tcp_input.c 177 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <linux/prefetch.h>
  69. #include <net/dst.h>
  70. #include <net/tcp.h>
  71. #include <net/inet_common.h>
  72. #include <linux/ipsec.h>
  73. #include <asm/unaligned.h>
  74. #include <linux/errqueue.h>
  75. int sysctl_tcp_fack __read_mostly;
  76. int sysctl_tcp_max_reordering __read_mostly = 300;
  77. int sysctl_tcp_dsack __read_mostly = 1;
  78. int sysctl_tcp_app_win __read_mostly = 31;
  79. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  80. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  81. /* rfc5961 challenge ack rate limiting */
  82. int sysctl_tcp_challenge_ack_limit = 1000;
  83. int sysctl_tcp_stdurg __read_mostly;
  84. int sysctl_tcp_rfc1337 __read_mostly;
  85. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  86. int sysctl_tcp_frto __read_mostly = 2;
  87. int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
  88. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  89. int sysctl_tcp_early_retrans __read_mostly = 3;
  90. int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
  91. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  92. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  93. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  94. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  95. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  96. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  97. #define FLAG_ECE 0x40 /* ECE in this ACK */
  98. #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
  99. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  100. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  101. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  102. #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
  103. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  104. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  105. #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
  106. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  107. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  108. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  109. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  110. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  111. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  112. #define REXMIT_NONE 0 /* no loss recovery to do */
  113. #define REXMIT_LOST 1 /* retransmit packets marked lost */
  114. #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
  115. static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
  116. unsigned int len)
  117. {
  118. static bool __once __read_mostly;
  119. if (!__once) {
  120. struct net_device *dev;
  121. __once = true;
  122. rcu_read_lock();
  123. dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
  124. if (!dev || len >= dev->mtu)
  125. pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
  126. dev ? dev->name : "Unknown driver");
  127. rcu_read_unlock();
  128. }
  129. }
  130. /* Adapt the MSS value used to make delayed ack decision to the
  131. * real world.
  132. */
  133. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  134. {
  135. struct inet_connection_sock *icsk = inet_csk(sk);
  136. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  137. unsigned int len;
  138. icsk->icsk_ack.last_seg_size = 0;
  139. /* skb->len may jitter because of SACKs, even if peer
  140. * sends good full-sized frames.
  141. */
  142. len = skb_shinfo(skb)->gso_size ? : skb->len;
  143. if (len >= icsk->icsk_ack.rcv_mss) {
  144. icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
  145. tcp_sk(sk)->advmss);
  146. /* Account for possibly-removed options */
  147. if (unlikely(len > icsk->icsk_ack.rcv_mss +
  148. MAX_TCP_OPTION_SPACE))
  149. tcp_gro_dev_warn(sk, skb, len);
  150. } else {
  151. /* Otherwise, we make more careful check taking into account,
  152. * that SACKs block is variable.
  153. *
  154. * "len" is invariant segment length, including TCP header.
  155. */
  156. len += skb->data - skb_transport_header(skb);
  157. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  158. /* If PSH is not set, packet should be
  159. * full sized, provided peer TCP is not badly broken.
  160. * This observation (if it is correct 8)) allows
  161. * to handle super-low mtu links fairly.
  162. */
  163. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  164. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  165. /* Subtract also invariant (if peer is RFC compliant),
  166. * tcp header plus fixed timestamp option length.
  167. * Resulting "len" is MSS free of SACK jitter.
  168. */
  169. len -= tcp_sk(sk)->tcp_header_len;
  170. icsk->icsk_ack.last_seg_size = len;
  171. if (len == lss) {
  172. icsk->icsk_ack.rcv_mss = len;
  173. return;
  174. }
  175. }
  176. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  177. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  178. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  179. }
  180. }
  181. static void tcp_incr_quickack(struct sock *sk)
  182. {
  183. struct inet_connection_sock *icsk = inet_csk(sk);
  184. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  185. if (quickacks == 0)
  186. quickacks = 2;
  187. if (quickacks > icsk->icsk_ack.quick)
  188. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  189. }
  190. static void tcp_enter_quickack_mode(struct sock *sk)
  191. {
  192. struct inet_connection_sock *icsk = inet_csk(sk);
  193. tcp_incr_quickack(sk);
  194. icsk->icsk_ack.pingpong = 0;
  195. icsk->icsk_ack.ato = TCP_ATO_MIN;
  196. }
  197. /* Send ACKs quickly, if "quick" count is not exhausted
  198. * and the session is not interactive.
  199. */
  200. static bool tcp_in_quickack_mode(struct sock *sk)
  201. {
  202. const struct inet_connection_sock *icsk = inet_csk(sk);
  203. const struct dst_entry *dst = __sk_dst_get(sk);
  204. return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
  205. (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
  206. }
  207. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  208. {
  209. if (tp->ecn_flags & TCP_ECN_OK)
  210. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  211. }
  212. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  213. {
  214. if (tcp_hdr(skb)->cwr)
  215. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  216. }
  217. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  218. {
  219. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  220. }
  221. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  222. {
  223. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  224. case INET_ECN_NOT_ECT:
  225. /* Funny extension: if ECT is not set on a segment,
  226. * and we already seen ECT on a previous segment,
  227. * it is probably a retransmit.
  228. */
  229. if (tp->ecn_flags & TCP_ECN_SEEN)
  230. tcp_enter_quickack_mode((struct sock *)tp);
  231. break;
  232. case INET_ECN_CE:
  233. if (tcp_ca_needs_ecn((struct sock *)tp))
  234. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  235. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  236. /* Better not delay acks, sender can have a very low cwnd */
  237. tcp_enter_quickack_mode((struct sock *)tp);
  238. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  239. }
  240. tp->ecn_flags |= TCP_ECN_SEEN;
  241. break;
  242. default:
  243. if (tcp_ca_needs_ecn((struct sock *)tp))
  244. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  245. tp->ecn_flags |= TCP_ECN_SEEN;
  246. break;
  247. }
  248. }
  249. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  250. {
  251. if (tp->ecn_flags & TCP_ECN_OK)
  252. __tcp_ecn_check_ce(tp, skb);
  253. }
  254. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  255. {
  256. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  257. tp->ecn_flags &= ~TCP_ECN_OK;
  258. }
  259. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  260. {
  261. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  262. tp->ecn_flags &= ~TCP_ECN_OK;
  263. }
  264. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  265. {
  266. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  267. return true;
  268. return false;
  269. }
  270. /* Buffer size and advertised window tuning.
  271. *
  272. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  273. */
  274. static void tcp_sndbuf_expand(struct sock *sk)
  275. {
  276. const struct tcp_sock *tp = tcp_sk(sk);
  277. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  278. int sndmem, per_mss;
  279. u32 nr_segs;
  280. /* Worst case is non GSO/TSO : each frame consumes one skb
  281. * and skb->head is kmalloced using power of two area of memory
  282. */
  283. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  284. MAX_TCP_HEADER +
  285. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  286. per_mss = roundup_pow_of_two(per_mss) +
  287. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  288. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  289. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  290. /* Fast Recovery (RFC 5681 3.2) :
  291. * Cubic needs 1.7 factor, rounded to 2 to include
  292. * extra cushion (application might react slowly to POLLOUT)
  293. */
  294. sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
  295. sndmem *= nr_segs * per_mss;
  296. if (sk->sk_sndbuf < sndmem)
  297. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  298. }
  299. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  300. *
  301. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  302. * forward and advertised in receiver window (tp->rcv_wnd) and
  303. * "application buffer", required to isolate scheduling/application
  304. * latencies from network.
  305. * window_clamp is maximal advertised window. It can be less than
  306. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  307. * is reserved for "application" buffer. The less window_clamp is
  308. * the smoother our behaviour from viewpoint of network, but the lower
  309. * throughput and the higher sensitivity of the connection to losses. 8)
  310. *
  311. * rcv_ssthresh is more strict window_clamp used at "slow start"
  312. * phase to predict further behaviour of this connection.
  313. * It is used for two goals:
  314. * - to enforce header prediction at sender, even when application
  315. * requires some significant "application buffer". It is check #1.
  316. * - to prevent pruning of receive queue because of misprediction
  317. * of receiver window. Check #2.
  318. *
  319. * The scheme does not work when sender sends good segments opening
  320. * window and then starts to feed us spaghetti. But it should work
  321. * in common situations. Otherwise, we have to rely on queue collapsing.
  322. */
  323. /* Slow part of check#2. */
  324. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  325. {
  326. struct tcp_sock *tp = tcp_sk(sk);
  327. /* Optimize this! */
  328. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  329. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  330. while (tp->rcv_ssthresh <= window) {
  331. if (truesize <= skb->len)
  332. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  333. truesize >>= 1;
  334. window >>= 1;
  335. }
  336. return 0;
  337. }
  338. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  339. {
  340. struct tcp_sock *tp = tcp_sk(sk);
  341. /* Check #1 */
  342. if (tp->rcv_ssthresh < tp->window_clamp &&
  343. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  344. !tcp_under_memory_pressure(sk)) {
  345. int incr;
  346. /* Check #2. Increase window, if skb with such overhead
  347. * will fit to rcvbuf in future.
  348. */
  349. if (tcp_win_from_space(skb->truesize) <= skb->len)
  350. incr = 2 * tp->advmss;
  351. else
  352. incr = __tcp_grow_window(sk, skb);
  353. if (incr) {
  354. incr = max_t(int, incr, 2 * skb->len);
  355. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  356. tp->window_clamp);
  357. inet_csk(sk)->icsk_ack.quick |= 1;
  358. }
  359. }
  360. }
  361. /* 3. Tuning rcvbuf, when connection enters established state. */
  362. static void tcp_fixup_rcvbuf(struct sock *sk)
  363. {
  364. u32 mss = tcp_sk(sk)->advmss;
  365. int rcvmem;
  366. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  367. tcp_default_init_rwnd(mss);
  368. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  369. * Allow enough cushion so that sender is not limited by our window
  370. */
  371. if (sysctl_tcp_moderate_rcvbuf)
  372. rcvmem <<= 2;
  373. if (sk->sk_rcvbuf < rcvmem)
  374. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  375. }
  376. /* 4. Try to fixup all. It is made immediately after connection enters
  377. * established state.
