core.c 200 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <linux/compiler.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  89. {
  90. unsigned long delta;
  91. ktime_t soft, hard, now;
  92. for (;;) {
  93. if (hrtimer_active(period_timer))
  94. break;
  95. now = hrtimer_cb_get_time(period_timer);
  96. hrtimer_forward(period_timer, now, period);
  97. soft = hrtimer_get_softexpires(period_timer);
  98. hard = hrtimer_get_expires(period_timer);
  99. delta = ktime_to_ns(ktime_sub(hard, soft));
  100. __hrtimer_start_range_ns(period_timer, soft, delta,
  101. HRTIMER_MODE_ABS_PINNED, 0);
  102. }
  103. }
  104. DEFINE_MUTEX(sched_domains_mutex);
  105. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  106. static void update_rq_clock_task(struct rq *rq, s64 delta);
  107. void update_rq_clock(struct rq *rq)
  108. {
  109. s64 delta;
  110. lockdep_assert_held(&rq->lock);
  111. if (rq->clock_skip_update & RQCF_ACT_SKIP)
  112. return;
  113. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  114. if (delta < 0)
  115. return;
  116. rq->clock += delta;
  117. update_rq_clock_task(rq, delta);
  118. }
  119. /*
  120. * Debugging: various feature bits
  121. */
  122. #define SCHED_FEAT(name, enabled) \
  123. (1UL << __SCHED_FEAT_##name) * enabled |
  124. const_debug unsigned int sysctl_sched_features =
  125. #include "features.h"
  126. 0;
  127. #undef SCHED_FEAT
  128. #ifdef CONFIG_SCHED_DEBUG
  129. #define SCHED_FEAT(name, enabled) \
  130. #name ,
  131. static const char * const sched_feat_names[] = {
  132. #include "features.h"
  133. };
  134. #undef SCHED_FEAT
  135. static int sched_feat_show(struct seq_file *m, void *v)
  136. {
  137. int i;
  138. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  139. if (!(sysctl_sched_features & (1UL << i)))
  140. seq_puts(m, "NO_");
  141. seq_printf(m, "%s ", sched_feat_names[i]);
  142. }
  143. seq_puts(m, "\n");
  144. return 0;
  145. }
  146. #ifdef HAVE_JUMP_LABEL
  147. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  148. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  149. #define SCHED_FEAT(name, enabled) \
  150. jump_label_key__##enabled ,
  151. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  152. #include "features.h"
  153. };
  154. #undef SCHED_FEAT
  155. static void sched_feat_disable(int i)
  156. {
  157. if (static_key_enabled(&sched_feat_keys[i]))
  158. static_key_slow_dec(&sched_feat_keys[i]);
  159. }
  160. static void sched_feat_enable(int i)
  161. {
  162. if (!static_key_enabled(&sched_feat_keys[i]))
  163. static_key_slow_inc(&sched_feat_keys[i]);
  164. }
  165. #else
  166. static void sched_feat_disable(int i) { };
  167. static void sched_feat_enable(int i) { };
  168. #endif /* HAVE_JUMP_LABEL */
  169. static int sched_feat_set(char *cmp)
  170. {
  171. int i;
  172. int neg = 0;
  173. if (strncmp(cmp, "NO_", 3) == 0) {
  174. neg = 1;
  175. cmp += 3;
  176. }
  177. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  178. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  179. if (neg) {
  180. sysctl_sched_features &= ~(1UL << i);
  181. sched_feat_disable(i);
  182. } else {
  183. sysctl_sched_features |= (1UL << i);
  184. sched_feat_enable(i);
  185. }
  186. break;
  187. }
  188. }
  189. return i;
  190. }
  191. static ssize_t
  192. sched_feat_write(struct file *filp, const char __user *ubuf,
  193. size_t cnt, loff_t *ppos)
  194. {
  195. char buf[64];
  196. char *cmp;
  197. int i;
  198. struct inode *inode;
  199. if (cnt > 63)
  200. cnt = 63;
  201. if (copy_from_user(&buf, ubuf, cnt))
  202. return -EFAULT;
  203. buf[cnt] = 0;
  204. cmp = strstrip(buf);
  205. /* Ensure the static_key remains in a consistent state */
  206. inode = file_inode(filp);
  207. mutex_lock(&inode->i_mutex);
  208. i = sched_feat_set(cmp);
  209. mutex_unlock(&inode->i_mutex);
  210. if (i == __SCHED_FEAT_NR)
  211. return -EINVAL;
  212. *ppos += cnt;
  213. return cnt;
  214. }
  215. static int sched_feat_open(struct inode *inode, struct file *filp)
  216. {
  217. return single_open(filp, sched_feat_show, NULL);
  218. }
  219. static const struct file_operations sched_feat_fops = {
  220. .open = sched_feat_open,
  221. .write = sched_feat_write,
  222. .read = seq_read,
  223. .llseek = seq_lseek,
  224. .release = single_release,
  225. };
  226. static __init int sched_init_debug(void)
  227. {
  228. debugfs_create_file("sched_features", 0644, NULL, NULL,
  229. &sched_feat_fops);
  230. return 0;
  231. }
  232. late_initcall(sched_init_debug);
  233. #endif /* CONFIG_SCHED_DEBUG */
  234. /*
  235. * Number of tasks to iterate in a single balance run.
  236. * Limited because this is done with IRQs disabled.
  237. */
  238. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  239. /*
  240. * period over which we average the RT time consumption, measured
  241. * in ms.
  242. *
  243. * default: 1s
  244. */
  245. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  246. /*
  247. * period over which we measure -rt task cpu usage in us.
  248. * default: 1s
  249. */
  250. unsigned int sysctl_sched_rt_period = 1000000;
  251. __read_mostly int scheduler_running;
  252. /*
  253. * part of the period that we allow rt tasks to run in us.
  254. * default: 0.95s
  255. */
  256. int sysctl_sched_rt_runtime = 950000;
  257. /*
  258. * this_rq_lock - lock this runqueue and disable interrupts.
  259. */
  260. static struct rq *this_rq_lock(void)
  261. __acquires(rq->lock)
  262. {
  263. struct rq *rq;
  264. local_irq_disable();
  265. rq = this_rq();
  266. raw_spin_lock(&rq->lock);
  267. return rq;
  268. }
  269. #ifdef CONFIG_SCHED_HRTICK
  270. /*
  271. * Use HR-timers to deliver accurate preemption points.
  272. */
  273. static void hrtick_clear(struct rq *rq)
  274. {
  275. if (hrtimer_active(&rq->hrtick_timer))
  276. hrtimer_cancel(&rq->hrtick_timer);
  277. }
  278. /*
  279. * High-resolution timer tick.
  280. * Runs from hardirq context with interrupts disabled.
  281. */
  282. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  283. {
  284. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  285. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  286. raw_spin_lock(&rq->lock);
  287. update_rq_clock(rq);
  288. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  289. raw_spin_unlock(&rq->lock);
  290. return HRTIMER_NORESTART;
  291. }
  292. #ifdef CONFIG_SMP
  293. static int __hrtick_restart(struct rq *rq)
  294. {
  295. struct hrtimer *timer = &rq->hrtick_timer;
  296. ktime_t time = hrtimer_get_softexpires(timer);
  297. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  298. }
  299. /*
  300. * called from hardirq (IPI) context
  301. */
  302. static void __hrtick_start(void *arg)
  303. {
  304. struct rq *rq = arg;
  305. raw_spin_lock(&rq->lock);
  306. __hrtick_restart(rq);
  307. rq->hrtick_csd_pending = 0;
  308. raw_spin_unlock(&rq->lock);
  309. }
  310. /*
  311. * Called to set the hrtick timer state.
  312. *
  313. * called with rq->lock held and irqs disabled
  314. */
  315. void hrtick_start(struct rq *rq, u64 delay)
  316. {
  317. struct hrtimer *timer = &rq->hrtick_timer;
  318. ktime_t time;
  319. s64 delta;
  320. /*
  321. * Don't schedule slices shorter than 10000ns, that just
  322. * doesn't make sense and can cause timer DoS.
  323. */
  324. delta = max_t(s64, delay, 10000LL);
  325. time = ktime_add_ns(timer->base->get_time(), delta);
  326. hrtimer_set_expires(timer, time);
  327. if (rq == this_rq()) {
  328. __hrtick_restart(rq);
  329. } else if (!rq->hrtick_csd_pending) {
  330. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  331. rq->hrtick_csd_pending = 1;
  332. }
  333. }
  334. static int
  335. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  336. {
  337. int cpu = (int)(long)hcpu;
  338. switch (action) {
  339. case CPU_UP_CANCELED:
  340. case CPU_UP_CANCELED_FROZEN:
  341. case CPU_DOWN_PREPARE:
  342. case CPU_DOWN_PREPARE_FROZEN:
  343. case CPU_DEAD:
  344. case CPU_DEAD_FROZEN:
  345. hrtick_clear(cpu_rq(cpu));
  346. return NOTIFY_OK;
  347. }
  348. return NOTIFY_DONE;
  349. }
  350. static __init void init_hrtick(void)
  351. {
  352. hotcpu_notifier(hotplug_hrtick, 0);
  353. }
  354. #else
  355. /*
  356. * Called to set the hrtick timer state.
  357. *
  358. * called with rq->lock held and irqs disabled
  359. */
  360. void hrtick_start(struct rq *rq, u64 delay)
  361. {
  362. /*
  363. * Don't schedule slices shorter than 10000ns, that just
  364. * doesn't make sense. Rely on vruntime for fairness.
  365. */
  366. delay = max_t(u64, delay, 10000LL);
  367. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  368. HRTIMER_MODE_REL_PINNED, 0);
  369. }
  370. static inline void init_hrtick(void)
  371. {
  372. }
  373. #endif /* CONFIG_SMP */
  374. static void init_rq_hrtick(struct rq *rq)
  375. {
  376. #ifdef CONFIG_SMP
  377. rq->hrtick_csd_pending = 0;
  378. rq->hrtick_csd.flags = 0;
  379. rq->hrtick_csd.func = __hrtick_start;
  380. rq->hrtick_csd.info = rq;
  381. #endif
  382. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  383. rq->hrtick_timer.function = hrtick;
  384. }
  385. #else /* CONFIG_SCHED_HRTICK */
  386. static inline void hrtick_clear(struct rq *rq)
  387. {
  388. }
  389. static inline void init_rq_hrtick(struct rq *rq)
  390. {
  391. }
  392. static inline void init_hrtick(void)
  393. {
  394. }
  395. #endif /* CONFIG_SCHED_HRTICK */
  396. /*
  397. * cmpxchg based fetch_or, macro so it works for different integer types
  398. */
  399. #define fetch_or(ptr, val) \
  400. ({ typeof(*(ptr)) __old, __val = *(ptr); \
  401. for (;;) { \
  402. __old = cmpxchg((ptr), __val, __val | (val)); \
  403. if (__old == __val) \
  404. break; \
  405. __val = __old; \
  406. } \
  407. __old; \
  408. })
  409. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  410. /*
  411. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  412. * this avoids any races wrt polling state changes and thereby avoids
  413. * spurious IPIs.
  414. */
  415. static bool set_nr_and_not_polling(struct task_struct *p)
  416. {
  417. struct thread_info *ti = task_thread_info(p);
  418. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  419. }
  420. /*
  421. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  422. *
  423. * If this returns true, then the idle task promises to call
  424. * sched_ttwu_pending() and reschedule soon.
  425. */
  426. static bool set_nr_if_polling(struct task_struct *p)
  427. {
  428. struct thread_info *ti = task_thread_info(p);
  429. typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
  430. for (;;) {
  431. if (!(val & _TIF_POLLING_NRFLAG))
  432. return false;
  433. if (val & _TIF_NEED_RESCHED)
  434. return true;
  435. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  436. if (old == val)
  437. break;
  438. val = old;
  439. }
  440. return true;
  441. }
  442. #else
  443. static bool set_nr_and_not_polling(struct task_struct *p)
  444. {
  445. set_tsk_need_resched(p);
  446. return true;
  447. }
  448. #ifdef CONFIG_SMP
  449. static bool set_nr_if_polling(struct task_struct *p)
  450. {
  451. return false;
  452. }
  453. #endif
  454. #endif
  455. /*
  456. * resched_curr - mark rq's current task 'to be rescheduled now'.
  457. *
  458. * On UP this means the setting of the need_resched flag, on SMP it
  459. * might also involve a cross-CPU call to trigger the scheduler on
  460. * the target CPU.
  461. */
  462. void resched_curr(struct rq *rq)
  463. {
  464. struct task_struct *curr = rq->curr;
  465. int cpu;
  466. lockdep_assert_held(&rq->lock);
  467. if (test_tsk_need_resched(curr))
  468. return;
  469. cpu = cpu_of(rq);
  470. if (cpu == smp_processor_id()) {
  471. set_tsk_need_resched(curr);
  472. set_preempt_need_resched();
  473. return;
  474. }
  475. if (set_nr_and_not_polling(curr))
  476. smp_send_reschedule(cpu);
  477. else
  478. trace_sched_wake_idle_without_ipi(cpu);
  479. }
  480. void resched_cpu(int cpu)
  481. {
  482. struct rq *rq = cpu_rq(cpu);
  483. unsigned long flags;
  484. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  485. return;
  486. resched_curr(rq);
  487. raw_spin_unlock_irqrestore(&rq->lock, flags);
  488. }
  489. #ifdef CONFIG_SMP
  490. #ifdef CONFIG_NO_HZ_COMMON
  491. /*
  492. * In the semi idle case, use the nearest busy cpu for migrating timers
  493. * from an idle cpu. This is good for power-savings.
  494. *
  495. * We don't do similar optimization for completely idle system, as
  496. * selecting an idle cpu will add more delays to the timers than intended
  497. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  498. */
  499. int get_nohz_timer_target(int pinned)
  500. {
  501. int cpu = smp_processor_id();
  502. int i;
  503. struct sched_domain *sd;
  504. if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
  505. return cpu;
  506. rcu_read_lock();
  507. for_each_domain(cpu, sd) {
  508. for_each_cpu(i, sched_domain_span(sd)) {
  509. if (!idle_cpu(i)) {
  510. cpu = i;
  511. goto unlock;
  512. }
  513. }
  514. }
  515. unlock:
  516. rcu_read_unlock();
  517. return cpu;
  518. }
  519. /*
  520. * When add_timer_on() enqueues a timer into the timer wheel of an
  521. * idle CPU then this timer might expire before the next timer event
  522. * which is scheduled to wake up that CPU. In case of a completely
  523. * idle system the next event might even be infinite time into the
  524. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  525. * leaves the inner idle loop so the newly added timer is taken into
  526. * account when the CPU goes back to idle and evaluates the timer
  527. * wheel for the next timer event.
  528. */
  529. static void wake_up_idle_cpu(int cpu)
  530. {
  531. struct rq *rq = cpu_rq(cpu);
  532. if (cpu == smp_processor_id())
  533. return;
  534. if (set_nr_and_not_polling(rq->idle))
  535. smp_send_reschedule(cpu);
  536. else
  537. trace_sched_wake_idle_without_ipi(cpu);
  538. }
  539. static bool wake_up_full_nohz_cpu(int cpu)
  540. {
  541. /*
  542. * We just need the target to call irq_exit() and re-evaluate
  543. * the next tick. The nohz full kick at least implies that.
  544. * If needed we can still optimize that later with an
  545. * empty IRQ.
  546. */
  547. if (tick_nohz_full_cpu(cpu)) {
  548. if (cpu != smp_processor_id() ||
  549. tick_nohz_tick_stopped())
  550. tick_nohz_full_kick_cpu(cpu);
  551. return true;
  552. }
  553. return false;
  554. }
  555. void wake_up_nohz_cpu(int cpu)
  556. {
  557. if (!wake_up_full_nohz_cpu(cpu))
  558. wake_up_idle_cpu(cpu);
  559. }
  560. static inline bool got_nohz_idle_kick(void)
  561. {
  562. int cpu = smp_processor_id();
  563. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  564. return false;
  565. if (idle_cpu(cpu) && !need_resched())
  566. return true;
  567. /*
  568. * We can't run Idle Load Balance on this CPU for this time so we
  569. * cancel it and clear NOHZ_BALANCE_KICK
  570. */
  571. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  572. return false;
  573. }
  574. #else /* CONFIG_NO_HZ_COMMON */
  575. static inline bool got_nohz_idle_kick(void)
  576. {
  577. return false;
  578. }
  579. #endif /* CONFIG_NO_HZ_COMMON */
  580. #ifdef CONFIG_NO_HZ_FULL
  581. bool sched_can_stop_tick(void)
  582. {
  583. /*
  584. * More than one running task need preemption.
  585. * nr_running update is assumed to be visible
  586. * after IPI is sent from wakers.
  587. */
  588. if (this_rq()->nr_running > 1)
  589. return false;
  590. return true;
  591. }
  592. #endif /* CONFIG_NO_HZ_FULL */
  593. void sched_avg_update(struct rq *rq)
  594. {
  595. s64 period = sched_avg_period();
  596. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  597. /*
  598. * Inline assembly required to prevent the compiler
  599. * optimising this loop into a divmod call.
  600. * See __iter_div_u64_rem() for another example of this.
  601. */
  602. asm("" : "+rm" (rq->age_stamp));
  603. rq->age_stamp += period;
  604. rq->rt_avg /= 2;
  605. }
  606. }
  607. #endif /* CONFIG_SMP */
  608. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  609. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  610. /*
  611. * Iterate task_group tree rooted at *from, calling @down when first entering a
  612. * node and @up when leaving it for the final time.
  613. *
  614. * Caller must hold rcu_lock or sufficient equivalent.
  615. */
  616. int walk_tg_tree_from(struct task_group *from,
  617. tg_visitor down, tg_visitor up, void *data)
  618. {
  619. struct task_group *parent, *child;
  620. int ret;
  621. parent = from;
  622. down:
  623. ret = (*down)(parent, data);
  624. if (ret)
  625. goto out;
  626. list_for_each_entry_rcu(child, &parent->children, siblings) {
  627. parent = child;
  628. goto down;
  629. up:
  630. continue;
  631. }
  632. ret = (*up)(parent, data);
  633. if (ret || parent == from)
  634. goto out;
  635. child = parent;
  636. parent = parent->parent;
  637. if (parent)
  638. goto up;
  639. out:
  640. return ret;
  641. }
  642. int tg_nop(struct task_group *tg, void *data)
  643. {
  644. return 0;
  645. }
  646. #endif
  647. static void set_load_weight(struct task_struct *p)
  648. {
  649. int prio = p->static_prio - MAX_RT_PRIO;
  650. struct load_weight *load = &p->se.load;
  651. /*
  652. * SCHED_IDLE tasks get minimal weight:
  653. */
  654. if (p->policy == SCHED_IDLE) {
  655. load->weight = scale_load(WEIGHT_IDLEPRIO);
  656. load->inv_weight = WMULT_IDLEPRIO;
  657. return;
  658. }
  659. load->weight = scale_load(prio_to_weight[prio]);
  660. load->inv_weight = prio_to_wmult[prio];
  661. }
  662. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  663. {
  664. update_rq_clock(rq);
  665. sched_info_queued(rq, p);
  666. p->sched_class->enqueue_task(rq, p, flags);
  667. }
  668. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  669. {
  670. update_rq_clock(rq);
  671. sched_info_dequeued(rq, p);
  672. p->sched_class->dequeue_task(rq, p, flags);
  673. }
  674. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  675. {
  676. if (task_contributes_to_load(p))
  677. rq->nr_uninterruptible--;
  678. enqueue_task(rq, p, flags);
  679. }
  680. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  681. {
  682. if (task_contributes_to_load(p))
  683. rq->nr_uninterruptible++;
  684. dequeue_task(rq, p, flags);
  685. }
  686. static void update_rq_clock_task(struct rq *rq, s64 delta)
  687. {
  688. /*
  689. * In theory, the compile should just see 0 here, and optimize out the call
  690. * to sched_rt_avg_update. But I don't trust it...
  691. */
  692. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  693. s64 steal = 0, irq_delta = 0;
  694. #endif
  695. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  696. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  697. /*
  698. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  699. * this case when a previous update_rq_clock() happened inside a
  700. * {soft,}irq region.
  701. *
  702. * When this happens, we stop ->clock_task and only update the
  703. * prev_irq_time stamp to account for the part that fit, so that a next
  704. * update will consume the rest. This ensures ->clock_task is
  705. * monotonic.
  706. *
  707. * It does however cause some slight miss-attribution of {soft,}irq
  708. * time, a more accurate solution would be to update the irq_time using
  709. * the current rq->clock timestamp, except that would require using
  710. * atomic ops.
  711. */
  712. if (irq_delta > delta)
  713. irq_delta = delta;
  714. rq->prev_irq_time += irq_delta;
  715. delta -= irq_delta;
  716. #endif
  717. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  718. if (static_key_false((&paravirt_steal_rq_enabled))) {
  719. steal = paravirt_steal_clock(cpu_of(rq));
  720. steal -= rq->prev_steal_time_rq;
  721. if (unlikely(steal > delta))
  722. steal = delta;
  723. rq->prev_steal_time_rq += steal;
  724. delta -= steal;
  725. }
  726. #endif
  727. rq->clock_task += delta;
  728. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  729. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  730. sched_rt_avg_update(rq, irq_delta + steal);
  731. #endif
  732. }
  733. void sched_set_stop_task(int cpu, struct task_struct *stop)
  734. {
  735. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  736. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  737. if (stop) {
  738. /*
  739. * Make it appear like a SCHED_FIFO task, its something
  740. * userspace knows about and won't get confused about.
  741. *
  742. * Also, it will make PI more or less work without too
  743. * much confusion -- but then, stop work should not
  744. * rely on PI working anyway.
  745. */
  746. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  747. stop->sched_class = &stop_sched_class;
  748. }
  749. cpu_rq(cpu)->stop = stop;
  750. if (old_stop) {
  751. /*
  752. * Reset it back to a normal scheduling class so that
  753. * it can die in pieces.
  754. */
  755. old_stop->sched_class = &rt_sched_class;
  756. }
  757. }
  758. /*
  759. * __normal_prio - return the priority that is based on the static prio
  760. */
  761. static inline int __normal_prio(struct task_struct *p)
  762. {
  763. return p->static_prio;
  764. }
  765. /*
  766. * Calculate the expected normal priority: i.e. priority
  767. * without taking RT-inheritance into account. Might be
  768. * boosted by interactivity modifiers. Changes upon fork,
  769. * setprio syscalls, and whenever the interactivity
  770. * estimator recalculates.
  771. */
  772. static inline int normal_prio(struct task_struct *p)
  773. {
  774. int prio;
  775. if (task_has_dl_policy(p))
  776. prio = MAX_DL_PRIO-1;
  777. else if (task_has_rt_policy(p))
  778. prio = MAX_RT_PRIO-1 - p->rt_priority;
  779. else
  780. prio = __normal_prio(p);
  781. return prio;
  782. }
  783. /*
  784. * Calculate the current priority, i.e. the priority
  785. * taken into account by the scheduler. This value might
  786. * be boosted by RT tasks, or might be boosted by
  787. * interactivity modifiers. Will be RT if the task got
  788. * RT-boosted. If not then it returns p->normal_prio.
  789. */
  790. static int effective_prio(struct task_struct *p)
  791. {
  792. p->normal_prio = normal_prio(p);
  793. /*
  794. * If we are RT tasks or we were boosted to RT priority,
  795. * keep the priority unchanged. Otherwise, update priority
  796. * to the normal priority:
  797. */
  798. if (!rt_prio(p->prio))
  799. return p->normal_prio;
  800. return p->prio;
  801. }
  802. /**
  803. * task_curr - is this task currently executing on a CPU?
  804. * @p: the task in question.
  805. *
  806. * Return: 1 if the task is currently executing. 0 otherwise.
  807. */
  808. inline int task_curr(const struct task_struct *p)
  809. {
  810. return cpu_curr(task_cpu(p)) == p;
  811. }
  812. /*
  813. * Can drop rq->lock because from sched_class::switched_from() methods drop it.
  814. */
  815. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  816. const struct sched_class *prev_class,
  817. int oldprio)
  818. {
  819. if (prev_class != p->sched_class) {
  820. if (prev_class->switched_from)
  821. prev_class->switched_from(rq, p);
  822. /* Possble rq->lock 'hole'. */
  823. p->sched_class->switched_to(rq, p);
  824. } else if (oldprio != p->prio || dl_task(p))
  825. p->sched_class->prio_changed(rq, p, oldprio);
  826. }
  827. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  828. {
  829. const struct sched_class *class;
  830. if (p->sched_class == rq->curr->sched_class) {
  831. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  832. } else {
  833. for_each_class(class) {
  834. if (class == rq->curr->sched_class)
  835. break;
  836. if (class == p->sched_class) {
  837. resched_curr(rq);
  838. break;
  839. }
  840. }
  841. }
  842. /*
  843. * A queue event has occurred, and we're going to schedule. In
  844. * this case, we can save a useless back to back clock update.
  845. */
  846. if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
  847. rq_clock_skip_update(rq, true);
  848. }
  849. #ifdef CONFIG_SMP
  850. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  851. {
  852. #ifdef CONFIG_SCHED_DEBUG
  853. /*
  854. * We should never call set_task_cpu() on a blocked task,
  855. * ttwu() will sort out the placement.
  856. */
  857. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  858. !p->on_rq);
  859. #ifdef CONFIG_LOCKDEP
  860. /*
  861. * The caller should hold either p->pi_lock or rq->lock, when changing
  862. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  863. *
  864. * sched_move_task() holds both and thus holding either pins the cgroup,
  865. * see task_group().
  866. *
  867. * Furthermore, all task_rq users should acquire both locks, see
  868. * task_rq_lock().
  869. */
  870. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  871. lockdep_is_held(&task_rq(p)->lock)));
  872. #endif
  873. #endif
  874. trace_sched_migrate_task(p, new_cpu);
  875. if (task_cpu(p) != new_cpu) {
  876. if (p->sched_class->migrate_task_rq)
  877. p->sched_class->migrate_task_rq(p, new_cpu);
  878. p->se.nr_migrations++;
  879. perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
  880. }
  881. __set_task_cpu(p, new_cpu);
  882. }
  883. static void __migrate_swap_task(struct task_struct *p, int cpu)
  884. {
  885. if (task_on_rq_queued(p)) {
  886. struct rq *src_rq, *dst_rq;
  887. src_rq = task_rq(p);
  888. dst_rq = cpu_rq(cpu);
  889. deactivate_task(src_rq, p, 0);
  890. set_task_cpu(p, cpu);
  891. activate_task(dst_rq, p, 0);
  892. check_preempt_curr(dst_rq, p, 0);
  893. } else {
  894. /*
  895. * Task isn't running anymore; make it appear like we migrated
  896. * it before it went to sleep. This means on wakeup we make the
  897. * previous cpu our targer instead of where it really is.
  898. */
  899. p->wake_cpu = cpu;
  900. }
  901. }
  902. struct migration_swap_arg {
  903. struct task_struct *src_task, *dst_task;
  904. int src_cpu, dst_cpu;
  905. };
  906. static int migrate_swap_stop(void *data)
  907. {
  908. struct migration_swap_arg *arg = data;
  909. struct rq *src_rq, *dst_rq;
  910. int ret = -EAGAIN;
  911. src_rq = cpu_rq(arg->src_cpu);
  912. dst_rq = cpu_rq(arg->dst_cpu);
  913. double_raw_lock(&arg->src_task->pi_lock,
  914. &arg->dst_task->pi_lock);
  915. double_rq_lock(src_rq, dst_rq);
  916. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  917. goto unlock;
  918. if (task_cpu(arg->src_task) != arg->src_cpu)
  919. goto unlock;
  920. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  921. goto unlock;
  922. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  923. goto unlock;
  924. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  925. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  926. ret = 0;
  927. unlock:
  928. double_rq_unlock(src_rq, dst_rq);
  929. raw_spin_unlock(&arg->dst_task->pi_lock);
  930. raw_spin_unlock(&arg->src_task->pi_lock);
  931. return ret;
  932. }
  933. /*
  934. * Cross migrate two tasks
  935. */
  936. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  937. {
  938. struct migration_swap_arg arg;
  939. int ret = -EINVAL;
  940. arg = (struct migration_swap_arg){
  941. .src_task = cur,
  942. .src_cpu = task_cpu(cur),
  943. .dst_task = p,
  944. .dst_cpu = task_cpu(p),
  945. };
  946. if (arg.src_cpu == arg.dst_cpu)
  947. goto out;
  948. /*
  949. * These three tests are all lockless; this is OK since all of them
  950. * will be re-checked with proper locks held further down the line.
  951. */
  952. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  953. goto out;
  954. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  955. goto out;
  956. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  957. goto out;
  958. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  959. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  960. out:
  961. return ret;
  962. }
  963. struct migration_arg {
  964. struct task_struct *task;
  965. int dest_cpu;
  966. };
  967. static int migration_cpu_stop(void *data);
  968. /*
  969. * wait_task_inactive - wait for a thread to unschedule.
  970. *
  971. * If @match_state is nonzero, it's the @p->state value just checked and
  972. * not expected to change. If it changes, i.e. @p might have woken up,
  973. * then return zero. When we succeed in waiting for @p to be off its CPU,
  974. * we return a positive number (its total switch count). If a second call
  975. * a short while later returns the same number, the caller can be sure that
  976. * @p has remained unscheduled the whole time.
  977. *
  978. * The caller must ensure that the task *will* unschedule sometime soon,
  979. * else this function might spin for a *long* time. This function can't
  980. * be called with interrupts off, or it may introduce deadlock with
  981. * smp_call_function() if an IPI is sent by the same process we are
  982. * waiting to become inactive.
  983. */
  984. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  985. {
  986. unsigned long flags;
  987. int running, queued;
  988. unsigned long ncsw;
  989. struct rq *rq;
  990. for (;;) {
  991. /*
  992. * We do the initial early heuristics without holding
  993. * any task-queue locks at all. We'll only try to get
  994. * the runqueue lock when things look like they will
  995. * work out!
  996. */
  997. rq = task_rq(p);
  998. /*
  999. * If the task is actively running on another CPU
  1000. * still, just relax and busy-wait without holding
  1001. * any locks.
  1002. *
  1003. * NOTE! Since we don't hold any locks, it's not
  1004. * even sure that "rq" stays as the right runqueue!
  1005. * But we don't care, since "task_running()" will
  1006. * return false if the runqueue has changed and p
  1007. * is actually now running somewhere else!
