine is locked up
  1245. *
  1246. * @ring: amdgpu_ring structure holding ring information
  1247. *
  1248. * Check if the async DMA engine is locked up (VI).
  1249. * Returns true if the engine appears to be locked up, false if not.
  1250. */
  1251. static bool sdma_v3_0_ring_is_lockup(struct amdgpu_ring *ring)
  1252. {
  1253. if (sdma_v3_0_is_idle(ring->adev)) {
  1254. amdgpu_ring_lockup_update(ring);
  1255. return false;
  1256. }
  1257. return amdgpu_ring_test_lockup(ring);
  1258. }
  1259. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1260. .get_rptr = sdma_v3_0_ring_get_rptr,
  1261. .get_wptr = sdma_v3_0_ring_get_wptr,
  1262. .set_wptr = sdma_v3_0_ring_set_wptr,
  1263. .parse_cs = NULL,
  1264. .emit_ib = sdma_v3_0_ring_emit_ib,
  1265. .emit_fence = sdma_v3_0_ring_emit_fence,
  1266. .emit_semaphore = sdma_v3_0_ring_emit_semaphore,
  1267. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1268. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1269. .test_ring = sdma_v3_0_ring_test_ring,
  1270. .test_ib = sdma_v3_0_ring_test_ib,
  1271. .is_lockup = sdma_v3_0_ring_is_lockup,
  1272. };
  1273. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1274. {
  1275. adev->sdma[0].ring.funcs = &sdma_v3_0_ring_funcs;
  1276. adev->sdma[1].ring.funcs = &sdma_v3_0_ring_funcs;
  1277. }
  1278. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1279. .set = sdma_v3_0_set_trap_irq_state,
  1280. .process = sdma_v3_0_process_trap_irq,
  1281. };
  1282. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1283. .process = sdma_v3_0_process_illegal_inst_irq,
  1284. };
  1285. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1286. {
  1287. adev->sdma_trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1288. adev->sdma_trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1289. adev->sdma_illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1290. }
  1291. /**
  1292. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1293. *
  1294. * @ring: amdgpu_ring structure holding ring information
  1295. * @src_offset: src GPU address
  1296. * @dst_offset: dst GPU address
  1297. * @byte_count: number of bytes to xfer
  1298. *
  1299. * Copy GPU buffers using the DMA engine (VI).
  1300. * Used by the amdgpu ttm implementation to move pages if
  1301. * registered as the asic copy callback.
  1302. */
  1303. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1304. uint64_t src_offset,
  1305. uint64_t dst_offset,
  1306. uint32_t byte_count)
  1307. {
  1308. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1309. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1310. ib->ptr[ib->length_dw++] = byte_count;
  1311. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1312. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1313. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1314. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1315. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1316. }
  1317. /**
  1318. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1319. *
  1320. * @ring: amdgpu_ring structure holding ring information
  1321. * @src_data: value to write to buffer
  1322. * @dst_offset: dst GPU address
  1323. * @byte_count: number of bytes to xfer
  1324. *
  1325. * Fill GPU buffers using the DMA engine (VI).
  1326. */
  1327. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ring *ring,
  1328. uint32_t src_data,
  1329. uint64_t dst_offset,
  1330. uint32_t byte_count)
  1331. {
  1332. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL));
  1333. amdgpu_ring_write(ring, lower_32_bits(dst_offset));
  1334. amdgpu_ring_write(ring, upper_32_bits(dst_offset));
  1335. amdgpu_ring_write(ring, src_data);
  1336. amdgpu_ring_write(ring, byte_count);
  1337. }
  1338. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1339. .copy_max_bytes = 0x1fffff,
  1340. .copy_num_dw = 7,
  1341. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1342. .fill_max_bytes = 0x1fffff,
  1343. .fill_num_dw = 5,
  1344. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1345. };
  1346. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1347. {
  1348. if (adev->mman.buffer_funcs == NULL) {
  1349. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1350. adev->mman.buffer_funcs_ring = &adev->sdma[0].ring;
  1351. }
  1352. }
  1353. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1354. .copy_pte = sdma_v3_0_vm_copy_pte,
  1355. .write_pte = sdma_v3_0_vm_write_pte,
  1356. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1357. .pad_ib = sdma_v3_0_vm_pad_ib,
  1358. };
  1359. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1360. {
  1361. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1362. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1363. adev->vm_manager.vm_pte_funcs_ring = &adev->sdma[0].ring;
  1364. adev->vm_manager.vm_pte_funcs_ring->is_pte_ring = true;
  1365. }
  1366. }