omap-aes.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for OMAP AES HW acceleration.
  5. *
  6. * Copyright (c) 2010 Nokia Corporation
  7. * Author: Dmitry Kasatkin <dmitry.kasatkin@nokia.com>
  8. * Copyright (c) 2011 Texas Instruments Incorporated
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as published
  12. * by the Free Software Foundation.
  13. *
  14. */
  15. #define pr_fmt(fmt) "%20s: " fmt, __func__
  16. #define prn(num) pr_debug(#num "=%d\n", num)
  17. #define prx(num) pr_debug(#num "=%x\n", num)
  18. #include <linux/err.h>
  19. #include <linux/module.h>
  20. #include <linux/init.h>
  21. #include <linux/errno.h>
  22. #include <linux/kernel.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/scatterlist.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/dmaengine.h>
  27. #include <linux/pm_runtime.h>
  28. #include <linux/of.h>
  29. #include <linux/of_device.h>
  30. #include <linux/of_address.h>
  31. #include <linux/io.h>
  32. #include <linux/crypto.h>
  33. #include <linux/interrupt.h>
  34. #include <crypto/scatterwalk.h>
  35. #include <crypto/aes.h>
  36. #include <crypto/gcm.h>
  37. #include <crypto/engine.h>
  38. #include <crypto/internal/skcipher.h>
  39. #include <crypto/internal/aead.h>
  40. #include "omap-crypto.h"
  41. #include "omap-aes.h"
  42. /* keep registered devices data here */
  43. static LIST_HEAD(dev_list);
  44. static DEFINE_SPINLOCK(list_lock);
  45. #ifdef DEBUG
  46. #define omap_aes_read(dd, offset) \
  47. ({ \
  48. int _read_ret; \
  49. _read_ret = __raw_readl(dd->io_base + offset); \
  50. pr_debug("omap_aes_read(" #offset "=%#x)= %#x\n", \
  51. offset, _read_ret); \
  52. _read_ret; \
  53. })
  54. #else
  55. inline u32 omap_aes_read(struct omap_aes_dev *dd, u32 offset)
  56. {
  57. return __raw_readl(dd->io_base + offset);
  58. }
  59. #endif
  60. #ifdef DEBUG
  61. #define omap_aes_write(dd, offset, value) \
  62. do { \
  63. pr_debug("omap_aes_write(" #offset "=%#x) value=%#x\n", \
  64. offset, value); \
  65. __raw_writel(value, dd->io_base + offset); \
  66. } while (0)
  67. #else
  68. inline void omap_aes_write(struct omap_aes_dev *dd, u32 offset,
  69. u32 value)
  70. {
  71. __raw_writel(value, dd->io_base + offset);
  72. }
  73. #endif
  74. static inline void omap_aes_write_mask(struct omap_aes_dev *dd, u32 offset,
  75. u32 value, u32 mask)
  76. {
  77. u32 val;
  78. val = omap_aes_read(dd, offset);
  79. val &= ~mask;
  80. val |= value;
  81. omap_aes_write(dd, offset, val);
  82. }
  83. static void omap_aes_write_n(struct omap_aes_dev *dd, u32 offset,
  84. u32 *value, int count)
  85. {
  86. for (; count--; value++, offset += 4)
  87. omap_aes_write(dd, offset, *value);
  88. }
  89. static int omap_aes_hw_init(struct omap_aes_dev *dd)
  90. {
  91. int err;
  92. if (!(dd->flags & FLAGS_INIT)) {
  93. dd->flags |= FLAGS_INIT;
  94. dd->err = 0;
  95. }
  96. err = pm_runtime_get_sync(dd->dev);
  97. if (err < 0) {
  98. dev_err(dd->dev, "failed to get sync: %d\n", err);
  99. return err;
  100. }
  101. return 0;
  102. }
  103. void omap_aes_clear_copy_flags(struct omap_aes_dev *dd)
  104. {
  105. dd->flags &= ~(OMAP_CRYPTO_COPY_MASK << FLAGS_IN_DATA_ST_SHIFT);
  106. dd->flags &= ~(OMAP_CRYPTO_COPY_MASK << FLAGS_OUT_DATA_ST_SHIFT);
  107. dd->flags &= ~(OMAP_CRYPTO_COPY_MASK << FLAGS_ASSOC_DATA_ST_SHIFT);
  108. }
  109. int omap_aes_write_ctrl(struct omap_aes_dev *dd)
  110. {
  111. struct omap_aes_reqctx *rctx;
  112. unsigned int key32;
  113. int i, err;
  114. u32 val;
  115. err = omap_aes_hw_init(dd);
  116. if (err)
  117. return err;
  118. key32 = dd->ctx->keylen / sizeof(u32);
  119. /* RESET the key as previous HASH keys should not get affected*/
  120. if (dd->flags & FLAGS_GCM)
  121. for (i = 0; i < 0x40; i = i + 4)
  122. omap_aes_write(dd, i, 0x0);
  123. for (i = 0; i < key32; i++) {
  124. omap_aes_write(dd, AES_REG_KEY(dd, i),
  125. __le32_to_cpu(dd->ctx->key[i]));
  126. }
  127. if ((dd->flags & (FLAGS_CBC | FLAGS_CTR)) && dd->req->info)
  128. omap_aes_write_n(dd, AES_REG_IV(dd, 0), dd->req->info, 4);
  129. if ((dd->flags & (FLAGS_GCM)) && dd->aead_req->iv) {
  130. rctx = aead_request_ctx(dd->aead_req);
  131. omap_aes_write_n(dd, AES_REG_IV(dd, 0), (u32 *)rctx->iv, 4);
  132. }
  133. val = FLD_VAL(((dd->ctx->keylen >> 3) - 1), 4, 3);
  134. if (dd->flags & FLAGS_CBC)
  135. val |= AES_REG_CTRL_CBC;
  136. if (dd->flags & (FLAGS_CTR | FLAGS_GCM))