  1008. */
  1009. while (task_running(rq, p)) {
  1010. if (match_state && unlikely(p->state != match_state))
  1011. return 0;
  1012. cpu_relax();
  1013. }
  1014. /*
  1015. * Ok, time to look more closely! We need the rq
  1016. * lock now, to be *sure*. If we're wrong, we'll
  1017. * just go back and repeat.
  1018. */
  1019. rq = task_rq_lock(p, &flags);
  1020. trace_sched_wait_task(p);
  1021. running = task_running(rq, p);
  1022. queued = task_on_rq_queued(p);
  1023. ncsw = 0;
  1024. if (!match_state || p->state == match_state)
  1025. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1026. task_rq_unlock(rq, p, &flags);
  1027. /*
  1028. * If it changed from the expected state, bail out now.
  1029. */
  1030. if (unlikely(!ncsw))
  1031. break;
  1032. /*
  1033. * Was it really running after all now that we
  1034. * checked with the proper locks actually held?
  1035. *
  1036. * Oops. Go back and try again..
  1037. */
  1038. if (unlikely(running)) {
  1039. cpu_relax();
  1040. continue;
  1041. }
  1042. /*
  1043. * It's not enough that it's not actively running,
  1044. * it must be off the runqueue _entirely_, and not
  1045. * preempted!
  1046. *
  1047. * So if it was still runnable (but just not actively
  1048. * running right now), it's preempted, and we should
  1049. * yield - it could be a while.
  1050. */
  1051. if (unlikely(queued)) {
  1052. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1053. set_current_state(TASK_UNINTERRUPTIBLE);
  1054. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1055. continue;
  1056. }
  1057. /*
  1058. * Ahh, all good. It wasn't running, and it wasn't
  1059. * runnable, which means that it will never become
  1060. * running in the future either. We're all done!
  1061. */
  1062. break;
  1063. }
  1064. return ncsw;
  1065. }
  1066. /***
  1067. * kick_process - kick a running thread to enter/exit the kernel
  1068. * @p: the to-be-kicked thread
  1069. *
  1070. * Cause a process which is running on another CPU to enter
  1071. * kernel-mode, without any delay. (to get signals handled.)
  1072. *
  1073. * NOTE: this function doesn't have to take the runqueue lock,
  1074. * because all it wants to ensure is that the remote task enters
  1075. * the kernel. If the IPI races and the task has been migrated
  1076. * to another CPU then no harm is done and the purpose has been
  1077. * achieved as well.
  1078. */
  1079. void kick_process(struct task_struct *p)
  1080. {
  1081. int cpu;
  1082. preempt_disable();
  1083. cpu = task_cpu(p);
  1084. if ((cpu != smp_processor_id()) && task_curr(p))
  1085. smp_send_reschedule(cpu);
  1086. preempt_enable();
  1087. }
  1088. EXPORT_SYMBOL_GPL(kick_process);
  1089. #endif /* CONFIG_SMP */
  1090. #ifdef CONFIG_SMP
  1091. /*
  1092. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1093. */
  1094. static int select_fallback_rq(int cpu, struct task_struct *p)
  1095. {
  1096. int nid = cpu_to_node(cpu);
  1097. const struct cpumask *nodemask = NULL;
  1098. enum { cpuset, possible, fail } state = cpuset;
  1099. int dest_cpu;
  1100. /*
  1101. * If the node that the cpu is on has been offlined, cpu_to_node()
  1102. * will return -1. There is no cpu on the node, and we should
  1103. * select the cpu on the other node.
  1104. */
  1105. if (nid != -1) {
  1106. nodemask = cpumask_of_node(nid);
  1107. /* Look for allowed, online CPU in same node. */
  1108. for_each_cpu(dest_cpu, nodemask) {
  1109. if (!cpu_online(dest_cpu))
  1110. continue;
  1111. if (!cpu_active(dest_cpu))
  1112. continue;
  1113. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1114. return dest_cpu;
  1115. }
  1116. }
  1117. for (;;) {
  1118. /* Any allowed, online CPU? */
  1119. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1120. if (!cpu_online(dest_cpu))
  1121. continue;
  1122. if (!cpu_active(dest_cpu))
  1123. continue;
  1124. goto out;
  1125. }
  1126. switch (state) {
  1127. case cpuset:
  1128. /* No more Mr. Nice Guy. */
  1129. cpuset_cpus_allowed_fallback(p);
  1130. state = possible;
  1131. break;
  1132. case possible:
  1133. do_set_cpus_allowed(p, cpu_possible_mask);
  1134. state = fail;
  1135. break;
  1136. case fail:
  1137. BUG();
  1138. break;
  1139. }
  1140. }
  1141. out:
  1142. if (state != cpuset) {
  1143. /*
  1144. * Don't tell them about moving exiting tasks or
  1145. * kernel threads (both mm NULL), since they never
  1146. * leave kernel.
  1147. */
  1148. if (p->mm && printk_ratelimit()) {
  1149. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1150. task_pid_nr(p), p->comm, cpu);
  1151. }
  1152. }
  1153. return dest_cpu;
  1154. }
  1155. /*
  1156. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1157. */
  1158. static inline
  1159. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1160. {
  1161. if (p->nr_cpus_allowed > 1)
  1162. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1163. /*
  1164. * In order not to call set_task_cpu() on a blocking task we need
  1165. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1166. * cpu.
  1167. *
  1168. * Since this is common to all placement strategies, this lives here.
  1169. *
  1170. * [ this allows ->select_task() to simply return task_cpu(p) and
  1171. * not worry about this generic constraint ]
  1172. */
  1173. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1174. !cpu_online(cpu)))
  1175. cpu = select_fallback_rq(task_cpu(p), p);
  1176. return cpu;
  1177. }
  1178. static void update_avg(u64 *avg, u64 sample)
  1179. {
  1180. s64 diff = sample - *avg;
  1181. *avg += diff >> 3;
  1182. }
  1183. #endif
  1184. static void
  1185. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1186. {
  1187. #ifdef CONFIG_SCHEDSTATS
  1188. struct rq *rq = this_rq();
  1189. #ifdef CONFIG_SMP
  1190. int this_cpu = smp_processor_id();
  1191. if (cpu == this_cpu) {
  1192. schedstat_inc(rq, ttwu_local);
  1193. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1194. } else {
  1195. struct sched_domain *sd;
  1196. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1197. rcu_read_lock();
  1198. for_each_domain(this_cpu, sd) {
  1199. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1200. schedstat_inc(sd, ttwu_wake_remote);
  1201. break;
  1202. }
  1203. }
  1204. rcu_read_unlock();
  1205. }
  1206. if (wake_flags & WF_MIGRATED)
  1207. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1208. #endif /* CONFIG_SMP */
  1209. schedstat_inc(rq, ttwu_count);
  1210. schedstat_inc(p, se.statistics.nr_wakeups);
  1211. if (wake_flags & WF_SYNC)
  1212. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1213. #endif /* CONFIG_SCHEDSTATS */
  1214. }
  1215. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1216. {
  1217. activate_task(rq, p, en_flags);
  1218. p->on_rq = TASK_ON_RQ_QUEUED;
  1219. /* if a worker is waking up, notify workqueue */
  1220. if (p->flags & PF_WQ_WORKER)
  1221. wq_worker_waking_up(p, cpu_of(rq));
  1222. }
  1223. /*
  1224. * Mark the task runnable and perform wakeup-preemption.
  1225. */
  1226. static void
  1227. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1228. {
  1229. check_preempt_curr(rq, p, wake_flags);
  1230. trace_sched_wakeup(p, true);
  1231. p->state = TASK_RUNNING;
  1232. #ifdef CONFIG_SMP
  1233. if (p->sched_class->task_woken)
  1234. p->sched_class->task_woken(rq, p);
  1235. if (rq->idle_stamp) {
  1236. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1237. u64 max = 2*rq->max_idle_balance_cost;
  1238. update_avg(&rq->avg_idle, delta);
  1239. if (rq->avg_idle > max)
  1240. rq->avg_idle = max;
  1241. rq->idle_stamp = 0;
  1242. }
  1243. #endif
  1244. }
  1245. static void
  1246. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1247. {
  1248. #ifdef CONFIG_SMP
  1249. if (p->sched_contributes_to_load)
  1250. rq->nr_uninterruptible--;
  1251. #endif
  1252. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1253. ttwu_do_wakeup(rq, p, wake_flags);
  1254. }
  1255. /*
  1256. * Called in case the task @p isn't fully descheduled from its runqueue,
  1257. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1258. * since all we need to do is flip p->state to TASK_RUNNING, since
  1259. * the task is still ->on_rq.
  1260. */
  1261. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1262. {
  1263. struct rq *rq;
  1264. int ret = 0;
  1265. rq = __task_rq_lock(p);
  1266. if (task_on_rq_queued(p)) {
  1267. /* check_preempt_curr() may use rq clock */
  1268. update_rq_clock(rq);
  1269. ttwu_do_wakeup(rq, p, wake_flags);
  1270. ret = 1;
  1271. }
  1272. __task_rq_unlock(rq);
  1273. return ret;
  1274. }
  1275. #ifdef CONFIG_SMP
  1276. void sched_ttwu_pending(void)
  1277. {
  1278. struct rq *rq = this_rq();
  1279. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1280. struct task_struct *p;
  1281. unsigned long flags;
  1282. if (!llist)
  1283. return;
  1284. raw_spin_lock_irqsave(&rq->lock, flags);
  1285. while (llist) {
  1286. p = llist_entry(llist, struct task_struct, wake_entry);
  1287. llist = llist_next(llist);
  1288. ttwu_do_activate(rq, p, 0);
  1289. }
  1290. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1291. }
  1292. void scheduler_ipi(void)
  1293. {
  1294. /*
  1295. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1296. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1297. * this IPI.
  1298. */
  1299. preempt_fold_need_resched();
  1300. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1301. return;
  1302. /*
  1303. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1304. * traditionally all their work was done from the interrupt return
  1305. * path. Now that we actually do some work, we need to make sure
  1306. * we do call them.
  1307. *
  1308. * Some archs already do call them, luckily irq_enter/exit nest
  1309. * properly.
  1310. *
  1311. * Arguably we should visit all archs and update all handlers,
  1312. * however a fair share of IPIs are still resched only so this would
  1313. * somewhat pessimize the simple resched case.
  1314. */
  1315. irq_enter();
  1316. sched_ttwu_pending();
  1317. /*
  1318. * Check if someone kicked us for doing the nohz idle load balance.
  1319. */
  1320. if (unlikely(got_nohz_idle_kick())) {
  1321. this_rq()->idle_balance = 1;
  1322. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1323. }
  1324. irq_exit();
  1325. }
  1326. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1327. {
  1328. struct rq *rq = cpu_rq(cpu);
  1329. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1330. if (!set_nr_if_polling(rq->idle))
  1331. smp_send_reschedule(cpu);
  1332. else
  1333. trace_sched_wake_idle_without_ipi(cpu);
  1334. }
  1335. }
  1336. void wake_up_if_idle(int cpu)
  1337. {
  1338. struct rq *rq = cpu_rq(cpu);
  1339. unsigned long flags;
  1340. rcu_read_lock();
  1341. if (!is_idle_task(rcu_dereference(rq->curr)))
  1342. goto out;
  1343. if (set_nr_if_polling(rq->idle)) {
  1344. trace_sched_wake_idle_without_ipi(cpu);
  1345. } else {
  1346. raw_spin_lock_irqsave(&rq->lock, flags);
  1347. if (is_idle_task(rq->curr))
  1348. smp_send_reschedule(cpu);
  1349. /* Else cpu is not in idle, do nothing here */
  1350. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1351. }
  1352. out:
  1353. rcu_read_unlock();
  1354. }
  1355. bool cpus_share_cache(int this_cpu, int that_cpu)
  1356. {
  1357. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1358. }
  1359. #endif /* CONFIG_SMP */
  1360. static void ttwu_queue(struct task_struct *p, int cpu)
  1361. {
  1362. struct rq *rq = cpu_rq(cpu);
  1363. #if defined(CONFIG_SMP)
  1364. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1365. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1366. ttwu_queue_remote(p, cpu);
  1367. return;
  1368. }
  1369. #endif
  1370. raw_spin_lock(&rq->lock);
  1371. ttwu_do_activate(rq, p, 0);
  1372. raw_spin_unlock(&rq->lock);
  1373. }
  1374. /**
  1375. * try_to_wake_up - wake up a thread
  1376. * @p: the thread to be awakened
  1377. * @state: the mask of task states that can be woken
  1378. * @wake_flags: wake modifier flags (WF_*)
  1379. *
  1380. * Put it on the run-queue if it's not already there. The "current"
  1381. * thread is always on the run-queue (except when the actual
  1382. * re-schedule is in progress), and as such you're allowed to do
  1383. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1384. * runnable without the overhead of this.
  1385. *
  1386. * Return: %true if @p was woken up, %false if it was already running.
  1387. * or @state didn't match @p's state.
  1388. */
  1389. static int
  1390. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1391. {
  1392. unsigned long flags;
  1393. int cpu, success = 0;
  1394. /*
  1395. * If we are going to wake up a thread waiting for CONDITION we
  1396. * need to ensure that CONDITION=1 done by the caller can not be
  1397. * reordered with p->state check below. This pairs with mb() in
  1398. * set_current_state() the waiting thread does.
  1399. */
  1400. smp_mb__before_spinlock();
  1401. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1402. if (!(p->state & state))
  1403. goto out;
  1404. success = 1; /* we're going to change ->state */
  1405. cpu = task_cpu(p);
  1406. if (p->on_rq && ttwu_remote(p, wake_flags))
  1407. goto stat;
  1408. #ifdef CONFIG_SMP
  1409. /*
  1410. * If the owning (remote) cpu is still in the middle of schedule() with
  1411. * this task as prev, wait until its done referencing the task.
  1412. */
  1413. while (p->on_cpu)
  1414. cpu_relax();
  1415. /*
  1416. * Pairs with the smp_wmb() in finish_lock_switch().
  1417. */
  1418. smp_rmb();
  1419. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1420. p->state = TASK_WAKING;
  1421. if (p->sched_class->task_waking)
  1422. p->sched_class->task_waking(p);
  1423. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1424. if (task_cpu(p) != cpu) {
  1425. wake_flags |= WF_MIGRATED;
  1426. set_task_cpu(p, cpu);
  1427. }
  1428. #endif /* CONFIG_SMP */
  1429. ttwu_queue(p, cpu);
  1430. stat:
  1431. ttwu_stat(p, cpu, wake_flags);
  1432. out:
  1433. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1434. return success;
  1435. }
  1436. /**
  1437. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1438. * @p: the thread to be awakened
  1439. *
  1440. * Put @p on the run-queue if it's not already there. The caller must
  1441. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1442. * the current task.
  1443. */
  1444. static void try_to_wake_up_local(struct task_struct *p)
  1445. {
  1446. struct rq *rq = task_rq(p);
  1447. if (WARN_ON_ONCE(rq != this_rq()) ||
  1448. WARN_ON_ONCE(p == current))
  1449. return;
  1450. lockdep_assert_held(&rq->lock);
  1451. if (!raw_spin_trylock(&p->pi_lock)) {
  1452. raw_spin_unlock(&rq->lock);
  1453. raw_spin_lock(&p->pi_lock);
  1454. raw_spin_lock(&rq->lock);
  1455. }
  1456. if (!(p->state & TASK_NORMAL))
  1457. goto out;
  1458. if (!task_on_rq_queued(p))
  1459. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1460. ttwu_do_wakeup(rq, p, 0);
  1461. ttwu_stat(p, smp_processor_id(), 0);
  1462. out:
  1463. raw_spin_unlock(&p->pi_lock);
  1464. }
  1465. /**
  1466. * wake_up_process - Wake up a specific process
  1467. * @p: The process to be woken up.
  1468. *
  1469. * Attempt to wake up the nominated process and move it to the set of runnable
  1470. * processes.
  1471. *
  1472. * Return: 1 if the process was woken up, 0 if it was already running.
  1473. *
  1474. * It may be assumed that this function implies a write memory barrier before
  1475. * changing the task state if and only if any tasks are woken up.
  1476. */
  1477. int wake_up_process(struct task_struct *p)
  1478. {
  1479. WARN_ON(task_is_stopped_or_traced(p));
  1480. return try_to_wake_up(p, TASK_NORMAL, 0);
  1481. }
  1482. EXPORT_SYMBOL(wake_up_process);
  1483. int wake_up_state(struct task_struct *p, unsigned int state)
  1484. {
  1485. return try_to_wake_up(p, state, 0);
  1486. }
  1487. /*
  1488. * This function clears the sched_dl_entity static params.
  1489. */
  1490. void __dl_clear_params(struct task_struct *p)
  1491. {
  1492. struct sched_dl_entity *dl_se = &p->dl;
  1493. dl_se->dl_runtime = 0;
  1494. dl_se->dl_deadline = 0;
  1495. dl_se->dl_period = 0;
  1496. dl_se->flags = 0;
  1497. dl_se->dl_bw = 0;
  1498. dl_se->dl_throttled = 0;
  1499. dl_se->dl_new = 1;
  1500. dl_se->dl_yielded = 0;
  1501. }
  1502. /*
  1503. * Perform scheduler related setup for a newly forked process p.
  1504. * p is forked by current.
  1505. *
  1506. * __sched_fork() is basic setup used by init_idle() too:
  1507. */
  1508. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1509. {
  1510. p->on_rq = 0;
  1511. p->se.on_rq = 0;
  1512. p->se.exec_start = 0;
  1513. p->se.sum_exec_runtime = 0;
  1514. p->se.prev_sum_exec_runtime = 0;
  1515. p->se.nr_migrations = 0;
  1516. p->se.vruntime = 0;
  1517. #ifdef CONFIG_SMP
  1518. p->se.avg.decay_count = 0;
  1519. #endif
  1520. INIT_LIST_HEAD(&p->se.group_node);
  1521. #ifdef CONFIG_SCHEDSTATS
  1522. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1523. #endif
  1524. RB_CLEAR_NODE(&p->dl.rb_node);
  1525. init_dl_task_timer(&p->dl);
  1526. __dl_clear_params(p);
  1527. INIT_LIST_HEAD(&p->rt.run_list);
  1528. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1529. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1530. #endif
  1531. #ifdef CONFIG_NUMA_BALANCING
  1532. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1533. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1534. p->mm->numa_scan_seq = 0;
  1535. }
  1536. if (clone_flags & CLONE_VM)
  1537. p->numa_preferred_nid = current->numa_preferred_nid;
  1538. else
  1539. p->numa_preferred_nid = -1;
  1540. p->node_stamp = 0ULL;
  1541. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1542. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1543. p->numa_work.next = &p->numa_work;
  1544. p->numa_faults = NULL;
  1545. p->last_task_numa_placement = 0;
  1546. p->last_sum_exec_runtime = 0;
  1547. p->numa_group = NULL;
  1548. #endif /* CONFIG_NUMA_BALANCING */
  1549. }
  1550. #ifdef CONFIG_NUMA_BALANCING
  1551. #ifdef CONFIG_SCHED_DEBUG
  1552. void set_numabalancing_state(bool enabled)
  1553. {
  1554. if (enabled)
  1555. sched_feat_set("NUMA");
  1556. else
  1557. sched_feat_set("NO_NUMA");
  1558. }
  1559. #else
  1560. __read_mostly bool numabalancing_enabled;
  1561. void set_numabalancing_state(bool enabled)
  1562. {
  1563. numabalancing_enabled = enabled;
  1564. }
  1565. #endif /* CONFIG_SCHED_DEBUG */
  1566. #ifdef CONFIG_PROC_SYSCTL
  1567. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1568. void __user *buffer, size_t *lenp, loff_t *ppos)
  1569. {
  1570. struct ctl_table t;
  1571. int err;
  1572. int state = numabalancing_enabled;
  1573. if (write && !capable(CAP_SYS_ADMIN))
  1574. return -EPERM;
  1575. t = *table;
  1576. t.data = &state;
  1577. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1578. if (err < 0)
  1579. return err;
  1580. if (write)
  1581. set_numabalancing_state(state);
  1582. return err;
  1583. }
  1584. #endif
  1585. #endif
  1586. /*
  1587. * fork()/clone()-time setup:
  1588. */
  1589. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1590. {
  1591. unsigned long flags;
  1592. int cpu = get_cpu();
  1593. __sched_fork(clone_flags, p);
  1594. /*
  1595. * We mark the process as running here. This guarantees that
  1596. * nobody will actually run it, and a signal or other external
  1597. * event cannot wake it up and insert it on the runqueue either.
  1598. */
  1599. p->state = TASK_RUNNING;
  1600. /*
  1601. * Make sure we do not leak PI boosting priority to the child.
  1602. */
  1603. p->prio = current->normal_prio;
  1604. /*
  1605. * Revert to default priority/policy on fork if requested.
  1606. */
  1607. if (unlikely(p->sched_reset_on_fork)) {
  1608. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1609. p->policy = SCHED_NORMAL;
  1610. p->static_prio = NICE_TO_PRIO(0);
  1611. p->rt_priority = 0;
  1612. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1613. p->static_prio = NICE_TO_PRIO(0);
  1614. p->prio = p->normal_prio = __normal_prio(p);
  1615. set_load_weight(p);
  1616. /*
  1617. * We don't need the reset flag anymore after the fork. It has
  1618. * fulfilled its duty:
  1619. */
  1620. p->sched_reset_on_fork = 0;
  1621. }
  1622. if (dl_prio(p->prio)) {
  1623. put_cpu();
  1624. return -EAGAIN;
  1625. } else if (rt_prio(p->prio)) {
  1626. p->sched_class = &rt_sched_class;
  1627. } else {
  1628. p->sched_class = &fair_sched_class;
  1629. }
  1630. if (p->sched_class->task_fork)
  1631. p->sched_class->task_fork(p);
  1632. /*
  1633. * The child is not yet in the pid-hash so no cgroup attach races,
  1634. * and the cgroup is pinned to this child due to cgroup_fork()
  1635. * is ran before sched_fork().
  1636. *
  1637. * Silence PROVE_RCU.
  1638. */
  1639. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1640. set_task_cpu(p, cpu);
  1641. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1642. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1643. if (likely(sched_info_on()))
  1644. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1645. #endif
  1646. #if defined(CONFIG_SMP)
  1647. p->on_cpu = 0;
  1648. #endif
  1649. init_task_preempt_count(p);
  1650. #ifdef CONFIG_SMP
  1651. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1652. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1653. #endif
  1654. put_cpu();
  1655. return 0;
  1656. }
  1657. unsigned long to_ratio(u64 period, u64 runtime)
  1658. {
  1659. if (runtime == RUNTIME_INF)
  1660. return 1ULL << 20;
  1661. /*
  1662. * Doing this here saves a lot of checks in all
  1663. * the calling paths, and returning zero seems
  1664. * safe for them anyway.
  1665. */
  1666. if (period == 0)
  1667. return 0;
  1668. return div64_u64(runtime << 20, period);
  1669. }
  1670. #ifdef CONFIG_SMP
  1671. inline struct dl_bw *dl_bw_of(int i)
  1672. {
  1673. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1674. "sched RCU must be held");
  1675. return &cpu_rq(i)->rd->dl_bw;
  1676. }
  1677. static inline int dl_bw_cpus(int i)
  1678. {
  1679. struct root_domain *rd = cpu_rq(i)->rd;
  1680. int cpus = 0;
  1681. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1682. "sched RCU must be held");
  1683. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1684. cpus++;
  1685. return cpus;
  1686. }
  1687. #else
  1688. inline struct dl_bw *dl_bw_of(int i)
  1689. {
  1690. return &cpu_rq(i)->dl.dl_bw;
  1691. }
  1692. static inline int dl_bw_cpus(int i)
  1693. {
  1694. return 1;
  1695. }
  1696. #endif
  1697. /*
  1698. * We must be sure that accepting a new task (or allowing changing the
  1699. * parameters of an existing one) is consistent with the bandwidth
  1700. * constraints. If yes, this function also accordingly updates the currently
  1701. * allocated bandwidth to reflect the new situation.
  1702. *
  1703. * This function is called while holding p's rq->lock.
  1704. *
  1705. * XXX we should delay bw change until the task's 0-lag point, see
  1706. * __setparam_dl().
  1707. */
  1708. static int dl_overflow(struct task_struct *p, int policy,
  1709. const struct sched_attr *attr)
  1710. {
  1711. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1712. u64 period = attr->sched_period ?: attr->sched_deadline;
  1713. u64 runtime = attr->sched_runtime;
  1714. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1715. int cpus, err = -1;
  1716. if (new_bw == p->dl.dl_bw)
  1717. return 0;
  1718. /*
  1719. * Either if a task, enters, leave, or stays -deadline but changes
  1720. * its parameters, we may need to update accordingly the total
  1721. * allocated bandwidth of the container.
  1722. */
  1723. raw_spin_lock(&dl_b->lock);
  1724. cpus = dl_bw_cpus(task_cpu(p));
  1725. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1726. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1727. __dl_add(dl_b, new_bw);
  1728. err = 0;
  1729. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1730. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1731. __dl_clear(dl_b, p->dl.dl_bw);
  1732. __dl_add(dl_b, new_bw);
  1733. err = 0;
  1734. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1735. __dl_clear(dl_b, p->dl.dl_bw);
  1736. err = 0;
  1737. }
  1738. raw_spin_unlock(&dl_b->lock);
  1739. return err;
  1740. }
  1741. extern void init_dl_bw(struct dl_bw *dl_b);
  1742. /*
  1743. * wake_up_new_task - wake up a newly created task for the first time.
  1744. *
  1745. * This function will do some initial scheduler statistics housekeeping
  1746. * that must be done for every newly created context, then puts the task
  1747. * on the runqueue and wakes it.
  1748. */
  1749. void wake_up_new_task(struct task_struct *p)
  1750. {
  1751. unsigned long flags;
  1752. struct rq *rq;
  1753. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1754. #ifdef CONFIG_SMP
  1755. /*
  1756. * Fork balancing, do it here and not earlier because:
  1757. * - cpus_allowed can change in the fork path
  1758. * - any previously selected cpu might disappear through hotplug
  1759. */
  1760. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1761. #endif
  1762. /* Initialize new task's runnable average */
  1763. init_task_runnable_average(p);
  1764. rq = __task_rq_lock(p);
  1765. activate_task(rq, p, 0);
  1766. p->on_rq = TASK_ON_RQ_QUEUED;
  1767. trace_sched_wakeup_new(p, true);
  1768. check_preempt_curr(rq, p, WF_FORK);
  1769. #ifdef CONFIG_SMP
  1770. if (p->sched_class->task_woken)
  1771. p->sched_class->task_woken(rq, p);
  1772. #endif
  1773. task_rq_unlock(rq, p, &flags);
  1774. }
  1775. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1776. /**
  1777. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1778. * @notifier: notifier struct to register
  1779. */
  1780. void preempt_notifier_register(struct preempt_notifier *notifier)
  1781. {
  1782. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1783. }
  1784. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1785. /**
  1786. * preempt_notifier_unregister - no longer interested in preemption notifications
  1787. * @notifier: notifier struct to unregister
  1788. *
  1789. * This is safe to call from within a preemption notifier.
  1790. */
  1791. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1792. {
  1793. hlist_del(&notifier->link);
  1794. }
  1795. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1796. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1797. {
  1798. struct preempt_notifier *notifier;
  1799. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1800. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1801. }
  1802. static void
  1803. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1804. struct task_struct *next)
  1805. {
  1806. struct preempt_notifier *notifier;
  1807. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1808. notifier->ops->sched_out(notifier, next);
  1809. }
  1810. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1811. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1812. {
  1813. }
  1814. static void
  1815. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1816. struct task_struct *next)
  1817. {
  1818. }
  1819. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1820. /**
  1821. * prepare_task_switch - prepare to switch tasks
  1822. * @rq: the runqueue preparing to switch
  1823. * @prev: the current task that is being switched out
  1824. * @next: the task we are going to switch to.
  1825. *
  1826. * This is called with the rq lock held and interrupts off. It must
  1827. * be paired with a subsequent finish_task_switch after the context
  1828. * switch.
  1829. *
  1830. * prepare_task_switch sets up locking and calls architecture specific
  1831. * hooks.
  1832. */
  1833. static inline void
  1834. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1835. struct task_struct *next)
  1836. {
  1837. trace_sched_switch(prev, next);
  1838. sched_info_switch(rq, prev, next);
  1839. perf_event_task_sched_out(prev, next);
  1840. fire_sched_out_preempt_notifiers(prev, next);
  1841. prepare_lock_switch(rq, next);
  1842. prepare_arch_switch(next);
  1843. }
  1844. /**
  1845. * finish_task_switch - clean up after a task-switch
  1846. * @prev: the thread we just switched away from.
  1847. *
  1848. * finish_task_switch must be called after the context switch, paired
  1849. * with a prepare_task_switch call before the context switch.
  1850. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1851. * and do any other architecture-specific cleanup actions.
  1852. *
  1853. * Note that we may have delayed dropping an mm in context_switch(). If
  1854. * so, we finish that here outside of the runqueue lock. (Doing it
  1855. * with the lock held can cause deadlocks; see schedule() for
  1856. * details.)
  1857. *
  1858. * The context switch have flipped the stack from under us and restored the
  1859. * local variables which were saved when this task called schedule() in the
  1860. * past. prev == current is still correct but we need to recalculate this_rq
  1861. * because prev may have moved to another CPU.
  1862. */
  1863. static struct rq *finish_task_switch(struct task_struct *prev)
  1864. __releases(rq->lock)
  1865. {
  1866. struct rq *rq = this_rq();
  1867. struct mm_struct *mm = rq->prev_mm;
  1868. long prev_state;
  1869. rq->prev_mm = NULL;
  1870. /*
  1871. * A task struct has one reference for the use as "current".
  1872. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1873. * schedule one last time. The schedule call will never return, and
  1874. * the scheduled task must drop that reference.
  1875. * The test for TASK_DEAD must occur while the runqueue locks are
  1876. * still held, otherwise prev could be scheduled on another cpu, die
  1877. * there before we look at prev->state, and then the reference would
  1878. * be dropped twice.
  1879. * Manfred Spraul <manfred@colorfullife.com>
  1880. */
  1881. prev_state = prev->state;
  1882. vtime_task_switch(prev);
  1883. finish_arch_switch(prev);
  1884. perf_event_task_sched_in(prev, current);
  1885. finish_lock_switch(rq, prev);
  1886. finish_arch_post_lock_switch();
  1887. fire_sched_in_preempt_notifiers(current);
  1888. if (mm)
  1889. mmdrop(mm);
  1890. if (unlikely(prev_state == TASK_DEAD)) {
  1891. if (prev->sched_class->task_dead)
  1892. prev->sched_class->task_dead(prev);
  1893. /*
  1894. * Remove function-return probe instances associated with this
  1895. * task and put them back on the free list.