  378. */
  379. void tcp_init_buffer_space(struct sock *sk)
  380. {
  381. struct tcp_sock *tp = tcp_sk(sk);
  382. int maxwin;
  383. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  384. tcp_fixup_rcvbuf(sk);
  385. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  386. tcp_sndbuf_expand(sk);
  387. tp->rcvq_space.space = tp->rcv_wnd;
  388. tcp_mstamp_refresh(tp);
  389. tp->rcvq_space.time = tp->tcp_mstamp;
  390. tp->rcvq_space.seq = tp->copied_seq;
  391. maxwin = tcp_full_space(sk);
  392. if (tp->window_clamp >= maxwin) {
  393. tp->window_clamp = maxwin;
  394. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  395. tp->window_clamp = max(maxwin -
  396. (maxwin >> sysctl_tcp_app_win),
  397. 4 * tp->advmss);
  398. }
  399. /* Force reservation of one segment. */
  400. if (sysctl_tcp_app_win &&
  401. tp->window_clamp > 2 * tp->advmss &&
  402. tp->window_clamp + tp->advmss > maxwin)
  403. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  404. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  405. tp->snd_cwnd_stamp = tcp_jiffies32;
  406. }
  407. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  408. static void tcp_clamp_window(struct sock *sk)
  409. {
  410. struct tcp_sock *tp = tcp_sk(sk);
  411. struct inet_connection_sock *icsk = inet_csk(sk);
  412. icsk->icsk_ack.quick = 0;
  413. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  414. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  415. !tcp_under_memory_pressure(sk) &&
  416. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  417. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  418. sysctl_tcp_rmem[2]);
  419. }
  420. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  421. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  422. }
  423. /* Initialize RCV_MSS value.
  424. * RCV_MSS is an our guess about MSS used by the peer.
  425. * We haven't any direct information about the MSS.
  426. * It's better to underestimate the RCV_MSS rather than overestimate.
  427. * Overestimations make us ACKing less frequently than needed.
  428. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  429. */
  430. void tcp_initialize_rcv_mss(struct sock *sk)
  431. {
  432. const struct tcp_sock *tp = tcp_sk(sk);
  433. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  434. hint = min(hint, tp->rcv_wnd / 2);
  435. hint = min(hint, TCP_MSS_DEFAULT);
  436. hint = max(hint, TCP_MIN_MSS);
  437. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  438. }
  439. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  440. /* Receiver "autotuning" code.
  441. *
  442. * The algorithm for RTT estimation w/o timestamps is based on
  443. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  444. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  445. *
  446. * More detail on this code can be found at
  447. * <http://staff.psc.edu/jheffner/>,
  448. * though this reference is out of date. A new paper
  449. * is pending.
  450. */
  451. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  452. {
  453. u32 new_sample = tp->rcv_rtt_est.rtt_us;
  454. long m = sample;
  455. if (m == 0)
  456. m = 1;
  457. if (new_sample != 0) {
  458. /* If we sample in larger samples in the non-timestamp
  459. * case, we could grossly overestimate the RTT especially
  460. * with chatty applications or bulk transfer apps which
  461. * are stalled on filesystem I/O.
  462. *
  463. * Also, since we are only going for a minimum in the
  464. * non-timestamp case, we do not smooth things out
  465. * else with timestamps disabled convergence takes too
  466. * long.
  467. */
  468. if (!win_dep) {
  469. m -= (new_sample >> 3);
  470. new_sample += m;
  471. } else {
  472. m <<= 3;
  473. if (m < new_sample)
  474. new_sample = m;
  475. }
  476. } else {
  477. /* No previous measure. */
  478. new_sample = m << 3;
  479. }
  480. tp->rcv_rtt_est.rtt_us = new_sample;
  481. }
  482. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  483. {
  484. u32 delta_us;
  485. if (tp->rcv_rtt_est.time == 0)
  486. goto new_measure;
  487. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  488. return;
  489. delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
  490. tcp_rcv_rtt_update(tp, delta_us, 1);
  491. new_measure:
  492. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  493. tp->rcv_rtt_est.time = tp->tcp_mstamp;
  494. }
  495. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  496. const struct sk_buff *skb)
  497. {
  498. struct tcp_sock *tp = tcp_sk(sk);
  499. if (tp->rx_opt.rcv_tsecr &&
  500. (TCP_SKB_CB(skb)->end_seq -
  501. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
  502. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  503. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  504. tcp_rcv_rtt_update(tp, delta_us, 0);
  505. }
  506. }
  507. /*
  508. * This function should be called every time data is copied to user space.
  509. * It calculates the appropriate TCP receive buffer space.
  510. */
  511. void tcp_rcv_space_adjust(struct sock *sk)
  512. {
  513. struct tcp_sock *tp = tcp_sk(sk);
  514. int time;
  515. int copied;
  516. time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
  517. if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
  518. return;
  519. /* Number of bytes copied to user in last RTT */
  520. copied = tp->copied_seq - tp->rcvq_space.seq;
  521. if (copied <= tp->rcvq_space.space)
  522. goto new_measure;
  523. /* A bit of theory :
  524. * copied = bytes received in previous RTT, our base window
  525. * To cope with packet losses, we need a 2x factor
  526. * To cope with slow start, and sender growing its cwin by 100 %
  527. * every RTT, we need a 4x factor, because the ACK we are sending
  528. * now is for the next RTT, not the current one :
  529. * <prev RTT . ><current RTT .. ><next RTT .... >
  530. */
  531. if (sysctl_tcp_moderate_rcvbuf &&
  532. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  533. int rcvwin, rcvmem, rcvbuf;
  534. /* minimal window to cope with packet losses, assuming
  535. * steady state. Add some cushion because of small variations.
  536. */
  537. rcvwin = (copied << 1) + 16 * tp->advmss;
  538. /* If rate increased by 25%,
  539. * assume slow start, rcvwin = 3 * copied
  540. * If rate increased by 50%,
  541. * assume sender can use 2x growth, rcvwin = 4 * copied
  542. */
  543. if (copied >=
  544. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  545. if (copied >=
  546. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  547. rcvwin <<= 1;
  548. else
  549. rcvwin += (rcvwin >> 1);
  550. }
  551. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  552. while (tcp_win_from_space(rcvmem) < tp->advmss)
  553. rcvmem += 128;
  554. rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
  555. if (rcvbuf > sk->sk_rcvbuf) {
  556. sk->sk_rcvbuf = rcvbuf;
  557. /* Make the window clamp follow along. */
  558. tp->window_clamp = rcvwin;
  559. }
  560. }
  561. tp->rcvq_space.space = copied;
  562. new_measure:
  563. tp->rcvq_space.seq = tp->copied_seq;
  564. tp->rcvq_space.time = tp->tcp_mstamp;
  565. }
  566. /* There is something which you must keep in mind when you analyze the
  567. * behavior of the tp->ato delayed ack timeout interval. When a
  568. * connection starts up, we want to ack as quickly as possible. The
  569. * problem is that "good" TCP's do slow start at the beginning of data
  570. * transmission. The means that until we send the first few ACK's the
  571. * sender will sit on his end and only queue most of his data, because
  572. * he can only send snd_cwnd unacked packets at any given time. For
  573. * each ACK we send, he increments snd_cwnd and transmits more of his
  574. * queue. -DaveM
  575. */
  576. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  577. {
  578. struct tcp_sock *tp = tcp_sk(sk);
  579. struct inet_connection_sock *icsk = inet_csk(sk);
  580. u32 now;
  581. inet_csk_schedule_ack(sk);
  582. tcp_measure_rcv_mss(sk, skb);
  583. tcp_rcv_rtt_measure(tp);
  584. now = tcp_jiffies32;
  585. if (!icsk->icsk_ack.ato) {
  586. /* The _first_ data packet received, initialize
  587. * delayed ACK engine.
  588. */
  589. tcp_incr_quickack(sk);
  590. icsk->icsk_ack.ato = TCP_ATO_MIN;
  591. } else {
  592. int m = now - icsk->icsk_ack.lrcvtime;
  593. if (m <= TCP_ATO_MIN / 2) {
  594. /* The fastest case is the first. */
  595. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  596. } else if (m < icsk->icsk_ack.ato) {
  597. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  598. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  599. icsk->icsk_ack.ato = icsk->icsk_rto;
  600. } else if (m > icsk->icsk_rto) {
  601. /* Too long gap. Apparently sender failed to
  602. * restart window, so that we send ACKs quickly.
  603. */
  604. tcp_incr_quickack(sk);
  605. sk_mem_reclaim(sk);
  606. }
  607. }
  608. icsk->icsk_ack.lrcvtime = now;
  609. tcp_ecn_check_ce(tp, skb);
  610. if (skb->len >= 128)
  611. tcp_grow_window(sk, skb);
  612. }
  613. /* Called to compute a smoothed rtt estimate. The data fed to this
  614. * routine either comes from timestamps, or from segments that were
  615. * known _not_ to have been retransmitted [see Karn/Partridge
  616. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  617. * piece by Van Jacobson.
  618. * NOTE: the next three routines used to be one big routine.
  619. * To save cycles in the RFC 1323 implementation it was better to break
  620. * it up into three procedures. -- erics
  621. */
  622. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  623. {
  624. struct tcp_sock *tp = tcp_sk(sk);
  625. long m = mrtt_us; /* RTT */
  626. u32 srtt = tp->srtt_us;
  627. /* The following amusing code comes from Jacobson's
  628. * article in SIGCOMM '88. Note that rtt and mdev
  629. * are scaled versions of rtt and mean deviation.
  630. * This is designed to be as fast as possible
  631. * m stands for "measurement".
  632. *
  633. * On a 1990 paper the rto value is changed to:
  634. * RTO = rtt + 4 * mdev
  635. *
  636. * Funny. This algorithm seems to be very broken.
  637. * These formulae increase RTO, when it should be decreased, increase
  638. * too slowly, when it should be increased quickly, decrease too quickly
  639. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  640. * does not matter how to _calculate_ it. Seems, it was trap
  641. * that VJ failed to avoid. 8)
  642. */
  643. if (srtt != 0) {
  644. m -= (srtt >> 3); /* m is now error in rtt est */
  645. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  646. if (m < 0) {
  647. m = -m; /* m is now abs(error) */
  648. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  649. /* This is similar to one of Eifel findings.
  650. * Eifel blocks mdev updates when rtt decreases.
  651. * This solution is a bit different: we use finer gain
  652. * for mdev in this case (alpha*beta).
  653. * Like Eifel it also prevents growth of rto,
  654. * but also it limits too fast rto decreases,
  655. * happening in pure Eifel.