  137. val |= AES_REG_CTRL_CTR | AES_REG_CTRL_CTR_WIDTH_128;
  138. if (dd->flags & FLAGS_GCM)
  139. val |= AES_REG_CTRL_GCM;
  140. if (dd->flags & FLAGS_ENCRYPT)
  141. val |= AES_REG_CTRL_DIRECTION;
  142. omap_aes_write_mask(dd, AES_REG_CTRL(dd), val, AES_REG_CTRL_MASK);
  143. return 0;
  144. }
  145. static void omap_aes_dma_trigger_omap2(struct omap_aes_dev *dd, int length)
  146. {
  147. u32 mask, val;
  148. val = dd->pdata->dma_start;
  149. if (dd->dma_lch_out != NULL)
  150. val |= dd->pdata->dma_enable_out;
  151. if (dd->dma_lch_in != NULL)
  152. val |= dd->pdata->dma_enable_in;
  153. mask = dd->pdata->dma_enable_out | dd->pdata->dma_enable_in |
  154. dd->pdata->dma_start;
  155. omap_aes_write_mask(dd, AES_REG_MASK(dd), val, mask);
  156. }
  157. static void omap_aes_dma_trigger_omap4(struct omap_aes_dev *dd, int length)
  158. {
  159. omap_aes_write(dd, AES_REG_LENGTH_N(0), length);
  160. omap_aes_write(dd, AES_REG_LENGTH_N(1), 0);
  161. if (dd->flags & FLAGS_GCM)
  162. omap_aes_write(dd, AES_REG_A_LEN, dd->assoc_len);
  163. omap_aes_dma_trigger_omap2(dd, length);
  164. }
  165. static void omap_aes_dma_stop(struct omap_aes_dev *dd)
  166. {
  167. u32 mask;
  168. mask = dd->pdata->dma_enable_out | dd->pdata->dma_enable_in |
  169. dd->pdata->dma_start;
  170. omap_aes_write_mask(dd, AES_REG_MASK(dd), 0, mask);
  171. }
  172. struct omap_aes_dev *omap_aes_find_dev(struct omap_aes_reqctx *rctx)
  173. {
  174. struct omap_aes_dev *dd;
  175. spin_lock_bh(&list_lock);
  176. dd = list_first_entry(&dev_list, struct omap_aes_dev, list);
  177. list_move_tail(&dd->list, &dev_list);
  178. rctx->dd = dd;
  179. spin_unlock_bh(&list_lock);
  180. return dd;
  181. }
  182. static void omap_aes_dma_out_callback(void *data)
  183. {
  184. struct omap_aes_dev *dd = data;
  185. /* dma_lch_out - completed */
  186. tasklet_schedule(&dd->done_task);
  187. }
  188. static int omap_aes_dma_init(struct omap_aes_dev *dd)
  189. {
  190. int err;
  191. dd->dma_lch_out = NULL;
  192. dd->dma_lch_in = NULL;
  193. dd->dma_lch_in = dma_request_chan(dd->dev, "rx");
  194. if (IS_ERR(dd->dma_lch_in)) {
  195. dev_err(dd->dev, "Unable to request in DMA channel\n");
  196. return PTR_ERR(dd->dma_lch_in);
  197. }
  198. dd->dma_lch_out = dma_request_chan(dd->dev, "tx");
  199. if (IS_ERR(dd->dma_lch_out)) {
  200. dev_err(dd->dev, "Unable to request out DMA channel\n");
  201. err = PTR_ERR(dd->dma_lch_out);
  202. goto err_dma_out;
  203. }
  204. return 0;
  205. err_dma_out:
  206. dma_release_channel(dd->dma_lch_in);
  207. return err;
  208. }
  209. static void omap_aes_dma_cleanup(struct omap_aes_dev *dd)
  210. {
  211. if (dd->pio_only)
  212. return;
  213. dma_release_channel(dd->dma_lch_out);
  214. dma_release_channel(dd->dma_lch_in);
  215. }
  216. static int omap_aes_crypt_dma(struct omap_aes_dev *dd,
  217. struct scatterlist *in_sg,
  218. struct scatterlist *out_sg,
  219. int in_sg_len, int out_sg_len)
  220. {
  221. struct dma_async_tx_descriptor *tx_in, *tx_out;
  222. struct dma_slave_config cfg;
  223. int ret;
  224. if (dd->pio_only) {
  225. scatterwalk_start(&dd->in_walk, dd->in_sg);
  226. scatterwalk_start(&dd->out_walk, dd->out_sg);
  227. /* Enable DATAIN interrupt and let it take
  228. care of the rest */
  229. omap_aes_write(dd, AES_REG_IRQ_ENABLE(dd), 0x2);
  230. return 0;
  231. }
  232. dma_sync_sg_for_device(dd->dev, dd->in_sg, in_sg_len, DMA_TO_DEVICE);
  233. memset(&cfg, 0, sizeof(cfg));
  234. cfg.src_addr = dd->phys_base + AES_REG_DATA_N(dd, 0);
  235. cfg.dst_addr = dd->phys_base + AES_REG_DATA_N(dd, 0);
  236. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  237. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  238. cfg.src_maxburst = DST_MAXBURST;
  239. cfg.dst_maxburst = DST_MAXBURST;
  240. /* IN */
  241. ret = dmaengine_slave_config(dd->dma_lch_in, &cfg);
  242. if (ret) {
  243. dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
  244. ret);
  245. return ret;
  246. }
  247. tx_in = dmaengine_prep_slave_sg(dd->dma_lch_in, in_sg, in_sg_len,
  248. DMA_MEM_TO_DEV,
  249. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  250. if (!tx_in) {
  251. dev_err(dd->dev, "IN prep_slave_sg() failed\n");
  252. return -EINVAL;
  253. }
  254. /* No callback necessary */
  255. tx_in->callback_param = dd;
  256. /* OUT */
  257. ret = dmaengine_slave_config(dd->dma_lch_out, &cfg);
  258. if (ret) {