  1896. */
  1897. kprobe_flush_task(prev);
  1898. put_task_struct(prev);
  1899. }
  1900. tick_nohz_task_switch(current);
  1901. return rq;
  1902. }
  1903. #ifdef CONFIG_SMP
  1904. /* rq->lock is NOT held, but preemption is disabled */
  1905. static inline void post_schedule(struct rq *rq)
  1906. {
  1907. if (rq->post_schedule) {
  1908. unsigned long flags;
  1909. raw_spin_lock_irqsave(&rq->lock, flags);
  1910. if (rq->curr->sched_class->post_schedule)
  1911. rq->curr->sched_class->post_schedule(rq);
  1912. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1913. rq->post_schedule = 0;
  1914. }
  1915. }
  1916. #else
  1917. static inline void post_schedule(struct rq *rq)
  1918. {
  1919. }
  1920. #endif
  1921. /**
  1922. * schedule_tail - first thing a freshly forked thread must call.
  1923. * @prev: the thread we just switched away from.
  1924. */
  1925. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  1926. __releases(rq->lock)
  1927. {
  1928. struct rq *rq;
  1929. /* finish_task_switch() drops rq->lock and enables preemtion */
  1930. preempt_disable();
  1931. rq = finish_task_switch(prev);
  1932. post_schedule(rq);
  1933. preempt_enable();
  1934. if (current->set_child_tid)
  1935. put_user(task_pid_vnr(current), current->set_child_tid);
  1936. }
  1937. /*
  1938. * context_switch - switch to the new MM and the new thread's register state.
  1939. */
  1940. static inline struct rq *
  1941. context_switch(struct rq *rq, struct task_struct *prev,
  1942. struct task_struct *next)
  1943. {
  1944. struct mm_struct *mm, *oldmm;
  1945. prepare_task_switch(rq, prev, next);
  1946. mm = next->mm;
  1947. oldmm = prev->active_mm;
  1948. /*
  1949. * For paravirt, this is coupled with an exit in switch_to to
  1950. * combine the page table reload and the switch backend into
  1951. * one hypercall.
  1952. */
  1953. arch_start_context_switch(prev);
  1954. if (!mm) {
  1955. next->active_mm = oldmm;
  1956. atomic_inc(&oldmm->mm_count);
  1957. enter_lazy_tlb(oldmm, next);
  1958. } else
  1959. switch_mm(oldmm, mm, next);
  1960. if (!prev->mm) {
  1961. prev->active_mm = NULL;
  1962. rq->prev_mm = oldmm;
  1963. }
  1964. /*
  1965. * Since the runqueue lock will be released by the next
  1966. * task (which is an invalid locking op but in the case
  1967. * of the scheduler it's an obvious special-case), so we
  1968. * do an early lockdep release here:
  1969. */
  1970. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1971. context_tracking_task_switch(prev, next);
  1972. /* Here we just switch the register state and the stack. */
  1973. switch_to(prev, next, prev);
  1974. barrier();
  1975. return finish_task_switch(prev);
  1976. }
  1977. /*
  1978. * nr_running and nr_context_switches:
  1979. *
  1980. * externally visible scheduler statistics: current number of runnable
  1981. * threads, total number of context switches performed since bootup.
  1982. */
  1983. unsigned long nr_running(void)
  1984. {
  1985. unsigned long i, sum = 0;
  1986. for_each_online_cpu(i)
  1987. sum += cpu_rq(i)->nr_running;
  1988. return sum;
  1989. }
  1990. /*
  1991. * Check if only the current task is running on the cpu.
  1992. */
  1993. bool single_task_running(void)
  1994. {
  1995. if (cpu_rq(smp_processor_id())->nr_running == 1)
  1996. return true;
  1997. else
  1998. return false;
  1999. }
  2000. EXPORT_SYMBOL(single_task_running);
  2001. unsigned long long nr_context_switches(void)
  2002. {
  2003. int i;
  2004. unsigned long long sum = 0;
  2005. for_each_possible_cpu(i)
  2006. sum += cpu_rq(i)->nr_switches;
  2007. return sum;
  2008. }
  2009. unsigned long nr_iowait(void)
  2010. {
  2011. unsigned long i, sum = 0;
  2012. for_each_possible_cpu(i)
  2013. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2014. return sum;
  2015. }
  2016. unsigned long nr_iowait_cpu(int cpu)
  2017. {
  2018. struct rq *this = cpu_rq(cpu);
  2019. return atomic_read(&this->nr_iowait);
  2020. }
  2021. void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
  2022. {
  2023. struct rq *this = this_rq();
  2024. *nr_waiters = atomic_read(&this->nr_iowait);
  2025. *load = this->cpu_load[0];
  2026. }
  2027. #ifdef CONFIG_SMP
  2028. /*
  2029. * sched_exec - execve() is a valuable balancing opportunity, because at
  2030. * this point the task has the smallest effective memory and cache footprint.
  2031. */
  2032. void sched_exec(void)
  2033. {
  2034. struct task_struct *p = current;
  2035. unsigned long flags;
  2036. int dest_cpu;
  2037. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2038. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2039. if (dest_cpu == smp_processor_id())
  2040. goto unlock;
  2041. if (likely(cpu_active(dest_cpu))) {
  2042. struct migration_arg arg = { p, dest_cpu };
  2043. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2044. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2045. return;
  2046. }
  2047. unlock:
  2048. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2049. }
  2050. #endif
  2051. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2052. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2053. EXPORT_PER_CPU_SYMBOL(kstat);
  2054. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2055. /*
  2056. * Return accounted runtime for the task.
  2057. * In case the task is currently running, return the runtime plus current's
  2058. * pending runtime that have not been accounted yet.
  2059. */
  2060. unsigned long long task_sched_runtime(struct task_struct *p)
  2061. {
  2062. unsigned long flags;
  2063. struct rq *rq;
  2064. u64 ns;
  2065. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2066. /*
  2067. * 64-bit doesn't need locks to atomically read a 64bit value.
  2068. * So we have a optimization chance when the task's delta_exec is 0.
  2069. * Reading ->on_cpu is racy, but this is ok.
  2070. *
  2071. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2072. * If we race with it entering cpu, unaccounted time is 0. This is
  2073. * indistinguishable from the read occurring a few cycles earlier.
  2074. * If we see ->on_cpu without ->on_rq, the task is leaving, and has
  2075. * been accounted, so we're correct here as well.
  2076. */
  2077. if (!p->on_cpu || !task_on_rq_queued(p))
  2078. return p->se.sum_exec_runtime;
  2079. #endif
  2080. rq = task_rq_lock(p, &flags);
  2081. /*
  2082. * Must be ->curr _and_ ->on_rq. If dequeued, we would
  2083. * project cycles that may never be accounted to this
  2084. * thread, breaking clock_gettime().
  2085. */
  2086. if (task_current(rq, p) && task_on_rq_queued(p)) {
  2087. update_rq_clock(rq);
  2088. p->sched_class->update_curr(rq);
  2089. }
  2090. ns = p->se.sum_exec_runtime;
  2091. task_rq_unlock(rq, p, &flags);
  2092. return ns;
  2093. }
  2094. /*
  2095. * This function gets called by the timer code, with HZ frequency.
  2096. * We call it with interrupts disabled.
  2097. */
  2098. void scheduler_tick(void)
  2099. {
  2100. int cpu = smp_processor_id();
  2101. struct rq *rq = cpu_rq(cpu);
  2102. struct task_struct *curr = rq->curr;
  2103. sched_clock_tick();
  2104. raw_spin_lock(&rq->lock);
  2105. update_rq_clock(rq);
  2106. curr->sched_class->task_tick(rq, curr, 0);
  2107. update_cpu_load_active(rq);
  2108. raw_spin_unlock(&rq->lock);
  2109. perf_event_task_tick();
  2110. #ifdef CONFIG_SMP
  2111. rq->idle_balance = idle_cpu(cpu);
  2112. trigger_load_balance(rq);
  2113. #endif
  2114. rq_last_tick_reset(rq);
  2115. }
  2116. #ifdef CONFIG_NO_HZ_FULL
  2117. /**
  2118. * scheduler_tick_max_deferment
  2119. *
  2120. * Keep at least one tick per second when a single
  2121. * active task is running because the scheduler doesn't
  2122. * yet completely support full dynticks environment.
  2123. *
  2124. * This makes sure that uptime, CFS vruntime, load
  2125. * balancing, etc... continue to move forward, even
  2126. * with a very low granularity.
  2127. *
  2128. * Return: Maximum deferment in nanoseconds.
  2129. */
  2130. u64 scheduler_tick_max_deferment(void)
  2131. {
  2132. struct rq *rq = this_rq();
  2133. unsigned long next, now = ACCESS_ONCE(jiffies);
  2134. next = rq->last_sched_tick + HZ;
  2135. if (time_before_eq(next, now))
  2136. return 0;
  2137. return jiffies_to_nsecs(next - now);
  2138. }
  2139. #endif
  2140. notrace unsigned long get_parent_ip(unsigned long addr)
  2141. {
  2142. if (in_lock_functions(addr)) {
  2143. addr = CALLER_ADDR2;
  2144. if (in_lock_functions(addr))
  2145. addr = CALLER_ADDR3;
  2146. }
  2147. return addr;
  2148. }
  2149. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2150. defined(CONFIG_PREEMPT_TRACER))
  2151. void preempt_count_add(int val)
  2152. {
  2153. #ifdef CONFIG_DEBUG_PREEMPT
  2154. /*
  2155. * Underflow?
  2156. */
  2157. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2158. return;
  2159. #endif
  2160. __preempt_count_add(val);
  2161. #ifdef CONFIG_DEBUG_PREEMPT
  2162. /*
  2163. * Spinlock count overflowing soon?
  2164. */
  2165. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2166. PREEMPT_MASK - 10);
  2167. #endif
  2168. if (preempt_count() == val) {
  2169. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2170. #ifdef CONFIG_DEBUG_PREEMPT
  2171. current->preempt_disable_ip = ip;
  2172. #endif
  2173. trace_preempt_off(CALLER_ADDR0, ip);
  2174. }
  2175. }
  2176. EXPORT_SYMBOL(preempt_count_add);
  2177. NOKPROBE_SYMBOL(preempt_count_add);
  2178. void preempt_count_sub(int val)
  2179. {
  2180. #ifdef CONFIG_DEBUG_PREEMPT
  2181. /*
  2182. * Underflow?
  2183. */
  2184. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2185. return;
  2186. /*
  2187. * Is the spinlock portion underflowing?
  2188. */
  2189. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2190. !(preempt_count() & PREEMPT_MASK)))
  2191. return;
  2192. #endif
  2193. if (preempt_count() == val)
  2194. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2195. __preempt_count_sub(val);
  2196. }
  2197. EXPORT_SYMBOL(preempt_count_sub);
  2198. NOKPROBE_SYMBOL(preempt_count_sub);
  2199. #endif
  2200. /*
  2201. * Print scheduling while atomic bug:
  2202. */
  2203. static noinline void __schedule_bug(struct task_struct *prev)
  2204. {
  2205. if (oops_in_progress)
  2206. return;
  2207. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2208. prev->comm, prev->pid, preempt_count());
  2209. debug_show_held_locks(prev);
  2210. print_modules();
  2211. if (irqs_disabled())
  2212. print_irqtrace_events(prev);
  2213. #ifdef CONFIG_DEBUG_PREEMPT
  2214. if (in_atomic_preempt_off()) {
  2215. pr_err("Preemption disabled at:");
  2216. print_ip_sym(current->preempt_disable_ip);
  2217. pr_cont("\n");
  2218. }
  2219. #endif
  2220. dump_stack();
  2221. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2222. }
  2223. /*
  2224. * Various schedule()-time debugging checks and statistics:
  2225. */
  2226. static inline void schedule_debug(struct task_struct *prev)
  2227. {
  2228. #ifdef CONFIG_SCHED_STACK_END_CHECK
  2229. BUG_ON(unlikely(task_stack_end_corrupted(prev)));
  2230. #endif
  2231. /*
  2232. * Test if we are atomic. Since do_exit() needs to call into
  2233. * schedule() atomically, we ignore that path. Otherwise whine
  2234. * if we are scheduling when we should not.
  2235. */
  2236. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2237. __schedule_bug(prev);
  2238. rcu_sleep_check();
  2239. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2240. schedstat_inc(this_rq(), sched_count);
  2241. }
  2242. /*
  2243. * Pick up the highest-prio task:
  2244. */
  2245. static inline struct task_struct *
  2246. pick_next_task(struct rq *rq, struct task_struct *prev)
  2247. {
  2248. const struct sched_class *class = &fair_sched_class;
  2249. struct task_struct *p;
  2250. /*
  2251. * Optimization: we know that if all tasks are in
  2252. * the fair class we can call that function directly:
  2253. */
  2254. if (likely(prev->sched_class == class &&
  2255. rq->nr_running == rq->cfs.h_nr_running)) {
  2256. p = fair_sched_class.pick_next_task(rq, prev);
  2257. if (unlikely(p == RETRY_TASK))
  2258. goto again;
  2259. /* assumes fair_sched_class->next == idle_sched_class */
  2260. if (unlikely(!p))
  2261. p = idle_sched_class.pick_next_task(rq, prev);
  2262. return p;
  2263. }
  2264. again:
  2265. for_each_class(class) {
  2266. p = class->pick_next_task(rq, prev);
  2267. if (p) {
  2268. if (unlikely(p == RETRY_TASK))
  2269. goto again;
  2270. return p;
  2271. }
  2272. }
  2273. BUG(); /* the idle class will always have a runnable task */
  2274. }
  2275. /*
  2276. * __schedule() is the main scheduler function.
  2277. *
  2278. * The main means of driving the scheduler and thus entering this function are:
  2279. *
  2280. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2281. *
  2282. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2283. * paths. For example, see arch/x86/entry_64.S.
  2284. *
  2285. * To drive preemption between tasks, the scheduler sets the flag in timer
  2286. * interrupt handler scheduler_tick().
  2287. *
  2288. * 3. Wakeups don't really cause entry into schedule(). They add a
  2289. * task to the run-queue and that's it.
  2290. *
  2291. * Now, if the new task added to the run-queue preempts the current
  2292. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2293. * called on the nearest possible occasion:
  2294. *
  2295. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2296. *
  2297. * - in syscall or exception context, at the next outmost
  2298. * preempt_enable(). (this might be as soon as the wake_up()'s
  2299. * spin_unlock()!)
  2300. *
  2301. * - in IRQ context, return from interrupt-handler to
  2302. * preemptible context
  2303. *
  2304. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2305. * then at the next:
  2306. *
  2307. * - cond_resched() call
  2308. * - explicit schedule() call
  2309. * - return from syscall or exception to user-space
  2310. * - return from interrupt-handler to user-space
  2311. *
  2312. * WARNING: all callers must re-check need_resched() afterward and reschedule
  2313. * accordingly in case an event triggered the need for rescheduling (such as
  2314. * an interrupt waking up a task) while preemption was disabled in __schedule().
  2315. */
  2316. static void __sched __schedule(void)
  2317. {
  2318. struct task_struct *prev, *next;
  2319. unsigned long *switch_count;
  2320. struct rq *rq;
  2321. int cpu;
  2322. preempt_disable();
  2323. cpu = smp_processor_id();
  2324. rq = cpu_rq(cpu);
  2325. rcu_note_context_switch();
  2326. prev = rq->curr;
  2327. schedule_debug(prev);
  2328. if (sched_feat(HRTICK))
  2329. hrtick_clear(rq);
  2330. /*
  2331. * Make sure that signal_pending_state()->signal_pending() below
  2332. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2333. * done by the caller to avoid the race with signal_wake_up().
  2334. */
  2335. smp_mb__before_spinlock();
  2336. raw_spin_lock_irq(&rq->lock);
  2337. rq->clock_skip_update <<= 1; /* promote REQ to ACT */
  2338. switch_count = &prev->nivcsw;
  2339. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2340. if (unlikely(signal_pending_state(prev->state, prev))) {
  2341. prev->state = TASK_RUNNING;
  2342. } else {
  2343. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2344. prev->on_rq = 0;
  2345. /*
  2346. * If a worker went to sleep, notify and ask workqueue
  2347. * whether it wants to wake up a task to maintain
  2348. * concurrency.
  2349. */
  2350. if (prev->flags & PF_WQ_WORKER) {
  2351. struct task_struct *to_wakeup;
  2352. to_wakeup = wq_worker_sleeping(prev, cpu);
  2353. if (to_wakeup)
  2354. try_to_wake_up_local(to_wakeup);
  2355. }
  2356. }
  2357. switch_count = &prev->nvcsw;
  2358. }
  2359. if (task_on_rq_queued(prev))
  2360. update_rq_clock(rq);
  2361. next = pick_next_task(rq, prev);
  2362. clear_tsk_need_resched(prev);
  2363. clear_preempt_need_resched();
  2364. rq->clock_skip_update = 0;
  2365. if (likely(prev != next)) {
  2366. rq->nr_switches++;
  2367. rq->curr = next;
  2368. ++*switch_count;
  2369. rq = context_switch(rq, prev, next); /* unlocks the rq */
  2370. cpu = cpu_of(rq);
  2371. } else
  2372. raw_spin_unlock_irq(&rq->lock);
  2373. post_schedule(rq);
  2374. sched_preempt_enable_no_resched();
  2375. }
  2376. static inline void sched_submit_work(struct task_struct *tsk)
  2377. {
  2378. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2379. return;
  2380. /*
  2381. * If we are going to sleep and we have plugged IO queued,
  2382. * make sure to submit it to avoid deadlocks.
  2383. */
  2384. if (blk_needs_flush_plug(tsk))
  2385. blk_schedule_flush_plug(tsk);
  2386. }
  2387. asmlinkage __visible void __sched schedule(void)
  2388. {
  2389. struct task_struct *tsk = current;
  2390. sched_submit_work(tsk);
  2391. do {
  2392. __schedule();
  2393. } while (need_resched());
  2394. }
  2395. EXPORT_SYMBOL(schedule);
  2396. #ifdef CONFIG_CONTEXT_TRACKING
  2397. asmlinkage __visible void __sched schedule_user(void)
  2398. {
  2399. /*
  2400. * If we come here after a random call to set_need_resched(),
  2401. * or we have been woken up remotely but the IPI has not yet arrived,
  2402. * we haven't yet exited the RCU idle mode. Do it here manually until
  2403. * we find a better solution.
  2404. *
  2405. * NB: There are buggy callers of this function. Ideally we
  2406. * should warn if prev_state != IN_USER, but that will trigger
  2407. * too frequently to make sense yet.
  2408. */
  2409. enum ctx_state prev_state = exception_enter();
  2410. schedule();
  2411. exception_exit(prev_state);
  2412. }
  2413. #endif
  2414. /**
  2415. * schedule_preempt_disabled - called with preemption disabled
  2416. *
  2417. * Returns with preemption disabled. Note: preempt_count must be 1
  2418. */
  2419. void __sched schedule_preempt_disabled(void)
  2420. {
  2421. sched_preempt_enable_no_resched();
  2422. schedule();
  2423. preempt_disable();
  2424. }
  2425. static void __sched notrace preempt_schedule_common(void)
  2426. {
  2427. do {
  2428. __preempt_count_add(PREEMPT_ACTIVE);
  2429. __schedule();
  2430. __preempt_count_sub(PREEMPT_ACTIVE);
  2431. /*
  2432. * Check again in case we missed a preemption opportunity
  2433. * between schedule and now.
  2434. */
  2435. barrier();
  2436. } while (need_resched());
  2437. }
  2438. #ifdef CONFIG_PREEMPT
  2439. /*
  2440. * this is the entry point to schedule() from in-kernel preemption
  2441. * off of preempt_enable. Kernel preemptions off return from interrupt
  2442. * occur there and call schedule directly.
  2443. */
  2444. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2445. {
  2446. /*
  2447. * If there is a non-zero preempt_count or interrupts are disabled,
  2448. * we do not want to preempt the current task. Just return..
  2449. */
  2450. if (likely(!preemptible()))
  2451. return;
  2452. preempt_schedule_common();
  2453. }
  2454. NOKPROBE_SYMBOL(preempt_schedule);
  2455. EXPORT_SYMBOL(preempt_schedule);
  2456. #ifdef CONFIG_CONTEXT_TRACKING
  2457. /**
  2458. * preempt_schedule_context - preempt_schedule called by tracing
  2459. *
  2460. * The tracing infrastructure uses preempt_enable_notrace to prevent
  2461. * recursion and tracing preempt enabling caused by the tracing
  2462. * infrastructure itself. But as tracing can happen in areas coming
  2463. * from userspace or just about to enter userspace, a preempt enable
  2464. * can occur before user_exit() is called. This will cause the scheduler
  2465. * to be called when the system is still in usermode.
  2466. *
  2467. * To prevent this, the preempt_enable_notrace will use this function
  2468. * instead of preempt_schedule() to exit user context if needed before
  2469. * calling the scheduler.
  2470. */
  2471. asmlinkage __visible void __sched notrace preempt_schedule_context(void)
  2472. {
  2473. enum ctx_state prev_ctx;
  2474. if (likely(!preemptible()))
  2475. return;
  2476. do {
  2477. __preempt_count_add(PREEMPT_ACTIVE);
  2478. /*
  2479. * Needs preempt disabled in case user_exit() is traced
  2480. * and the tracer calls preempt_enable_notrace() causing
  2481. * an infinite recursion.
  2482. */
  2483. prev_ctx = exception_enter();
  2484. __schedule();
  2485. exception_exit(prev_ctx);
  2486. __preempt_count_sub(PREEMPT_ACTIVE);
  2487. barrier();
  2488. } while (need_resched());
  2489. }
  2490. EXPORT_SYMBOL_GPL(preempt_schedule_context);
  2491. #endif /* CONFIG_CONTEXT_TRACKING */
  2492. #endif /* CONFIG_PREEMPT */
  2493. /*
  2494. * this is the entry point to schedule() from kernel preemption
  2495. * off of irq context.
  2496. * Note, that this is called and return with irqs disabled. This will
  2497. * protect us against recursive calling from irq.
  2498. */
  2499. asmlinkage __visible void __sched preempt_schedule_irq(void)
  2500. {
  2501. enum ctx_state prev_state;
  2502. /* Catch callers which need to be fixed */
  2503. BUG_ON(preempt_count() || !irqs_disabled());
  2504. prev_state = exception_enter();
  2505. do {
  2506. __preempt_count_add(PREEMPT_ACTIVE);
  2507. local_irq_enable();
  2508. __schedule();
  2509. local_irq_disable();
  2510. __preempt_count_sub(PREEMPT_ACTIVE);
  2511. /*
  2512. * Check again in case we missed a preemption opportunity
  2513. * between schedule and now.
  2514. */
  2515. barrier();
  2516. } while (need_resched());
  2517. exception_exit(prev_state);
  2518. }
  2519. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2520. void *key)
  2521. {
  2522. return try_to_wake_up(curr->private, mode, wake_flags);
  2523. }
  2524. EXPORT_SYMBOL(default_wake_function);
  2525. #ifdef CONFIG_RT_MUTEXES
  2526. /*
  2527. * rt_mutex_setprio - set the current priority of a task
  2528. * @p: task
  2529. * @prio: prio value (kernel-internal form)
  2530. *
  2531. * This function changes the 'effective' priority of a task. It does
  2532. * not touch ->normal_prio like __setscheduler().
  2533. *
  2534. * Used by the rt_mutex code to implement priority inheritance
  2535. * logic. Call site only calls if the priority of the task changed.
  2536. */
  2537. void rt_mutex_setprio(struct task_struct *p, int prio)
  2538. {
  2539. int oldprio, queued, running, enqueue_flag = 0;
  2540. struct rq *rq;
  2541. const struct sched_class *prev_class;
  2542. BUG_ON(prio > MAX_PRIO);
  2543. rq = __task_rq_lock(p);
  2544. /*
  2545. * Idle task boosting is a nono in general. There is one
  2546. * exception, when PREEMPT_RT and NOHZ is active:
  2547. *
  2548. * The idle task calls get_next_timer_interrupt() and holds
  2549. * the timer wheel base->lock on the CPU and another CPU wants
  2550. * to access the timer (probably to cancel it). We can safely
  2551. * ignore the boosting request, as the idle CPU runs this code
  2552. * with interrupts disabled and will complete the lock
  2553. * protected section without being interrupted. So there is no
  2554. * real need to boost.
  2555. */
  2556. if (unlikely(p == rq->idle)) {
  2557. WARN_ON(p != rq->curr);
  2558. WARN_ON(p->pi_blocked_on);
  2559. goto out_unlock;
  2560. }
  2561. trace_sched_pi_setprio(p, prio);
  2562. oldprio = p->prio;
  2563. prev_class = p->sched_class;
  2564. queued = task_on_rq_queued(p);
  2565. running = task_current(rq, p);
  2566. if (queued)
  2567. dequeue_task(rq, p, 0);
  2568. if (running)
  2569. put_prev_task(rq, p);
  2570. /*
  2571. * Boosting condition are:
  2572. * 1. -rt task is running and holds mutex A
  2573. * --> -dl task blocks on mutex A
  2574. *
  2575. * 2. -dl task is running and holds mutex A
  2576. * --> -dl task blocks on mutex A and could preempt the
  2577. * running task
  2578. */
  2579. if (dl_prio(prio)) {
  2580. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  2581. if (!dl_prio(p->normal_prio) ||
  2582. (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
  2583. p->dl.dl_boosted = 1;
  2584. p->dl.dl_throttled = 0;
  2585. enqueue_flag = ENQUEUE_REPLENISH;
  2586. } else
  2587. p->dl.dl_boosted = 0;
  2588. p->sched_class = &dl_sched_class;
  2589. } else if (rt_prio(prio)) {
  2590. if (dl_prio(oldprio))
  2591. p->dl.dl_boosted = 0;
  2592. if (oldprio < prio)
  2593. enqueue_flag = ENQUEUE_HEAD;
  2594. p->sched_class = &rt_sched_class;
  2595. } else {
  2596. if (dl_prio(oldprio))
  2597. p->dl.dl_boosted = 0;
  2598. if (rt_prio(oldprio))
  2599. p->rt.timeout = 0;
  2600. p->sched_class = &fair_sched_class;
  2601. }
  2602. p->prio = prio;
  2603. if (running)
  2604. p->sched_class->set_curr_task(rq);
  2605. if (queued)
  2606. enqueue_task(rq, p, enqueue_flag);
  2607. check_class_changed(rq, p, prev_class, oldprio);
  2608. out_unlock:
  2609. __task_rq_unlock(rq);
  2610. }
  2611. #endif
  2612. void set_user_nice(struct task_struct *p, long nice)
  2613. {
  2614. int old_prio, delta, queued;
  2615. unsigned long flags;
  2616. struct rq *rq;
  2617. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  2618. return;
  2619. /*
  2620. * We have to be careful, if called from sys_setpriority(),
  2621. * the task might be in the middle of scheduling on another CPU.
  2622. */
  2623. rq = task_rq_lock(p, &flags);
  2624. /*
  2625. * The RT priorities are set via sched_setscheduler(), but we still
  2626. * allow the 'normal' nice value to be set - but as expected
  2627. * it wont have any effect on scheduling until the task is
  2628. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2629. */
  2630. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2631. p->static_prio = NICE_TO_PRIO(nice);
  2632. goto out_unlock;
  2633. }
  2634. queued = task_on_rq_queued(p);
  2635. if (queued)
  2636. dequeue_task(rq, p, 0);
  2637. p->static_prio = NICE_TO_PRIO(nice);
  2638. set_load_weight(p);
  2639. old_prio = p->prio;
  2640. p->prio = effective_prio(p);
  2641. delta = p->prio - old_prio;
  2642. if (queued) {
  2643. enqueue_task(rq, p, 0);
  2644. /*
  2645. * If the task increased its priority or is running and
  2646. * lowered its priority, then reschedule its CPU:
  2647. */
  2648. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2649. resched_curr(rq);
  2650. }
  2651. out_unlock:
  2652. task_rq_unlock(rq, p, &flags);
  2653. }
  2654. EXPORT_SYMBOL(set_user_nice);
  2655. /*
  2656. * can_nice - check if a task can reduce its nice value
  2657. * @p: task
  2658. * @nice: nice value
  2659. */
  2660. int can_nice(const struct task_struct *p, const int nice)
  2661. {
  2662. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2663. int nice_rlim = nice_to_rlimit(nice);
  2664. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2665. capable(CAP_SYS_NICE));
  2666. }
  2667. #ifdef __ARCH_WANT_SYS_NICE
  2668. /*
  2669. * sys_nice - change the priority of the current process.
  2670. * @increment: priority increment
  2671. *
  2672. * sys_setpriority is a more generic, but much slower function that
  2673. * does similar things.
  2674. */
  2675. SYSCALL_DEFINE1(nice, int, increment)
  2676. {
  2677. long nice, retval;
  2678. /*
  2679. * Setpriority might change our priority at the same moment.
  2680. * We don't have to worry. Conceptually one call occurs first
  2681. * and we have a single winner.
  2682. */
  2683. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  2684. nice = task_nice(current) + increment;
  2685. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  2686. if (increment < 0 && !can_nice(current, nice))
  2687. return -EPERM;
  2688. retval = security_task_setnice(current, nice);
  2689. if (retval)
  2690. return retval;
  2691. set_user_nice(current, nice);
  2692. return 0;
  2693. }
  2694. #endif
  2695. /**
  2696. * task_prio - return the priority value of a given task.
  2697. * @p: the task in question.
  2698. *
  2699. * Return: The priority value as seen by users in /proc.
  2700. * RT tasks are offset by -200. Normal tasks are centered
  2701. * around 0, value goes from -16 to +15.
  2702. */
  2703. int task_prio(const struct task_struct *p)
  2704. {
  2705. return p->prio - MAX_RT_PRIO;
  2706. }
  2707. /**
  2708. * idle_cpu - is a given cpu idle currently?
  2709. * @cpu: the processor in question.
  2710. *
  2711. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2712. */
  2713. int idle_cpu(int cpu)
  2714. {
  2715. struct rq *rq = cpu_rq(cpu);
  2716. if (rq->curr != rq->idle)
  2717. return 0;
  2718. if (rq->nr_running)
  2719. return 0;
  2720. #ifdef CONFIG_SMP
  2721. if (!llist_empty(&rq->wake_list))
  2722. return 0;
  2723. #endif
  2724. return 1;
  2725. }
  2726. /**
  2727. * idle_task - return the idle task for a given cpu.
  2728. * @cpu: the processor in question.