  656. */
  657. if (m > 0)
  658. m >>= 3;
  659. } else {
  660. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  661. }
  662. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  663. if (tp->mdev_us > tp->mdev_max_us) {
  664. tp->mdev_max_us = tp->mdev_us;
  665. if (tp->mdev_max_us > tp->rttvar_us)
  666. tp->rttvar_us = tp->mdev_max_us;
  667. }
  668. if (after(tp->snd_una, tp->rtt_seq)) {
  669. if (tp->mdev_max_us < tp->rttvar_us)
  670. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  671. tp->rtt_seq = tp->snd_nxt;
  672. tp->mdev_max_us = tcp_rto_min_us(sk);
  673. }
  674. } else {
  675. /* no previous measure. */
  676. srtt = m << 3; /* take the measured time to be rtt */
  677. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  678. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  679. tp->mdev_max_us = tp->rttvar_us;
  680. tp->rtt_seq = tp->snd_nxt;
  681. }
  682. tp->srtt_us = max(1U, srtt);
  683. }
  684. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  685. * Note: TCP stack does not yet implement pacing.
  686. * FQ packet scheduler can be used to implement cheap but effective
  687. * TCP pacing, to smooth the burst on large writes when packets
  688. * in flight is significantly lower than cwnd (or rwin)
  689. */
  690. int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
  691. int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
  692. static void tcp_update_pacing_rate(struct sock *sk)
  693. {
  694. const struct tcp_sock *tp = tcp_sk(sk);
  695. u64 rate;
  696. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  697. rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
  698. /* current rate is (cwnd * mss) / srtt
  699. * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
  700. * In Congestion Avoidance phase, set it to 120 % the current rate.
  701. *
  702. * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
  703. * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
  704. * end of slow start and should slow down.
  705. */
  706. if (tp->snd_cwnd < tp->snd_ssthresh / 2)
  707. rate *= sysctl_tcp_pacing_ss_ratio;
  708. else
  709. rate *= sysctl_tcp_pacing_ca_ratio;
  710. rate *= max(tp->snd_cwnd, tp->packets_out);
  711. if (likely(tp->srtt_us))
  712. do_div(rate, tp->srtt_us);
  713. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  714. * without any lock. We want to make sure compiler wont store
  715. * intermediate values in this location.
  716. */
  717. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  718. sk->sk_max_pacing_rate);
  719. }
  720. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  721. * routine referred to above.
  722. */
  723. static void tcp_set_rto(struct sock *sk)
  724. {
  725. const struct tcp_sock *tp = tcp_sk(sk);
  726. /* Old crap is replaced with new one. 8)
  727. *
  728. * More seriously:
  729. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  730. * It cannot be less due to utterly erratic ACK generation made
  731. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  732. * to do with delayed acks, because at cwnd>2 true delack timeout
  733. * is invisible. Actually, Linux-2.4 also generates erratic
  734. * ACKs in some circumstances.
  735. */
  736. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  737. /* 2. Fixups made earlier cannot be right.
  738. * If we do not estimate RTO correctly without them,
  739. * all the algo is pure shit and should be replaced
  740. * with correct one. It is exactly, which we pretend to do.
  741. */
  742. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  743. * guarantees that rto is higher.
  744. */
  745. tcp_bound_rto(sk);
  746. }
  747. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  748. {
  749. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  750. if (!cwnd)
  751. cwnd = TCP_INIT_CWND;
  752. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  753. }
  754. /*
  755. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  756. * disables it when reordering is detected
  757. */
  758. void tcp_disable_fack(struct tcp_sock *tp)
  759. {
  760. /* RFC3517 uses different metric in lost marker => reset on change */
  761. if (tcp_is_fack(tp))
  762. tp->lost_skb_hint = NULL;
  763. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  764. }
  765. /* Take a notice that peer is sending D-SACKs */
  766. static void tcp_dsack_seen(struct tcp_sock *tp)
  767. {
  768. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  769. }
  770. static void tcp_update_reordering(struct sock *sk, const int metric,
  771. const int ts)
  772. {
  773. struct tcp_sock *tp = tcp_sk(sk);
  774. int mib_idx;
  775. if (WARN_ON_ONCE(metric < 0))
  776. return;
  777. if (metric > tp->reordering) {
  778. tp->reordering = min(sysctl_tcp_max_reordering, metric);
  779. #if FASTRETRANS_DEBUG > 1
  780. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  781. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  782. tp->reordering,
  783. tp->fackets_out,
  784. tp->sacked_out,
  785. tp->undo_marker ? tp->undo_retrans : 0);
  786. #endif
  787. tcp_disable_fack(tp);
  788. }
  789. tp->rack.reord = 1;
  790. /* This exciting event is worth to be remembered. 8) */
  791. if (ts)
  792. mib_idx = LINUX_MIB_TCPTSREORDER;
  793. else if (tcp_is_reno(tp))
  794. mib_idx = LINUX_MIB_TCPRENOREORDER;
  795. else if (tcp_is_fack(tp))
  796. mib_idx = LINUX_MIB_TCPFACKREORDER;
  797. else
  798. mib_idx = LINUX_MIB_TCPSACKREORDER;
  799. NET_INC_STATS(sock_net(sk), mib_idx);
  800. }
  801. /* This must be called before lost_out is incremented */
  802. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  803. {
  804. if (!tp->retransmit_skb_hint ||
  805. before(TCP_SKB_CB(skb)->seq,
  806. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  807. tp->retransmit_skb_hint = skb;
  808. }
  809. /* Sum the number of packets on the wire we have marked as lost.
  810. * There are two cases we care about here:
  811. * a) Packet hasn't been marked lost (nor retransmitted),
  812. * and this is the first loss.
  813. * b) Packet has been marked both lost and retransmitted,
  814. * and this means we think it was lost again.
  815. */
  816. static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
  817. {
  818. __u8 sacked = TCP_SKB_CB(skb)->sacked;
  819. if (!(sacked & TCPCB_LOST) ||
  820. ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
  821. tp->lost += tcp_skb_pcount(skb);
  822. }
  823. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  824. {
  825. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  826. tcp_verify_retransmit_hint(tp, skb);
  827. tp->lost_out += tcp_skb_pcount(skb);
  828. tcp_sum_lost(tp, skb);
  829. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  830. }
  831. }
  832. void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
  833. {
  834. tcp_verify_retransmit_hint(tp, skb);
  835. tcp_sum_lost(tp, skb);
  836. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  837. tp->lost_out += tcp_skb_pcount(skb);
  838. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  839. }
  840. }
  841. /* This procedure tags the retransmission queue when SACKs arrive.
  842. *
  843. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  844. * Packets in queue with these bits set are counted in variables
  845. * sacked_out, retrans_out and lost_out, correspondingly.
  846. *
  847. * Valid combinations are:
  848. * Tag InFlight Description
  849. * 0 1 - orig segment is in flight.
  850. * S 0 - nothing flies, orig reached receiver.
  851. * L 0 - nothing flies, orig lost by net.
  852. * R 2 - both orig and retransmit are in flight.
  853. * L|R 1 - orig is lost, retransmit is in flight.
  854. * S|R 1 - orig reached receiver, retrans is still in flight.
  855. * (L|S|R is logically valid, it could occur when L|R is sacked,
  856. * but it is equivalent to plain S and code short-curcuits it to S.
  857. * L|S is logically invalid, it would mean -1 packet in flight 8))
  858. *
  859. * These 6 states form finite state machine, controlled by the following events:
  860. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  861. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  862. * 3. Loss detection event of two flavors:
  863. * A. Scoreboard estimator decided the packet is lost.
  864. * A'. Reno "three dupacks" marks head of queue lost.
  865. * A''. Its FACK modification, head until snd.fack is lost.
  866. * B. SACK arrives sacking SND.NXT at the moment, when the
  867. * segment was retransmitted.
  868. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  869. *
  870. * It is pleasant to note, that state diagram turns out to be commutative,
  871. * so that we are allowed not to be bothered by order of our actions,
  872. * when multiple events arrive simultaneously. (see the function below).
  873. *
  874. * Reordering detection.
  875. * --------------------
  876. * Reordering metric is maximal distance, which a packet can be displaced
  877. * in packet stream. With SACKs we can estimate it:
  878. *
  879. * 1. SACK fills old hole and the corresponding segment was not
  880. * ever retransmitted -> reordering. Alas, we cannot use it
  881. * when segment was retransmitted.
  882. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  883. * for retransmitted and already SACKed segment -> reordering..
  884. * Both of these heuristics are not used in Loss state, when we cannot
  885. * account for retransmits accurately.
  886. *
  887. * SACK block validation.
  888. * ----------------------
  889. *
  890. * SACK block range validation checks that the received SACK block fits to
  891. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  892. * Note that SND.UNA is not included to the range though being valid because
  893. * it means that the receiver is rather inconsistent with itself reporting
  894. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  895. * perfectly valid, however, in light of RFC2018 which explicitly states
  896. * that "SACK block MUST reflect the newest segment. Even if the newest
  897. * segment is going to be discarded ...", not that it looks very clever
  898. * in case of head skb. Due to potentional receiver driven attacks, we
  899. * choose to avoid immediate execution of a walk in write queue due to
  900. * reneging and defer head skb's loss recovery to standard loss recovery
  901. * procedure that will eventually trigger (nothing forbids us doing this).
  902. *
  903. * Implements also blockage to start_seq wrap-around. Problem lies in the
  904. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  905. * there's no guarantee that it will be before snd_nxt (n). The problem
  906. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  907. * wrap (s_w):
  908. *
  909. * <- outs wnd -> <- wrapzone ->
  910. * u e n u_w e_w s n_w
  911. * | | | | | | |
  912. * |<------------+------+----- TCP seqno space --------------+---------->|
  913. * ...-- <2^31 ->| |<--------...
  914. * ...---- >2^31 ------>| |<--------...
  915. *
  916. * Current code wouldn't be vulnerable but it's better still to discard such
  917. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  918. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  919. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  920. * equal to the ideal case (infinite seqno space without wrap caused issues).
  921. *
  922. * With D-SACK the lower bound is extended to cover sequence space below
  923. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  924. * again, D-SACK block must not to go across snd_una (for the same reason as
  925. * for the normal SACK blocks, explained above). But there all simplicity
  926. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  927. * fully below undo_marker they do not affect behavior in anyway and can
  928. * therefore be safely ignored. In rare cases (which are more or less
  929. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  930. * fragmentation and packet reordering past skb's retransmission. To consider
  931. * them correctly, the acceptable range must be extended even more though
  932. * the exact amount is rather hard to quantify. However, tp->max_window can
  933. * be used as an exaggerated estimate.