  259. dev_err(dd->dev, "can't configure OUT dmaengine slave: %d\n",
  260. ret);
  261. return ret;
  262. }
  263. tx_out = dmaengine_prep_slave_sg(dd->dma_lch_out, out_sg, out_sg_len,
  264. DMA_DEV_TO_MEM,
  265. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  266. if (!tx_out) {
  267. dev_err(dd->dev, "OUT prep_slave_sg() failed\n");
  268. return -EINVAL;
  269. }
  270. if (dd->flags & FLAGS_GCM)
  271. tx_out->callback = omap_aes_gcm_dma_out_callback;
  272. else
  273. tx_out->callback = omap_aes_dma_out_callback;
  274. tx_out->callback_param = dd;
  275. dmaengine_submit(tx_in);
  276. dmaengine_submit(tx_out);
  277. dma_async_issue_pending(dd->dma_lch_in);
  278. dma_async_issue_pending(dd->dma_lch_out);
  279. /* start DMA */
  280. dd->pdata->trigger(dd, dd->total);
  281. return 0;
  282. }
  283. int omap_aes_crypt_dma_start(struct omap_aes_dev *dd)
  284. {
  285. int err;
  286. pr_debug("total: %d\n", dd->total);
  287. if (!dd->pio_only) {
  288. err = dma_map_sg(dd->dev, dd->in_sg, dd->in_sg_len,
  289. DMA_TO_DEVICE);
  290. if (!err) {
  291. dev_err(dd->dev, "dma_map_sg() error\n");
  292. return -EINVAL;
  293. }
  294. err = dma_map_sg(dd->dev, dd->out_sg, dd->out_sg_len,
  295. DMA_FROM_DEVICE);
  296. if (!err) {
  297. dev_err(dd->dev, "dma_map_sg() error\n");
  298. return -EINVAL;
  299. }
  300. }
  301. err = omap_aes_crypt_dma(dd, dd->in_sg, dd->out_sg, dd->in_sg_len,
  302. dd->out_sg_len);
  303. if (err && !dd->pio_only) {
  304. dma_unmap_sg(dd->dev, dd->in_sg, dd->in_sg_len, DMA_TO_DEVICE);
  305. dma_unmap_sg(dd->dev, dd->out_sg, dd->out_sg_len,
  306. DMA_FROM_DEVICE);
  307. }
  308. return err;
  309. }
  310. static void omap_aes_finish_req(struct omap_aes_dev *dd, int err)
  311. {
  312. struct ablkcipher_request *req = dd->req;
  313. pr_debug("err: %d\n", err);
  314. crypto_finalize_ablkcipher_request(dd->engine, req, err);
  315. pm_runtime_mark_last_busy(dd->dev);
  316. pm_runtime_put_autosuspend(dd->dev);
  317. }
  318. int omap_aes_crypt_dma_stop(struct omap_aes_dev *dd)
  319. {
  320. pr_debug("total: %d\n", dd->total);
  321. omap_aes_dma_stop(dd);
  322. return 0;
  323. }
  324. static int omap_aes_handle_queue(struct omap_aes_dev *dd,
  325. struct ablkcipher_request *req)
  326. {
  327. if (req)
  328. return crypto_transfer_ablkcipher_request_to_engine(dd->engine, req);
  329. return 0;
  330. }
  331. static int omap_aes_prepare_req(struct crypto_engine *engine,
  332. void *areq)
  333. {
  334. struct ablkcipher_request *req = container_of(areq, struct ablkcipher_request, base);
  335. struct omap_aes_ctx *ctx = crypto_ablkcipher_ctx(
  336. crypto_ablkcipher_reqtfm(req));
  337. struct omap_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  338. struct omap_aes_dev *dd = rctx->dd;
  339. int ret;
  340. u16 flags;
  341. if (!dd)
  342. return -ENODEV;
  343. /* assign new request to device */
  344. dd->req = req;
  345. dd->total = req->nbytes;
  346. dd->total_save = req->nbytes;
  347. dd->in_sg = req->src;
  348. dd->out_sg = req->dst;
  349. dd->orig_out = req->dst;
  350. flags = OMAP_CRYPTO_COPY_DATA;
  351. if (req->src == req->dst)
  352. flags |= OMAP_CRYPTO_FORCE_COPY;
  353. ret = omap_crypto_align_sg(&dd->in_sg, dd->total, AES_BLOCK_SIZE,
  354. dd->in_sgl, flags,
  355. FLAGS_IN_DATA_ST_SHIFT, &dd->flags);
  356. if (ret)
  357. return ret;
  358. ret = omap_crypto_align_sg(&dd->out_sg, dd->total, AES_BLOCK_SIZE,
  359. &dd->out_sgl, 0,
  360. FLAGS_OUT_DATA_ST_SHIFT, &dd->flags);
  361. if (ret)
  362. return ret;
  363. dd->in_sg_len = sg_nents_for_len(dd->in_sg, dd->total);
  364. if (dd->in_sg_len < 0)
  365. return dd->in_sg_len;
  366. dd->out_sg_len = sg_nents_for_len(dd->out_sg, dd->total);
  367. if (dd->out_sg_len < 0)
  368. return dd->out_sg_len;
  369. rctx->mode &= FLAGS_MODE_MASK;
  370. dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode;
  371. dd->ctx = ctx;
  372. rctx->dd = dd;
  373. return omap_aes_write_ctrl(dd);
  374. }
  375. static int omap_aes_crypt_req(struct crypto_engine *engine,
  376. void *areq)
  377. {
  378. struct ablkcipher_request *req = container_of(areq, struct ablkcipher_request, base);
  379. struct omap_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  380. struct omap_aes_dev *dd = rctx->dd;
  381. if (!dd)
  382. return -ENODEV;
  383. return omap_aes_crypt_dma_start(dd);
  384. }
  385. static void omap_aes_done_task(unsigned long data)