  2729. *
  2730. * Return: The idle task for the cpu @cpu.
  2731. */
  2732. struct task_struct *idle_task(int cpu)
  2733. {
  2734. return cpu_rq(cpu)->idle;
  2735. }
  2736. /**
  2737. * find_process_by_pid - find a process with a matching PID value.
  2738. * @pid: the pid in question.
  2739. *
  2740. * The task of @pid, if found. %NULL otherwise.
  2741. */
  2742. static struct task_struct *find_process_by_pid(pid_t pid)
  2743. {
  2744. return pid ? find_task_by_vpid(pid) : current;
  2745. }
  2746. /*
  2747. * This function initializes the sched_dl_entity of a newly becoming
  2748. * SCHED_DEADLINE task.
  2749. *
  2750. * Only the static values are considered here, the actual runtime and the
  2751. * absolute deadline will be properly calculated when the task is enqueued
  2752. * for the first time with its new policy.
  2753. */
  2754. static void
  2755. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  2756. {
  2757. struct sched_dl_entity *dl_se = &p->dl;
  2758. dl_se->dl_runtime = attr->sched_runtime;
  2759. dl_se->dl_deadline = attr->sched_deadline;
  2760. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  2761. dl_se->flags = attr->sched_flags;
  2762. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  2763. /*
  2764. * Changing the parameters of a task is 'tricky' and we're not doing
  2765. * the correct thing -- also see task_dead_dl() and switched_from_dl().
  2766. *
  2767. * What we SHOULD do is delay the bandwidth release until the 0-lag
  2768. * point. This would include retaining the task_struct until that time
  2769. * and change dl_overflow() to not immediately decrement the current
  2770. * amount.
  2771. *
  2772. * Instead we retain the current runtime/deadline and let the new
  2773. * parameters take effect after the current reservation period lapses.
  2774. * This is safe (albeit pessimistic) because the 0-lag point is always
  2775. * before the current scheduling deadline.
  2776. *
  2777. * We can still have temporary overloads because we do not delay the
  2778. * change in bandwidth until that time; so admission control is
  2779. * not on the safe side. It does however guarantee tasks will never
  2780. * consume more than promised.
  2781. */
  2782. }
  2783. /*
  2784. * sched_setparam() passes in -1 for its policy, to let the functions
  2785. * it calls know not to change it.
  2786. */
  2787. #define SETPARAM_POLICY -1
  2788. static void __setscheduler_params(struct task_struct *p,
  2789. const struct sched_attr *attr)
  2790. {
  2791. int policy = attr->sched_policy;
  2792. if (policy == SETPARAM_POLICY)
  2793. policy = p->policy;
  2794. p->policy = policy;
  2795. if (dl_policy(policy))
  2796. __setparam_dl(p, attr);
  2797. else if (fair_policy(policy))
  2798. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  2799. /*
  2800. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  2801. * !rt_policy. Always setting this ensures that things like
  2802. * getparam()/getattr() don't report silly values for !rt tasks.
  2803. */
  2804. p->rt_priority = attr->sched_priority;
  2805. p->normal_prio = normal_prio(p);
  2806. set_load_weight(p);
  2807. }
  2808. /* Actually do priority change: must hold pi & rq lock. */
  2809. static void __setscheduler(struct rq *rq, struct task_struct *p,
  2810. const struct sched_attr *attr)
  2811. {
  2812. __setscheduler_params(p, attr);
  2813. /*
  2814. * If we get here, there was no pi waiters boosting the
  2815. * task. It is safe to use the normal prio.
  2816. */
  2817. p->prio = normal_prio(p);
  2818. if (dl_prio(p->prio))
  2819. p->sched_class = &dl_sched_class;
  2820. else if (rt_prio(p->prio))
  2821. p->sched_class = &rt_sched_class;
  2822. else
  2823. p->sched_class = &fair_sched_class;
  2824. }
  2825. static void
  2826. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  2827. {
  2828. struct sched_dl_entity *dl_se = &p->dl;
  2829. attr->sched_priority = p->rt_priority;
  2830. attr->sched_runtime = dl_se->dl_runtime;
  2831. attr->sched_deadline = dl_se->dl_deadline;
  2832. attr->sched_period = dl_se->dl_period;
  2833. attr->sched_flags = dl_se->flags;
  2834. }
  2835. /*
  2836. * This function validates the new parameters of a -deadline task.
  2837. * We ask for the deadline not being zero, and greater or equal
  2838. * than the runtime, as well as the period of being zero or
  2839. * greater than deadline. Furthermore, we have to be sure that
  2840. * user parameters are above the internal resolution of 1us (we
  2841. * check sched_runtime only since it is always the smaller one) and
  2842. * below 2^63 ns (we have to check both sched_deadline and
  2843. * sched_period, as the latter can be zero).
  2844. */
  2845. static bool
  2846. __checkparam_dl(const struct sched_attr *attr)
  2847. {
  2848. /* deadline != 0 */
  2849. if (attr->sched_deadline == 0)
  2850. return false;
  2851. /*
  2852. * Since we truncate DL_SCALE bits, make sure we're at least
  2853. * that big.
  2854. */
  2855. if (attr->sched_runtime < (1ULL << DL_SCALE))
  2856. return false;
  2857. /*
  2858. * Since we use the MSB for wrap-around and sign issues, make
  2859. * sure it's not set (mind that period can be equal to zero).
  2860. */
  2861. if (attr->sched_deadline & (1ULL << 63) ||
  2862. attr->sched_period & (1ULL << 63))
  2863. return false;
  2864. /* runtime <= deadline <= period (if period != 0) */
  2865. if ((attr->sched_period != 0 &&
  2866. attr->sched_period < attr->sched_deadline) ||
  2867. attr->sched_deadline < attr->sched_runtime)
  2868. return false;
  2869. return true;
  2870. }
  2871. /*
  2872. * check the target process has a UID that matches the current process's
  2873. */
  2874. static bool check_same_owner(struct task_struct *p)
  2875. {
  2876. const struct cred *cred = current_cred(), *pcred;
  2877. bool match;
  2878. rcu_read_lock();
  2879. pcred = __task_cred(p);
  2880. match = (uid_eq(cred->euid, pcred->euid) ||
  2881. uid_eq(cred->euid, pcred->uid));
  2882. rcu_read_unlock();
  2883. return match;
  2884. }
  2885. static bool dl_param_changed(struct task_struct *p,
  2886. const struct sched_attr *attr)
  2887. {
  2888. struct sched_dl_entity *dl_se = &p->dl;
  2889. if (dl_se->dl_runtime != attr->sched_runtime ||
  2890. dl_se->dl_deadline != attr->sched_deadline ||
  2891. dl_se->dl_period != attr->sched_period ||
  2892. dl_se->flags != attr->sched_flags)
  2893. return true;
  2894. return false;
  2895. }
  2896. static int __sched_setscheduler(struct task_struct *p,
  2897. const struct sched_attr *attr,
  2898. bool user)
  2899. {
  2900. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  2901. MAX_RT_PRIO - 1 - attr->sched_priority;
  2902. int retval, oldprio, oldpolicy = -1, queued, running;
  2903. int policy = attr->sched_policy;
  2904. unsigned long flags;
  2905. const struct sched_class *prev_class;
  2906. struct rq *rq;
  2907. int reset_on_fork;
  2908. /* may grab non-irq protected spin_locks */
  2909. BUG_ON(in_interrupt());
  2910. recheck:
  2911. /* double check policy once rq lock held */
  2912. if (policy < 0) {
  2913. reset_on_fork = p->sched_reset_on_fork;
  2914. policy = oldpolicy = p->policy;
  2915. } else {
  2916. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  2917. if (policy != SCHED_DEADLINE &&
  2918. policy != SCHED_FIFO && policy != SCHED_RR &&
  2919. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2920. policy != SCHED_IDLE)
  2921. return -EINVAL;
  2922. }
  2923. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  2924. return -EINVAL;
  2925. /*
  2926. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2927. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2928. * SCHED_BATCH and SCHED_IDLE is 0.
  2929. */
  2930. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  2931. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  2932. return -EINVAL;
  2933. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  2934. (rt_policy(policy) != (attr->sched_priority != 0)))
  2935. return -EINVAL;
  2936. /*
  2937. * Allow unprivileged RT tasks to decrease priority:
  2938. */
  2939. if (user && !capable(CAP_SYS_NICE)) {
  2940. if (fair_policy(policy)) {
  2941. if (attr->sched_nice < task_nice(p) &&
  2942. !can_nice(p, attr->sched_nice))
  2943. return -EPERM;
  2944. }
  2945. if (rt_policy(policy)) {
  2946. unsigned long rlim_rtprio =
  2947. task_rlimit(p, RLIMIT_RTPRIO);
  2948. /* can't set/change the rt policy */
  2949. if (policy != p->policy && !rlim_rtprio)
  2950. return -EPERM;
  2951. /* can't increase priority */
  2952. if (attr->sched_priority > p->rt_priority &&
  2953. attr->sched_priority > rlim_rtprio)
  2954. return -EPERM;
  2955. }
  2956. /*
  2957. * Can't set/change SCHED_DEADLINE policy at all for now
  2958. * (safest behavior); in the future we would like to allow
  2959. * unprivileged DL tasks to increase their relative deadline
  2960. * or reduce their runtime (both ways reducing utilization)
  2961. */
  2962. if (dl_policy(policy))
  2963. return -EPERM;
  2964. /*
  2965. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2966. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2967. */
  2968. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2969. if (!can_nice(p, task_nice(p)))
  2970. return -EPERM;
  2971. }
  2972. /* can't change other user's priorities */
  2973. if (!check_same_owner(p))
  2974. return -EPERM;
  2975. /* Normal users shall not reset the sched_reset_on_fork flag */
  2976. if (p->sched_reset_on_fork && !reset_on_fork)
  2977. return -EPERM;
  2978. }
  2979. if (user) {
  2980. retval = security_task_setscheduler(p);
  2981. if (retval)
  2982. return retval;
  2983. }
  2984. /*
  2985. * make sure no PI-waiters arrive (or leave) while we are
  2986. * changing the priority of the task:
  2987. *
  2988. * To be able to change p->policy safely, the appropriate
  2989. * runqueue lock must be held.
  2990. */
  2991. rq = task_rq_lock(p, &flags);
  2992. /*
  2993. * Changing the policy of the stop threads its a very bad idea
  2994. */
  2995. if (p == rq->stop) {
  2996. task_rq_unlock(rq, p, &flags);
  2997. return -EINVAL;
  2998. }
  2999. /*
  3000. * If not changing anything there's no need to proceed further,
  3001. * but store a possible modification of reset_on_fork.
  3002. */
  3003. if (unlikely(policy == p->policy)) {
  3004. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  3005. goto change;
  3006. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  3007. goto change;
  3008. if (dl_policy(policy) && dl_param_changed(p, attr))
  3009. goto change;
  3010. p->sched_reset_on_fork = reset_on_fork;
  3011. task_rq_unlock(rq, p, &flags);
  3012. return 0;
  3013. }
  3014. change:
  3015. if (user) {
  3016. #ifdef CONFIG_RT_GROUP_SCHED
  3017. /*
  3018. * Do not allow realtime tasks into groups that have no runtime
  3019. * assigned.
  3020. */
  3021. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3022. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3023. !task_group_is_autogroup(task_group(p))) {
  3024. task_rq_unlock(rq, p, &flags);
  3025. return -EPERM;
  3026. }
  3027. #endif
  3028. #ifdef CONFIG_SMP
  3029. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  3030. cpumask_t *span = rq->rd->span;
  3031. /*
  3032. * Don't allow tasks with an affinity mask smaller than
  3033. * the entire root_domain to become SCHED_DEADLINE. We
  3034. * will also fail if there's no bandwidth available.
  3035. */
  3036. if (!cpumask_subset(span, &p->cpus_allowed) ||
  3037. rq->rd->dl_bw.bw == 0) {
  3038. task_rq_unlock(rq, p, &flags);
  3039. return -EPERM;
  3040. }
  3041. }
  3042. #endif
  3043. }
  3044. /* recheck policy now with rq lock held */
  3045. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3046. policy = oldpolicy = -1;
  3047. task_rq_unlock(rq, p, &flags);
  3048. goto recheck;
  3049. }
  3050. /*
  3051. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  3052. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  3053. * is available.
  3054. */
  3055. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  3056. task_rq_unlock(rq, p, &flags);
  3057. return -EBUSY;
  3058. }
  3059. p->sched_reset_on_fork = reset_on_fork;
  3060. oldprio = p->prio;
  3061. /*
  3062. * Special case for priority boosted tasks.
  3063. *
  3064. * If the new priority is lower or equal (user space view)
  3065. * than the current (boosted) priority, we just store the new
  3066. * normal parameters and do not touch the scheduler class and
  3067. * the runqueue. This will be done when the task deboost
  3068. * itself.
  3069. */
  3070. if (rt_mutex_check_prio(p, newprio)) {
  3071. __setscheduler_params(p, attr);
  3072. task_rq_unlock(rq, p, &flags);
  3073. return 0;
  3074. }
  3075. queued = task_on_rq_queued(p);
  3076. running = task_current(rq, p);
  3077. if (queued)
  3078. dequeue_task(rq, p, 0);
  3079. if (running)
  3080. put_prev_task(rq, p);
  3081. prev_class = p->sched_class;
  3082. __setscheduler(rq, p, attr);
  3083. if (running)
  3084. p->sched_class->set_curr_task(rq);
  3085. if (queued) {
  3086. /*
  3087. * We enqueue to tail when the priority of a task is
  3088. * increased (user space view).
  3089. */
  3090. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  3091. }
  3092. check_class_changed(rq, p, prev_class, oldprio);
  3093. task_rq_unlock(rq, p, &flags);
  3094. rt_mutex_adjust_pi(p);
  3095. return 0;
  3096. }
  3097. static int _sched_setscheduler(struct task_struct *p, int policy,
  3098. const struct sched_param *param, bool check)
  3099. {
  3100. struct sched_attr attr = {
  3101. .sched_policy = policy,
  3102. .sched_priority = param->sched_priority,
  3103. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3104. };
  3105. /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
  3106. if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
  3107. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3108. policy &= ~SCHED_RESET_ON_FORK;
  3109. attr.sched_policy = policy;
  3110. }
  3111. return __sched_setscheduler(p, &attr, check);
  3112. }
  3113. /**
  3114. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3115. * @p: the task in question.
  3116. * @policy: new policy.
  3117. * @param: structure containing the new RT priority.
  3118. *
  3119. * Return: 0 on success. An error code otherwise.
  3120. *
  3121. * NOTE that the task may be already dead.
  3122. */
  3123. int sched_setscheduler(struct task_struct *p, int policy,
  3124. const struct sched_param *param)
  3125. {
  3126. return _sched_setscheduler(p, policy, param, true);
  3127. }
  3128. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3129. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3130. {
  3131. return __sched_setscheduler(p, attr, true);
  3132. }
  3133. EXPORT_SYMBOL_GPL(sched_setattr);
  3134. /**
  3135. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3136. * @p: the task in question.
  3137. * @policy: new policy.
  3138. * @param: structure containing the new RT priority.
  3139. *
  3140. * Just like sched_setscheduler, only don't bother checking if the
  3141. * current context has permission. For example, this is needed in
  3142. * stop_machine(): we create temporary high priority worker threads,
  3143. * but our caller might not have that capability.
  3144. *
  3145. * Return: 0 on success. An error code otherwise.
  3146. */
  3147. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3148. const struct sched_param *param)
  3149. {
  3150. return _sched_setscheduler(p, policy, param, false);
  3151. }
  3152. static int
  3153. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3154. {
  3155. struct sched_param lparam;
  3156. struct task_struct *p;
  3157. int retval;
  3158. if (!param || pid < 0)
  3159. return -EINVAL;
  3160. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3161. return -EFAULT;
  3162. rcu_read_lock();
  3163. retval = -ESRCH;
  3164. p = find_process_by_pid(pid);
  3165. if (p != NULL)
  3166. retval = sched_setscheduler(p, policy, &lparam);
  3167. rcu_read_unlock();
  3168. return retval;
  3169. }
  3170. /*
  3171. * Mimics kernel/events/core.c perf_copy_attr().
  3172. */
  3173. static int sched_copy_attr(struct sched_attr __user *uattr,
  3174. struct sched_attr *attr)
  3175. {
  3176. u32 size;
  3177. int ret;
  3178. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3179. return -EFAULT;
  3180. /*
  3181. * zero the full structure, so that a short copy will be nice.
  3182. */
  3183. memset(attr, 0, sizeof(*attr));
  3184. ret = get_user(size, &uattr->size);
  3185. if (ret)
  3186. return ret;
  3187. if (size > PAGE_SIZE) /* silly large */
  3188. goto err_size;
  3189. if (!size) /* abi compat */
  3190. size = SCHED_ATTR_SIZE_VER0;
  3191. if (size < SCHED_ATTR_SIZE_VER0)
  3192. goto err_size;
  3193. /*
  3194. * If we're handed a bigger struct than we know of,
  3195. * ensure all the unknown bits are 0 - i.e. new
  3196. * user-space does not rely on any kernel feature
  3197. * extensions we dont know about yet.
  3198. */
  3199. if (size > sizeof(*attr)) {
  3200. unsigned char __user *addr;
  3201. unsigned char __user *end;
  3202. unsigned char val;
  3203. addr = (void __user *)uattr + sizeof(*attr);
  3204. end = (void __user *)uattr + size;
  3205. for (; addr < end; addr++) {
  3206. ret = get_user(val, addr);
  3207. if (ret)
  3208. return ret;
  3209. if (val)
  3210. goto err_size;
  3211. }
  3212. size = sizeof(*attr);
  3213. }
  3214. ret = copy_from_user(attr, uattr, size);
  3215. if (ret)
  3216. return -EFAULT;
  3217. /*
  3218. * XXX: do we want to be lenient like existing syscalls; or do we want
  3219. * to be strict and return an error on out-of-bounds values?
  3220. */
  3221. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3222. return 0;
  3223. err_size:
  3224. put_user(sizeof(*attr), &uattr->size);
  3225. return -E2BIG;
  3226. }
  3227. /**
  3228. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3229. * @pid: the pid in question.
  3230. * @policy: new policy.
  3231. * @param: structure containing the new RT priority.
  3232. *
  3233. * Return: 0 on success. An error code otherwise.
  3234. */
  3235. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3236. struct sched_param __user *, param)
  3237. {
  3238. /* negative values for policy are not valid */
  3239. if (policy < 0)
  3240. return -EINVAL;
  3241. return do_sched_setscheduler(pid, policy, param);
  3242. }
  3243. /**
  3244. * sys_sched_setparam - set/change the RT priority of a thread
  3245. * @pid: the pid in question.
  3246. * @param: structure containing the new RT priority.
  3247. *
  3248. * Return: 0 on success. An error code otherwise.
  3249. */
  3250. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3251. {
  3252. return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
  3253. }
  3254. /**
  3255. * sys_sched_setattr - same as above, but with extended sched_attr
  3256. * @pid: the pid in question.
  3257. * @uattr: structure containing the extended parameters.
  3258. * @flags: for future extension.
  3259. */
  3260. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3261. unsigned int, flags)
  3262. {
  3263. struct sched_attr attr;
  3264. struct task_struct *p;
  3265. int retval;
  3266. if (!uattr || pid < 0 || flags)
  3267. return -EINVAL;
  3268. retval = sched_copy_attr(uattr, &attr);
  3269. if (retval)
  3270. return retval;
  3271. if ((int)attr.sched_policy < 0)
  3272. return -EINVAL;
  3273. rcu_read_lock();
  3274. retval = -ESRCH;
  3275. p = find_process_by_pid(pid);
  3276. if (p != NULL)
  3277. retval = sched_setattr(p, &attr);
  3278. rcu_read_unlock();
  3279. return retval;
  3280. }
  3281. /**
  3282. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3283. * @pid: the pid in question.
  3284. *
  3285. * Return: On success, the policy of the thread. Otherwise, a negative error
  3286. * code.
  3287. */
  3288. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3289. {
  3290. struct task_struct *p;
  3291. int retval;
  3292. if (pid < 0)
  3293. return -EINVAL;
  3294. retval = -ESRCH;
  3295. rcu_read_lock();
  3296. p = find_process_by_pid(pid);
  3297. if (p) {
  3298. retval = security_task_getscheduler(p);
  3299. if (!retval)
  3300. retval = p->policy
  3301. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3302. }
  3303. rcu_read_unlock();
  3304. return retval;
  3305. }
  3306. /**
  3307. * sys_sched_getparam - get the RT priority of a thread
  3308. * @pid: the pid in question.
  3309. * @param: structure containing the RT priority.
  3310. *
  3311. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3312. * code.
  3313. */
  3314. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3315. {
  3316. struct sched_param lp = { .sched_priority = 0 };
  3317. struct task_struct *p;
  3318. int retval;
  3319. if (!param || pid < 0)
  3320. return -EINVAL;
  3321. rcu_read_lock();
  3322. p = find_process_by_pid(pid);
  3323. retval = -ESRCH;
  3324. if (!p)
  3325. goto out_unlock;
  3326. retval = security_task_getscheduler(p);
  3327. if (retval)
  3328. goto out_unlock;
  3329. if (task_has_rt_policy(p))
  3330. lp.sched_priority = p->rt_priority;
  3331. rcu_read_unlock();
  3332. /*
  3333. * This one might sleep, we cannot do it with a spinlock held ...
  3334. */
  3335. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3336. return retval;
  3337. out_unlock:
  3338. rcu_read_unlock();
  3339. return retval;
  3340. }
  3341. static int sched_read_attr(struct sched_attr __user *uattr,
  3342. struct sched_attr *attr,
  3343. unsigned int usize)
  3344. {
  3345. int ret;
  3346. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3347. return -EFAULT;
  3348. /*
  3349. * If we're handed a smaller struct than we know of,
  3350. * ensure all the unknown bits are 0 - i.e. old
  3351. * user-space does not get uncomplete information.
  3352. */
  3353. if (usize < sizeof(*attr)) {
  3354. unsigned char *addr;
  3355. unsigned char *end;
  3356. addr = (void *)attr + usize;
  3357. end = (void *)attr + sizeof(*attr);
  3358. for (; addr < end; addr++) {
  3359. if (*addr)
  3360. return -EFBIG;
  3361. }
  3362. attr->size = usize;
  3363. }
  3364. ret = copy_to_user(uattr, attr, attr->size);
  3365. if (ret)
  3366. return -EFAULT;
  3367. return 0;
  3368. }
  3369. /**
  3370. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3371. * @pid: the pid in question.
  3372. * @uattr: structure containing the extended parameters.
  3373. * @size: sizeof(attr) for fwd/bwd comp.
  3374. * @flags: for future extension.
  3375. */
  3376. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3377. unsigned int, size, unsigned int, flags)
  3378. {
  3379. struct sched_attr attr = {
  3380. .size = sizeof(struct sched_attr),
  3381. };
  3382. struct task_struct *p;
  3383. int retval;
  3384. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3385. size < SCHED_ATTR_SIZE_VER0 || flags)
  3386. return -EINVAL;
  3387. rcu_read_lock();
  3388. p = find_process_by_pid(pid);
  3389. retval = -ESRCH;
  3390. if (!p)
  3391. goto out_unlock;
  3392. retval = security_task_getscheduler(p);
  3393. if (retval)
  3394. goto out_unlock;
  3395. attr.sched_policy = p->policy;
  3396. if (p->sched_reset_on_fork)
  3397. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3398. if (task_has_dl_policy(p))
  3399. __getparam_dl(p, &attr);
  3400. else if (task_has_rt_policy(p))
  3401. attr.sched_priority = p->rt_priority;
  3402. else
  3403. attr.sched_nice = task_nice(p);
  3404. rcu_read_unlock();
  3405. retval = sched_read_attr(uattr, &attr, size);
  3406. return retval;
  3407. out_unlock:
  3408. rcu_read_unlock();
  3409. return retval;
  3410. }
  3411. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3412. {
  3413. cpumask_var_t cpus_allowed, new_mask;
  3414. struct task_struct *p;
  3415. int retval;
  3416. rcu_read_lock();
  3417. p = find_process_by_pid(pid);
  3418. if (!p) {
  3419. rcu_read_unlock();
  3420. return -ESRCH;
  3421. }
  3422. /* Prevent p going away */
  3423. get_task_struct(p);
  3424. rcu_read_unlock();
  3425. if (p->flags & PF_NO_SETAFFINITY) {
  3426. retval = -EINVAL;
  3427. goto out_put_task;
  3428. }
  3429. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3430. retval = -ENOMEM;
  3431. goto out_put_task;
  3432. }
  3433. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3434. retval = -ENOMEM;
  3435. goto out_free_cpus_allowed;
  3436. }
  3437. retval = -EPERM;
  3438. if (!check_same_owner(p)) {
  3439. rcu_read_lock();
  3440. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3441. rcu_read_unlock();
  3442. goto out_free_new_mask;
  3443. }
  3444. rcu_read_unlock();
  3445. }
  3446. retval = security_task_setscheduler(p);
  3447. if (retval)
  3448. goto out_free_new_mask;
  3449. cpuset_cpus_allowed(p, cpus_allowed);
  3450. cpumask_and(new_mask, in_mask, cpus_allowed);
  3451. /*
  3452. * Since bandwidth control happens on root_domain basis,
  3453. * if admission test is enabled, we only admit -deadline
  3454. * tasks allowed to run on all the CPUs in the task's
  3455. * root_domain.
  3456. */
  3457. #ifdef CONFIG_SMP
  3458. if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
  3459. rcu_read_lock();
  3460. if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
  3461. retval = -EBUSY;
  3462. rcu_read_unlock();
  3463. goto out_free_new_mask;
  3464. }
  3465. rcu_read_unlock();
  3466. }
  3467. #endif
  3468. again:
  3469. retval = set_cpus_allowed_ptr(p, new_mask);
  3470. if (!retval) {
  3471. cpuset_cpus_allowed(p, cpus_allowed);
  3472. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3473. /*
  3474. * We must have raced with a concurrent cpuset
  3475. * update. Just reset the cpus_allowed to the
  3476. * cpuset's cpus_allowed
  3477. */
  3478. cpumask_copy(new_mask, cpus_allowed);
  3479. goto again;
  3480. }
  3481. }
  3482. out_free_new_mask:
  3483. free_cpumask_var(new_mask);
  3484. out_free_cpus_allowed:
  3485. free_cpumask_var(cpus_allowed);
  3486. out_put_task:
  3487. put_task_struct(p);
  3488. return retval;
  3489. }
  3490. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3491. struct cpumask *new_mask)
  3492. {
  3493. if (len < cpumask_size())
  3494. cpumask_clear(new_mask);
  3495. else if (len > cpumask_size())
  3496. len = cpumask_size();
  3497. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3498. }
  3499. /**
  3500. * sys_sched_setaffinity - set the cpu affinity of a process
  3501. * @pid: pid of the process
  3502. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3503. * @user_mask_ptr: user-space pointer to the new cpu mask
  3504. *
  3505. * Return: 0 on success. An error code otherwise.
  3506. */
  3507. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3508. unsigned long __user *, user_mask_ptr)
  3509. {
  3510. cpumask_var_t new_mask;
  3511. int retval;
  3512. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3513. return -ENOMEM;
  3514. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3515. if (retval == 0)
  3516. retval = sched_setaffinity(pid, new_mask);
  3517. free_cpumask_var(new_mask);
  3518. return retval;
  3519. }
  3520. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3521. {
  3522. struct task_struct *p;
  3523. unsigned long flags;
  3524. int retval;
  3525. rcu_read_lock();
  3526. retval = -ESRCH;
  3527. p = find_process_by_pid(pid);
  3528. if (!p)
  3529. goto out_unlock;
  3530. retval = security_task_getscheduler(p);
  3531. if (retval)
  3532. goto out_unlock;
  3533. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3534. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3535. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3536. out_unlock:
  3537. rcu_read_unlock();
  3538. return retval;
  3539. }
  3540. /**
  3541. * sys_sched_getaffinity - get the cpu affinity of a process
  3542. * @pid: pid of the process
  3543. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3544. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3545. *
  3546. * Return: 0 on success. An error code otherwise.
  3547. */
  3548. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3549. unsigned long __user *, user_mask_ptr)
  3550. {
  3551. int ret;
  3552. cpumask_var_t mask;
  3553. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3554. return -EINVAL;
  3555. if (len & (sizeof(unsigned long)-1))
  3556. return -EINVAL;
  3557. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3558. return -ENOMEM;
  3559. ret = sched_getaffinity(pid, mask);
  3560. if (ret == 0) {
  3561. size_t retlen = min_t(size_t, len, cpumask_size());
  3562. if (copy_to_user(user_mask_ptr, mask, retlen))
  3563. ret = -EFAULT;
  3564. else
  3565. ret = retlen;
  3566. }
  3567. free_cpumask_var(mask);
  3568. return ret;
  3569. }
  3570. /**
  3571. * sys_sched_yield - yield the current processor to other threads.
  3572. *
  3573. * This function yields the current CPU to other tasks. If there are no
  3574. * other threads running on this CPU then this function will return.
  3575. *
  3576. * Return: 0.
  3577. */
  3578. SYSCALL_DEFINE0(sched_yield)
  3579. {
  3580. struct rq *rq = this_rq_lock();
  3581. schedstat_inc(rq, yld_count);
  3582. current->sched_class->yield_task(rq);
  3583. /*
  3584. * Since we are going to call schedule() anyway, there's
  3585. * no need to preempt or enable interrupts:
  3586. */
  3587. __release(rq->lock);
  3588. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3589. do_raw_spin_unlock(&rq->lock);
  3590. sched_preempt_enable_no_resched();
  3591. schedule();
  3592. return 0;
  3593. }
  3594. int __sched _cond_resched(void)
  3595. {
  3596. if (should_resched()) {
  3597. preempt_schedule_common();
  3598. return 1;
  3599. }
  3600. return 0;
  3601. }
  3602. EXPORT_SYMBOL(_cond_resched);
  3603. /*
  3604. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3605. * call schedule, and on return reacquire the lock.
  3606. *
  3607. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3608. * operations here to prevent schedule() from being called twice (once via
  3609. * spin_unlock(), once by hand).