  934. */
  935. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  936. u32 start_seq, u32 end_seq)
  937. {
  938. /* Too far in future, or reversed (interpretation is ambiguous) */
  939. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  940. return false;
  941. /* Nasty start_seq wrap-around check (see comments above) */
  942. if (!before(start_seq, tp->snd_nxt))
  943. return false;
  944. /* In outstanding window? ...This is valid exit for D-SACKs too.
  945. * start_seq == snd_una is non-sensical (see comments above)
  946. */
  947. if (after(start_seq, tp->snd_una))
  948. return true;
  949. if (!is_dsack || !tp->undo_marker)
  950. return false;
  951. /* ...Then it's D-SACK, and must reside below snd_una completely */
  952. if (after(end_seq, tp->snd_una))
  953. return false;
  954. if (!before(start_seq, tp->undo_marker))
  955. return true;
  956. /* Too old */
  957. if (!after(end_seq, tp->undo_marker))
  958. return false;
  959. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  960. * start_seq < undo_marker and end_seq >= undo_marker.
  961. */
  962. return !before(start_seq, end_seq - tp->max_window);
  963. }
  964. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  965. struct tcp_sack_block_wire *sp, int num_sacks,
  966. u32 prior_snd_una)
  967. {
  968. struct tcp_sock *tp = tcp_sk(sk);
  969. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  970. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  971. bool dup_sack = false;
  972. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  973. dup_sack = true;
  974. tcp_dsack_seen(tp);
  975. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  976. } else if (num_sacks > 1) {
  977. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  978. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  979. if (!after(end_seq_0, end_seq_1) &&
  980. !before(start_seq_0, start_seq_1)) {
  981. dup_sack = true;
  982. tcp_dsack_seen(tp);
  983. NET_INC_STATS(sock_net(sk),
  984. LINUX_MIB_TCPDSACKOFORECV);
  985. }
  986. }
  987. /* D-SACK for already forgotten data... Do dumb counting. */
  988. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  989. !after(end_seq_0, prior_snd_una) &&
  990. after(end_seq_0, tp->undo_marker))
  991. tp->undo_retrans--;
  992. return dup_sack;
  993. }
  994. struct tcp_sacktag_state {
  995. int reord;
  996. int fack_count;
  997. /* Timestamps for earliest and latest never-retransmitted segment
  998. * that was SACKed. RTO needs the earliest RTT to stay conservative,
  999. * but congestion control should still get an accurate delay signal.
  1000. */
  1001. u64 first_sackt;
  1002. u64 last_sackt;
  1003. struct rate_sample *rate;
  1004. int flag;
  1005. };
  1006. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1007. * the incoming SACK may not exactly match but we can find smaller MSS
  1008. * aligned portion of it that matches. Therefore we might need to fragment
  1009. * which may fail and creates some hassle (caller must handle error case
  1010. * returns).
  1011. *
  1012. * FIXME: this could be merged to shift decision code
  1013. */
  1014. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1015. u32 start_seq, u32 end_seq)
  1016. {
  1017. int err;
  1018. bool in_sack;
  1019. unsigned int pkt_len;
  1020. unsigned int mss;
  1021. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1022. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1023. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1024. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1025. mss = tcp_skb_mss(skb);
  1026. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1027. if (!in_sack) {
  1028. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1029. if (pkt_len < mss)
  1030. pkt_len = mss;
  1031. } else {
  1032. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1033. if (pkt_len < mss)
  1034. return -EINVAL;
  1035. }
  1036. /* Round if necessary so that SACKs cover only full MSSes
  1037. * and/or the remaining small portion (if present)
  1038. */
  1039. if (pkt_len > mss) {
  1040. unsigned int new_len = (pkt_len / mss) * mss;
  1041. if (!in_sack && new_len < pkt_len)
  1042. new_len += mss;
  1043. pkt_len = new_len;
  1044. }
  1045. if (pkt_len >= skb->len && !in_sack)
  1046. return 0;
  1047. err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
  1048. if (err < 0)
  1049. return err;
  1050. }
  1051. return in_sack;
  1052. }
  1053. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1054. static u8 tcp_sacktag_one(struct sock *sk,
  1055. struct tcp_sacktag_state *state, u8 sacked,
  1056. u32 start_seq, u32 end_seq,
  1057. int dup_sack, int pcount,
  1058. u64 xmit_time)
  1059. {
  1060. struct tcp_sock *tp = tcp_sk(sk);
  1061. int fack_count = state->fack_count;
  1062. /* Account D-SACK for retransmitted packet. */
  1063. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1064. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1065. after(end_seq, tp->undo_marker))
  1066. tp->undo_retrans--;
  1067. if (sacked & TCPCB_SACKED_ACKED)
  1068. state->reord = min(fack_count, state->reord);
  1069. }
  1070. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1071. if (!after(end_seq, tp->snd_una))
  1072. return sacked;
  1073. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1074. tcp_rack_advance(tp, sacked, end_seq, xmit_time);
  1075. if (sacked & TCPCB_SACKED_RETRANS) {
  1076. /* If the segment is not tagged as lost,
  1077. * we do not clear RETRANS, believing
  1078. * that retransmission is still in flight.
  1079. */
  1080. if (sacked & TCPCB_LOST) {
  1081. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1082. tp->lost_out -= pcount;
  1083. tp->retrans_out -= pcount;
  1084. }
  1085. } else {
  1086. if (!(sacked & TCPCB_RETRANS)) {
  1087. /* New sack for not retransmitted frame,
  1088. * which was in hole. It is reordering.
  1089. */
  1090. if (before(start_seq,
  1091. tcp_highest_sack_seq(tp)))
  1092. state->reord = min(fack_count,
  1093. state->reord);
  1094. if (!after(end_seq, tp->high_seq))
  1095. state->flag |= FLAG_ORIG_SACK_ACKED;
  1096. if (state->first_sackt == 0)
  1097. state->first_sackt = xmit_time;
  1098. state->last_sackt = xmit_time;
  1099. }
  1100. if (sacked & TCPCB_LOST) {
  1101. sacked &= ~TCPCB_LOST;
  1102. tp->lost_out -= pcount;
  1103. }
  1104. }
  1105. sacked |= TCPCB_SACKED_ACKED;
  1106. state->flag |= FLAG_DATA_SACKED;
  1107. tp->sacked_out += pcount;
  1108. tp->delivered += pcount; /* Out-of-order packets delivered */
  1109. fack_count += pcount;
  1110. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1111. if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
  1112. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1113. tp->lost_cnt_hint += pcount;
  1114. if (fack_count > tp->fackets_out)
  1115. tp->fackets_out = fack_count;
  1116. }
  1117. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1118. * frames and clear it. undo_retrans is decreased above, L|R frames
  1119. * are accounted above as well.
  1120. */
  1121. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1122. sacked &= ~TCPCB_SACKED_RETRANS;
  1123. tp->retrans_out -= pcount;
  1124. }
  1125. return sacked;
  1126. }
  1127. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1128. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1129. */
  1130. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1131. struct tcp_sacktag_state *state,
  1132. unsigned int pcount, int shifted, int mss,
  1133. bool dup_sack)
  1134. {
  1135. struct tcp_sock *tp = tcp_sk(sk);
  1136. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1137. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1138. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1139. BUG_ON(!pcount);
  1140. /* Adjust counters and hints for the newly sacked sequence
  1141. * range but discard the return value since prev is already
  1142. * marked. We must tag the range first because the seq
  1143. * advancement below implicitly advances
  1144. * tcp_highest_sack_seq() when skb is highest_sack.
  1145. */
  1146. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1147. start_seq, end_seq, dup_sack, pcount,
  1148. skb->skb_mstamp);
  1149. tcp_rate_skb_delivered(sk, skb, state->rate);
  1150. if (skb == tp->lost_skb_hint)
  1151. tp->lost_cnt_hint += pcount;
  1152. TCP_SKB_CB(prev)->end_seq += shifted;
  1153. TCP_SKB_CB(skb)->seq += shifted;
  1154. tcp_skb_pcount_add(prev, pcount);
  1155. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1156. tcp_skb_pcount_add(skb, -pcount);
  1157. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1158. * in theory this shouldn't be necessary but as long as DSACK
  1159. * code can come after this skb later on it's better to keep
  1160. * setting gso_size to something.
  1161. */
  1162. if (!TCP_SKB_CB(prev)->tcp_gso_size)
  1163. TCP_SKB_CB(prev)->tcp_gso_size = mss;
  1164. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1165. if (tcp_skb_pcount(skb) <= 1)
  1166. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1167. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1168. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1169. if (skb->len > 0) {
  1170. BUG_ON(!tcp_skb_pcount(skb));
  1171. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1172. return false;
  1173. }
  1174. /* Whole SKB was eaten :-) */
  1175. if (skb == tp->retransmit_skb_hint)
  1176. tp->retransmit_skb_hint = prev;
  1177. if (skb == tp->lost_skb_hint) {
  1178. tp->lost_skb_hint = prev;
  1179. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1180. }
  1181. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1182. TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
  1183. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1184. TCP_SKB_CB(prev)->end_seq++;
  1185. if (skb == tcp_highest_sack(sk))
  1186. tcp_advance_highest_sack(sk, skb);
  1187. tcp_skb_collapse_tstamp(prev, skb);
  1188. if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
  1189. TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
  1190. tcp_unlink_write_queue(skb, sk);
  1191. sk_wmem_free_skb(sk, skb);
  1192. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
  1193. return true;
  1194. }
  1195. /* I wish gso_size would have a bit more sane initialization than
  1196. * something-or-zero which complicates things
  1197. */
  1198. static int tcp_skb_seglen(const struct sk_buff *skb)
  1199. {
  1200. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1201. }
  1202. /* Shifting pages past head area doesn't work */
  1203. static int skb_can_shift(const struct sk_buff *skb)
  1204. {
  1205. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1206. }
  1207. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1208. * skb.