  386. {
  387. struct omap_aes_dev *dd = (struct omap_aes_dev *)data;
  388. pr_debug("enter done_task\n");
  389. if (!dd->pio_only) {
  390. dma_sync_sg_for_device(dd->dev, dd->out_sg, dd->out_sg_len,
  391. DMA_FROM_DEVICE);
  392. dma_unmap_sg(dd->dev, dd->in_sg, dd->in_sg_len, DMA_TO_DEVICE);
  393. dma_unmap_sg(dd->dev, dd->out_sg, dd->out_sg_len,
  394. DMA_FROM_DEVICE);
  395. omap_aes_crypt_dma_stop(dd);
  396. }
  397. omap_crypto_cleanup(dd->in_sgl, NULL, 0, dd->total_save,
  398. FLAGS_IN_DATA_ST_SHIFT, dd->flags);
  399. omap_crypto_cleanup(&dd->out_sgl, dd->orig_out, 0, dd->total_save,
  400. FLAGS_OUT_DATA_ST_SHIFT, dd->flags);
  401. omap_aes_finish_req(dd, 0);
  402. pr_debug("exit\n");
  403. }
  404. static int omap_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
  405. {
  406. struct omap_aes_ctx *ctx = crypto_ablkcipher_ctx(
  407. crypto_ablkcipher_reqtfm(req));
  408. struct omap_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  409. struct omap_aes_dev *dd;
  410. int ret;
  411. pr_debug("nbytes: %d, enc: %d, cbc: %d\n", req->nbytes,
  412. !!(mode & FLAGS_ENCRYPT),
  413. !!(mode & FLAGS_CBC));
  414. if (req->nbytes < 200) {
  415. SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback);
  416. skcipher_request_set_tfm(subreq, ctx->fallback);
  417. skcipher_request_set_callback(subreq, req->base.flags, NULL,
  418. NULL);
  419. skcipher_request_set_crypt(subreq, req->src, req->dst,
  420. req->nbytes, req->info);
  421. if (mode & FLAGS_ENCRYPT)
  422. ret = crypto_skcipher_encrypt(subreq);
  423. else
  424. ret = crypto_skcipher_decrypt(subreq);
  425. skcipher_request_zero(subreq);
  426. return ret;
  427. }
  428. dd = omap_aes_find_dev(rctx);
  429. if (!dd)
  430. return -ENODEV;
  431. rctx->mode = mode;
  432. return omap_aes_handle_queue(dd, req);
  433. }
  434. /* ********************** ALG API ************************************ */
  435. static int omap_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
  436. unsigned int keylen)
  437. {
  438. struct omap_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  439. int ret;
  440. if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
  441. keylen != AES_KEYSIZE_256)
  442. return -EINVAL;
  443. pr_debug("enter, keylen: %d\n", keylen);
  444. memcpy(ctx->key, key, keylen);
  445. ctx->keylen = keylen;
  446. crypto_skcipher_clear_flags(ctx->fallback, CRYPTO_TFM_REQ_MASK);
  447. crypto_skcipher_set_flags(ctx->fallback, tfm->base.crt_flags &
  448. CRYPTO_TFM_REQ_MASK);
  449. ret = crypto_skcipher_setkey(ctx->fallback, key, keylen);
  450. if (!ret)
  451. return 0;
  452. return 0;
  453. }
  454. static int omap_aes_ecb_encrypt(struct ablkcipher_request *req)
  455. {
  456. return omap_aes_crypt(req, FLAGS_ENCRYPT);
  457. }
  458. static int omap_aes_ecb_decrypt(struct ablkcipher_request *req)
  459. {
  460. return omap_aes_crypt(req, 0);
  461. }
  462. static int omap_aes_cbc_encrypt(struct ablkcipher_request *req)
  463. {
  464. return omap_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC);
  465. }
  466. static int omap_aes_cbc_decrypt(struct ablkcipher_request *req)
  467. {
  468. return omap_aes_crypt(req, FLAGS_CBC);
  469. }
  470. static int omap_aes_ctr_encrypt(struct ablkcipher_request *req)
  471. {
  472. return omap_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CTR);
  473. }
  474. static int omap_aes_ctr_decrypt(struct ablkcipher_request *req)
  475. {
  476. return omap_aes_crypt(req, FLAGS_CTR);
  477. }
  478. static int omap_aes_prepare_req(struct crypto_engine *engine,
  479. void *req);
  480. static int omap_aes_crypt_req(struct crypto_engine *engine,
  481. void *req);
  482. static int omap_aes_cra_init(struct crypto_tfm *tfm)
  483. {
  484. const char *name = crypto_tfm_alg_name(tfm);
  485. const u32 flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK;
  486. struct omap_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  487. struct crypto_skcipher *blk;
  488. blk = crypto_alloc_skcipher(name, 0, flags);
  489. if (IS_ERR(blk))
  490. return PTR_ERR(blk);
  491. ctx->fallback = blk;
  492. tfm->crt_ablkcipher.reqsize = sizeof(struct omap_aes_reqctx);
  493. ctx->enginectx.op.prepare_request = omap_aes_prepare_req;
  494. ctx->enginectx.op.unprepare_request = NULL;
  495. ctx->enginectx.op.do_one_request = omap_aes_crypt_req;
  496. return 0;
  497. }
  498. static int omap_aes_gcm_cra_init(struct crypto_aead *tfm)