  3610. */
  3611. int __cond_resched_lock(spinlock_t *lock)
  3612. {
  3613. int resched = should_resched();
  3614. int ret = 0;
  3615. lockdep_assert_held(lock);
  3616. if (spin_needbreak(lock) || resched) {
  3617. spin_unlock(lock);
  3618. if (resched)
  3619. preempt_schedule_common();
  3620. else
  3621. cpu_relax();
  3622. ret = 1;
  3623. spin_lock(lock);
  3624. }
  3625. return ret;
  3626. }
  3627. EXPORT_SYMBOL(__cond_resched_lock);
  3628. int __sched __cond_resched_softirq(void)
  3629. {
  3630. BUG_ON(!in_softirq());
  3631. if (should_resched()) {
  3632. local_bh_enable();
  3633. preempt_schedule_common();
  3634. local_bh_disable();
  3635. return 1;
  3636. }
  3637. return 0;
  3638. }
  3639. EXPORT_SYMBOL(__cond_resched_softirq);
  3640. /**
  3641. * yield - yield the current processor to other threads.
  3642. *
  3643. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3644. *
  3645. * The scheduler is at all times free to pick the calling task as the most
  3646. * eligible task to run, if removing the yield() call from your code breaks
  3647. * it, its already broken.
  3648. *
  3649. * Typical broken usage is:
  3650. *
  3651. * while (!event)
  3652. * yield();
  3653. *
  3654. * where one assumes that yield() will let 'the other' process run that will
  3655. * make event true. If the current task is a SCHED_FIFO task that will never
  3656. * happen. Never use yield() as a progress guarantee!!
  3657. *
  3658. * If you want to use yield() to wait for something, use wait_event().
  3659. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3660. * If you still want to use yield(), do not!
  3661. */
  3662. void __sched yield(void)
  3663. {
  3664. set_current_state(TASK_RUNNING);
  3665. sys_sched_yield();
  3666. }
  3667. EXPORT_SYMBOL(yield);
  3668. /**
  3669. * yield_to - yield the current processor to another thread in
  3670. * your thread group, or accelerate that thread toward the
  3671. * processor it's on.
  3672. * @p: target task
  3673. * @preempt: whether task preemption is allowed or not
  3674. *
  3675. * It's the caller's job to ensure that the target task struct
  3676. * can't go away on us before we can do any checks.
  3677. *
  3678. * Return:
  3679. * true (>0) if we indeed boosted the target task.
  3680. * false (0) if we failed to boost the target.
  3681. * -ESRCH if there's no task to yield to.
  3682. */
  3683. int __sched yield_to(struct task_struct *p, bool preempt)
  3684. {
  3685. struct task_struct *curr = current;
  3686. struct rq *rq, *p_rq;
  3687. unsigned long flags;
  3688. int yielded = 0;
  3689. local_irq_save(flags);
  3690. rq = this_rq();
  3691. again:
  3692. p_rq = task_rq(p);
  3693. /*
  3694. * If we're the only runnable task on the rq and target rq also
  3695. * has only one task, there's absolutely no point in yielding.
  3696. */
  3697. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3698. yielded = -ESRCH;
  3699. goto out_irq;
  3700. }
  3701. double_rq_lock(rq, p_rq);
  3702. if (task_rq(p) != p_rq) {
  3703. double_rq_unlock(rq, p_rq);
  3704. goto again;
  3705. }
  3706. if (!curr->sched_class->yield_to_task)
  3707. goto out_unlock;
  3708. if (curr->sched_class != p->sched_class)
  3709. goto out_unlock;
  3710. if (task_running(p_rq, p) || p->state)
  3711. goto out_unlock;
  3712. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3713. if (yielded) {
  3714. schedstat_inc(rq, yld_count);
  3715. /*
  3716. * Make p's CPU reschedule; pick_next_entity takes care of
  3717. * fairness.
  3718. */
  3719. if (preempt && rq != p_rq)
  3720. resched_curr(p_rq);
  3721. }
  3722. out_unlock:
  3723. double_rq_unlock(rq, p_rq);
  3724. out_irq:
  3725. local_irq_restore(flags);
  3726. if (yielded > 0)
  3727. schedule();
  3728. return yielded;
  3729. }
  3730. EXPORT_SYMBOL_GPL(yield_to);
  3731. /*
  3732. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3733. * that process accounting knows that this is a task in IO wait state.
  3734. */
  3735. long __sched io_schedule_timeout(long timeout)
  3736. {
  3737. int old_iowait = current->in_iowait;
  3738. struct rq *rq;
  3739. long ret;
  3740. current->in_iowait = 1;
  3741. if (old_iowait)
  3742. blk_schedule_flush_plug(current);
  3743. else
  3744. blk_flush_plug(current);
  3745. delayacct_blkio_start();
  3746. rq = raw_rq();
  3747. atomic_inc(&rq->nr_iowait);
  3748. ret = schedule_timeout(timeout);
  3749. current->in_iowait = old_iowait;
  3750. atomic_dec(&rq->nr_iowait);
  3751. delayacct_blkio_end();
  3752. return ret;
  3753. }
  3754. EXPORT_SYMBOL(io_schedule_timeout);
  3755. /**
  3756. * sys_sched_get_priority_max - return maximum RT priority.
  3757. * @policy: scheduling class.
  3758. *
  3759. * Return: On success, this syscall returns the maximum
  3760. * rt_priority that can be used by a given scheduling class.
  3761. * On failure, a negative error code is returned.
  3762. */
  3763. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3764. {
  3765. int ret = -EINVAL;
  3766. switch (policy) {
  3767. case SCHED_FIFO:
  3768. case SCHED_RR:
  3769. ret = MAX_USER_RT_PRIO-1;
  3770. break;
  3771. case SCHED_DEADLINE:
  3772. case SCHED_NORMAL:
  3773. case SCHED_BATCH:
  3774. case SCHED_IDLE:
  3775. ret = 0;
  3776. break;
  3777. }
  3778. return ret;
  3779. }
  3780. /**
  3781. * sys_sched_get_priority_min - return minimum RT priority.
  3782. * @policy: scheduling class.
  3783. *
  3784. * Return: On success, this syscall returns the minimum
  3785. * rt_priority that can be used by a given scheduling class.
  3786. * On failure, a negative error code is returned.
  3787. */
  3788. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3789. {
  3790. int ret = -EINVAL;
  3791. switch (policy) {
  3792. case SCHED_FIFO:
  3793. case SCHED_RR:
  3794. ret = 1;
  3795. break;
  3796. case SCHED_DEADLINE:
  3797. case SCHED_NORMAL:
  3798. case SCHED_BATCH:
  3799. case SCHED_IDLE:
  3800. ret = 0;
  3801. }
  3802. return ret;
  3803. }
  3804. /**
  3805. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3806. * @pid: pid of the process.
  3807. * @interval: userspace pointer to the timeslice value.
  3808. *
  3809. * this syscall writes the default timeslice value of a given process
  3810. * into the user-space timespec buffer. A value of '0' means infinity.
  3811. *
  3812. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3813. * an error code.
  3814. */
  3815. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3816. struct timespec __user *, interval)
  3817. {
  3818. struct task_struct *p;
  3819. unsigned int time_slice;
  3820. unsigned long flags;
  3821. struct rq *rq;
  3822. int retval;
  3823. struct timespec t;
  3824. if (pid < 0)
  3825. return -EINVAL;
  3826. retval = -ESRCH;
  3827. rcu_read_lock();
  3828. p = find_process_by_pid(pid);
  3829. if (!p)
  3830. goto out_unlock;
  3831. retval = security_task_getscheduler(p);
  3832. if (retval)
  3833. goto out_unlock;
  3834. rq = task_rq_lock(p, &flags);
  3835. time_slice = 0;
  3836. if (p->sched_class->get_rr_interval)
  3837. time_slice = p->sched_class->get_rr_interval(rq, p);
  3838. task_rq_unlock(rq, p, &flags);
  3839. rcu_read_unlock();
  3840. jiffies_to_timespec(time_slice, &t);
  3841. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3842. return retval;
  3843. out_unlock:
  3844. rcu_read_unlock();
  3845. return retval;
  3846. }
  3847. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3848. void sched_show_task(struct task_struct *p)
  3849. {
  3850. unsigned long free = 0;
  3851. int ppid;
  3852. unsigned long state = p->state;
  3853. if (state)
  3854. state = __ffs(state) + 1;
  3855. printk(KERN_INFO "%-15.15s %c", p->comm,
  3856. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3857. #if BITS_PER_LONG == 32
  3858. if (state == TASK_RUNNING)
  3859. printk(KERN_CONT " running ");
  3860. else
  3861. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3862. #else
  3863. if (state == TASK_RUNNING)
  3864. printk(KERN_CONT " running task ");
  3865. else
  3866. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3867. #endif
  3868. #ifdef CONFIG_DEBUG_STACK_USAGE
  3869. free = stack_not_used(p);
  3870. #endif
  3871. ppid = 0;
  3872. rcu_read_lock();
  3873. if (pid_alive(p))
  3874. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3875. rcu_read_unlock();
  3876. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3877. task_pid_nr(p), ppid,
  3878. (unsigned long)task_thread_info(p)->flags);
  3879. print_worker_info(KERN_INFO, p);
  3880. show_stack(p, NULL);
  3881. }
  3882. void show_state_filter(unsigned long state_filter)
  3883. {
  3884. struct task_struct *g, *p;
  3885. #if BITS_PER_LONG == 32
  3886. printk(KERN_INFO
  3887. " task PC stack pid father\n");
  3888. #else
  3889. printk(KERN_INFO
  3890. " task PC stack pid father\n");
  3891. #endif
  3892. rcu_read_lock();
  3893. for_each_process_thread(g, p) {
  3894. /*
  3895. * reset the NMI-timeout, listing all files on a slow
  3896. * console might take a lot of time:
  3897. */
  3898. touch_nmi_watchdog();
  3899. if (!state_filter || (p->state & state_filter))
  3900. sched_show_task(p);
  3901. }
  3902. touch_all_softlockup_watchdogs();
  3903. #ifdef CONFIG_SCHED_DEBUG
  3904. sysrq_sched_debug_show();
  3905. #endif
  3906. rcu_read_unlock();
  3907. /*
  3908. * Only show locks if all tasks are dumped:
  3909. */
  3910. if (!state_filter)
  3911. debug_show_all_locks();
  3912. }
  3913. void init_idle_bootup_task(struct task_struct *idle)
  3914. {
  3915. idle->sched_class = &idle_sched_class;
  3916. }
  3917. /**
  3918. * init_idle - set up an idle thread for a given CPU
  3919. * @idle: task in question
  3920. * @cpu: cpu the idle task belongs to
  3921. *
  3922. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3923. * flag, to make booting more robust.
  3924. */
  3925. void init_idle(struct task_struct *idle, int cpu)
  3926. {
  3927. struct rq *rq = cpu_rq(cpu);
  3928. unsigned long flags;
  3929. raw_spin_lock_irqsave(&rq->lock, flags);
  3930. __sched_fork(0, idle);
  3931. idle->state = TASK_RUNNING;
  3932. idle->se.exec_start = sched_clock();
  3933. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3934. /*
  3935. * We're having a chicken and egg problem, even though we are
  3936. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3937. * lockdep check in task_group() will fail.
  3938. *
  3939. * Similar case to sched_fork(). / Alternatively we could
  3940. * use task_rq_lock() here and obtain the other rq->lock.
  3941. *
  3942. * Silence PROVE_RCU
  3943. */
  3944. rcu_read_lock();
  3945. __set_task_cpu(idle, cpu);
  3946. rcu_read_unlock();
  3947. rq->curr = rq->idle = idle;
  3948. idle->on_rq = TASK_ON_RQ_QUEUED;
  3949. #if defined(CONFIG_SMP)
  3950. idle->on_cpu = 1;
  3951. #endif
  3952. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3953. /* Set the preempt count _outside_ the spinlocks! */
  3954. init_idle_preempt_count(idle, cpu);
  3955. /*
  3956. * The idle tasks have their own, simple scheduling class:
  3957. */
  3958. idle->sched_class = &idle_sched_class;
  3959. ftrace_graph_init_idle_task(idle, cpu);
  3960. vtime_init_idle(idle, cpu);
  3961. #if defined(CONFIG_SMP)
  3962. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3963. #endif
  3964. }
  3965. int cpuset_cpumask_can_shrink(const struct cpumask *cur,
  3966. const struct cpumask *trial)
  3967. {
  3968. int ret = 1, trial_cpus;
  3969. struct dl_bw *cur_dl_b;
  3970. unsigned long flags;
  3971. if (!cpumask_weight(cur))
  3972. return ret;
  3973. rcu_read_lock_sched();
  3974. cur_dl_b = dl_bw_of(cpumask_any(cur));
  3975. trial_cpus = cpumask_weight(trial);
  3976. raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
  3977. if (cur_dl_b->bw != -1 &&
  3978. cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
  3979. ret = 0;
  3980. raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
  3981. rcu_read_unlock_sched();
  3982. return ret;
  3983. }
  3984. int task_can_attach(struct task_struct *p,
  3985. const struct cpumask *cs_cpus_allowed)
  3986. {
  3987. int ret = 0;
  3988. /*
  3989. * Kthreads which disallow setaffinity shouldn't be moved
  3990. * to a new cpuset; we don't want to change their cpu
  3991. * affinity and isolating such threads by their set of
  3992. * allowed nodes is unnecessary. Thus, cpusets are not
  3993. * applicable for such threads. This prevents checking for
  3994. * success of set_cpus_allowed_ptr() on all attached tasks
  3995. * before cpus_allowed may be changed.
  3996. */
  3997. if (p->flags & PF_NO_SETAFFINITY) {
  3998. ret = -EINVAL;
  3999. goto out;
  4000. }
  4001. #ifdef CONFIG_SMP
  4002. if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
  4003. cs_cpus_allowed)) {
  4004. unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
  4005. cs_cpus_allowed);
  4006. struct dl_bw *dl_b;
  4007. bool overflow;
  4008. int cpus;
  4009. unsigned long flags;
  4010. rcu_read_lock_sched();
  4011. dl_b = dl_bw_of(dest_cpu);
  4012. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4013. cpus = dl_bw_cpus(dest_cpu);
  4014. overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
  4015. if (overflow)
  4016. ret = -EBUSY;
  4017. else {
  4018. /*
  4019. * We reserve space for this task in the destination
  4020. * root_domain, as we can't fail after this point.
  4021. * We will free resources in the source root_domain
  4022. * later on (see set_cpus_allowed_dl()).
  4023. */
  4024. __dl_add(dl_b, p->dl.dl_bw);
  4025. }
  4026. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4027. rcu_read_unlock_sched();
  4028. }
  4029. #endif
  4030. out:
  4031. return ret;
  4032. }
  4033. #ifdef CONFIG_SMP
  4034. /*
  4035. * move_queued_task - move a queued task to new rq.
  4036. *
  4037. * Returns (locked) new rq. Old rq's lock is released.
  4038. */
  4039. static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
  4040. {
  4041. struct rq *rq = task_rq(p);
  4042. lockdep_assert_held(&rq->lock);
  4043. dequeue_task(rq, p, 0);
  4044. p->on_rq = TASK_ON_RQ_MIGRATING;
  4045. set_task_cpu(p, new_cpu);
  4046. raw_spin_unlock(&rq->lock);
  4047. rq = cpu_rq(new_cpu);
  4048. raw_spin_lock(&rq->lock);
  4049. BUG_ON(task_cpu(p) != new_cpu);
  4050. p->on_rq = TASK_ON_RQ_QUEUED;
  4051. enqueue_task(rq, p, 0);
  4052. check_preempt_curr(rq, p, 0);
  4053. return rq;
  4054. }
  4055. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4056. {
  4057. if (p->sched_class->set_cpus_allowed)
  4058. p->sched_class->set_cpus_allowed(p, new_mask);
  4059. cpumask_copy(&p->cpus_allowed, new_mask);
  4060. p->nr_cpus_allowed = cpumask_weight(new_mask);
  4061. }
  4062. /*
  4063. * This is how migration works:
  4064. *
  4065. * 1) we invoke migration_cpu_stop() on the target CPU using
  4066. * stop_one_cpu().
  4067. * 2) stopper starts to run (implicitly forcing the migrated thread
  4068. * off the CPU)
  4069. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4070. * 4) if it's in the wrong runqueue then the migration thread removes
  4071. * it and puts it into the right queue.
  4072. * 5) stopper completes and stop_one_cpu() returns and the migration
  4073. * is done.
  4074. */
  4075. /*
  4076. * Change a given task's CPU affinity. Migrate the thread to a
  4077. * proper CPU and schedule it away if the CPU it's executing on
  4078. * is removed from the allowed bitmask.
  4079. *
  4080. * NOTE: the caller must have a valid reference to the task, the
  4081. * task must not exit() & deallocate itself prematurely. The
  4082. * call is not atomic; no spinlocks may be held.
  4083. */
  4084. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4085. {
  4086. unsigned long flags;
  4087. struct rq *rq;
  4088. unsigned int dest_cpu;
  4089. int ret = 0;
  4090. rq = task_rq_lock(p, &flags);
  4091. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4092. goto out;
  4093. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4094. ret = -EINVAL;
  4095. goto out;
  4096. }
  4097. do_set_cpus_allowed(p, new_mask);
  4098. /* Can the task run on the task's current CPU? If so, we're done */
  4099. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4100. goto out;
  4101. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4102. if (task_running(rq, p) || p->state == TASK_WAKING) {
  4103. struct migration_arg arg = { p, dest_cpu };
  4104. /* Need help from migration thread: drop lock and wait. */
  4105. task_rq_unlock(rq, p, &flags);
  4106. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4107. tlb_migrate_finish(p->mm);
  4108. return 0;
  4109. } else if (task_on_rq_queued(p))
  4110. rq = move_queued_task(p, dest_cpu);
  4111. out:
  4112. task_rq_unlock(rq, p, &flags);
  4113. return ret;
  4114. }
  4115. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4116. /*
  4117. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4118. * this because either it can't run here any more (set_cpus_allowed()
  4119. * away from this CPU, or CPU going down), or because we're
  4120. * attempting to rebalance this task on exec (sched_exec).
  4121. *
  4122. * So we race with normal scheduler movements, but that's OK, as long
  4123. * as the task is no longer on this CPU.
  4124. *
  4125. * Returns non-zero if task was successfully migrated.
  4126. */
  4127. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4128. {
  4129. struct rq *rq;
  4130. int ret = 0;
  4131. if (unlikely(!cpu_active(dest_cpu)))
  4132. return ret;
  4133. rq = cpu_rq(src_cpu);
  4134. raw_spin_lock(&p->pi_lock);
  4135. raw_spin_lock(&rq->lock);
  4136. /* Already moved. */
  4137. if (task_cpu(p) != src_cpu)
  4138. goto done;
  4139. /* Affinity changed (again). */
  4140. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4141. goto fail;
  4142. /*
  4143. * If we're not on a rq, the next wake-up will ensure we're
  4144. * placed properly.
  4145. */
  4146. if (task_on_rq_queued(p))
  4147. rq = move_queued_task(p, dest_cpu);
  4148. done:
  4149. ret = 1;
  4150. fail:
  4151. raw_spin_unlock(&rq->lock);
  4152. raw_spin_unlock(&p->pi_lock);
  4153. return ret;
  4154. }
  4155. #ifdef CONFIG_NUMA_BALANCING
  4156. /* Migrate current task p to target_cpu */
  4157. int migrate_task_to(struct task_struct *p, int target_cpu)
  4158. {
  4159. struct migration_arg arg = { p, target_cpu };
  4160. int curr_cpu = task_cpu(p);
  4161. if (curr_cpu == target_cpu)
  4162. return 0;
  4163. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  4164. return -EINVAL;
  4165. /* TODO: This is not properly updating schedstats */
  4166. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4167. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4168. }
  4169. /*
  4170. * Requeue a task on a given node and accurately track the number of NUMA
  4171. * tasks on the runqueues
  4172. */
  4173. void sched_setnuma(struct task_struct *p, int nid)
  4174. {
  4175. struct rq *rq;
  4176. unsigned long flags;
  4177. bool queued, running;
  4178. rq = task_rq_lock(p, &flags);
  4179. queued = task_on_rq_queued(p);
  4180. running = task_current(rq, p);
  4181. if (queued)
  4182. dequeue_task(rq, p, 0);
  4183. if (running)
  4184. put_prev_task(rq, p);
  4185. p->numa_preferred_nid = nid;
  4186. if (running)
  4187. p->sched_class->set_curr_task(rq);
  4188. if (queued)
  4189. enqueue_task(rq, p, 0);
  4190. task_rq_unlock(rq, p, &flags);
  4191. }
  4192. #endif
  4193. /*
  4194. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4195. * and performs thread migration by bumping thread off CPU then
  4196. * 'pushing' onto another runqueue.
  4197. */
  4198. static int migration_cpu_stop(void *data)
  4199. {
  4200. struct migration_arg *arg = data;
  4201. /*
  4202. * The original target cpu might have gone down and we might
  4203. * be on another cpu but it doesn't matter.
  4204. */
  4205. local_irq_disable();
  4206. /*
  4207. * We need to explicitly wake pending tasks before running
  4208. * __migrate_task() such that we will not miss enforcing cpus_allowed
  4209. * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
  4210. */
  4211. sched_ttwu_pending();
  4212. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4213. local_irq_enable();
  4214. return 0;
  4215. }
  4216. #ifdef CONFIG_HOTPLUG_CPU
  4217. /*
  4218. * Ensures that the idle task is using init_mm right before its cpu goes
  4219. * offline.
  4220. */
  4221. void idle_task_exit(void)
  4222. {
  4223. struct mm_struct *mm = current->active_mm;
  4224. BUG_ON(cpu_online(smp_processor_id()));
  4225. if (mm != &init_mm) {
  4226. switch_mm(mm, &init_mm, current);
  4227. finish_arch_post_lock_switch();
  4228. }
  4229. mmdrop(mm);
  4230. }
  4231. /*
  4232. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4233. * we might have. Assumes we're called after migrate_tasks() so that the
  4234. * nr_active count is stable.
  4235. *
  4236. * Also see the comment "Global load-average calculations".
  4237. */
  4238. static void calc_load_migrate(struct rq *rq)
  4239. {
  4240. long delta = calc_load_fold_active(rq);
  4241. if (delta)
  4242. atomic_long_add(delta, &calc_load_tasks);
  4243. }
  4244. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4245. {
  4246. }
  4247. static const struct sched_class fake_sched_class = {
  4248. .put_prev_task = put_prev_task_fake,
  4249. };
  4250. static struct task_struct fake_task = {
  4251. /*
  4252. * Avoid pull_{rt,dl}_task()
  4253. */
  4254. .prio = MAX_PRIO + 1,
  4255. .sched_class = &fake_sched_class,
  4256. };
  4257. /*
  4258. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4259. * try_to_wake_up()->select_task_rq().
  4260. *
  4261. * Called with rq->lock held even though we'er in stop_machine() and
  4262. * there's no concurrency possible, we hold the required locks anyway
  4263. * because of lock validation efforts.
  4264. */
  4265. static void migrate_tasks(unsigned int dead_cpu)
  4266. {
  4267. struct rq *rq = cpu_rq(dead_cpu);
  4268. struct task_struct *next, *stop = rq->stop;
  4269. int dest_cpu;
  4270. /*
  4271. * Fudge the rq selection such that the below task selection loop
  4272. * doesn't get stuck on the currently eligible stop task.
  4273. *
  4274. * We're currently inside stop_machine() and the rq is either stuck
  4275. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4276. * either way we should never end up calling schedule() until we're
  4277. * done here.
  4278. */
  4279. rq->stop = NULL;
  4280. /*
  4281. * put_prev_task() and pick_next_task() sched
  4282. * class method both need to have an up-to-date
  4283. * value of rq->clock[_task]
  4284. */
  4285. update_rq_clock(rq);
  4286. for ( ; ; ) {
  4287. /*
  4288. * There's this thread running, bail when that's the only
  4289. * remaining thread.
  4290. */
  4291. if (rq->nr_running == 1)
  4292. break;
  4293. next = pick_next_task(rq, &fake_task);
  4294. BUG_ON(!next);
  4295. next->sched_class->put_prev_task(rq, next);
  4296. /* Find suitable destination for @next, with force if needed. */
  4297. dest_cpu = select_fallback_rq(dead_cpu, next);
  4298. raw_spin_unlock(&rq->lock);
  4299. __migrate_task(next, dead_cpu, dest_cpu);
  4300. raw_spin_lock(&rq->lock);
  4301. }
  4302. rq->stop = stop;
  4303. }
  4304. #endif /* CONFIG_HOTPLUG_CPU */
  4305. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4306. static struct ctl_table sd_ctl_dir[] = {
  4307. {
  4308. .procname = "sched_domain",
  4309. .mode = 0555,
  4310. },
  4311. {}
  4312. };
  4313. static struct ctl_table sd_ctl_root[] = {
  4314. {
  4315. .procname = "kernel",
  4316. .mode = 0555,
  4317. .child = sd_ctl_dir,
  4318. },
  4319. {}
  4320. };
  4321. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4322. {
  4323. struct ctl_table *entry =
  4324. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4325. return entry;
  4326. }
  4327. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4328. {
  4329. struct ctl_table *entry;
  4330. /*
  4331. * In the intermediate directories, both the child directory and
  4332. * procname are dynamically allocated and could fail but the mode
  4333. * will always be set. In the lowest directory the names are
  4334. * static strings and all have proc handlers.
  4335. */
  4336. for (entry = *tablep; entry->mode; entry++) {
  4337. if (entry->child)
  4338. sd_free_ctl_entry(&entry->child);
  4339. if (entry->proc_handler == NULL)
  4340. kfree(entry->procname);
  4341. }
  4342. kfree(*tablep);
  4343. *tablep = NULL;
  4344. }
  4345. static int min_load_idx = 0;
  4346. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4347. static void
  4348. set_table_entry(struct ctl_table *entry,
  4349. const char *procname, void *data, int maxlen,
  4350. umode_t mode, proc_handler *proc_handler,
  4351. bool load_idx)
  4352. {
  4353. entry->procname = procname;
  4354. entry->data = data;
  4355. entry->maxlen = maxlen;
  4356. entry->mode = mode;
  4357. entry->proc_handler = proc_handler;
  4358. if (load_idx) {
  4359. entry->extra1 = &min_load_idx;
  4360. entry->extra2 = &max_load_idx;
  4361. }
  4362. }
  4363. static struct ctl_table *
  4364. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4365. {
  4366. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4367. if (table == NULL)
  4368. return NULL;
  4369. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4370. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4371. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4372. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4373. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4374. sizeof(int), 0644, proc_dointvec_minmax, true);
  4375. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4376. sizeof(int), 0644, proc_dointvec_minmax, true);
  4377. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4378. sizeof(int), 0644, proc_dointvec_minmax, true);
  4379. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4380. sizeof(int), 0644, proc_dointvec_minmax, true);
  4381. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4382. sizeof(int), 0644, proc_dointvec_minmax, true);
  4383. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4384. sizeof(int), 0644, proc_dointvec_minmax, false);
  4385. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4386. sizeof(int), 0644, proc_dointvec_minmax, false);
  4387. set_table_entry(&table[9], "cache_nice_tries",
  4388. &sd->cache_nice_tries,
  4389. sizeof(int), 0644, proc_dointvec_minmax, false);
  4390. set_table_entry(&table[10], "flags", &sd->flags,
  4391. sizeof(int), 0644, proc_dointvec_minmax, false);
  4392. set_table_entry(&table[11], "max_newidle_lb_cost",
  4393. &sd->max_newidle_lb_cost,
  4394. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4395. set_table_entry(&table[12], "name", sd->name,
  4396. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4397. /* &table[13] is terminator */
  4398. return table;
  4399. }
  4400. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4401. {
  4402. struct ctl_table *entry, *table;
  4403. struct sched_domain *sd;
  4404. int domain_num = 0, i;
  4405. char buf[32];
  4406. for_each_domain(cpu, sd)
  4407. domain_num++;
  4408. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4409. if (table == NULL)
  4410. return NULL;
  4411. i = 0;
  4412. for_each_domain(cpu, sd) {
  4413. snprintf(buf, 32, "domain%d", i);
  4414. entry->procname = kstrdup(buf, GFP_KERNEL);
  4415. entry->mode = 0555;
  4416. entry->child = sd_alloc_ctl_domain_table(sd);
  4417. entry++;
  4418. i++;
  4419. }
  4420. return table;
  4421. }
  4422. static struct ctl_table_header *sd_sysctl_header;
  4423. static void register_sched_domain_sysctl(void)
  4424. {
  4425. int i, cpu_num = num_possible_cpus();
  4426. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4427. char buf[32];
  4428. WARN_ON(sd_ctl_dir[0].child);
  4429. sd_ctl_dir[0].child = entry;
  4430. if (entry == NULL)
  4431. return;
  4432. for_each_possible_cpu(i) {
  4433. snprintf(buf, 32, "cpu%d", i);
  4434. entry->procname = kstrdup(buf, GFP_KERNEL);
  4435. entry->mode = 0555;
  4436. entry->child = sd_alloc_ctl_cpu_table(i);
  4437. entry++;
  4438. }
  4439. WARN_ON(sd_sysctl_header);
  4440. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4441. }
  4442. /* may be called multiple times per register */
  4443. static void unregister_sched_domain_sysctl(void)
  4444. {
  4445. if (sd_sysctl_header)
  4446. unregister_sysctl_table(sd_sysctl_header);
  4447. sd_sysctl_header = NULL;
  4448. if (sd_ctl_dir[0].child)
  4449. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4450. }
  4451. #else
  4452. static void register_sched_domain_sysctl(void)
  4453. {
  4454. }
  4455. static void unregister_sched_domain_sysctl(void)
  4456. {
  4457. }
  4458. #endif
  4459. static void set_rq_online(struct rq *rq)
  4460. {
  4461. if (!rq->online) {
  4462. const struct sched_class *class;
  4463. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4464. rq->online = 1;
  4465. for_each_class(class) {
  4466. if (class->rq_online)
  4467. class->rq_online(rq);
  4468. }
  4469. }
  4470. }
  4471. static void set_rq_offline(struct rq *rq)
  4472. {
  4473. if (rq->online) {
  4474. const struct sched_class *class;
  4475. for_each_class(class) {
  4476. if (class->rq_offline)
  4477. class->rq_offline(rq);
  4478. }
  4479. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4480. rq->online = 0;
  4481. }
  4482. }
  4483. /*
  4484. * migration_call - callback that gets triggered when a CPU is added.
  4485. * Here we can start up the necessary migration thread for the new CPU.