  1209. */
  1210. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1211. struct tcp_sacktag_state *state,
  1212. u32 start_seq, u32 end_seq,
  1213. bool dup_sack)
  1214. {
  1215. struct tcp_sock *tp = tcp_sk(sk);
  1216. struct sk_buff *prev;
  1217. int mss;
  1218. int pcount = 0;
  1219. int len;
  1220. int in_sack;
  1221. if (!sk_can_gso(sk))
  1222. goto fallback;
  1223. /* Normally R but no L won't result in plain S */
  1224. if (!dup_sack &&
  1225. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1226. goto fallback;
  1227. if (!skb_can_shift(skb))
  1228. goto fallback;
  1229. /* This frame is about to be dropped (was ACKed). */
  1230. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1231. goto fallback;
  1232. /* Can only happen with delayed DSACK + discard craziness */
  1233. if (unlikely(skb == tcp_write_queue_head(sk)))
  1234. goto fallback;
  1235. prev = tcp_write_queue_prev(sk, skb);
  1236. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1237. goto fallback;
  1238. if (!tcp_skb_can_collapse_to(prev))
  1239. goto fallback;
  1240. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1241. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1242. if (in_sack) {
  1243. len = skb->len;
  1244. pcount = tcp_skb_pcount(skb);
  1245. mss = tcp_skb_seglen(skb);
  1246. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1247. * drop this restriction as unnecessary
  1248. */
  1249. if (mss != tcp_skb_seglen(prev))
  1250. goto fallback;
  1251. } else {
  1252. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1253. goto noop;
  1254. /* CHECKME: This is non-MSS split case only?, this will
  1255. * cause skipped skbs due to advancing loop btw, original
  1256. * has that feature too
  1257. */
  1258. if (tcp_skb_pcount(skb) <= 1)
  1259. goto noop;
  1260. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1261. if (!in_sack) {
  1262. /* TODO: head merge to next could be attempted here
  1263. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1264. * though it might not be worth of the additional hassle
  1265. *
  1266. * ...we can probably just fallback to what was done
  1267. * previously. We could try merging non-SACKed ones
  1268. * as well but it probably isn't going to buy off
  1269. * because later SACKs might again split them, and
  1270. * it would make skb timestamp tracking considerably
  1271. * harder problem.
  1272. */
  1273. goto fallback;
  1274. }
  1275. len = end_seq - TCP_SKB_CB(skb)->seq;
  1276. BUG_ON(len < 0);
  1277. BUG_ON(len > skb->len);
  1278. /* MSS boundaries should be honoured or else pcount will
  1279. * severely break even though it makes things bit trickier.
  1280. * Optimize common case to avoid most of the divides
  1281. */
  1282. mss = tcp_skb_mss(skb);
  1283. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1284. * drop this restriction as unnecessary
  1285. */
  1286. if (mss != tcp_skb_seglen(prev))
  1287. goto fallback;
  1288. if (len == mss) {
  1289. pcount = 1;
  1290. } else if (len < mss) {
  1291. goto noop;
  1292. } else {
  1293. pcount = len / mss;
  1294. len = pcount * mss;
  1295. }
  1296. }
  1297. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1298. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1299. goto fallback;
  1300. if (!skb_shift(prev, skb, len))
  1301. goto fallback;
  1302. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1303. goto out;
  1304. /* Hole filled allows collapsing with the next as well, this is very
  1305. * useful when hole on every nth skb pattern happens
  1306. */
  1307. if (prev == tcp_write_queue_tail(sk))
  1308. goto out;
  1309. skb = tcp_write_queue_next(sk, prev);
  1310. if (!skb_can_shift(skb) ||
  1311. (skb == tcp_send_head(sk)) ||
  1312. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1313. (mss != tcp_skb_seglen(skb)))
  1314. goto out;
  1315. len = skb->len;
  1316. if (skb_shift(prev, skb, len)) {
  1317. pcount += tcp_skb_pcount(skb);
  1318. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1319. }
  1320. out:
  1321. state->fack_count += pcount;
  1322. return prev;
  1323. noop:
  1324. return skb;
  1325. fallback:
  1326. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1327. return NULL;
  1328. }
  1329. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1330. struct tcp_sack_block *next_dup,
  1331. struct tcp_sacktag_state *state,
  1332. u32 start_seq, u32 end_seq,
  1333. bool dup_sack_in)
  1334. {
  1335. struct tcp_sock *tp = tcp_sk(sk);
  1336. struct sk_buff *tmp;
  1337. tcp_for_write_queue_from(skb, sk) {
  1338. int in_sack = 0;
  1339. bool dup_sack = dup_sack_in;
  1340. if (skb == tcp_send_head(sk))
  1341. break;
  1342. /* queue is in-order => we can short-circuit the walk early */
  1343. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1344. break;
  1345. if (next_dup &&
  1346. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1347. in_sack = tcp_match_skb_to_sack(sk, skb,
  1348. next_dup->start_seq,
  1349. next_dup->end_seq);
  1350. if (in_sack > 0)
  1351. dup_sack = true;
  1352. }
  1353. /* skb reference here is a bit tricky to get right, since
  1354. * shifting can eat and free both this skb and the next,
  1355. * so not even _safe variant of the loop is enough.
  1356. */
  1357. if (in_sack <= 0) {
  1358. tmp = tcp_shift_skb_data(sk, skb, state,
  1359. start_seq, end_seq, dup_sack);
  1360. if (tmp) {
  1361. if (tmp != skb) {
  1362. skb = tmp;
  1363. continue;
  1364. }
  1365. in_sack = 0;
  1366. } else {
  1367. in_sack = tcp_match_skb_to_sack(sk, skb,
  1368. start_seq,
  1369. end_seq);
  1370. }
  1371. }
  1372. if (unlikely(in_sack < 0))
  1373. break;
  1374. if (in_sack) {
  1375. TCP_SKB_CB(skb)->sacked =
  1376. tcp_sacktag_one(sk,
  1377. state,
  1378. TCP_SKB_CB(skb)->sacked,
  1379. TCP_SKB_CB(skb)->seq,
  1380. TCP_SKB_CB(skb)->end_seq,
  1381. dup_sack,
  1382. tcp_skb_pcount(skb),
  1383. skb->skb_mstamp);
  1384. tcp_rate_skb_delivered(sk, skb, state->rate);
  1385. if (!before(TCP_SKB_CB(skb)->seq,
  1386. tcp_highest_sack_seq(tp)))
  1387. tcp_advance_highest_sack(sk, skb);
  1388. }
  1389. state->fack_count += tcp_skb_pcount(skb);
  1390. }
  1391. return skb;
  1392. }
  1393. /* Avoid all extra work that is being done by sacktag while walking in
  1394. * a normal way
  1395. */
  1396. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1397. struct tcp_sacktag_state *state,
  1398. u32 skip_to_seq)
  1399. {
  1400. tcp_for_write_queue_from(skb, sk) {
  1401. if (skb == tcp_send_head(sk))
  1402. break;
  1403. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1404. break;
  1405. state->fack_count += tcp_skb_pcount(skb);
  1406. }
  1407. return skb;
  1408. }
  1409. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1410. struct sock *sk,
  1411. struct tcp_sack_block *next_dup,
  1412. struct tcp_sacktag_state *state,
  1413. u32 skip_to_seq)
  1414. {
  1415. if (!next_dup)
  1416. return skb;
  1417. if (before(next_dup->start_seq, skip_to_seq)) {
  1418. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1419. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1420. next_dup->start_seq, next_dup->end_seq,
  1421. 1);
  1422. }
  1423. return skb;
  1424. }
  1425. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1426. {
  1427. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1428. }
  1429. static int
  1430. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1431. u32 prior_snd_una, struct tcp_sacktag_state *state)
  1432. {
  1433. struct tcp_sock *tp = tcp_sk(sk);
  1434. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1435. TCP_SKB_CB(ack_skb)->sacked);
  1436. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1437. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1438. struct tcp_sack_block *cache;
  1439. struct sk_buff *skb;
  1440. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1441. int used_sacks;
  1442. bool found_dup_sack = false;
  1443. int i, j;
  1444. int first_sack_index;
  1445. state->flag = 0;
  1446. state->reord = tp->packets_out;
  1447. if (!tp->sacked_out) {
  1448. if (WARN_ON(tp->fackets_out))
  1449. tp->fackets_out = 0;
  1450. tcp_highest_sack_reset(sk);
  1451. }
  1452. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1453. num_sacks, prior_snd_una);
  1454. if (found_dup_sack) {
  1455. state->flag |= FLAG_DSACKING_ACK;
  1456. tp->delivered++; /* A spurious retransmission is delivered */
  1457. }
  1458. /* Eliminate too old ACKs, but take into
  1459. * account more or less fresh ones, they can
  1460. * contain valid SACK info.