  499. {
  500. struct omap_aes_dev *dd = NULL;
  501. struct omap_aes_ctx *ctx = crypto_aead_ctx(tfm);
  502. int err;
  503. /* Find AES device, currently picks the first device */
  504. spin_lock_bh(&list_lock);
  505. list_for_each_entry(dd, &dev_list, list) {
  506. break;
  507. }
  508. spin_unlock_bh(&list_lock);
  509. err = pm_runtime_get_sync(dd->dev);
  510. if (err < 0) {
  511. dev_err(dd->dev, "%s: failed to get_sync(%d)\n",
  512. __func__, err);
  513. return err;
  514. }
  515. tfm->reqsize = sizeof(struct omap_aes_reqctx);
  516. ctx->ctr = crypto_alloc_skcipher("ecb(aes)", 0, 0);
  517. if (IS_ERR(ctx->ctr)) {
  518. pr_warn("could not load aes driver for encrypting IV\n");
  519. return PTR_ERR(ctx->ctr);
  520. }
  521. return 0;
  522. }
  523. static void omap_aes_cra_exit(struct crypto_tfm *tfm)
  524. {
  525. struct omap_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  526. if (ctx->fallback)
  527. crypto_free_skcipher(ctx->fallback);
  528. ctx->fallback = NULL;
  529. }
  530. static void omap_aes_gcm_cra_exit(struct crypto_aead *tfm)
  531. {
  532. struct omap_aes_ctx *ctx = crypto_aead_ctx(tfm);
  533. omap_aes_cra_exit(crypto_aead_tfm(tfm));
  534. if (ctx->ctr)
  535. crypto_free_skcipher(ctx->ctr);
  536. }
  537. /* ********************** ALGS ************************************ */
  538. static struct crypto_alg algs_ecb_cbc[] = {
  539. {
  540. .cra_name = "ecb(aes)",
  541. .cra_driver_name = "ecb-aes-omap",
  542. .cra_priority = 300,
  543. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  544. CRYPTO_ALG_KERN_DRIVER_ONLY |
  545. CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
  546. .cra_blocksize = AES_BLOCK_SIZE,
  547. .cra_ctxsize = sizeof(struct omap_aes_ctx),
  548. .cra_alignmask = 0,
  549. .cra_type = &crypto_ablkcipher_type,
  550. .cra_module = THIS_MODULE,
  551. .cra_init = omap_aes_cra_init,
  552. .cra_exit = omap_aes_cra_exit,
  553. .cra_u.ablkcipher = {
  554. .min_keysize = AES_MIN_KEY_SIZE,
  555. .max_keysize = AES_MAX_KEY_SIZE,
  556. .setkey = omap_aes_setkey,
  557. .encrypt = omap_aes_ecb_encrypt,
  558. .decrypt = omap_aes_ecb_decrypt,
  559. }
  560. },
  561. {
  562. .cra_name = "cbc(aes)",
  563. .cra_driver_name = "cbc-aes-omap",
  564. .cra_priority = 300,
  565. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  566. CRYPTO_ALG_KERN_DRIVER_ONLY |
  567. CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
  568. .cra_blocksize = AES_BLOCK_SIZE,
  569. .cra_ctxsize = sizeof(struct omap_aes_ctx),
  570. .cra_alignmask = 0,
  571. .cra_type = &crypto_ablkcipher_type,
  572. .cra_module = THIS_MODULE,
  573. .cra_init = omap_aes_cra_init,
  574. .cra_exit = omap_aes_cra_exit,
  575. .cra_u.ablkcipher = {
  576. .min_keysize = AES_MIN_KEY_SIZE,
  577. .max_keysize = AES_MAX_KEY_SIZE,
  578. .ivsize = AES_BLOCK_SIZE,
  579. .setkey = omap_aes_setkey,
  580. .encrypt = omap_aes_cbc_encrypt,
  581. .decrypt = omap_aes_cbc_decrypt,
  582. }
  583. }
  584. };
  585. static struct crypto_alg algs_ctr[] = {
  586. {
  587. .cra_name = "ctr(aes)",
  588. .cra_driver_name = "ctr-aes-omap",
  589. .cra_priority = 300,
  590. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  591. CRYPTO_ALG_KERN_DRIVER_ONLY |
  592. CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
  593. .cra_blocksize = AES_BLOCK_SIZE,
  594. .cra_ctxsize = sizeof(struct omap_aes_ctx),
  595. .cra_alignmask = 0,
  596. .cra_type = &crypto_ablkcipher_type,
  597. .cra_module = THIS_MODULE,
  598. .cra_init = omap_aes_cra_init,
  599. .cra_exit = omap_aes_cra_exit,
  600. .cra_u.ablkcipher = {
  601. .min_keysize = AES_MIN_KEY_SIZE,
  602. .max_keysize = AES_MAX_KEY_SIZE,
  603. .geniv = "eseqiv",
  604. .ivsize = AES_BLOCK_SIZE,
  605. .setkey = omap_aes_setkey,
  606. .encrypt = omap_aes_ctr_encrypt,
  607. .decrypt = omap_aes_ctr_decrypt,
  608. }
  609. } ,
  610. };
  611. static struct omap_aes_algs_info omap_aes_algs_info_ecb_cbc[] = {
  612. {
  613. .algs_list = algs_ecb_cbc,
  614. .size = ARRAY_SIZE(algs_ecb_cbc),
  615. },
  616. };
  617. static struct aead_alg algs_aead_gcm[] = {
  618. {
  619. .base = {
  620. .cra_name = "gcm(aes)",
  621. .cra_driver_name = "gcm-aes-omap",
  622. .cra_priority = 300,
  623. .cra_flags = CRYPTO_ALG_ASYNC |
  624. CRYPTO_ALG_KERN_DRIVER_ONLY,
  625. .cra_blocksize = 1,
  626. .cra_ctxsize = sizeof(struct omap_aes_ctx),
  627. .cra_alignmask = 0xf,