  4486. */
  4487. static int
  4488. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4489. {
  4490. int cpu = (long)hcpu;
  4491. unsigned long flags;
  4492. struct rq *rq = cpu_rq(cpu);
  4493. switch (action & ~CPU_TASKS_FROZEN) {
  4494. case CPU_UP_PREPARE:
  4495. rq->calc_load_update = calc_load_update;
  4496. break;
  4497. case CPU_ONLINE:
  4498. /* Update our root-domain */
  4499. raw_spin_lock_irqsave(&rq->lock, flags);
  4500. if (rq->rd) {
  4501. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4502. set_rq_online(rq);
  4503. }
  4504. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4505. break;
  4506. #ifdef CONFIG_HOTPLUG_CPU
  4507. case CPU_DYING:
  4508. sched_ttwu_pending();
  4509. /* Update our root-domain */
  4510. raw_spin_lock_irqsave(&rq->lock, flags);
  4511. if (rq->rd) {
  4512. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4513. set_rq_offline(rq);
  4514. }
  4515. migrate_tasks(cpu);
  4516. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4517. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4518. break;
  4519. case CPU_DEAD:
  4520. calc_load_migrate(rq);
  4521. break;
  4522. #endif
  4523. }
  4524. update_max_interval();
  4525. return NOTIFY_OK;
  4526. }
  4527. /*
  4528. * Register at high priority so that task migration (migrate_all_tasks)
  4529. * happens before everything else. This has to be lower priority than
  4530. * the notifier in the perf_event subsystem, though.
  4531. */
  4532. static struct notifier_block migration_notifier = {
  4533. .notifier_call = migration_call,
  4534. .priority = CPU_PRI_MIGRATION,
  4535. };
  4536. static void __cpuinit set_cpu_rq_start_time(void)
  4537. {
  4538. int cpu = smp_processor_id();
  4539. struct rq *rq = cpu_rq(cpu);
  4540. rq->age_stamp = sched_clock_cpu(cpu);
  4541. }
  4542. static int sched_cpu_active(struct notifier_block *nfb,
  4543. unsigned long action, void *hcpu)
  4544. {
  4545. switch (action & ~CPU_TASKS_FROZEN) {
  4546. case CPU_STARTING:
  4547. set_cpu_rq_start_time();
  4548. return NOTIFY_OK;
  4549. case CPU_DOWN_FAILED:
  4550. set_cpu_active((long)hcpu, true);
  4551. return NOTIFY_OK;
  4552. default:
  4553. return NOTIFY_DONE;
  4554. }
  4555. }
  4556. static int sched_cpu_inactive(struct notifier_block *nfb,
  4557. unsigned long action, void *hcpu)
  4558. {
  4559. unsigned long flags;
  4560. long cpu = (long)hcpu;
  4561. struct dl_bw *dl_b;
  4562. switch (action & ~CPU_TASKS_FROZEN) {
  4563. case CPU_DOWN_PREPARE:
  4564. set_cpu_active(cpu, false);
  4565. /* explicitly allow suspend */
  4566. if (!(action & CPU_TASKS_FROZEN)) {
  4567. bool overflow;
  4568. int cpus;
  4569. rcu_read_lock_sched();
  4570. dl_b = dl_bw_of(cpu);
  4571. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4572. cpus = dl_bw_cpus(cpu);
  4573. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  4574. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4575. rcu_read_unlock_sched();
  4576. if (overflow)
  4577. return notifier_from_errno(-EBUSY);
  4578. }
  4579. return NOTIFY_OK;
  4580. }
  4581. return NOTIFY_DONE;
  4582. }
  4583. static int __init migration_init(void)
  4584. {
  4585. void *cpu = (void *)(long)smp_processor_id();
  4586. int err;
  4587. /* Initialize migration for the boot CPU */
  4588. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4589. BUG_ON(err == NOTIFY_BAD);
  4590. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4591. register_cpu_notifier(&migration_notifier);
  4592. /* Register cpu active notifiers */
  4593. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4594. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4595. return 0;
  4596. }
  4597. early_initcall(migration_init);
  4598. #endif
  4599. #ifdef CONFIG_SMP
  4600. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4601. #ifdef CONFIG_SCHED_DEBUG
  4602. static __read_mostly int sched_debug_enabled;
  4603. static int __init sched_debug_setup(char *str)
  4604. {
  4605. sched_debug_enabled = 1;
  4606. return 0;
  4607. }
  4608. early_param("sched_debug", sched_debug_setup);
  4609. static inline bool sched_debug(void)
  4610. {
  4611. return sched_debug_enabled;
  4612. }
  4613. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4614. struct cpumask *groupmask)
  4615. {
  4616. struct sched_group *group = sd->groups;
  4617. cpumask_clear(groupmask);
  4618. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4619. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4620. printk("does not load-balance\n");
  4621. if (sd->parent)
  4622. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4623. " has parent");
  4624. return -1;
  4625. }
  4626. printk(KERN_CONT "span %*pbl level %s\n",
  4627. cpumask_pr_args(sched_domain_span(sd)), sd->name);
  4628. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4629. printk(KERN_ERR "ERROR: domain->span does not contain "
  4630. "CPU%d\n", cpu);
  4631. }
  4632. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4633. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4634. " CPU%d\n", cpu);
  4635. }
  4636. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4637. do {
  4638. if (!group) {
  4639. printk("\n");
  4640. printk(KERN_ERR "ERROR: group is NULL\n");
  4641. break;
  4642. }
  4643. /*
  4644. * Even though we initialize ->capacity to something semi-sane,
  4645. * we leave capacity_orig unset. This allows us to detect if
  4646. * domain iteration is still funny without causing /0 traps.
  4647. */
  4648. if (!group->sgc->capacity_orig) {
  4649. printk(KERN_CONT "\n");
  4650. printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
  4651. break;
  4652. }
  4653. if (!cpumask_weight(sched_group_cpus(group))) {
  4654. printk(KERN_CONT "\n");
  4655. printk(KERN_ERR "ERROR: empty group\n");
  4656. break;
  4657. }
  4658. if (!(sd->flags & SD_OVERLAP) &&
  4659. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4660. printk(KERN_CONT "\n");
  4661. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4662. break;
  4663. }
  4664. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4665. printk(KERN_CONT " %*pbl",
  4666. cpumask_pr_args(sched_group_cpus(group)));
  4667. if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
  4668. printk(KERN_CONT " (cpu_capacity = %d)",
  4669. group->sgc->capacity);
  4670. }
  4671. group = group->next;
  4672. } while (group != sd->groups);
  4673. printk(KERN_CONT "\n");
  4674. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4675. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4676. if (sd->parent &&
  4677. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4678. printk(KERN_ERR "ERROR: parent span is not a superset "
  4679. "of domain->span\n");
  4680. return 0;
  4681. }
  4682. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4683. {
  4684. int level = 0;
  4685. if (!sched_debug_enabled)
  4686. return;
  4687. if (!sd) {
  4688. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4689. return;
  4690. }
  4691. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4692. for (;;) {
  4693. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4694. break;
  4695. level++;
  4696. sd = sd->parent;
  4697. if (!sd)
  4698. break;
  4699. }
  4700. }
  4701. #else /* !CONFIG_SCHED_DEBUG */
  4702. # define sched_domain_debug(sd, cpu) do { } while (0)
  4703. static inline bool sched_debug(void)
  4704. {
  4705. return false;
  4706. }
  4707. #endif /* CONFIG_SCHED_DEBUG */
  4708. static int sd_degenerate(struct sched_domain *sd)
  4709. {
  4710. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4711. return 1;
  4712. /* Following flags need at least 2 groups */
  4713. if (sd->flags & (SD_LOAD_BALANCE |
  4714. SD_BALANCE_NEWIDLE |
  4715. SD_BALANCE_FORK |
  4716. SD_BALANCE_EXEC |
  4717. SD_SHARE_CPUCAPACITY |
  4718. SD_SHARE_PKG_RESOURCES |
  4719. SD_SHARE_POWERDOMAIN)) {
  4720. if (sd->groups != sd->groups->next)
  4721. return 0;
  4722. }
  4723. /* Following flags don't use groups */
  4724. if (sd->flags & (SD_WAKE_AFFINE))
  4725. return 0;
  4726. return 1;
  4727. }
  4728. static int
  4729. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4730. {
  4731. unsigned long cflags = sd->flags, pflags = parent->flags;
  4732. if (sd_degenerate(parent))
  4733. return 1;
  4734. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4735. return 0;
  4736. /* Flags needing groups don't count if only 1 group in parent */
  4737. if (parent->groups == parent->groups->next) {
  4738. pflags &= ~(SD_LOAD_BALANCE |
  4739. SD_BALANCE_NEWIDLE |
  4740. SD_BALANCE_FORK |
  4741. SD_BALANCE_EXEC |
  4742. SD_SHARE_CPUCAPACITY |
  4743. SD_SHARE_PKG_RESOURCES |
  4744. SD_PREFER_SIBLING |
  4745. SD_SHARE_POWERDOMAIN);
  4746. if (nr_node_ids == 1)
  4747. pflags &= ~SD_SERIALIZE;
  4748. }
  4749. if (~cflags & pflags)
  4750. return 0;
  4751. return 1;
  4752. }
  4753. static void free_rootdomain(struct rcu_head *rcu)
  4754. {
  4755. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4756. cpupri_cleanup(&rd->cpupri);
  4757. cpudl_cleanup(&rd->cpudl);
  4758. free_cpumask_var(rd->dlo_mask);
  4759. free_cpumask_var(rd->rto_mask);
  4760. free_cpumask_var(rd->online);
  4761. free_cpumask_var(rd->span);
  4762. kfree(rd);
  4763. }
  4764. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4765. {
  4766. struct root_domain *old_rd = NULL;
  4767. unsigned long flags;
  4768. raw_spin_lock_irqsave(&rq->lock, flags);
  4769. if (rq->rd) {
  4770. old_rd = rq->rd;
  4771. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4772. set_rq_offline(rq);
  4773. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4774. /*
  4775. * If we dont want to free the old_rd yet then
  4776. * set old_rd to NULL to skip the freeing later
  4777. * in this function:
  4778. */
  4779. if (!atomic_dec_and_test(&old_rd->refcount))
  4780. old_rd = NULL;
  4781. }
  4782. atomic_inc(&rd->refcount);
  4783. rq->rd = rd;
  4784. cpumask_set_cpu(rq->cpu, rd->span);
  4785. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4786. set_rq_online(rq);
  4787. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4788. if (old_rd)
  4789. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4790. }
  4791. static int init_rootdomain(struct root_domain *rd)
  4792. {
  4793. memset(rd, 0, sizeof(*rd));
  4794. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4795. goto out;
  4796. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4797. goto free_span;
  4798. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4799. goto free_online;
  4800. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4801. goto free_dlo_mask;
  4802. init_dl_bw(&rd->dl_bw);
  4803. if (cpudl_init(&rd->cpudl) != 0)
  4804. goto free_dlo_mask;
  4805. if (cpupri_init(&rd->cpupri) != 0)
  4806. goto free_rto_mask;
  4807. return 0;
  4808. free_rto_mask:
  4809. free_cpumask_var(rd->rto_mask);
  4810. free_dlo_mask:
  4811. free_cpumask_var(rd->dlo_mask);
  4812. free_online:
  4813. free_cpumask_var(rd->online);
  4814. free_span:
  4815. free_cpumask_var(rd->span);
  4816. out:
  4817. return -ENOMEM;
  4818. }
  4819. /*
  4820. * By default the system creates a single root-domain with all cpus as
  4821. * members (mimicking the global state we have today).
  4822. */
  4823. struct root_domain def_root_domain;
  4824. static void init_defrootdomain(void)
  4825. {
  4826. init_rootdomain(&def_root_domain);
  4827. atomic_set(&def_root_domain.refcount, 1);
  4828. }
  4829. static struct root_domain *alloc_rootdomain(void)
  4830. {
  4831. struct root_domain *rd;
  4832. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4833. if (!rd)
  4834. return NULL;
  4835. if (init_rootdomain(rd) != 0) {
  4836. kfree(rd);
  4837. return NULL;
  4838. }
  4839. return rd;
  4840. }
  4841. static void free_sched_groups(struct sched_group *sg, int free_sgc)
  4842. {
  4843. struct sched_group *tmp, *first;
  4844. if (!sg)
  4845. return;
  4846. first = sg;
  4847. do {
  4848. tmp = sg->next;
  4849. if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
  4850. kfree(sg->sgc);
  4851. kfree(sg);
  4852. sg = tmp;
  4853. } while (sg != first);
  4854. }
  4855. static void free_sched_domain(struct rcu_head *rcu)
  4856. {
  4857. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4858. /*
  4859. * If its an overlapping domain it has private groups, iterate and
  4860. * nuke them all.
  4861. */
  4862. if (sd->flags & SD_OVERLAP) {
  4863. free_sched_groups(sd->groups, 1);
  4864. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4865. kfree(sd->groups->sgc);
  4866. kfree(sd->groups);
  4867. }
  4868. kfree(sd);
  4869. }
  4870. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4871. {
  4872. call_rcu(&sd->rcu, free_sched_domain);
  4873. }
  4874. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4875. {
  4876. for (; sd; sd = sd->parent)
  4877. destroy_sched_domain(sd, cpu);
  4878. }
  4879. /*
  4880. * Keep a special pointer to the highest sched_domain that has
  4881. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4882. * allows us to avoid some pointer chasing select_idle_sibling().
  4883. *
  4884. * Also keep a unique ID per domain (we use the first cpu number in
  4885. * the cpumask of the domain), this allows us to quickly tell if
  4886. * two cpus are in the same cache domain, see cpus_share_cache().
  4887. */
  4888. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4889. DEFINE_PER_CPU(int, sd_llc_size);
  4890. DEFINE_PER_CPU(int, sd_llc_id);
  4891. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4892. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4893. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4894. static void update_top_cache_domain(int cpu)
  4895. {
  4896. struct sched_domain *sd;
  4897. struct sched_domain *busy_sd = NULL;
  4898. int id = cpu;
  4899. int size = 1;
  4900. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4901. if (sd) {
  4902. id = cpumask_first(sched_domain_span(sd));
  4903. size = cpumask_weight(sched_domain_span(sd));
  4904. busy_sd = sd->parent; /* sd_busy */
  4905. }
  4906. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  4907. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4908. per_cpu(sd_llc_size, cpu) = size;
  4909. per_cpu(sd_llc_id, cpu) = id;
  4910. sd = lowest_flag_domain(cpu, SD_NUMA);
  4911. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4912. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4913. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4914. }
  4915. /*
  4916. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4917. * hold the hotplug lock.
  4918. */
  4919. static void
  4920. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4921. {
  4922. struct rq *rq = cpu_rq(cpu);
  4923. struct sched_domain *tmp;
  4924. /* Remove the sched domains which do not contribute to scheduling. */
  4925. for (tmp = sd; tmp; ) {
  4926. struct sched_domain *parent = tmp->parent;
  4927. if (!parent)
  4928. break;
  4929. if (sd_parent_degenerate(tmp, parent)) {
  4930. tmp->parent = parent->parent;
  4931. if (parent->parent)
  4932. parent->parent->child = tmp;
  4933. /*
  4934. * Transfer SD_PREFER_SIBLING down in case of a
  4935. * degenerate parent; the spans match for this
  4936. * so the property transfers.
  4937. */
  4938. if (parent->flags & SD_PREFER_SIBLING)
  4939. tmp->flags |= SD_PREFER_SIBLING;
  4940. destroy_sched_domain(parent, cpu);
  4941. } else
  4942. tmp = tmp->parent;
  4943. }
  4944. if (sd && sd_degenerate(sd)) {
  4945. tmp = sd;
  4946. sd = sd->parent;
  4947. destroy_sched_domain(tmp, cpu);
  4948. if (sd)
  4949. sd->child = NULL;
  4950. }
  4951. sched_domain_debug(sd, cpu);
  4952. rq_attach_root(rq, rd);
  4953. tmp = rq->sd;
  4954. rcu_assign_pointer(rq->sd, sd);
  4955. destroy_sched_domains(tmp, cpu);
  4956. update_top_cache_domain(cpu);
  4957. }
  4958. /* cpus with isolated domains */
  4959. static cpumask_var_t cpu_isolated_map;
  4960. /* Setup the mask of cpus configured for isolated domains */
  4961. static int __init isolated_cpu_setup(char *str)
  4962. {
  4963. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4964. cpulist_parse(str, cpu_isolated_map);
  4965. return 1;
  4966. }
  4967. __setup("isolcpus=", isolated_cpu_setup);
  4968. struct s_data {
  4969. struct sched_domain ** __percpu sd;
  4970. struct root_domain *rd;
  4971. };
  4972. enum s_alloc {
  4973. sa_rootdomain,
  4974. sa_sd,
  4975. sa_sd_storage,
  4976. sa_none,
  4977. };
  4978. /*
  4979. * Build an iteration mask that can exclude certain CPUs from the upwards
  4980. * domain traversal.
  4981. *
  4982. * Asymmetric node setups can result in situations where the domain tree is of
  4983. * unequal depth, make sure to skip domains that already cover the entire
  4984. * range.
  4985. *
  4986. * In that case build_sched_domains() will have terminated the iteration early
  4987. * and our sibling sd spans will be empty. Domains should always include the
  4988. * cpu they're built on, so check that.
  4989. *
  4990. */
  4991. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4992. {
  4993. const struct cpumask *span = sched_domain_span(sd);
  4994. struct sd_data *sdd = sd->private;
  4995. struct sched_domain *sibling;
  4996. int i;
  4997. for_each_cpu(i, span) {
  4998. sibling = *per_cpu_ptr(sdd->sd, i);
  4999. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5000. continue;
  5001. cpumask_set_cpu(i, sched_group_mask(sg));
  5002. }
  5003. }
  5004. /*
  5005. * Return the canonical balance cpu for this group, this is the first cpu
  5006. * of this group that's also in the iteration mask.
  5007. */
  5008. int group_balance_cpu(struct sched_group *sg)
  5009. {
  5010. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  5011. }
  5012. static int
  5013. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5014. {
  5015. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5016. const struct cpumask *span = sched_domain_span(sd);
  5017. struct cpumask *covered = sched_domains_tmpmask;
  5018. struct sd_data *sdd = sd->private;
  5019. struct sched_domain *sibling;
  5020. int i;
  5021. cpumask_clear(covered);
  5022. for_each_cpu(i, span) {
  5023. struct cpumask *sg_span;
  5024. if (cpumask_test_cpu(i, covered))
  5025. continue;
  5026. sibling = *per_cpu_ptr(sdd->sd, i);
  5027. /* See the comment near build_group_mask(). */
  5028. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5029. continue;
  5030. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5031. GFP_KERNEL, cpu_to_node(cpu));
  5032. if (!sg)
  5033. goto fail;
  5034. sg_span = sched_group_cpus(sg);
  5035. if (sibling->child)
  5036. cpumask_copy(sg_span, sched_domain_span(sibling->child));
  5037. else
  5038. cpumask_set_cpu(i, sg_span);
  5039. cpumask_or(covered, covered, sg_span);
  5040. sg->sgc = *per_cpu_ptr(sdd->sgc, i);
  5041. if (atomic_inc_return(&sg->sgc->ref) == 1)
  5042. build_group_mask(sd, sg);
  5043. /*
  5044. * Initialize sgc->capacity such that even if we mess up the
  5045. * domains and no possible iteration will get us here, we won't
  5046. * die on a /0 trap.
  5047. */
  5048. sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
  5049. sg->sgc->capacity_orig = sg->sgc->capacity;
  5050. /*
  5051. * Make sure the first group of this domain contains the
  5052. * canonical balance cpu. Otherwise the sched_domain iteration
  5053. * breaks. See update_sg_lb_stats().
  5054. */
  5055. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  5056. group_balance_cpu(sg) == cpu)
  5057. groups = sg;
  5058. if (!first)
  5059. first = sg;
  5060. if (last)
  5061. last->next = sg;
  5062. last = sg;
  5063. last->next = first;
  5064. }
  5065. sd->groups = groups;
  5066. return 0;
  5067. fail:
  5068. free_sched_groups(first, 0);
  5069. return -ENOMEM;
  5070. }
  5071. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5072. {
  5073. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5074. struct sched_domain *child = sd->child;
  5075. if (child)
  5076. cpu = cpumask_first(sched_domain_span(child));
  5077. if (sg) {
  5078. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5079. (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
  5080. atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
  5081. }
  5082. return cpu;
  5083. }
  5084. /*
  5085. * build_sched_groups will build a circular linked list of the groups
  5086. * covered by the given span, and will set each group's ->cpumask correctly,
  5087. * and ->cpu_capacity to 0.
  5088. *
  5089. * Assumes the sched_domain tree is fully constructed
  5090. */
  5091. static int
  5092. build_sched_groups(struct sched_domain *sd, int cpu)
  5093. {
  5094. struct sched_group *first = NULL, *last = NULL;
  5095. struct sd_data *sdd = sd->private;
  5096. const struct cpumask *span = sched_domain_span(sd);
  5097. struct cpumask *covered;
  5098. int i;
  5099. get_group(cpu, sdd, &sd->groups);
  5100. atomic_inc(&sd->groups->ref);
  5101. if (cpu != cpumask_first(span))
  5102. return 0;
  5103. lockdep_assert_held(&sched_domains_mutex);
  5104. covered = sched_domains_tmpmask;
  5105. cpumask_clear(covered);
  5106. for_each_cpu(i, span) {
  5107. struct sched_group *sg;
  5108. int group, j;
  5109. if (cpumask_test_cpu(i, covered))
  5110. continue;
  5111. group = get_group(i, sdd, &sg);
  5112. cpumask_setall(sched_group_mask(sg));
  5113. for_each_cpu(j, span) {
  5114. if (get_group(j, sdd, NULL) != group)
  5115. continue;
  5116. cpumask_set_cpu(j, covered);
  5117. cpumask_set_cpu(j, sched_group_cpus(sg));
  5118. }
  5119. if (!first)
  5120. first = sg;
  5121. if (last)
  5122. last->next = sg;
  5123. last = sg;
  5124. }
  5125. last->next = first;
  5126. return 0;
  5127. }
  5128. /*
  5129. * Initialize sched groups cpu_capacity.
  5130. *
  5131. * cpu_capacity indicates the capacity of sched group, which is used while
  5132. * distributing the load between different sched groups in a sched domain.
  5133. * Typically cpu_capacity for all the groups in a sched domain will be same
  5134. * unless there are asymmetries in the topology. If there are asymmetries,
  5135. * group having more cpu_capacity will pickup more load compared to the
  5136. * group having less cpu_capacity.
  5137. */
  5138. static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
  5139. {
  5140. struct sched_group *sg = sd->groups;
  5141. WARN_ON(!sg);
  5142. do {
  5143. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5144. sg = sg->next;
  5145. } while (sg != sd->groups);
  5146. if (cpu != group_balance_cpu(sg))
  5147. return;
  5148. update_group_capacity(sd, cpu);
  5149. atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
  5150. }
  5151. /*
  5152. * Initializers for schedule domains
  5153. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5154. */
  5155. static int default_relax_domain_level = -1;
  5156. int sched_domain_level_max;
  5157. static int __init setup_relax_domain_level(char *str)
  5158. {
  5159. if (kstrtoint(str, 0, &default_relax_domain_level))
  5160. pr_warn("Unable to set relax_domain_level\n");
  5161. return 1;
  5162. }
  5163. __setup("relax_domain_level=", setup_relax_domain_level);
  5164. static void set_domain_attribute(struct sched_domain *sd,
  5165. struct sched_domain_attr *attr)
  5166. {
  5167. int request;
  5168. if (!attr || attr->relax_domain_level < 0) {
  5169. if (default_relax_domain_level < 0)
  5170. return;
  5171. else
  5172. request = default_relax_domain_level;
  5173. } else
  5174. request = attr->relax_domain_level;
  5175. if (request < sd->level) {
  5176. /* turn off idle balance on this domain */
  5177. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5178. } else {
  5179. /* turn on idle balance on this domain */
  5180. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5181. }
  5182. }
  5183. static void __sdt_free(const struct cpumask *cpu_map);
  5184. static int __sdt_alloc(const struct cpumask *cpu_map);
  5185. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5186. const struct cpumask *cpu_map)
  5187. {
  5188. switch (what) {
  5189. case sa_rootdomain:
  5190. if (!atomic_read(&d->rd->refcount))
  5191. free_rootdomain(&d->rd->rcu); /* fall through */
  5192. case sa_sd:
  5193. free_percpu(d->sd); /* fall through */
  5194. case sa_sd_storage:
  5195. __sdt_free(cpu_map); /* fall through */
  5196. case sa_none:
  5197. break;
  5198. }
  5199. }
  5200. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5201. const struct cpumask *cpu_map)
  5202. {
  5203. memset(d, 0, sizeof(*d));
  5204. if (__sdt_alloc(cpu_map))
  5205. return sa_sd_storage;
  5206. d->sd = alloc_percpu(struct sched_domain *);
  5207. if (!d->sd)
  5208. return sa_sd_storage;
  5209. d->rd = alloc_rootdomain();
  5210. if (!d->rd)
  5211. return sa_sd;
  5212. return sa_rootdomain;
  5213. }
  5214. /*
  5215. * NULL the sd_data elements we've used to build the sched_domain and
  5216. * sched_group structure so that the subsequent __free_domain_allocs()
  5217. * will not free the data we're using.
  5218. */
  5219. static void claim_allocations(int cpu, struct sched_domain *sd)
  5220. {
  5221. struct sd_data *sdd = sd->private;
  5222. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5223. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5224. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5225. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5226. if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
  5227. *per_cpu_ptr(sdd->sgc, cpu) = NULL;
  5228. }
  5229. #ifdef CONFIG_NUMA
  5230. static int sched_domains_numa_levels;
  5231. enum numa_topology_type sched_numa_topology_type;
  5232. static int *sched_domains_numa_distance;
  5233. int sched_max_numa_distance;
  5234. static struct cpumask ***sched_domains_numa_masks;
  5235. static int sched_domains_curr_level;
  5236. #endif
  5237. /*
  5238. * SD_flags allowed in topology descriptions.
  5239. *
  5240. * SD_SHARE_CPUCAPACITY - describes SMT topologies
  5241. * SD_SHARE_PKG_RESOURCES - describes shared caches
  5242. * SD_NUMA - describes NUMA topologies
  5243. * SD_SHARE_POWERDOMAIN - describes shared power domain
  5244. *
  5245. * Odd one out:
  5246. * SD_ASYM_PACKING - describes SMT quirks
  5247. */
  5248. #define TOPOLOGY_SD_FLAGS \
  5249. (SD_SHARE_CPUCAPACITY | \
  5250. SD_SHARE_PKG_RESOURCES | \
  5251. SD_NUMA | \
  5252. SD_ASYM_PACKING | \
  5253. SD_SHARE_POWERDOMAIN)
  5254. static struct sched_domain *
  5255. sd_init(struct sched_domain_topology_level *tl, int cpu)
  5256. {
  5257. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5258. int sd_weight, sd_flags = 0;
  5259. #ifdef CONFIG_NUMA
  5260. /*
  5261. * Ugly hack to pass state to sd_numa_mask()...
  5262. */
  5263. sched_domains_curr_level = tl->numa_level;
  5264. #endif
  5265. sd_weight = cpumask_weight(tl->mask(cpu));
  5266. if (tl->sd_flags)
  5267. sd_flags = (*tl->sd_flags)();
  5268. if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
  5269. "wrong sd_flags in topology description\n"))
  5270. sd_flags &= ~TOPOLOGY_SD_FLAGS;
  5271. *sd = (struct sched_domain){
  5272. .min_interval = sd_weight,
  5273. .max_interval = 2*sd_weight,
  5274. .busy_factor = 32,
  5275. .imbalance_pct = 125,
  5276. .cache_nice_tries = 0,
  5277. .busy_idx = 0,
  5278. .idle_idx = 0,
  5279. .newidle_idx = 0,
  5280. .wake_idx = 0,
  5281. .forkexec_idx = 0,
  5282. .flags = 1*SD_LOAD_BALANCE
  5283. | 1*SD_BALANCE_NEWIDLE
  5284. | 1*SD_BALANCE_EXEC
  5285. | 1*SD_BALANCE_FORK
  5286. | 0*SD_BALANCE_WAKE
  5287. | 1*SD_WAKE_AFFINE
  5288. | 0*SD_SHARE_CPUCAPACITY
  5289. | 0*SD_SHARE_PKG_RESOURCES
  5290. | 0*SD_SERIALIZE
  5291. | 0*SD_PREFER_SIBLING
  5292. | 0*SD_NUMA
  5293. | sd_flags
  5294. ,
  5295. .last_balance = jiffies,
  5296. .balance_interval = sd_weight,
  5297. .smt_gain = 0,
  5298. .max_newidle_lb_cost = 0,
  5299. .next_decay_max_lb_cost = jiffies,
  5300. #ifdef CONFIG_SCHED_DEBUG
  5301. .name = tl->name,
  5302. #endif
  5303. };
  5304. /*
  5305. * Convert topological properties into behaviour.
  5306. */
  5307. if (sd->flags & SD_SHARE_CPUCAPACITY) {
  5308. sd->imbalance_pct = 110;
  5309. sd->smt_gain = 1178; /* ~15% */
  5310. } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
  5311. sd->imbalance_pct = 117;
  5312. sd->cache_nice_tries = 1;
  5313. sd->busy_idx = 2;
  5314. #ifdef CONFIG_NUMA
  5315. } else if (sd->flags & SD_NUMA) {
  5316. sd->cache_nice_tries = 2;
  5317. sd->busy_idx = 3;
  5318. sd->idle_idx = 2;
  5319. sd->flags |= SD_SERIALIZE;
  5320. if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
  5321. sd->flags &= ~(SD_BALANCE_EXEC |
  5322. SD_BALANCE_FORK |
  5323. SD_WAKE_AFFINE);
  5324. }
  5325. #endif
  5326. } else {
  5327. sd->flags |= SD_PREFER_SIBLING;
  5328. sd->cache_nice_tries = 1;
  5329. sd->busy_idx = 2;
  5330. sd->idle_idx = 1;
  5331. }
  5332. sd->private = &tl->data;
  5333. return sd;
  5334. }
  5335. /*
  5336. * Topology list, bottom-up.