  1461. */
  1462. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1463. return 0;
  1464. if (!tp->packets_out)
  1465. goto out;
  1466. used_sacks = 0;
  1467. first_sack_index = 0;
  1468. for (i = 0; i < num_sacks; i++) {
  1469. bool dup_sack = !i && found_dup_sack;
  1470. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1471. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1472. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1473. sp[used_sacks].start_seq,
  1474. sp[used_sacks].end_seq)) {
  1475. int mib_idx;
  1476. if (dup_sack) {
  1477. if (!tp->undo_marker)
  1478. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1479. else
  1480. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1481. } else {
  1482. /* Don't count olds caused by ACK reordering */
  1483. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1484. !after(sp[used_sacks].end_seq, tp->snd_una))
  1485. continue;
  1486. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1487. }
  1488. NET_INC_STATS(sock_net(sk), mib_idx);
  1489. if (i == 0)
  1490. first_sack_index = -1;
  1491. continue;
  1492. }
  1493. /* Ignore very old stuff early */
  1494. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1495. continue;
  1496. used_sacks++;
  1497. }
  1498. /* order SACK blocks to allow in order walk of the retrans queue */
  1499. for (i = used_sacks - 1; i > 0; i--) {
  1500. for (j = 0; j < i; j++) {
  1501. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1502. swap(sp[j], sp[j + 1]);
  1503. /* Track where the first SACK block goes to */
  1504. if (j == first_sack_index)
  1505. first_sack_index = j + 1;
  1506. }
  1507. }
  1508. }
  1509. skb = tcp_write_queue_head(sk);
  1510. state->fack_count = 0;
  1511. i = 0;
  1512. if (!tp->sacked_out) {
  1513. /* It's already past, so skip checking against it */
  1514. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1515. } else {
  1516. cache = tp->recv_sack_cache;
  1517. /* Skip empty blocks in at head of the cache */
  1518. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1519. !cache->end_seq)
  1520. cache++;
  1521. }
  1522. while (i < used_sacks) {
  1523. u32 start_seq = sp[i].start_seq;
  1524. u32 end_seq = sp[i].end_seq;
  1525. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1526. struct tcp_sack_block *next_dup = NULL;
  1527. if (found_dup_sack && ((i + 1) == first_sack_index))
  1528. next_dup = &sp[i + 1];
  1529. /* Skip too early cached blocks */
  1530. while (tcp_sack_cache_ok(tp, cache) &&
  1531. !before(start_seq, cache->end_seq))
  1532. cache++;
  1533. /* Can skip some work by looking recv_sack_cache? */
  1534. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1535. after(end_seq, cache->start_seq)) {
  1536. /* Head todo? */
  1537. if (before(start_seq, cache->start_seq)) {
  1538. skb = tcp_sacktag_skip(skb, sk, state,
  1539. start_seq);
  1540. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1541. state,
  1542. start_seq,
  1543. cache->start_seq,
  1544. dup_sack);
  1545. }
  1546. /* Rest of the block already fully processed? */
  1547. if (!after(end_seq, cache->end_seq))
  1548. goto advance_sp;
  1549. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1550. state,
  1551. cache->end_seq);
  1552. /* ...tail remains todo... */
  1553. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1554. /* ...but better entrypoint exists! */
  1555. skb = tcp_highest_sack(sk);
  1556. if (!skb)
  1557. break;
  1558. state->fack_count = tp->fackets_out;
  1559. cache++;
  1560. goto walk;
  1561. }
  1562. skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
  1563. /* Check overlap against next cached too (past this one already) */
  1564. cache++;
  1565. continue;
  1566. }
  1567. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1568. skb = tcp_highest_sack(sk);
  1569. if (!skb)
  1570. break;
  1571. state->fack_count = tp->fackets_out;
  1572. }
  1573. skb = tcp_sacktag_skip(skb, sk, state, start_seq);
  1574. walk:
  1575. skb = tcp_sacktag_walk(skb, sk, next_dup, state,
  1576. start_seq, end_seq, dup_sack);
  1577. advance_sp:
  1578. i++;
  1579. }
  1580. /* Clear the head of the cache sack blocks so we can skip it next time */
  1581. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1582. tp->recv_sack_cache[i].start_seq = 0;
  1583. tp->recv_sack_cache[i].end_seq = 0;
  1584. }
  1585. for (j = 0; j < used_sacks; j++)
  1586. tp->recv_sack_cache[i++] = sp[j];
  1587. if ((state->reord < tp->fackets_out) &&
  1588. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1589. tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
  1590. tcp_verify_left_out(tp);
  1591. out:
  1592. #if FASTRETRANS_DEBUG > 0
  1593. WARN_ON((int)tp->sacked_out < 0);
  1594. WARN_ON((int)tp->lost_out < 0);
  1595. WARN_ON((int)tp->retrans_out < 0);
  1596. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1597. #endif
  1598. return state->flag;
  1599. }
  1600. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1601. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1602. */
  1603. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1604. {
  1605. u32 holes;
  1606. holes = max(tp->lost_out, 1U);
  1607. holes = min(holes, tp->packets_out);
  1608. if ((tp->sacked_out + holes) > tp->packets_out) {
  1609. tp->sacked_out = tp->packets_out - holes;
  1610. return true;
  1611. }
  1612. return false;
  1613. }
  1614. /* If we receive more dupacks than we expected counting segments
  1615. * in assumption of absent reordering, interpret this as reordering.
  1616. * The only another reason could be bug in receiver TCP.
  1617. */
  1618. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1619. {
  1620. struct tcp_sock *tp = tcp_sk(sk);
  1621. if (tcp_limit_reno_sacked(tp))
  1622. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1623. }
  1624. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1625. static void tcp_add_reno_sack(struct sock *sk)
  1626. {
  1627. struct tcp_sock *tp = tcp_sk(sk);
  1628. u32 prior_sacked = tp->sacked_out;
  1629. tp->sacked_out++;
  1630. tcp_check_reno_reordering(sk, 0);
  1631. if (tp->sacked_out > prior_sacked)
  1632. tp->delivered++; /* Some out-of-order packet is delivered */
  1633. tcp_verify_left_out(tp);
  1634. }
  1635. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1636. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1637. {
  1638. struct tcp_sock *tp = tcp_sk(sk);
  1639. if (acked > 0) {
  1640. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1641. tp->delivered += max_t(int, acked - tp->sacked_out, 1);
  1642. if (acked - 1 >= tp->sacked_out)
  1643. tp->sacked_out = 0;
  1644. else
  1645. tp->sacked_out -= acked - 1;
  1646. }
  1647. tcp_check_reno_reordering(sk, acked);
  1648. tcp_verify_left_out(tp);
  1649. }
  1650. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1651. {
  1652. tp->sacked_out = 0;
  1653. }
  1654. void tcp_clear_retrans(struct tcp_sock *tp)
  1655. {
  1656. tp->retrans_out = 0;
  1657. tp->lost_out = 0;
  1658. tp->undo_marker = 0;
  1659. tp->undo_retrans = -1;
  1660. tp->fackets_out = 0;
  1661. tp->sacked_out = 0;
  1662. }
  1663. static inline void tcp_init_undo(struct tcp_sock *tp)
  1664. {
  1665. tp->undo_marker = tp->snd_una;
  1666. /* Retransmission still in flight may cause DSACKs later. */
  1667. tp->undo_retrans = tp->retrans_out ? : -1;
  1668. }
  1669. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1670. * and reset tags completely, otherwise preserve SACKs. If receiver
  1671. * dropped its ofo queue, we will know this due to reneging detection.
  1672. */
  1673. void tcp_enter_loss(struct sock *sk)
  1674. {
  1675. const struct inet_connection_sock *icsk = inet_csk(sk);
  1676. struct tcp_sock *tp = tcp_sk(sk);
  1677. struct net *net = sock_net(sk);
  1678. struct sk_buff *skb;
  1679. bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
  1680. bool is_reneg; /* is receiver reneging on SACKs? */
  1681. bool mark_lost;
  1682. /* Reduce ssthresh if it has not yet been made inside this window. */
  1683. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1684. !after(tp->high_seq, tp->snd_una) ||
  1685. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1686. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1687. tp->prior_cwnd = tp->snd_cwnd;
  1688. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1689. tcp_ca_event(sk, CA_EVENT_LOSS);
  1690. tcp_init_undo(tp);
  1691. }
  1692. tp->snd_cwnd = 1;
  1693. tp->snd_cwnd_cnt = 0;
  1694. tp->snd_cwnd_stamp = tcp_jiffies32;
  1695. tp->retrans_out = 0;
  1696. tp->lost_out = 0;
  1697. if (tcp_is_reno(tp))
  1698. tcp_reset_reno_sack(tp);
  1699. skb = tcp_write_queue_head(sk);
  1700. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1701. if (is_reneg) {
  1702. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1703. tp->sacked_out = 0;
  1704. tp->fackets_out = 0;
  1705. }
  1706. tcp_clear_all_retrans_hints(tp);
  1707. tcp_for_write_queue(skb, sk) {
  1708. if (skb == tcp_send_head(sk))
  1709. break;
  1710. mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1711. is_reneg);
  1712. if (mark_lost)
  1713. tcp_sum_lost(tp, skb);
  1714. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1715. if (mark_lost) {
  1716. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1717. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1718. tp->lost_out += tcp_skb_pcount(skb);
  1719. }
  1720. }
  1721. tcp_verify_left_out(tp);
  1722. /* Timeout in disordered state after receiving substantial DUPACKs
  1723. * suggests that the degree of reordering is over-estimated.
  1724. */
  1725. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1726. tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
  1727. tp->reordering = min_t(unsigned int, tp->reordering,
  1728. net->ipv4.sysctl_tcp_reordering);
  1729. tcp_set_ca_state(sk, TCP_CA_Loss);
  1730. tp->high_seq = tp->snd_nxt;
  1731. tcp_ecn_queue_cwr(tp);
  1732. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1733. * loss recovery is underway except recurring timeout(s) on
  1734. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1735. *
  1736. * In theory F-RTO can be used repeatedly during loss recovery.
  1737. * In practice this interacts badly with broken middle-boxes that
  1738. * falsely raise the receive window, which results in repeated
  1739. * timeouts and stop-and-go behavior.
  1740. */
  1741. tp->frto = sysctl_tcp_frto &&
  1742. (new_recovery || icsk->icsk_retransmits) &&
  1743. !inet_csk(sk)->icsk_mtup.probe_size;
  1744. }
  1745. /* If ACK arrived pointing to a remembered SACK, it means that our
  1746. * remembered SACKs do not reflect real state of receiver i.e.
  1747. * receiver _host_ is heavily congested (or buggy).
  1748. *
  1749. * To avoid big spurious retransmission bursts due to transient SACK
  1750. * scoreboard oddities that look like reneging, we give the receiver a
  1751. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1752. * restore sanity to the SACK scoreboard. If the apparent reneging
  1753. * persists until this RTO then we'll clear the SACK scoreboard.
  1754. */
  1755. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1756. {
  1757. if (flag & FLAG_SACK_RENEGING) {
  1758. struct tcp_sock *tp = tcp_sk(sk);
  1759. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1760. msecs_to_jiffies(10));
  1761. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1762. delay, TCP_RTO_MAX);
  1763. return true;
  1764. }
  1765. return false;
  1766. }
  1767. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1768. {
  1769. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1770. }
  1771. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1772. * counter when SACK is enabled (without SACK, sacked_out is used for
  1773. * that purpose).
  1774. *
  1775. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1776. * segments up to the highest received SACK block so far and holes in
  1777. * between them.
  1778. *
  1779. * With reordering, holes may still be in flight, so RFC3517 recovery
  1780. * uses pure sacked_out (total number of SACKed segments) even though
  1781. * it violates the RFC that uses duplicate ACKs, often these are equal
  1782. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1783. * they differ. Since neither occurs due to loss, TCP should really
  1784. * ignore them.
  1785. */
  1786. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1787. {
  1788. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1789. }
  1790. /* Linux NewReno/SACK/FACK/ECN state machine.
  1791. * --------------------------------------
  1792. *
  1793. * "Open" Normal state, no dubious events, fast path.
  1794. * "Disorder" In all the respects it is "Open",
  1795. * but requires a bit more attention. It is entered when
  1796. * we see some SACKs or dupacks. It is split of "Open"
  1797. * mainly to move some processing from fast path to slow one.
  1798. * "CWR" CWND was reduced due to some Congestion Notification event.
  1799. * It can be ECN, ICMP source quench, local device congestion.