  628. .cra_module = THIS_MODULE,
  629. },
  630. .init = omap_aes_gcm_cra_init,
  631. .exit = omap_aes_gcm_cra_exit,
  632. .ivsize = GCM_AES_IV_SIZE,
  633. .maxauthsize = AES_BLOCK_SIZE,
  634. .setkey = omap_aes_gcm_setkey,
  635. .encrypt = omap_aes_gcm_encrypt,
  636. .decrypt = omap_aes_gcm_decrypt,
  637. },
  638. {
  639. .base = {
  640. .cra_name = "rfc4106(gcm(aes))",
  641. .cra_driver_name = "rfc4106-gcm-aes-omap",
  642. .cra_priority = 300,
  643. .cra_flags = CRYPTO_ALG_ASYNC |
  644. CRYPTO_ALG_KERN_DRIVER_ONLY,
  645. .cra_blocksize = 1,
  646. .cra_ctxsize = sizeof(struct omap_aes_ctx),
  647. .cra_alignmask = 0xf,
  648. .cra_module = THIS_MODULE,
  649. },
  650. .init = omap_aes_gcm_cra_init,
  651. .exit = omap_aes_gcm_cra_exit,
  652. .maxauthsize = AES_BLOCK_SIZE,
  653. .ivsize = GCM_RFC4106_IV_SIZE,
  654. .setkey = omap_aes_4106gcm_setkey,
  655. .encrypt = omap_aes_4106gcm_encrypt,
  656. .decrypt = omap_aes_4106gcm_decrypt,
  657. },
  658. };
  659. static struct omap_aes_aead_algs omap_aes_aead_info = {
  660. .algs_list = algs_aead_gcm,
  661. .size = ARRAY_SIZE(algs_aead_gcm),
  662. };
  663. static const struct omap_aes_pdata omap_aes_pdata_omap2 = {
  664. .algs_info = omap_aes_algs_info_ecb_cbc,
  665. .algs_info_size = ARRAY_SIZE(omap_aes_algs_info_ecb_cbc),
  666. .trigger = omap_aes_dma_trigger_omap2,
  667. .key_ofs = 0x1c,
  668. .iv_ofs = 0x20,
  669. .ctrl_ofs = 0x30,
  670. .data_ofs = 0x34,
  671. .rev_ofs = 0x44,
  672. .mask_ofs = 0x48,
  673. .dma_enable_in = BIT(2),
  674. .dma_enable_out = BIT(3),
  675. .dma_start = BIT(5),
  676. .major_mask = 0xf0,
  677. .major_shift = 4,
  678. .minor_mask = 0x0f,
  679. .minor_shift = 0,
  680. };
  681. #ifdef CONFIG_OF
  682. static struct omap_aes_algs_info omap_aes_algs_info_ecb_cbc_ctr[] = {
  683. {
  684. .algs_list = algs_ecb_cbc,
  685. .size = ARRAY_SIZE(algs_ecb_cbc),
  686. },
  687. {
  688. .algs_list = algs_ctr,
  689. .size = ARRAY_SIZE(algs_ctr),
  690. },
  691. };
  692. static const struct omap_aes_pdata omap_aes_pdata_omap3 = {
  693. .algs_info = omap_aes_algs_info_ecb_cbc_ctr,
  694. .algs_info_size = ARRAY_SIZE(omap_aes_algs_info_ecb_cbc_ctr),
  695. .trigger = omap_aes_dma_trigger_omap2,
  696. .key_ofs = 0x1c,
  697. .iv_ofs = 0x20,
  698. .ctrl_ofs = 0x30,
  699. .data_ofs = 0x34,
  700. .rev_ofs = 0x44,
  701. .mask_ofs = 0x48,
  702. .dma_enable_in = BIT(2),
  703. .dma_enable_out = BIT(3),
  704. .dma_start = BIT(5),
  705. .major_mask = 0xf0,
  706. .major_shift = 4,
  707. .minor_mask = 0x0f,
  708. .minor_shift = 0,
  709. };
  710. static const struct omap_aes_pdata omap_aes_pdata_omap4 = {
  711. .algs_info = omap_aes_algs_info_ecb_cbc_ctr,
  712. .algs_info_size = ARRAY_SIZE(omap_aes_algs_info_ecb_cbc_ctr),
  713. .aead_algs_info = &omap_aes_aead_info,
  714. .trigger = omap_aes_dma_trigger_omap4,
  715. .key_ofs = 0x3c,
  716. .iv_ofs = 0x40,
  717. .ctrl_ofs = 0x50,
  718. .data_ofs = 0x60,
  719. .rev_ofs = 0x80,
  720. .mask_ofs = 0x84,
  721. .irq_status_ofs = 0x8c,
  722. .irq_enable_ofs = 0x90,
  723. .dma_enable_in = BIT(5),
  724. .dma_enable_out = BIT(6),
  725. .major_mask = 0x0700,
  726. .major_shift = 8,
  727. .minor_mask = 0x003f,
  728. .minor_shift = 0,
  729. };
  730. static irqreturn_t omap_aes_irq(int irq, void *dev_id)
  731. {
  732. struct omap_aes_dev *dd = dev_id;
  733. u32 status, i;
  734. u32 *src, *dst;
  735. status = omap_aes_read(dd, AES_REG_IRQ_STATUS(dd));
  736. if (status & AES_REG_IRQ_DATA_IN) {
  737. omap_aes_write(dd, AES_REG_IRQ_ENABLE(dd), 0x0);
  738. BUG_ON(!dd->in_sg);
  739. BUG_ON(_calc_walked(in) > dd->in_sg->length);
  740. src = sg_virt(dd->in_sg) + _calc_walked(in);
  741. for (i = 0; i < AES_BLOCK_WORDS; i++) {
  742. omap_aes_write(dd, AES_REG_DATA_N(dd, i), *src);
  743. scatterwalk_advance(&dd->in_walk, 4);
  744. if (dd->in_sg->length == _calc_walked(in)) {
  745. dd->in_sg = sg_next(dd->in_sg);
  746. if (dd->in_sg) {
  747. scatterwalk_start(&dd->in_walk,
  748. dd->in_sg);
  749. src = sg_virt(dd->in_sg) +
  750. _calc_walked(in);
  751. }
  752. } else {
  753. src++;
  754. }
  755. }
  756. /* Clear IRQ status */
  757. status &= ~AES_REG_IRQ_DATA_IN;
  758. omap_aes_write(dd, AES_REG_IRQ_STATUS(dd), status);
  759. /* Enable DATA_OUT interrupt */
  760. omap_aes_write(dd, AES_REG_IRQ_ENABLE(dd), 0x4);
  761. } else if (status & AES_REG_IRQ_DATA_OUT) {
  762. omap_aes_write(dd, AES_REG_IRQ_ENABLE(dd), 0x0);