  5337. */
  5338. static struct sched_domain_topology_level default_topology[] = {
  5339. #ifdef CONFIG_SCHED_SMT
  5340. { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
  5341. #endif
  5342. #ifdef CONFIG_SCHED_MC
  5343. { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
  5344. #endif
  5345. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  5346. { NULL, },
  5347. };
  5348. struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5349. #define for_each_sd_topology(tl) \
  5350. for (tl = sched_domain_topology; tl->mask; tl++)
  5351. void set_sched_topology(struct sched_domain_topology_level *tl)
  5352. {
  5353. sched_domain_topology = tl;
  5354. }
  5355. #ifdef CONFIG_NUMA
  5356. static const struct cpumask *sd_numa_mask(int cpu)
  5357. {
  5358. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5359. }
  5360. static void sched_numa_warn(const char *str)
  5361. {
  5362. static int done = false;
  5363. int i,j;
  5364. if (done)
  5365. return;
  5366. done = true;
  5367. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5368. for (i = 0; i < nr_node_ids; i++) {
  5369. printk(KERN_WARNING " ");
  5370. for (j = 0; j < nr_node_ids; j++)
  5371. printk(KERN_CONT "%02d ", node_distance(i,j));
  5372. printk(KERN_CONT "\n");
  5373. }
  5374. printk(KERN_WARNING "\n");
  5375. }
  5376. bool find_numa_distance(int distance)
  5377. {
  5378. int i;
  5379. if (distance == node_distance(0, 0))
  5380. return true;
  5381. for (i = 0; i < sched_domains_numa_levels; i++) {
  5382. if (sched_domains_numa_distance[i] == distance)
  5383. return true;
  5384. }
  5385. return false;
  5386. }
  5387. /*
  5388. * A system can have three types of NUMA topology:
  5389. * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
  5390. * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
  5391. * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
  5392. *
  5393. * The difference between a glueless mesh topology and a backplane
  5394. * topology lies in whether communication between not directly
  5395. * connected nodes goes through intermediary nodes (where programs
  5396. * could run), or through backplane controllers. This affects
  5397. * placement of programs.
  5398. *
  5399. * The type of topology can be discerned with the following tests:
  5400. * - If the maximum distance between any nodes is 1 hop, the system
  5401. * is directly connected.
  5402. * - If for two nodes A and B, located N > 1 hops away from each other,
  5403. * there is an intermediary node C, which is < N hops away from both
  5404. * nodes A and B, the system is a glueless mesh.
  5405. */
  5406. static void init_numa_topology_type(void)
  5407. {
  5408. int a, b, c, n;
  5409. n = sched_max_numa_distance;
  5410. if (n <= 1)
  5411. sched_numa_topology_type = NUMA_DIRECT;
  5412. for_each_online_node(a) {
  5413. for_each_online_node(b) {
  5414. /* Find two nodes furthest removed from each other. */
  5415. if (node_distance(a, b) < n)
  5416. continue;
  5417. /* Is there an intermediary node between a and b? */
  5418. for_each_online_node(c) {
  5419. if (node_distance(a, c) < n &&
  5420. node_distance(b, c) < n) {
  5421. sched_numa_topology_type =
  5422. NUMA_GLUELESS_MESH;
  5423. return;
  5424. }
  5425. }
  5426. sched_numa_topology_type = NUMA_BACKPLANE;
  5427. return;
  5428. }
  5429. }
  5430. }
  5431. static void sched_init_numa(void)
  5432. {
  5433. int next_distance, curr_distance = node_distance(0, 0);
  5434. struct sched_domain_topology_level *tl;
  5435. int level = 0;
  5436. int i, j, k;
  5437. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5438. if (!sched_domains_numa_distance)
  5439. return;
  5440. /*
  5441. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5442. * unique distances in the node_distance() table.
  5443. *
  5444. * Assumes node_distance(0,j) includes all distances in
  5445. * node_distance(i,j) in order to avoid cubic time.
  5446. */
  5447. next_distance = curr_distance;
  5448. for (i = 0; i < nr_node_ids; i++) {
  5449. for (j = 0; j < nr_node_ids; j++) {
  5450. for (k = 0; k < nr_node_ids; k++) {
  5451. int distance = node_distance(i, k);
  5452. if (distance > curr_distance &&
  5453. (distance < next_distance ||
  5454. next_distance == curr_distance))
  5455. next_distance = distance;
  5456. /*
  5457. * While not a strong assumption it would be nice to know
  5458. * about cases where if node A is connected to B, B is not
  5459. * equally connected to A.
  5460. */
  5461. if (sched_debug() && node_distance(k, i) != distance)
  5462. sched_numa_warn("Node-distance not symmetric");
  5463. if (sched_debug() && i && !find_numa_distance(distance))
  5464. sched_numa_warn("Node-0 not representative");
  5465. }
  5466. if (next_distance != curr_distance) {
  5467. sched_domains_numa_distance[level++] = next_distance;
  5468. sched_domains_numa_levels = level;
  5469. curr_distance = next_distance;
  5470. } else break;
  5471. }
  5472. /*
  5473. * In case of sched_debug() we verify the above assumption.
  5474. */
  5475. if (!sched_debug())
  5476. break;
  5477. }
  5478. if (!level)
  5479. return;
  5480. /*
  5481. * 'level' contains the number of unique distances, excluding the
  5482. * identity distance node_distance(i,i).
  5483. *
  5484. * The sched_domains_numa_distance[] array includes the actual distance
  5485. * numbers.
  5486. */
  5487. /*
  5488. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5489. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5490. * the array will contain less then 'level' members. This could be
  5491. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5492. * in other functions.
  5493. *
  5494. * We reset it to 'level' at the end of this function.
  5495. */
  5496. sched_domains_numa_levels = 0;
  5497. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5498. if (!sched_domains_numa_masks)
  5499. return;
  5500. /*
  5501. * Now for each level, construct a mask per node which contains all
  5502. * cpus of nodes that are that many hops away from us.
  5503. */
  5504. for (i = 0; i < level; i++) {
  5505. sched_domains_numa_masks[i] =
  5506. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5507. if (!sched_domains_numa_masks[i])
  5508. return;
  5509. for (j = 0; j < nr_node_ids; j++) {
  5510. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5511. if (!mask)
  5512. return;
  5513. sched_domains_numa_masks[i][j] = mask;
  5514. for (k = 0; k < nr_node_ids; k++) {
  5515. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5516. continue;
  5517. cpumask_or(mask, mask, cpumask_of_node(k));
  5518. }
  5519. }
  5520. }
  5521. /* Compute default topology size */
  5522. for (i = 0; sched_domain_topology[i].mask; i++);
  5523. tl = kzalloc((i + level + 1) *
  5524. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5525. if (!tl)
  5526. return;
  5527. /*
  5528. * Copy the default topology bits..
  5529. */
  5530. for (i = 0; sched_domain_topology[i].mask; i++)
  5531. tl[i] = sched_domain_topology[i];
  5532. /*
  5533. * .. and append 'j' levels of NUMA goodness.
  5534. */
  5535. for (j = 0; j < level; i++, j++) {
  5536. tl[i] = (struct sched_domain_topology_level){
  5537. .mask = sd_numa_mask,
  5538. .sd_flags = cpu_numa_flags,
  5539. .flags = SDTL_OVERLAP,
  5540. .numa_level = j,
  5541. SD_INIT_NAME(NUMA)
  5542. };
  5543. }
  5544. sched_domain_topology = tl;
  5545. sched_domains_numa_levels = level;
  5546. sched_max_numa_distance = sched_domains_numa_distance[level - 1];
  5547. init_numa_topology_type();
  5548. }
  5549. static void sched_domains_numa_masks_set(int cpu)
  5550. {
  5551. int i, j;
  5552. int node = cpu_to_node(cpu);
  5553. for (i = 0; i < sched_domains_numa_levels; i++) {
  5554. for (j = 0; j < nr_node_ids; j++) {
  5555. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5556. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5557. }
  5558. }
  5559. }
  5560. static void sched_domains_numa_masks_clear(int cpu)
  5561. {
  5562. int i, j;
  5563. for (i = 0; i < sched_domains_numa_levels; i++) {
  5564. for (j = 0; j < nr_node_ids; j++)
  5565. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5566. }
  5567. }
  5568. /*
  5569. * Update sched_domains_numa_masks[level][node] array when new cpus
  5570. * are onlined.
  5571. */
  5572. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5573. unsigned long action,
  5574. void *hcpu)
  5575. {
  5576. int cpu = (long)hcpu;
  5577. switch (action & ~CPU_TASKS_FROZEN) {
  5578. case CPU_ONLINE:
  5579. sched_domains_numa_masks_set(cpu);
  5580. break;
  5581. case CPU_DEAD:
  5582. sched_domains_numa_masks_clear(cpu);
  5583. break;
  5584. default:
  5585. return NOTIFY_DONE;
  5586. }
  5587. return NOTIFY_OK;
  5588. }
  5589. #else
  5590. static inline void sched_init_numa(void)
  5591. {
  5592. }
  5593. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5594. unsigned long action,
  5595. void *hcpu)
  5596. {
  5597. return 0;
  5598. }
  5599. #endif /* CONFIG_NUMA */
  5600. static int __sdt_alloc(const struct cpumask *cpu_map)
  5601. {
  5602. struct sched_domain_topology_level *tl;
  5603. int j;
  5604. for_each_sd_topology(tl) {
  5605. struct sd_data *sdd = &tl->data;
  5606. sdd->sd = alloc_percpu(struct sched_domain *);
  5607. if (!sdd->sd)
  5608. return -ENOMEM;
  5609. sdd->sg = alloc_percpu(struct sched_group *);
  5610. if (!sdd->sg)
  5611. return -ENOMEM;
  5612. sdd->sgc = alloc_percpu(struct sched_group_capacity *);
  5613. if (!sdd->sgc)
  5614. return -ENOMEM;
  5615. for_each_cpu(j, cpu_map) {
  5616. struct sched_domain *sd;
  5617. struct sched_group *sg;
  5618. struct sched_group_capacity *sgc;
  5619. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5620. GFP_KERNEL, cpu_to_node(j));
  5621. if (!sd)
  5622. return -ENOMEM;
  5623. *per_cpu_ptr(sdd->sd, j) = sd;
  5624. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5625. GFP_KERNEL, cpu_to_node(j));
  5626. if (!sg)
  5627. return -ENOMEM;
  5628. sg->next = sg;
  5629. *per_cpu_ptr(sdd->sg, j) = sg;
  5630. sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
  5631. GFP_KERNEL, cpu_to_node(j));
  5632. if (!sgc)
  5633. return -ENOMEM;
  5634. *per_cpu_ptr(sdd->sgc, j) = sgc;
  5635. }
  5636. }
  5637. return 0;
  5638. }
  5639. static void __sdt_free(const struct cpumask *cpu_map)
  5640. {
  5641. struct sched_domain_topology_level *tl;
  5642. int j;
  5643. for_each_sd_topology(tl) {
  5644. struct sd_data *sdd = &tl->data;
  5645. for_each_cpu(j, cpu_map) {
  5646. struct sched_domain *sd;
  5647. if (sdd->sd) {
  5648. sd = *per_cpu_ptr(sdd->sd, j);
  5649. if (sd && (sd->flags & SD_OVERLAP))
  5650. free_sched_groups(sd->groups, 0);
  5651. kfree(*per_cpu_ptr(sdd->sd, j));
  5652. }
  5653. if (sdd->sg)
  5654. kfree(*per_cpu_ptr(sdd->sg, j));
  5655. if (sdd->sgc)
  5656. kfree(*per_cpu_ptr(sdd->sgc, j));
  5657. }
  5658. free_percpu(sdd->sd);
  5659. sdd->sd = NULL;
  5660. free_percpu(sdd->sg);
  5661. sdd->sg = NULL;
  5662. free_percpu(sdd->sgc);
  5663. sdd->sgc = NULL;
  5664. }
  5665. }
  5666. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5667. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5668. struct sched_domain *child, int cpu)
  5669. {
  5670. struct sched_domain *sd = sd_init(tl, cpu);
  5671. if (!sd)
  5672. return child;
  5673. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5674. if (child) {
  5675. sd->level = child->level + 1;
  5676. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5677. child->parent = sd;
  5678. sd->child = child;
  5679. if (!cpumask_subset(sched_domain_span(child),
  5680. sched_domain_span(sd))) {
  5681. pr_err("BUG: arch topology borken\n");
  5682. #ifdef CONFIG_SCHED_DEBUG
  5683. pr_err(" the %s domain not a subset of the %s domain\n",
  5684. child->name, sd->name);
  5685. #endif
  5686. /* Fixup, ensure @sd has at least @child cpus. */
  5687. cpumask_or(sched_domain_span(sd),
  5688. sched_domain_span(sd),
  5689. sched_domain_span(child));
  5690. }
  5691. }
  5692. set_domain_attribute(sd, attr);
  5693. return sd;
  5694. }
  5695. /*
  5696. * Build sched domains for a given set of cpus and attach the sched domains
  5697. * to the individual cpus
  5698. */
  5699. static int build_sched_domains(const struct cpumask *cpu_map,
  5700. struct sched_domain_attr *attr)
  5701. {
  5702. enum s_alloc alloc_state;
  5703. struct sched_domain *sd;
  5704. struct s_data d;
  5705. int i, ret = -ENOMEM;
  5706. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5707. if (alloc_state != sa_rootdomain)
  5708. goto error;
  5709. /* Set up domains for cpus specified by the cpu_map. */
  5710. for_each_cpu(i, cpu_map) {
  5711. struct sched_domain_topology_level *tl;
  5712. sd = NULL;
  5713. for_each_sd_topology(tl) {
  5714. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5715. if (tl == sched_domain_topology)
  5716. *per_cpu_ptr(d.sd, i) = sd;
  5717. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5718. sd->flags |= SD_OVERLAP;
  5719. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5720. break;
  5721. }
  5722. }
  5723. /* Build the groups for the domains */
  5724. for_each_cpu(i, cpu_map) {
  5725. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5726. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5727. if (sd->flags & SD_OVERLAP) {
  5728. if (build_overlap_sched_groups(sd, i))
  5729. goto error;
  5730. } else {
  5731. if (build_sched_groups(sd, i))
  5732. goto error;
  5733. }
  5734. }
  5735. }
  5736. /* Calculate CPU capacity for physical packages and nodes */
  5737. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5738. if (!cpumask_test_cpu(i, cpu_map))
  5739. continue;
  5740. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5741. claim_allocations(i, sd);
  5742. init_sched_groups_capacity(i, sd);
  5743. }
  5744. }
  5745. /* Attach the domains */
  5746. rcu_read_lock();
  5747. for_each_cpu(i, cpu_map) {
  5748. sd = *per_cpu_ptr(d.sd, i);
  5749. cpu_attach_domain(sd, d.rd, i);
  5750. }
  5751. rcu_read_unlock();
  5752. ret = 0;
  5753. error:
  5754. __free_domain_allocs(&d, alloc_state, cpu_map);
  5755. return ret;
  5756. }
  5757. static cpumask_var_t *doms_cur; /* current sched domains */
  5758. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5759. static struct sched_domain_attr *dattr_cur;
  5760. /* attribues of custom domains in 'doms_cur' */
  5761. /*
  5762. * Special case: If a kmalloc of a doms_cur partition (array of
  5763. * cpumask) fails, then fallback to a single sched domain,
  5764. * as determined by the single cpumask fallback_doms.
  5765. */
  5766. static cpumask_var_t fallback_doms;
  5767. /*
  5768. * arch_update_cpu_topology lets virtualized architectures update the
  5769. * cpu core maps. It is supposed to return 1 if the topology changed
  5770. * or 0 if it stayed the same.
  5771. */
  5772. int __weak arch_update_cpu_topology(void)
  5773. {
  5774. return 0;
  5775. }
  5776. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5777. {
  5778. int i;
  5779. cpumask_var_t *doms;
  5780. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5781. if (!doms)
  5782. return NULL;
  5783. for (i = 0; i < ndoms; i++) {
  5784. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5785. free_sched_domains(doms, i);
  5786. return NULL;
  5787. }
  5788. }
  5789. return doms;
  5790. }
  5791. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5792. {
  5793. unsigned int i;
  5794. for (i = 0; i < ndoms; i++)
  5795. free_cpumask_var(doms[i]);
  5796. kfree(doms);
  5797. }
  5798. /*
  5799. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5800. * For now this just excludes isolated cpus, but could be used to
  5801. * exclude other special cases in the future.
  5802. */
  5803. static int init_sched_domains(const struct cpumask *cpu_map)
  5804. {
  5805. int err;
  5806. arch_update_cpu_topology();
  5807. ndoms_cur = 1;
  5808. doms_cur = alloc_sched_domains(ndoms_cur);
  5809. if (!doms_cur)
  5810. doms_cur = &fallback_doms;
  5811. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5812. err = build_sched_domains(doms_cur[0], NULL);
  5813. register_sched_domain_sysctl();
  5814. return err;
  5815. }
  5816. /*
  5817. * Detach sched domains from a group of cpus specified in cpu_map
  5818. * These cpus will now be attached to the NULL domain
  5819. */
  5820. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5821. {
  5822. int i;
  5823. rcu_read_lock();
  5824. for_each_cpu(i, cpu_map)
  5825. cpu_attach_domain(NULL, &def_root_domain, i);
  5826. rcu_read_unlock();
  5827. }
  5828. /* handle null as "default" */
  5829. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5830. struct sched_domain_attr *new, int idx_new)
  5831. {
  5832. struct sched_domain_attr tmp;
  5833. /* fast path */
  5834. if (!new && !cur)
  5835. return 1;
  5836. tmp = SD_ATTR_INIT;
  5837. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5838. new ? (new + idx_new) : &tmp,
  5839. sizeof(struct sched_domain_attr));
  5840. }
  5841. /*
  5842. * Partition sched domains as specified by the 'ndoms_new'
  5843. * cpumasks in the array doms_new[] of cpumasks. This compares
  5844. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5845. * It destroys each deleted domain and builds each new domain.
  5846. *
  5847. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5848. * The masks don't intersect (don't overlap.) We should setup one
  5849. * sched domain for each mask. CPUs not in any of the cpumasks will
  5850. * not be load balanced. If the same cpumask appears both in the
  5851. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5852. * it as it is.
  5853. *
  5854. * The passed in 'doms_new' should be allocated using
  5855. * alloc_sched_domains. This routine takes ownership of it and will
  5856. * free_sched_domains it when done with it. If the caller failed the
  5857. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5858. * and partition_sched_domains() will fallback to the single partition
  5859. * 'fallback_doms', it also forces the domains to be rebuilt.
  5860. *
  5861. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5862. * ndoms_new == 0 is a special case for destroying existing domains,
  5863. * and it will not create the default domain.
  5864. *
  5865. * Call with hotplug lock held
  5866. */
  5867. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5868. struct sched_domain_attr *dattr_new)
  5869. {
  5870. int i, j, n;
  5871. int new_topology;
  5872. mutex_lock(&sched_domains_mutex);
  5873. /* always unregister in case we don't destroy any domains */
  5874. unregister_sched_domain_sysctl();
  5875. /* Let architecture update cpu core mappings. */
  5876. new_topology = arch_update_cpu_topology();
  5877. n = doms_new ? ndoms_new : 0;
  5878. /* Destroy deleted domains */
  5879. for (i = 0; i < ndoms_cur; i++) {
  5880. for (j = 0; j < n && !new_topology; j++) {
  5881. if (cpumask_equal(doms_cur[i], doms_new[j])
  5882. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5883. goto match1;
  5884. }
  5885. /* no match - a current sched domain not in new doms_new[] */
  5886. detach_destroy_domains(doms_cur[i]);
  5887. match1:
  5888. ;
  5889. }
  5890. n = ndoms_cur;
  5891. if (doms_new == NULL) {
  5892. n = 0;
  5893. doms_new = &fallback_doms;
  5894. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5895. WARN_ON_ONCE(dattr_new);
  5896. }
  5897. /* Build new domains */
  5898. for (i = 0; i < ndoms_new; i++) {
  5899. for (j = 0; j < n && !new_topology; j++) {
  5900. if (cpumask_equal(doms_new[i], doms_cur[j])
  5901. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5902. goto match2;
  5903. }
  5904. /* no match - add a new doms_new */
  5905. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5906. match2:
  5907. ;
  5908. }
  5909. /* Remember the new sched domains */
  5910. if (doms_cur != &fallback_doms)
  5911. free_sched_domains(doms_cur, ndoms_cur);
  5912. kfree(dattr_cur); /* kfree(NULL) is safe */
  5913. doms_cur = doms_new;
  5914. dattr_cur = dattr_new;
  5915. ndoms_cur = ndoms_new;
  5916. register_sched_domain_sysctl();
  5917. mutex_unlock(&sched_domains_mutex);
  5918. }
  5919. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5920. /*
  5921. * Update cpusets according to cpu_active mask. If cpusets are
  5922. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5923. * around partition_sched_domains().
  5924. *
  5925. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5926. * want to restore it back to its original state upon resume anyway.
  5927. */
  5928. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5929. void *hcpu)
  5930. {
  5931. switch (action) {
  5932. case CPU_ONLINE_FROZEN:
  5933. case CPU_DOWN_FAILED_FROZEN:
  5934. /*
  5935. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5936. * resume sequence. As long as this is not the last online
  5937. * operation in the resume sequence, just build a single sched
  5938. * domain, ignoring cpusets.
  5939. */
  5940. num_cpus_frozen--;
  5941. if (likely(num_cpus_frozen)) {
  5942. partition_sched_domains(1, NULL, NULL);
  5943. break;
  5944. }
  5945. /*
  5946. * This is the last CPU online operation. So fall through and
  5947. * restore the original sched domains by considering the
  5948. * cpuset configurations.
  5949. */
  5950. case CPU_ONLINE:
  5951. case CPU_DOWN_FAILED:
  5952. cpuset_update_active_cpus(true);
  5953. break;
  5954. default:
  5955. return NOTIFY_DONE;
  5956. }
  5957. return NOTIFY_OK;
  5958. }
  5959. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5960. void *hcpu)
  5961. {
  5962. switch (action) {
  5963. case CPU_DOWN_PREPARE:
  5964. cpuset_update_active_cpus(false);
  5965. break;
  5966. case CPU_DOWN_PREPARE_FROZEN:
  5967. num_cpus_frozen++;
  5968. partition_sched_domains(1, NULL, NULL);
  5969. break;
  5970. default:
  5971. return NOTIFY_DONE;
  5972. }
  5973. return NOTIFY_OK;
  5974. }
  5975. void __init sched_init_smp(void)
  5976. {
  5977. cpumask_var_t non_isolated_cpus;
  5978. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5979. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5980. sched_init_numa();
  5981. /*
  5982. * There's no userspace yet to cause hotplug operations; hence all the
  5983. * cpu masks are stable and all blatant races in the below code cannot
  5984. * happen.
  5985. */
  5986. mutex_lock(&sched_domains_mutex);
  5987. init_sched_domains(cpu_active_mask);
  5988. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5989. if (cpumask_empty(non_isolated_cpus))
  5990. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5991. mutex_unlock(&sched_domains_mutex);
  5992. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5993. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5994. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5995. init_hrtick();
  5996. /* Move init over to a non-isolated CPU */
  5997. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5998. BUG();
  5999. sched_init_granularity();
  6000. free_cpumask_var(non_isolated_cpus);
  6001. init_sched_rt_class();
  6002. init_sched_dl_class();
  6003. }
  6004. #else
  6005. void __init sched_init_smp(void)
  6006. {
  6007. sched_init_granularity();
  6008. }
  6009. #endif /* CONFIG_SMP */
  6010. const_debug unsigned int sysctl_timer_migration = 1;
  6011. int in_sched_functions(unsigned long addr)
  6012. {
  6013. return in_lock_functions(addr) ||
  6014. (addr >= (unsigned long)__sched_text_start
  6015. && addr < (unsigned long)__sched_text_end);
  6016. }
  6017. #ifdef CONFIG_CGROUP_SCHED
  6018. /*
  6019. * Default task group.
  6020. * Every task in system belongs to this group at bootup.
  6021. */
  6022. struct task_group root_task_group;
  6023. LIST_HEAD(task_groups);
  6024. #endif
  6025. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  6026. void __init sched_init(void)
  6027. {
  6028. int i, j;
  6029. unsigned long alloc_size = 0, ptr;
  6030. #ifdef CONFIG_FAIR_GROUP_SCHED
  6031. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6032. #endif
  6033. #ifdef CONFIG_RT_GROUP_SCHED
  6034. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6035. #endif
  6036. if (alloc_size) {
  6037. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6038. #ifdef CONFIG_FAIR_GROUP_SCHED
  6039. root_task_group.se = (struct sched_entity **)ptr;
  6040. ptr += nr_cpu_ids * sizeof(void **);
  6041. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6042. ptr += nr_cpu_ids * sizeof(void **);
  6043. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6044. #ifdef CONFIG_RT_GROUP_SCHED
  6045. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6046. ptr += nr_cpu_ids * sizeof(void **);
  6047. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6048. ptr += nr_cpu_ids * sizeof(void **);
  6049. #endif /* CONFIG_RT_GROUP_SCHED */
  6050. }
  6051. #ifdef CONFIG_CPUMASK_OFFSTACK
  6052. for_each_possible_cpu(i) {
  6053. per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
  6054. cpumask_size(), GFP_KERNEL, cpu_to_node(i));
  6055. }
  6056. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6057. init_rt_bandwidth(&def_rt_bandwidth,
  6058. global_rt_period(), global_rt_runtime());
  6059. init_dl_bandwidth(&def_dl_bandwidth,
  6060. global_rt_period(), global_rt_runtime());
  6061. #ifdef CONFIG_SMP
  6062. init_defrootdomain();
  6063. #endif
  6064. #ifdef CONFIG_RT_GROUP_SCHED
  6065. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6066. global_rt_period(), global_rt_runtime());
  6067. #endif /* CONFIG_RT_GROUP_SCHED */
  6068. #ifdef CONFIG_CGROUP_SCHED
  6069. list_add(&root_task_group.list, &task_groups);
  6070. INIT_LIST_HEAD(&root_task_group.children);
  6071. INIT_LIST_HEAD(&root_task_group.siblings);
  6072. autogroup_init(&init_task);
  6073. #endif /* CONFIG_CGROUP_SCHED */
  6074. for_each_possible_cpu(i) {
  6075. struct rq *rq;
  6076. rq = cpu_rq(i);
  6077. raw_spin_lock_init(&rq->lock);
  6078. rq->nr_running = 0;
  6079. rq->calc_load_active = 0;
  6080. rq->calc_load_update = jiffies + LOAD_FREQ;
  6081. init_cfs_rq(&rq->cfs);
  6082. init_rt_rq(&rq->rt, rq);
  6083. init_dl_rq(&rq->dl, rq);
  6084. #ifdef CONFIG_FAIR_GROUP_SCHED
  6085. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  6086. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6087. /*
  6088. * How much cpu bandwidth does root_task_group get?
  6089. *
  6090. * In case of task-groups formed thr' the cgroup filesystem, it
  6091. * gets 100% of the cpu resources in the system. This overall
  6092. * system cpu resource is divided among the tasks of
  6093. * root_task_group and its child task-groups in a fair manner,
  6094. * based on each entity's (task or task-group's) weight
  6095. * (se->load.weight).
  6096. *
  6097. * In other words, if root_task_group has 10 tasks of weight
  6098. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6099. * then A0's share of the cpu resource is:
  6100. *
  6101. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6102. *
  6103. * We achieve this by letting root_task_group's tasks sit
  6104. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6105. */
  6106. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6107. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6108. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6109. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6110. #ifdef CONFIG_RT_GROUP_SCHED
  6111. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6112. #endif
  6113. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6114. rq->cpu_load[j] = 0;
  6115. rq->last_load_update_tick = jiffies;
  6116. #ifdef CONFIG_SMP
  6117. rq->sd = NULL;
  6118. rq->rd = NULL;
  6119. rq->cpu_capacity = SCHED_CAPACITY_SCALE;
  6120. rq->post_schedule = 0;
  6121. rq->active_balance = 0;
  6122. rq->next_balance = jiffies;
  6123. rq->push_cpu = 0;
  6124. rq->cpu = i;
  6125. rq->online = 0;
  6126. rq->idle_stamp = 0;
  6127. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6128. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  6129. INIT_LIST_HEAD(&rq->cfs_tasks);
  6130. rq_attach_root(rq, &def_root_domain);
  6131. #ifdef CONFIG_NO_HZ_COMMON
  6132. rq->nohz_flags = 0;
  6133. #endif
  6134. #ifdef CONFIG_NO_HZ_FULL
  6135. rq->last_sched_tick = 0;
  6136. #endif
  6137. #endif
  6138. init_rq_hrtick(rq);
  6139. atomic_set(&rq->nr_iowait, 0);
  6140. }
  6141. set_load_weight(&init_task);
  6142. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6143. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6144. #endif
  6145. /*
  6146. * The boot idle thread does lazy MMU switching as well:
  6147. */
  6148. atomic_inc(&init_mm.mm_count);
  6149. enter_lazy_tlb(&init_mm, current);
  6150. /*
  6151. * During early bootup we pretend to be a normal task:
  6152. */
  6153. current->sched_class = &fair_sched_class;
  6154. /*
  6155. * Make us the idle thread. Technically, schedule() should not be
  6156. * called from this thread, however somewhere below it might be,
  6157. * but because we are the idle thread, we just pick up running again
  6158. * when this runqueue becomes "idle".
  6159. */
  6160. init_idle(current, smp_processor_id());
  6161. calc_load_update = jiffies + LOAD_FREQ;
  6162. #ifdef CONFIG_SMP
  6163. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6164. /* May be allocated at isolcpus cmdline parse time */
  6165. if (cpu_isolated_map == NULL)
  6166. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6167. idle_thread_set_boot_cpu();
  6168. set_cpu_rq_start_time();
  6169. #endif
  6170. init_sched_fair_class();
  6171. scheduler_running = 1;
  6172. }
  6173. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6174. static inline int preempt_count_equals(int preempt_offset)
  6175. {
  6176. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6177. return (nested == preempt_offset);
  6178. }
  6179. void __might_sleep(const char *file, int line, int preempt_offset)
  6180. {
  6181. /*
  6182. * Blocking primitives will set (and therefore destroy) current->state,
  6183. * since we will exit with TASK_RUNNING make sure we enter with it,
  6184. * otherwise we will destroy state.