  1800. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1801. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1802. *
  1803. * tcp_fastretrans_alert() is entered:
  1804. * - each incoming ACK, if state is not "Open"
  1805. * - when arrived ACK is unusual, namely:
  1806. * * SACK
  1807. * * Duplicate ACK.
  1808. * * ECN ECE.
  1809. *
  1810. * Counting packets in flight is pretty simple.
  1811. *
  1812. * in_flight = packets_out - left_out + retrans_out
  1813. *
  1814. * packets_out is SND.NXT-SND.UNA counted in packets.
  1815. *
  1816. * retrans_out is number of retransmitted segments.
  1817. *
  1818. * left_out is number of segments left network, but not ACKed yet.
  1819. *
  1820. * left_out = sacked_out + lost_out
  1821. *
  1822. * sacked_out: Packets, which arrived to receiver out of order
  1823. * and hence not ACKed. With SACKs this number is simply
  1824. * amount of SACKed data. Even without SACKs
  1825. * it is easy to give pretty reliable estimate of this number,
  1826. * counting duplicate ACKs.
  1827. *
  1828. * lost_out: Packets lost by network. TCP has no explicit
  1829. * "loss notification" feedback from network (for now).
  1830. * It means that this number can be only _guessed_.
  1831. * Actually, it is the heuristics to predict lossage that
  1832. * distinguishes different algorithms.
  1833. *
  1834. * F.e. after RTO, when all the queue is considered as lost,
  1835. * lost_out = packets_out and in_flight = retrans_out.
  1836. *
  1837. * Essentially, we have now a few algorithms detecting
  1838. * lost packets.
  1839. *
  1840. * If the receiver supports SACK:
  1841. *
  1842. * RFC6675/3517: It is the conventional algorithm. A packet is
  1843. * considered lost if the number of higher sequence packets
  1844. * SACKed is greater than or equal the DUPACK thoreshold
  1845. * (reordering). This is implemented in tcp_mark_head_lost and
  1846. * tcp_update_scoreboard.
  1847. *
  1848. * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
  1849. * (2017-) that checks timing instead of counting DUPACKs.
  1850. * Essentially a packet is considered lost if it's not S/ACKed
  1851. * after RTT + reordering_window, where both metrics are
  1852. * dynamically measured and adjusted. This is implemented in
  1853. * tcp_rack_mark_lost.
  1854. *
  1855. * FACK (Disabled by default. Subsumbed by RACK):
  1856. * It is the simplest heuristics. As soon as we decided
  1857. * that something is lost, we decide that _all_ not SACKed
  1858. * packets until the most forward SACK are lost. I.e.
  1859. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1860. * It is absolutely correct estimate, if network does not reorder
  1861. * packets. And it loses any connection to reality when reordering
  1862. * takes place. We use FACK by default until reordering
  1863. * is suspected on the path to this destination.
  1864. *
  1865. * If the receiver does not support SACK:
  1866. *
  1867. * NewReno (RFC6582): in Recovery we assume that one segment
  1868. * is lost (classic Reno). While we are in Recovery and
  1869. * a partial ACK arrives, we assume that one more packet
  1870. * is lost (NewReno). This heuristics are the same in NewReno
  1871. * and SACK.
  1872. *
  1873. * Really tricky (and requiring careful tuning) part of algorithm
  1874. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1875. * The first determines the moment _when_ we should reduce CWND and,
  1876. * hence, slow down forward transmission. In fact, it determines the moment
  1877. * when we decide that hole is caused by loss, rather than by a reorder.
  1878. *
  1879. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1880. * holes, caused by lost packets.
  1881. *
  1882. * And the most logically complicated part of algorithm is undo
  1883. * heuristics. We detect false retransmits due to both too early
  1884. * fast retransmit (reordering) and underestimated RTO, analyzing
  1885. * timestamps and D-SACKs. When we detect that some segments were
  1886. * retransmitted by mistake and CWND reduction was wrong, we undo
  1887. * window reduction and abort recovery phase. This logic is hidden
  1888. * inside several functions named tcp_try_undo_<something>.
  1889. */
  1890. /* This function decides, when we should leave Disordered state
  1891. * and enter Recovery phase, reducing congestion window.
  1892. *
  1893. * Main question: may we further continue forward transmission
  1894. * with the same cwnd?
  1895. */
  1896. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1897. {
  1898. struct tcp_sock *tp = tcp_sk(sk);
  1899. /* Trick#1: The loss is proven. */
  1900. if (tp->lost_out)
  1901. return true;
  1902. /* Not-A-Trick#2 : Classic rule... */
  1903. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1904. return true;
  1905. return false;
  1906. }
  1907. /* Detect loss in event "A" above by marking head of queue up as lost.
  1908. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1909. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1910. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1911. * the maximum SACKed segments to pass before reaching this limit.
  1912. */
  1913. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1914. {
  1915. struct tcp_sock *tp = tcp_sk(sk);
  1916. struct sk_buff *skb;
  1917. int cnt, oldcnt, lost;
  1918. unsigned int mss;
  1919. /* Use SACK to deduce losses of new sequences sent during recovery */
  1920. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1921. WARN_ON(packets > tp->packets_out);
  1922. if (tp->lost_skb_hint) {
  1923. skb = tp->lost_skb_hint;
  1924. cnt = tp->lost_cnt_hint;
  1925. /* Head already handled? */
  1926. if (mark_head && skb != tcp_write_queue_head(sk))
  1927. return;
  1928. } else {
  1929. skb = tcp_write_queue_head(sk);
  1930. cnt = 0;
  1931. }
  1932. tcp_for_write_queue_from(skb, sk) {
  1933. if (skb == tcp_send_head(sk))
  1934. break;
  1935. /* TODO: do this better */
  1936. /* this is not the most efficient way to do this... */
  1937. tp->lost_skb_hint = skb;
  1938. tp->lost_cnt_hint = cnt;
  1939. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1940. break;
  1941. oldcnt = cnt;
  1942. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1943. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1944. cnt += tcp_skb_pcount(skb);
  1945. if (cnt > packets) {
  1946. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1947. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1948. (oldcnt >= packets))
  1949. break;
  1950. mss = tcp_skb_mss(skb);
  1951. /* If needed, chop off the prefix to mark as lost. */
  1952. lost = (packets - oldcnt) * mss;
  1953. if (lost < skb->len &&
  1954. tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
  1955. break;
  1956. cnt = packets;
  1957. }
  1958. tcp_skb_mark_lost(tp, skb);
  1959. if (mark_head)
  1960. break;
  1961. }
  1962. tcp_verify_left_out(tp);
  1963. }
  1964. /* Account newly detected lost packet(s) */
  1965. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1966. {
  1967. struct tcp_sock *tp = tcp_sk(sk);
  1968. if (tcp_is_reno(tp)) {
  1969. tcp_mark_head_lost(sk, 1, 1);
  1970. } else if (tcp_is_fack(tp)) {
  1971. int lost = tp->fackets_out - tp->reordering;
  1972. if (lost <= 0)
  1973. lost = 1;
  1974. tcp_mark_head_lost(sk, lost, 0);
  1975. } else {
  1976. int sacked_upto = tp->sacked_out - tp->reordering;
  1977. if (sacked_upto >= 0)
  1978. tcp_mark_head_lost(sk, sacked_upto, 0);
  1979. else if (fast_rexmit)
  1980. tcp_mark_head_lost(sk, 1, 1);
  1981. }
  1982. }
  1983. static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
  1984. {
  1985. return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1986. before(tp->rx_opt.rcv_tsecr, when);
  1987. }
  1988. /* skb is spurious retransmitted if the returned timestamp echo
  1989. * reply is prior to the skb transmission time
  1990. */
  1991. static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
  1992. const struct sk_buff *skb)
  1993. {
  1994. return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
  1995. tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
  1996. }
  1997. /* Nothing was retransmitted or returned timestamp is less
  1998. * than timestamp of the first retransmission.
  1999. */
  2000. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  2001. {
  2002. return !tp->retrans_stamp ||
  2003. tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
  2004. }
  2005. /* Undo procedures. */
  2006. /* We can clear retrans_stamp when there are no retransmissions in the
  2007. * window. It would seem that it is trivially available for us in
  2008. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2009. * what will happen if errors occur when sending retransmission for the
  2010. * second time. ...It could the that such segment has only
  2011. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2012. * the head skb is enough except for some reneging corner cases that
  2013. * are not worth the effort.
  2014. *
  2015. * Main reason for all this complexity is the fact that connection dying
  2016. * time now depends on the validity of the retrans_stamp, in particular,
  2017. * that successive retransmissions of a segment must not advance
  2018. * retrans_stamp under any conditions.
  2019. */
  2020. static bool tcp_any_retrans_done(const struct sock *sk)
  2021. {
  2022. const struct tcp_sock *tp = tcp_sk(sk);
  2023. struct sk_buff *skb;
  2024. if (tp->retrans_out)
  2025. return true;
  2026. skb = tcp_write_queue_head(sk);
  2027. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2028. return true;
  2029. return false;
  2030. }
  2031. #if FASTRETRANS_DEBUG > 1
  2032. static void DBGUNDO(struct sock *sk, const char *msg)
  2033. {
  2034. struct tcp_sock *tp = tcp_sk(sk);
  2035. struct inet_sock *inet = inet_sk(sk);
  2036. if (sk->sk_family == AF_INET) {
  2037. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2038. msg,
  2039. &inet->inet_daddr, ntohs(inet->inet_dport),
  2040. tp->snd_cwnd, tcp_left_out(tp),
  2041. tp->snd_ssthresh, tp->prior_ssthresh,
  2042. tp->packets_out);
  2043. }
  2044. #if IS_ENABLED(CONFIG_IPV6)
  2045. else if (sk->sk_family == AF_INET6) {
  2046. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2047. msg,
  2048. &sk->sk_v6_daddr, ntohs(inet->inet_dport),
  2049. tp->snd_cwnd, tcp_left_out(tp),
  2050. tp->snd_ssthresh, tp->prior_ssthresh,
  2051. tp->packets_out);
  2052. }
  2053. #endif
  2054. }
  2055. #else
  2056. #define DBGUNDO(x...) do { } while (0)
  2057. #endif
  2058. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2059. {
  2060. struct tcp_sock *tp = tcp_sk(sk);
  2061. if (unmark_loss) {
  2062. struct sk_buff *skb;
  2063. tcp_for_write_queue(skb, sk) {
  2064. if (skb == tcp_send_head(sk))
  2065. break;
  2066. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2067. }
  2068. tp->lost_out = 0;
  2069. tcp_clear_all_retrans_hints(tp);
  2070. }
  2071. if (tp->prior_ssthresh) {
  2072. const struct inet_connection_sock *icsk = inet_csk(sk);
  2073. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2074. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2075. tp->snd_ssthresh = tp->prior_ssthresh;
  2076. tcp_ecn_withdraw_cwr(tp);
  2077. }
  2078. }
  2079. tp->snd_cwnd_stamp = tcp_jiffies32;
  2080. tp->undo_marker = 0;
  2081. }
  2082. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2083. {
  2084. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2085. }
  2086. /* People celebrate: "We love our President!" */
  2087. static bool tcp_try_undo_recovery(struct sock *sk)
  2088. {
  2089. struct tcp_sock *tp = tcp_sk(sk);
  2090. if (tcp_may_undo(tp)) {
  2091. int mib_idx;
  2092. /* Happy end! We did not retransmit anything
  2093. * or our original transmission succeeded.