  763. BUG_ON(!dd->out_sg);
  764. BUG_ON(_calc_walked(out) > dd->out_sg->length);
  765. dst = sg_virt(dd->out_sg) + _calc_walked(out);
  766. for (i = 0; i < AES_BLOCK_WORDS; i++) {
  767. *dst = omap_aes_read(dd, AES_REG_DATA_N(dd, i));
  768. scatterwalk_advance(&dd->out_walk, 4);
  769. if (dd->out_sg->length == _calc_walked(out)) {
  770. dd->out_sg = sg_next(dd->out_sg);
  771. if (dd->out_sg) {
  772. scatterwalk_start(&dd->out_walk,
  773. dd->out_sg);
  774. dst = sg_virt(dd->out_sg) +
  775. _calc_walked(out);
  776. }
  777. } else {
  778. dst++;
  779. }
  780. }
  781. dd->total -= min_t(size_t, AES_BLOCK_SIZE, dd->total);
  782. /* Clear IRQ status */
  783. status &= ~AES_REG_IRQ_DATA_OUT;
  784. omap_aes_write(dd, AES_REG_IRQ_STATUS(dd), status);
  785. if (!dd->total)
  786. /* All bytes read! */
  787. tasklet_schedule(&dd->done_task);
  788. else
  789. /* Enable DATA_IN interrupt for next block */
  790. omap_aes_write(dd, AES_REG_IRQ_ENABLE(dd), 0x2);
  791. }
  792. return IRQ_HANDLED;
  793. }
  794. static const struct of_device_id omap_aes_of_match[] = {
  795. {
  796. .compatible = "ti,omap2-aes",
  797. .data = &omap_aes_pdata_omap2,
  798. },
  799. {
  800. .compatible = "ti,omap3-aes",
  801. .data = &omap_aes_pdata_omap3,
  802. },
  803. {
  804. .compatible = "ti,omap4-aes",
  805. .data = &omap_aes_pdata_omap4,
  806. },
  807. {},
  808. };
  809. MODULE_DEVICE_TABLE(of, omap_aes_of_match);
  810. static int omap_aes_get_res_of(struct omap_aes_dev *dd,
  811. struct device *dev, struct resource *res)
  812. {
  813. struct device_node *node = dev->of_node;
  814. int err = 0;
  815. dd->pdata = of_device_get_match_data(dev);
  816. if (!dd->pdata) {
  817. dev_err(dev, "no compatible OF match\n");
  818. err = -EINVAL;
  819. goto err;
  820. }
  821. err = of_address_to_resource(node, 0, res);
  822. if (err < 0) {
  823. dev_err(dev, "can't translate OF node address\n");
  824. err = -EINVAL;
  825. goto err;
  826. }
  827. err:
  828. return err;
  829. }
  830. #else
  831. static const struct of_device_id omap_aes_of_match[] = {
  832. {},
  833. };
  834. static int omap_aes_get_res_of(struct omap_aes_dev *dd,
  835. struct device *dev, struct resource *res)
  836. {
  837. return -EINVAL;
  838. }
  839. #endif
  840. static int omap_aes_get_res_pdev(struct omap_aes_dev *dd,
  841. struct platform_device *pdev, struct resource *res)
  842. {
  843. struct device *dev = &pdev->dev;
  844. struct resource *r;
  845. int err = 0;
  846. /* Get the base address */
  847. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  848. if (!r) {
  849. dev_err(dev, "no MEM resource info\n");
  850. err = -ENODEV;
  851. goto err;
  852. }
  853. memcpy(res, r, sizeof(*res));
  854. /* Only OMAP2/3 can be non-DT */
  855. dd->pdata = &omap_aes_pdata_omap2;
  856. err:
  857. return err;
  858. }
  859. static int omap_aes_probe(struct platform_device *pdev)
  860. {
  861. struct device *dev = &pdev->dev;
  862. struct omap_aes_dev *dd;
  863. struct crypto_alg *algp;
  864. struct aead_alg *aalg;
  865. struct resource res;
  866. int err = -ENOMEM, i, j, irq = -1;
  867. u32 reg;
  868. dd = devm_kzalloc(dev, sizeof(struct omap_aes_dev), GFP_KERNEL);
  869. if (dd == NULL) {
  870. dev_err(dev, "unable to alloc data struct.\n");
  871. goto err_data;
  872. }
  873. dd->dev = dev;
  874. platform_set_drvdata(pdev, dd);
  875. aead_init_queue(&dd->aead_queue, OMAP_AES_QUEUE_LENGTH);
  876. err = (dev->of_node) ? omap_aes_get_res_of(dd, dev, &res) :
  877. omap_aes_get_res_pdev(dd, pdev, &res);
  878. if (err)
  879. goto err_res;
  880. dd->io_base = devm_ioremap_resource(dev, &res);
  881. if (IS_ERR(dd->io_base)) {
  882. err = PTR_ERR(dd->io_base);
  883. goto err_res;
  884. }
  885. dd->phys_base = res.start;
  886. pm_runtime_use_autosuspend(dev);
  887. pm_runtime_set_autosuspend_delay(dev, DEFAULT_AUTOSUSPEND_DELAY);
  888. pm_runtime_enable(dev);
  889. err = pm_runtime_get_sync(dev);
  890. if (err < 0) {
  891. dev_err(dev, "%s: failed to get_sync(%d)\n",
  892. __func__, err);
  893. goto err_res;
  894. }
  895. omap_aes_dma_stop(dd);
  896. reg = omap_aes_read(dd, AES_REG_REV(dd));
  897. pm_runtime_put_sync(dev);
  898. dev_info(dev, "OMAP AES hw accel rev: %u.%u\n",
  899. (reg & dd->pdata->major_mask) >> dd->pdata->major_shift,
  900. (reg & dd->pdata->minor_mask) >> dd->pdata->minor_shift);