  6185. */
  6186. WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
  6187. "do not call blocking ops when !TASK_RUNNING; "
  6188. "state=%lx set at [<%p>] %pS\n",
  6189. current->state,
  6190. (void *)current->task_state_change,
  6191. (void *)current->task_state_change);
  6192. ___might_sleep(file, line, preempt_offset);
  6193. }
  6194. EXPORT_SYMBOL(__might_sleep);
  6195. void ___might_sleep(const char *file, int line, int preempt_offset)
  6196. {
  6197. static unsigned long prev_jiffy; /* ratelimiting */
  6198. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6199. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  6200. !is_idle_task(current)) ||
  6201. system_state != SYSTEM_RUNNING || oops_in_progress)
  6202. return;
  6203. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6204. return;
  6205. prev_jiffy = jiffies;
  6206. printk(KERN_ERR
  6207. "BUG: sleeping function called from invalid context at %s:%d\n",
  6208. file, line);
  6209. printk(KERN_ERR
  6210. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6211. in_atomic(), irqs_disabled(),
  6212. current->pid, current->comm);
  6213. if (task_stack_end_corrupted(current))
  6214. printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
  6215. debug_show_held_locks(current);
  6216. if (irqs_disabled())
  6217. print_irqtrace_events(current);
  6218. #ifdef CONFIG_DEBUG_PREEMPT
  6219. if (!preempt_count_equals(preempt_offset)) {
  6220. pr_err("Preemption disabled at:");
  6221. print_ip_sym(current->preempt_disable_ip);
  6222. pr_cont("\n");
  6223. }
  6224. #endif
  6225. dump_stack();
  6226. }
  6227. EXPORT_SYMBOL(___might_sleep);
  6228. #endif
  6229. #ifdef CONFIG_MAGIC_SYSRQ
  6230. static void normalize_task(struct rq *rq, struct task_struct *p)
  6231. {
  6232. const struct sched_class *prev_class = p->sched_class;
  6233. struct sched_attr attr = {
  6234. .sched_policy = SCHED_NORMAL,
  6235. };
  6236. int old_prio = p->prio;
  6237. int queued;
  6238. queued = task_on_rq_queued(p);
  6239. if (queued)
  6240. dequeue_task(rq, p, 0);
  6241. __setscheduler(rq, p, &attr);
  6242. if (queued) {
  6243. enqueue_task(rq, p, 0);
  6244. resched_curr(rq);
  6245. }
  6246. check_class_changed(rq, p, prev_class, old_prio);
  6247. }
  6248. void normalize_rt_tasks(void)
  6249. {
  6250. struct task_struct *g, *p;
  6251. unsigned long flags;
  6252. struct rq *rq;
  6253. read_lock(&tasklist_lock);
  6254. for_each_process_thread(g, p) {
  6255. /*
  6256. * Only normalize user tasks:
  6257. */
  6258. if (p->flags & PF_KTHREAD)
  6259. continue;
  6260. p->se.exec_start = 0;
  6261. #ifdef CONFIG_SCHEDSTATS
  6262. p->se.statistics.wait_start = 0;
  6263. p->se.statistics.sleep_start = 0;
  6264. p->se.statistics.block_start = 0;
  6265. #endif
  6266. if (!dl_task(p) && !rt_task(p)) {
  6267. /*
  6268. * Renice negative nice level userspace
  6269. * tasks back to 0:
  6270. */
  6271. if (task_nice(p) < 0)
  6272. set_user_nice(p, 0);
  6273. continue;
  6274. }
  6275. rq = task_rq_lock(p, &flags);
  6276. normalize_task(rq, p);
  6277. task_rq_unlock(rq, p, &flags);
  6278. }
  6279. read_unlock(&tasklist_lock);
  6280. }
  6281. #endif /* CONFIG_MAGIC_SYSRQ */
  6282. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6283. /*
  6284. * These functions are only useful for the IA64 MCA handling, or kdb.
  6285. *
  6286. * They can only be called when the whole system has been
  6287. * stopped - every CPU needs to be quiescent, and no scheduling
  6288. * activity can take place. Using them for anything else would
  6289. * be a serious bug, and as a result, they aren't even visible
  6290. * under any other configuration.
  6291. */
  6292. /**
  6293. * curr_task - return the current task for a given cpu.
  6294. * @cpu: the processor in question.
  6295. *
  6296. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6297. *
  6298. * Return: The current task for @cpu.
  6299. */
  6300. struct task_struct *curr_task(int cpu)
  6301. {
  6302. return cpu_curr(cpu);
  6303. }
  6304. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6305. #ifdef CONFIG_IA64
  6306. /**
  6307. * set_curr_task - set the current task for a given cpu.
  6308. * @cpu: the processor in question.
  6309. * @p: the task pointer to set.
  6310. *
  6311. * Description: This function must only be used when non-maskable interrupts
  6312. * are serviced on a separate stack. It allows the architecture to switch the
  6313. * notion of the current task on a cpu in a non-blocking manner. This function
  6314. * must be called with all CPU's synchronized, and interrupts disabled, the
  6315. * and caller must save the original value of the current task (see
  6316. * curr_task() above) and restore that value before reenabling interrupts and
  6317. * re-starting the system.
  6318. *
  6319. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6320. */
  6321. void set_curr_task(int cpu, struct task_struct *p)
  6322. {
  6323. cpu_curr(cpu) = p;
  6324. }
  6325. #endif
  6326. #ifdef CONFIG_CGROUP_SCHED
  6327. /* task_group_lock serializes the addition/removal of task groups */
  6328. static DEFINE_SPINLOCK(task_group_lock);
  6329. static void free_sched_group(struct task_group *tg)
  6330. {
  6331. free_fair_sched_group(tg);
  6332. free_rt_sched_group(tg);
  6333. autogroup_free(tg);
  6334. kfree(tg);
  6335. }
  6336. /* allocate runqueue etc for a new task group */
  6337. struct task_group *sched_create_group(struct task_group *parent)
  6338. {
  6339. struct task_group *tg;
  6340. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6341. if (!tg)
  6342. return ERR_PTR(-ENOMEM);
  6343. if (!alloc_fair_sched_group(tg, parent))
  6344. goto err;
  6345. if (!alloc_rt_sched_group(tg, parent))
  6346. goto err;
  6347. return tg;
  6348. err:
  6349. free_sched_group(tg);
  6350. return ERR_PTR(-ENOMEM);
  6351. }
  6352. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6353. {
  6354. unsigned long flags;
  6355. spin_lock_irqsave(&task_group_lock, flags);
  6356. list_add_rcu(&tg->list, &task_groups);
  6357. WARN_ON(!parent); /* root should already exist */
  6358. tg->parent = parent;
  6359. INIT_LIST_HEAD(&tg->children);
  6360. list_add_rcu(&tg->siblings, &parent->children);
  6361. spin_unlock_irqrestore(&task_group_lock, flags);
  6362. }
  6363. /* rcu callback to free various structures associated with a task group */
  6364. static void free_sched_group_rcu(struct rcu_head *rhp)
  6365. {
  6366. /* now it should be safe to free those cfs_rqs */
  6367. free_sched_group(container_of(rhp, struct task_group, rcu));
  6368. }
  6369. /* Destroy runqueue etc associated with a task group */
  6370. void sched_destroy_group(struct task_group *tg)
  6371. {
  6372. /* wait for possible concurrent references to cfs_rqs complete */
  6373. call_rcu(&tg->rcu, free_sched_group_rcu);
  6374. }
  6375. void sched_offline_group(struct task_group *tg)
  6376. {
  6377. unsigned long flags;
  6378. int i;
  6379. /* end participation in shares distribution */
  6380. for_each_possible_cpu(i)
  6381. unregister_fair_sched_group(tg, i);
  6382. spin_lock_irqsave(&task_group_lock, flags);
  6383. list_del_rcu(&tg->list);
  6384. list_del_rcu(&tg->siblings);
  6385. spin_unlock_irqrestore(&task_group_lock, flags);
  6386. }
  6387. /* change task's runqueue when it moves between groups.
  6388. * The caller of this function should have put the task in its new group
  6389. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6390. * reflect its new group.
  6391. */
  6392. void sched_move_task(struct task_struct *tsk)
  6393. {
  6394. struct task_group *tg;
  6395. int queued, running;
  6396. unsigned long flags;
  6397. struct rq *rq;
  6398. rq = task_rq_lock(tsk, &flags);
  6399. running = task_current(rq, tsk);
  6400. queued = task_on_rq_queued(tsk);
  6401. if (queued)
  6402. dequeue_task(rq, tsk, 0);
  6403. if (unlikely(running))
  6404. put_prev_task(rq, tsk);
  6405. /*
  6406. * All callers are synchronized by task_rq_lock(); we do not use RCU
  6407. * which is pointless here. Thus, we pass "true" to task_css_check()
  6408. * to prevent lockdep warnings.
  6409. */
  6410. tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
  6411. struct task_group, css);
  6412. tg = autogroup_task_group(tsk, tg);
  6413. tsk->sched_task_group = tg;
  6414. #ifdef CONFIG_FAIR_GROUP_SCHED
  6415. if (tsk->sched_class->task_move_group)
  6416. tsk->sched_class->task_move_group(tsk, queued);
  6417. else
  6418. #endif
  6419. set_task_rq(tsk, task_cpu(tsk));
  6420. if (unlikely(running))
  6421. tsk->sched_class->set_curr_task(rq);
  6422. if (queued)
  6423. enqueue_task(rq, tsk, 0);
  6424. task_rq_unlock(rq, tsk, &flags);
  6425. }
  6426. #endif /* CONFIG_CGROUP_SCHED */
  6427. #ifdef CONFIG_RT_GROUP_SCHED
  6428. /*
  6429. * Ensure that the real time constraints are schedulable.
  6430. */
  6431. static DEFINE_MUTEX(rt_constraints_mutex);
  6432. /* Must be called with tasklist_lock held */
  6433. static inline int tg_has_rt_tasks(struct task_group *tg)
  6434. {
  6435. struct task_struct *g, *p;
  6436. /*
  6437. * Autogroups do not have RT tasks; see autogroup_create().
  6438. */
  6439. if (task_group_is_autogroup(tg))
  6440. return 0;
  6441. for_each_process_thread(g, p) {
  6442. if (rt_task(p) && task_group(p) == tg)
  6443. return 1;
  6444. }
  6445. return 0;
  6446. }
  6447. struct rt_schedulable_data {
  6448. struct task_group *tg;
  6449. u64 rt_period;
  6450. u64 rt_runtime;
  6451. };
  6452. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6453. {
  6454. struct rt_schedulable_data *d = data;
  6455. struct task_group *child;
  6456. unsigned long total, sum = 0;
  6457. u64 period, runtime;
  6458. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6459. runtime = tg->rt_bandwidth.rt_runtime;
  6460. if (tg == d->tg) {
  6461. period = d->rt_period;
  6462. runtime = d->rt_runtime;
  6463. }
  6464. /*
  6465. * Cannot have more runtime than the period.
  6466. */
  6467. if (runtime > period && runtime != RUNTIME_INF)
  6468. return -EINVAL;
  6469. /*
  6470. * Ensure we don't starve existing RT tasks.
  6471. */
  6472. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6473. return -EBUSY;
  6474. total = to_ratio(period, runtime);
  6475. /*
  6476. * Nobody can have more than the global setting allows.
  6477. */
  6478. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6479. return -EINVAL;
  6480. /*
  6481. * The sum of our children's runtime should not exceed our own.
  6482. */
  6483. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6484. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6485. runtime = child->rt_bandwidth.rt_runtime;
  6486. if (child == d->tg) {
  6487. period = d->rt_period;
  6488. runtime = d->rt_runtime;
  6489. }
  6490. sum += to_ratio(period, runtime);
  6491. }
  6492. if (sum > total)
  6493. return -EINVAL;
  6494. return 0;
  6495. }
  6496. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6497. {
  6498. int ret;
  6499. struct rt_schedulable_data data = {
  6500. .tg = tg,
  6501. .rt_period = period,
  6502. .rt_runtime = runtime,
  6503. };
  6504. rcu_read_lock();
  6505. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6506. rcu_read_unlock();
  6507. return ret;
  6508. }
  6509. static int tg_set_rt_bandwidth(struct task_group *tg,
  6510. u64 rt_period, u64 rt_runtime)
  6511. {
  6512. int i, err = 0;
  6513. /*
  6514. * Disallowing the root group RT runtime is BAD, it would disallow the
  6515. * kernel creating (and or operating) RT threads.
  6516. */
  6517. if (tg == &root_task_group && rt_runtime == 0)
  6518. return -EINVAL;
  6519. /* No period doesn't make any sense. */
  6520. if (rt_period == 0)
  6521. return -EINVAL;
  6522. mutex_lock(&rt_constraints_mutex);
  6523. read_lock(&tasklist_lock);
  6524. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6525. if (err)
  6526. goto unlock;
  6527. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6528. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6529. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6530. for_each_possible_cpu(i) {
  6531. struct rt_rq *rt_rq = tg->rt_rq[i];
  6532. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6533. rt_rq->rt_runtime = rt_runtime;
  6534. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6535. }
  6536. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6537. unlock:
  6538. read_unlock(&tasklist_lock);
  6539. mutex_unlock(&rt_constraints_mutex);
  6540. return err;
  6541. }
  6542. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6543. {
  6544. u64 rt_runtime, rt_period;
  6545. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6546. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6547. if (rt_runtime_us < 0)
  6548. rt_runtime = RUNTIME_INF;
  6549. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6550. }
  6551. static long sched_group_rt_runtime(struct task_group *tg)
  6552. {
  6553. u64 rt_runtime_us;
  6554. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6555. return -1;
  6556. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6557. do_div(rt_runtime_us, NSEC_PER_USEC);
  6558. return rt_runtime_us;
  6559. }
  6560. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6561. {
  6562. u64 rt_runtime, rt_period;
  6563. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6564. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6565. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6566. }
  6567. static long sched_group_rt_period(struct task_group *tg)
  6568. {
  6569. u64 rt_period_us;
  6570. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6571. do_div(rt_period_us, NSEC_PER_USEC);
  6572. return rt_period_us;
  6573. }
  6574. #endif /* CONFIG_RT_GROUP_SCHED */
  6575. #ifdef CONFIG_RT_GROUP_SCHED
  6576. static int sched_rt_global_constraints(void)
  6577. {
  6578. int ret = 0;
  6579. mutex_lock(&rt_constraints_mutex);
  6580. read_lock(&tasklist_lock);
  6581. ret = __rt_schedulable(NULL, 0, 0);
  6582. read_unlock(&tasklist_lock);
  6583. mutex_unlock(&rt_constraints_mutex);
  6584. return ret;
  6585. }
  6586. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6587. {
  6588. /* Don't accept realtime tasks when there is no way for them to run */
  6589. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6590. return 0;
  6591. return 1;
  6592. }
  6593. #else /* !CONFIG_RT_GROUP_SCHED */
  6594. static int sched_rt_global_constraints(void)
  6595. {
  6596. unsigned long flags;
  6597. int i, ret = 0;
  6598. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6599. for_each_possible_cpu(i) {
  6600. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6601. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6602. rt_rq->rt_runtime = global_rt_runtime();
  6603. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6604. }
  6605. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6606. return ret;
  6607. }
  6608. #endif /* CONFIG_RT_GROUP_SCHED */
  6609. static int sched_dl_global_constraints(void)
  6610. {
  6611. u64 runtime = global_rt_runtime();
  6612. u64 period = global_rt_period();
  6613. u64 new_bw = to_ratio(period, runtime);
  6614. struct dl_bw *dl_b;
  6615. int cpu, ret = 0;
  6616. unsigned long flags;
  6617. /*
  6618. * Here we want to check the bandwidth not being set to some
  6619. * value smaller than the currently allocated bandwidth in
  6620. * any of the root_domains.
  6621. *
  6622. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6623. * cycling on root_domains... Discussion on different/better
  6624. * solutions is welcome!
  6625. */
  6626. for_each_possible_cpu(cpu) {
  6627. rcu_read_lock_sched();
  6628. dl_b = dl_bw_of(cpu);
  6629. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6630. if (new_bw < dl_b->total_bw)
  6631. ret = -EBUSY;
  6632. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6633. rcu_read_unlock_sched();
  6634. if (ret)
  6635. break;
  6636. }
  6637. return ret;
  6638. }
  6639. static void sched_dl_do_global(void)
  6640. {
  6641. u64 new_bw = -1;
  6642. struct dl_bw *dl_b;
  6643. int cpu;
  6644. unsigned long flags;
  6645. def_dl_bandwidth.dl_period = global_rt_period();
  6646. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6647. if (global_rt_runtime() != RUNTIME_INF)
  6648. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6649. /*
  6650. * FIXME: As above...
  6651. */
  6652. for_each_possible_cpu(cpu) {
  6653. rcu_read_lock_sched();
  6654. dl_b = dl_bw_of(cpu);
  6655. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6656. dl_b->bw = new_bw;
  6657. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6658. rcu_read_unlock_sched();
  6659. }
  6660. }
  6661. static int sched_rt_global_validate(void)
  6662. {
  6663. if (sysctl_sched_rt_period <= 0)
  6664. return -EINVAL;
  6665. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6666. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6667. return -EINVAL;
  6668. return 0;
  6669. }
  6670. static void sched_rt_do_global(void)
  6671. {
  6672. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6673. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6674. }
  6675. int sched_rt_handler(struct ctl_table *table, int write,
  6676. void __user *buffer, size_t *lenp,
  6677. loff_t *ppos)
  6678. {
  6679. int old_period, old_runtime;
  6680. static DEFINE_MUTEX(mutex);
  6681. int ret;
  6682. mutex_lock(&mutex);
  6683. old_period = sysctl_sched_rt_period;
  6684. old_runtime = sysctl_sched_rt_runtime;
  6685. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6686. if (!ret && write) {
  6687. ret = sched_rt_global_validate();
  6688. if (ret)
  6689. goto undo;
  6690. ret = sched_rt_global_constraints();
  6691. if (ret)
  6692. goto undo;
  6693. ret = sched_dl_global_constraints();
  6694. if (ret)
  6695. goto undo;
  6696. sched_rt_do_global();
  6697. sched_dl_do_global();
  6698. }
  6699. if (0) {
  6700. undo:
  6701. sysctl_sched_rt_period = old_period;
  6702. sysctl_sched_rt_runtime = old_runtime;
  6703. }
  6704. mutex_unlock(&mutex);
  6705. return ret;
  6706. }
  6707. int sched_rr_handler(struct ctl_table *table, int write,
  6708. void __user *buffer, size_t *lenp,
  6709. loff_t *ppos)
  6710. {
  6711. int ret;
  6712. static DEFINE_MUTEX(mutex);
  6713. mutex_lock(&mutex);
  6714. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6715. /* make sure that internally we keep jiffies */
  6716. /* also, writing zero resets timeslice to default */
  6717. if (!ret && write) {
  6718. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6719. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6720. }
  6721. mutex_unlock(&mutex);
  6722. return ret;
  6723. }
  6724. #ifdef CONFIG_CGROUP_SCHED
  6725. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6726. {
  6727. return css ? container_of(css, struct task_group, css) : NULL;
  6728. }
  6729. static struct cgroup_subsys_state *
  6730. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6731. {
  6732. struct task_group *parent = css_tg(parent_css);
  6733. struct task_group *tg;
  6734. if (!parent) {
  6735. /* This is early initialization for the top cgroup */
  6736. return &root_task_group.css;
  6737. }
  6738. tg = sched_create_group(parent);
  6739. if (IS_ERR(tg))
  6740. return ERR_PTR(-ENOMEM);
  6741. return &tg->css;
  6742. }
  6743. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6744. {
  6745. struct task_group *tg = css_tg(css);
  6746. struct task_group *parent = css_tg(css->parent);
  6747. if (parent)
  6748. sched_online_group(tg, parent);
  6749. return 0;
  6750. }
  6751. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6752. {
  6753. struct task_group *tg = css_tg(css);
  6754. sched_destroy_group(tg);
  6755. }
  6756. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6757. {
  6758. struct task_group *tg = css_tg(css);
  6759. sched_offline_group(tg);
  6760. }
  6761. static void cpu_cgroup_fork(struct task_struct *task)
  6762. {
  6763. sched_move_task(task);
  6764. }
  6765. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6766. struct cgroup_taskset *tset)
  6767. {
  6768. struct task_struct *task;
  6769. cgroup_taskset_for_each(task, tset) {
  6770. #ifdef CONFIG_RT_GROUP_SCHED
  6771. if (!sched_rt_can_attach(css_tg(css), task))
  6772. return -EINVAL;
  6773. #else
  6774. /* We don't support RT-tasks being in separate groups */
  6775. if (task->sched_class != &fair_sched_class)
  6776. return -EINVAL;
  6777. #endif
  6778. }
  6779. return 0;
  6780. }
  6781. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6782. struct cgroup_taskset *tset)
  6783. {
  6784. struct task_struct *task;
  6785. cgroup_taskset_for_each(task, tset)
  6786. sched_move_task(task);
  6787. }
  6788. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6789. struct cgroup_subsys_state *old_css,
  6790. struct task_struct *task)
  6791. {
  6792. /*
  6793. * cgroup_exit() is called in the copy_process() failure path.
  6794. * Ignore this case since the task hasn't ran yet, this avoids
  6795. * trying to poke a half freed task state from generic code.
  6796. */
  6797. if (!(task->flags & PF_EXITING))
  6798. return;
  6799. sched_move_task(task);
  6800. }
  6801. #ifdef CONFIG_FAIR_GROUP_SCHED
  6802. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6803. struct cftype *cftype, u64 shareval)
  6804. {
  6805. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6806. }
  6807. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6808. struct cftype *cft)
  6809. {
  6810. struct task_group *tg = css_tg(css);
  6811. return (u64) scale_load_down(tg->shares);
  6812. }
  6813. #ifdef CONFIG_CFS_BANDWIDTH
  6814. static DEFINE_MUTEX(cfs_constraints_mutex);
  6815. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6816. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6817. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6818. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6819. {
  6820. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6821. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6822. if (tg == &root_task_group)
  6823. return -EINVAL;
  6824. /*
  6825. * Ensure we have at some amount of bandwidth every period. This is
  6826. * to prevent reaching a state of large arrears when throttled via
  6827. * entity_tick() resulting in prolonged exit starvation.
  6828. */
  6829. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6830. return -EINVAL;
  6831. /*
  6832. * Likewise, bound things on the otherside by preventing insane quota
  6833. * periods. This also allows us to normalize in computing quota
  6834. * feasibility.
  6835. */
  6836. if (period > max_cfs_quota_period)
  6837. return -EINVAL;
  6838. /*
  6839. * Prevent race between setting of cfs_rq->runtime_enabled and
  6840. * unthrottle_offline_cfs_rqs().
  6841. */
  6842. get_online_cpus();
  6843. mutex_lock(&cfs_constraints_mutex);
  6844. ret = __cfs_schedulable(tg, period, quota);
  6845. if (ret)
  6846. goto out_unlock;
  6847. runtime_enabled = quota != RUNTIME_INF;
  6848. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6849. /*
  6850. * If we need to toggle cfs_bandwidth_used, off->on must occur
  6851. * before making related changes, and on->off must occur afterwards
  6852. */
  6853. if (runtime_enabled && !runtime_was_enabled)
  6854. cfs_bandwidth_usage_inc();
  6855. raw_spin_lock_irq(&cfs_b->lock);
  6856. cfs_b->period = ns_to_ktime(period);
  6857. cfs_b->quota = quota;
  6858. __refill_cfs_bandwidth_runtime(cfs_b);
  6859. /* restart the period timer (if active) to handle new period expiry */
  6860. if (runtime_enabled && cfs_b->timer_active) {
  6861. /* force a reprogram */
  6862. __start_cfs_bandwidth(cfs_b, true);
  6863. }
  6864. raw_spin_unlock_irq(&cfs_b->lock);
  6865. for_each_online_cpu(i) {
  6866. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6867. struct rq *rq = cfs_rq->rq;
  6868. raw_spin_lock_irq(&rq->lock);
  6869. cfs_rq->runtime_enabled = runtime_enabled;
  6870. cfs_rq->runtime_remaining = 0;
  6871. if (cfs_rq->throttled)
  6872. unthrottle_cfs_rq(cfs_rq);
  6873. raw_spin_unlock_irq(&rq->lock);
  6874. }
  6875. if (runtime_was_enabled && !runtime_enabled)
  6876. cfs_bandwidth_usage_dec();
  6877. out_unlock:
  6878. mutex_unlock(&cfs_constraints_mutex);
  6879. put_online_cpus();
  6880. return ret;
  6881. }
  6882. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6883. {
  6884. u64 quota, period;
  6885. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6886. if (cfs_quota_us < 0)
  6887. quota = RUNTIME_INF;
  6888. else
  6889. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6890. return tg_set_cfs_bandwidth(tg, period, quota);
  6891. }
  6892. long tg_get_cfs_quota(struct task_group *tg)
  6893. {
  6894. u64 quota_us;
  6895. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6896. return -1;
  6897. quota_us = tg->cfs_bandwidth.quota;
  6898. do_div(quota_us, NSEC_PER_USEC);
  6899. return quota_us;
  6900. }
  6901. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6902. {
  6903. u64 quota, period;
  6904. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6905. quota = tg->cfs_bandwidth.quota;
  6906. return tg_set_cfs_bandwidth(tg, period, quota);
  6907. }
  6908. long tg_get_cfs_period(struct task_group *tg)
  6909. {
  6910. u64 cfs_period_us;
  6911. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6912. do_div(cfs_period_us, NSEC_PER_USEC);
  6913. return cfs_period_us;
  6914. }
  6915. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6916. struct cftype *cft)
  6917. {
  6918. return tg_get_cfs_quota(css_tg(css));
  6919. }
  6920. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6921. struct cftype *cftype, s64 cfs_quota_us)
  6922. {
  6923. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6924. }
  6925. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6926. struct cftype *cft)
  6927. {
  6928. return tg_get_cfs_period(css_tg(css));
  6929. }
  6930. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6931. struct cftype *cftype, u64 cfs_period_us)
  6932. {
  6933. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6934. }
  6935. struct cfs_schedulable_data {
  6936. struct task_group *tg;
  6937. u64 period, quota;
  6938. };
  6939. /*
  6940. * normalize group quota/period to be quota/max_period
  6941. * note: units are usecs
  6942. */
  6943. static u64 normalize_cfs_quota(struct task_group *tg,
  6944. struct cfs_schedulable_data *d)
  6945. {
  6946. u64 quota, period;
  6947. if (tg == d->tg) {
  6948. period = d->period;
  6949. quota = d->quota;
  6950. } else {
  6951. period = tg_get_cfs_period(tg);
  6952. quota = tg_get_cfs_quota(tg);
  6953. }
  6954. /* note: these should typically be equivalent */
  6955. if (quota == RUNTIME_INF || quota == -1)
  6956. return RUNTIME_INF;
  6957. return to_ratio(period, quota);
  6958. }
  6959. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6960. {
  6961. struct cfs_schedulable_data *d = data;
  6962. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6963. s64 quota = 0, parent_quota = -1;
  6964. if (!tg->parent) {
  6965. quota = RUNTIME_INF;
  6966. } else {
  6967. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6968. quota = normalize_cfs_quota(tg, d);
  6969. parent_quota = parent_b->hierarchical_quota;
  6970. /*
  6971. * ensure max(child_quota) <= parent_quota, inherit when no
  6972. * limit is set
  6973. */
  6974. if (quota == RUNTIME_INF)
  6975. quota = parent_quota;
  6976. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6977. return -EINVAL;
  6978. }
  6979. cfs_b->hierarchical_quota = quota;
  6980. return 0;
  6981. }
  6982. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6983. {
  6984. int ret;
  6985. struct cfs_schedulable_data data = {
  6986. .tg = tg,
  6987. .period = period,
  6988. .quota = quota,
  6989. };
  6990. if (quota != RUNTIME_INF) {
  6991. do_div(data.period, NSEC_PER_USEC);
  6992. do_div(data.quota, NSEC_PER_USEC);
  6993. }
  6994. rcu_read_lock();
  6995. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6996. rcu_read_unlock();
  6997. return ret;
  6998. }
  6999. static int cpu_stats_show(struct seq_file *sf, void *v)
  7000. {
  7001. struct task_group *tg = css_tg(seq_css(sf));
  7002. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7003. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  7004. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  7005. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  7006. return 0;
  7007. }
  7008. #endif /* CONFIG_CFS_BANDWIDTH */
  7009. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7010. #ifdef CONFIG_RT_GROUP_SCHED
  7011. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  7012. struct cftype *cft, s64 val)
  7013. {
  7014. return sched_group_set_rt_runtime(css_tg(css), val);
  7015. }
  7016. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  7017. struct cftype *cft)
  7018. {
  7019. return sched_group_rt_runtime(css_tg(css));
  7020. }
  7021. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  7022. struct cftype *cftype, u64 rt_period_us)
  7023. {
  7024. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  7025. }
  7026. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  7027. struct cftype *cft)
  7028. {
  7029. return sched_group_rt_period(css_tg(css));
  7030. }
  7031. #endif /* CONFIG_RT_GROUP_SCHED */
  7032. static struct cftype cpu_files[] = {
  7033. #ifdef CONFIG_FAIR_GROUP_SCHED
  7034. {
  7035. .name = "shares",
  7036. .read_u64 = cpu_shares_read_u64,
  7037. .write_u64 = cpu_shares_write_u64,
  7038. },
  7039. #endif
  7040. #ifdef CONFIG_CFS_BANDWIDTH
  7041. {
  7042. .name = "cfs_quota_us",
  7043. .read_s64 = cpu_cfs_quota_read_s64,
  7044. .write_s64 = cpu_cfs_quota_write_s64,
  7045. },
  7046. {
  7047. .name = "cfs_period_us",
  7048. .read_u64 = cpu_cfs_period_read_u64,
  7049. .write_u64 = cpu_cfs_period_write_u64,
  7050. },
  7051. {
  7052. .name = "stat",
  7053. .seq_show = cpu_stats_show,
  7054. },
  7055. #endif
  7056. #ifdef CONFIG_RT_GROUP_SCHED
  7057. {
  7058. .name = "rt_runtime_us",
  7059. .read_s64 = cpu_rt_runtime_read,
  7060. .write_s64 = cpu_rt_runtime_write,
  7061. },
  7062. {
  7063. .name = "rt_period_us",
  7064. .read_u64 = cpu_rt_period_read_uint,
  7065. .write_u64 = cpu_rt_period_write_uint,
  7066. },
  7067. #endif
  7068. { } /* terminate */
  7069. };
  7070. struct cgroup_subsys cpu_cgrp_subsys = {
  7071. .css_alloc = cpu_cgroup_css_alloc,
  7072. .css_free = cpu_cgroup_css_free,
  7073. .css_online = cpu_cgroup_css_online,
  7074. .css_offline = cpu_cgroup_css_offline,
  7075. .fork = cpu_cgroup_fork,
  7076. .can_attach = cpu_cgroup_can_attach,
  7077. .attach = cpu_cgroup_attach,
  7078. .exit = cpu_cgroup_exit,
  7079. .legacy_cftypes = cpu_files,
  7080. .early_init = 1,
  7081. };
  7082. #endif /* CONFIG_CGROUP_SCHED */
  7083. void dump_cpu_task(int cpu)
  7084. {
  7085. pr_info("Task dump for CPU %d:\n", cpu);
  7086. sched_show_task(cpu_curr(cpu));
  7087. }