  901. tasklet_init(&dd->done_task, omap_aes_done_task, (unsigned long)dd);
  902. err = omap_aes_dma_init(dd);
  903. if (err == -EPROBE_DEFER) {
  904. goto err_irq;
  905. } else if (err && AES_REG_IRQ_STATUS(dd) && AES_REG_IRQ_ENABLE(dd)) {
  906. dd->pio_only = 1;
  907. irq = platform_get_irq(pdev, 0);
  908. if (irq < 0) {
  909. dev_err(dev, "can't get IRQ resource\n");
  910. err = irq;
  911. goto err_irq;
  912. }
  913. err = devm_request_irq(dev, irq, omap_aes_irq, 0,
  914. dev_name(dev), dd);
  915. if (err) {
  916. dev_err(dev, "Unable to grab omap-aes IRQ\n");
  917. goto err_irq;
  918. }
  919. }
  920. spin_lock_init(&dd->lock);
  921. INIT_LIST_HEAD(&dd->list);
  922. spin_lock(&list_lock);
  923. list_add_tail(&dd->list, &dev_list);
  924. spin_unlock(&list_lock);
  925. /* Initialize crypto engine */
  926. dd->engine = crypto_engine_alloc_init(dev, 1);
  927. if (!dd->engine) {
  928. err = -ENOMEM;
  929. goto err_engine;
  930. }
  931. err = crypto_engine_start(dd->engine);
  932. if (err)
  933. goto err_engine;
  934. for (i = 0; i < dd->pdata->algs_info_size; i++) {
  935. if (!dd->pdata->algs_info[i].registered) {
  936. for (j = 0; j < dd->pdata->algs_info[i].size; j++) {
  937. algp = &dd->pdata->algs_info[i].algs_list[j];
  938. pr_debug("reg alg: %s\n", algp->cra_name);
  939. INIT_LIST_HEAD(&algp->cra_list);
  940. err = crypto_register_alg(algp);
  941. if (err)
  942. goto err_algs;
  943. dd->pdata->algs_info[i].registered++;
  944. }
  945. }
  946. }
  947. if (dd->pdata->aead_algs_info &&
  948. !dd->pdata->aead_algs_info->registered) {
  949. for (i = 0; i < dd->pdata->aead_algs_info->size; i++) {
  950. aalg = &dd->pdata->aead_algs_info->algs_list[i];
  951. algp = &aalg->base;
  952. pr_debug("reg alg: %s\n", algp->cra_name);
  953. INIT_LIST_HEAD(&algp->cra_list);
  954. err = crypto_register_aead(aalg);
  955. if (err)
  956. goto err_aead_algs;
  957. dd->pdata->aead_algs_info->registered++;
  958. }
  959. }
  960. return 0;
  961. err_aead_algs:
  962. for (i = dd->pdata->aead_algs_info->registered - 1; i >= 0; i--) {
  963. aalg = &dd->pdata->aead_algs_info->algs_list[i];
  964. crypto_unregister_aead(aalg);
  965. }
  966. err_algs:
  967. for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
  968. for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
  969. crypto_unregister_alg(
  970. &dd->pdata->algs_info[i].algs_list[j]);
  971. err_engine:
  972. if (dd->engine)
  973. crypto_engine_exit(dd->engine);
  974. omap_aes_dma_cleanup(dd);
  975. err_irq:
  976. tasklet_kill(&dd->done_task);
  977. pm_runtime_disable(dev);
  978. err_res:
  979. dd = NULL;
  980. err_data:
  981. dev_err(dev, "initialization failed.\n");
  982. return err;
  983. }
  984. static int omap_aes_remove(struct platform_device *pdev)
  985. {
  986. struct omap_aes_dev *dd = platform_get_drvdata(pdev);
  987. struct aead_alg *aalg;
  988. int i, j;
  989. if (!dd)
  990. return -ENODEV;
  991. spin_lock(&list_lock);
  992. list_del(&dd->list);
  993. spin_unlock(&list_lock);
  994. for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
  995. for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
  996. crypto_unregister_alg(
  997. &dd->pdata->algs_info[i].algs_list[j]);
  998. for (i = dd->pdata->aead_algs_info->size - 1; i >= 0; i--) {
  999. aalg = &dd->pdata->aead_algs_info->algs_list[i];
  1000. crypto_unregister_aead(aalg);
  1001. }
  1002. crypto_engine_exit(dd->engine);
  1003. tasklet_kill(&dd->done_task);
  1004. omap_aes_dma_cleanup(dd);
  1005. pm_runtime_disable(dd->dev);
  1006. dd = NULL;
  1007. return 0;
  1008. }
  1009. #ifdef CONFIG_PM_SLEEP
  1010. static int omap_aes_suspend(struct device *dev)
  1011. {
  1012. pm_runtime_put_sync(dev);
  1013. return 0;
  1014. }
  1015. static int omap_aes_resume(struct device *dev)
  1016. {
  1017. pm_runtime_get_sync(dev);
  1018. return 0;
  1019. }
  1020. #endif
  1021. static SIMPLE_DEV_PM_OPS(omap_aes_pm_ops, omap_aes_suspend, omap_aes_resume);
  1022. static struct platform_driver omap_aes_driver = {
  1023. .probe = omap_aes_probe,
  1024. .remove = omap_aes_remove,
  1025. .driver = {
  1026. .name = "omap-aes",
  1027. .pm = &omap_aes_pm_ops,
  1028. .of_match_table = omap_aes_of_match,
  1029. },
  1030. };
  1031. module_platform_driver(omap_aes_driver);
  1032. MODULE_DESCRIPTION("OMAP AES hw acceleration support.");
  1033. MODULE_LICENSE("GPL v2");
  1034. MODULE_AUTHOR("Dmitry Kasatkin");