  2094. */
  2095. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2096. tcp_undo_cwnd_reduction(sk, false);
  2097. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2098. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2099. else
  2100. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2101. NET_INC_STATS(sock_net(sk), mib_idx);
  2102. }
  2103. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2104. /* Hold old state until something *above* high_seq
  2105. * is ACKed. For Reno it is MUST to prevent false
  2106. * fast retransmits (RFC2582). SACK TCP is safe. */
  2107. if (!tcp_any_retrans_done(sk))
  2108. tp->retrans_stamp = 0;
  2109. return true;
  2110. }
  2111. tcp_set_ca_state(sk, TCP_CA_Open);
  2112. return false;
  2113. }
  2114. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2115. static bool tcp_try_undo_dsack(struct sock *sk)
  2116. {
  2117. struct tcp_sock *tp = tcp_sk(sk);
  2118. if (tp->undo_marker && !tp->undo_retrans) {
  2119. DBGUNDO(sk, "D-SACK");
  2120. tcp_undo_cwnd_reduction(sk, false);
  2121. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2122. return true;
  2123. }
  2124. return false;
  2125. }
  2126. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2127. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2128. {
  2129. struct tcp_sock *tp = tcp_sk(sk);
  2130. if (frto_undo || tcp_may_undo(tp)) {
  2131. tcp_undo_cwnd_reduction(sk, true);
  2132. DBGUNDO(sk, "partial loss");
  2133. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2134. if (frto_undo)
  2135. NET_INC_STATS(sock_net(sk),
  2136. LINUX_MIB_TCPSPURIOUSRTOS);
  2137. inet_csk(sk)->icsk_retransmits = 0;
  2138. if (frto_undo || tcp_is_sack(tp))
  2139. tcp_set_ca_state(sk, TCP_CA_Open);
  2140. return true;
  2141. }
  2142. return false;
  2143. }
  2144. /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
  2145. * It computes the number of packets to send (sndcnt) based on packets newly
  2146. * delivered:
  2147. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2148. * cwnd reductions across a full RTT.
  2149. * 2) Otherwise PRR uses packet conservation to send as much as delivered.
  2150. * But when the retransmits are acked without further losses, PRR
  2151. * slow starts cwnd up to ssthresh to speed up the recovery.
  2152. */
  2153. static void tcp_init_cwnd_reduction(struct sock *sk)
  2154. {
  2155. struct tcp_sock *tp = tcp_sk(sk);
  2156. tp->high_seq = tp->snd_nxt;
  2157. tp->tlp_high_seq = 0;
  2158. tp->snd_cwnd_cnt = 0;
  2159. tp->prior_cwnd = tp->snd_cwnd;
  2160. tp->prr_delivered = 0;
  2161. tp->prr_out = 0;
  2162. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2163. tcp_ecn_queue_cwr(tp);
  2164. }
  2165. void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
  2166. {
  2167. struct tcp_sock *tp = tcp_sk(sk);
  2168. int sndcnt = 0;
  2169. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2170. if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
  2171. return;
  2172. tp->prr_delivered += newly_acked_sacked;
  2173. if (delta < 0) {
  2174. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2175. tp->prior_cwnd - 1;
  2176. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2177. } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
  2178. !(flag & FLAG_LOST_RETRANS)) {
  2179. sndcnt = min_t(int, delta,
  2180. max_t(int, tp->prr_delivered - tp->prr_out,
  2181. newly_acked_sacked) + 1);
  2182. } else {
  2183. sndcnt = min(delta, newly_acked_sacked);
  2184. }
  2185. /* Force a fast retransmit upon entering fast recovery */
  2186. sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
  2187. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2188. }
  2189. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2190. {
  2191. struct tcp_sock *tp = tcp_sk(sk);
  2192. if (inet_csk(sk)->icsk_ca_ops->cong_control)
  2193. return;
  2194. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2195. if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
  2196. (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
  2197. tp->snd_cwnd = tp->snd_ssthresh;
  2198. tp->snd_cwnd_stamp = tcp_jiffies32;
  2199. }
  2200. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2201. }
  2202. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2203. void tcp_enter_cwr(struct sock *sk)
  2204. {
  2205. struct tcp_sock *tp = tcp_sk(sk);
  2206. tp->prior_ssthresh = 0;
  2207. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2208. tp->undo_marker = 0;
  2209. tcp_init_cwnd_reduction(sk);
  2210. tcp_set_ca_state(sk, TCP_CA_CWR);
  2211. }
  2212. }
  2213. EXPORT_SYMBOL(tcp_enter_cwr);
  2214. static void tcp_try_keep_open(struct sock *sk)
  2215. {
  2216. struct tcp_sock *tp = tcp_sk(sk);
  2217. int state = TCP_CA_Open;
  2218. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2219. state = TCP_CA_Disorder;
  2220. if (inet_csk(sk)->icsk_ca_state != state) {
  2221. tcp_set_ca_state(sk, state);
  2222. tp->high_seq = tp->snd_nxt;
  2223. }
  2224. }
  2225. static void tcp_try_to_open(struct sock *sk, int flag)
  2226. {
  2227. struct tcp_sock *tp = tcp_sk(sk);
  2228. tcp_verify_left_out(tp);
  2229. if (!tcp_any_retrans_done(sk))
  2230. tp->retrans_stamp = 0;
  2231. if (flag & FLAG_ECE)
  2232. tcp_enter_cwr(sk);
  2233. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2234. tcp_try_keep_open(sk);
  2235. }
  2236. }
  2237. static void tcp_mtup_probe_failed(struct sock *sk)
  2238. {
  2239. struct inet_connection_sock *icsk = inet_csk(sk);
  2240. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2241. icsk->icsk_mtup.probe_size = 0;
  2242. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
  2243. }
  2244. static void tcp_mtup_probe_success(struct sock *sk)
  2245. {
  2246. struct tcp_sock *tp = tcp_sk(sk);
  2247. struct inet_connection_sock *icsk = inet_csk(sk);
  2248. /* FIXME: breaks with very large cwnd */
  2249. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2250. tp->snd_cwnd = tp->snd_cwnd *
  2251. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2252. icsk->icsk_mtup.probe_size;
  2253. tp->snd_cwnd_cnt = 0;
  2254. tp->snd_cwnd_stamp = tcp_jiffies32;
  2255. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2256. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2257. icsk->icsk_mtup.probe_size = 0;
  2258. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2259. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
  2260. }
  2261. /* Do a simple retransmit without using the backoff mechanisms in
  2262. * tcp_timer. This is used for path mtu discovery.
  2263. * The socket is already locked here.
  2264. */
  2265. void tcp_simple_retransmit(struct sock *sk)
  2266. {
  2267. const struct inet_connection_sock *icsk = inet_csk(sk);
  2268. struct tcp_sock *tp = tcp_sk(sk);
  2269. struct sk_buff *skb;
  2270. unsigned int mss = tcp_current_mss(sk);
  2271. u32 prior_lost = tp->lost_out;
  2272. tcp_for_write_queue(skb, sk) {
  2273. if (skb == tcp_send_head(sk))
  2274. break;
  2275. if (tcp_skb_seglen(skb) > mss &&
  2276. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2277. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2278. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2279. tp->retrans_out -= tcp_skb_pcount(skb);
  2280. }
  2281. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2282. }
  2283. }
  2284. tcp_clear_retrans_hints_partial(tp);
  2285. if (prior_lost == tp->lost_out)
  2286. return;
  2287. if (tcp_is_reno(tp))
  2288. tcp_limit_reno_sacked(tp);
  2289. tcp_verify_left_out(tp);
  2290. /* Don't muck with the congestion window here.
  2291. * Reason is that we do not increase amount of _data_
  2292. * in network, but units changed and effective
  2293. * cwnd/ssthresh really reduced now.
  2294. */
  2295. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2296. tp->high_seq = tp->snd_nxt;
  2297. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2298. tp->prior_ssthresh = 0;
  2299. tp->undo_marker = 0;
  2300. tcp_set_ca_state(sk, TCP_CA_Loss);
  2301. }
  2302. tcp_xmit_retransmit_queue(sk);
  2303. }
  2304. EXPORT_SYMBOL(tcp_simple_retransmit);
  2305. void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2306. {
  2307. struct tcp_sock *tp = tcp_sk(sk);
  2308. int mib_idx;
  2309. if (tcp_is_reno(tp))
  2310. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2311. else
  2312. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2313. NET_INC_STATS(sock_net(sk), mib_idx);
  2314. tp->prior_ssthresh = 0;
  2315. tcp_init_undo(tp);
  2316. if (!tcp_in_cwnd_reduction(sk)) {
  2317. if (!ece_ack)
  2318. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2319. tcp_init_cwnd_reduction(sk);
  2320. }
  2321. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2322. }
  2323. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2324. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2325. */
  2326. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
  2327. int *rexmit)
  2328. {
  2329. struct tcp_sock *tp = tcp_sk(sk);
  2330. bool recovered = !before(tp->snd_una, tp->high_seq);
  2331. if ((flag & FLAG_SND_UNA_ADVANCED) &&
  2332. tcp_try_undo_loss(sk, false))
  2333. return;
  2334. /* The ACK (s)acks some never-retransmitted data meaning not all
  2335. * the data packets before the timeout were lost. Therefore we
  2336. * undo the congestion window and state. This is essentially
  2337. * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
  2338. * a retransmitted skb is permantly marked, we can apply such an
  2339. * operation even if F-RTO was not used.
  2340. */
  2341. if ((flag & FLAG_ORIG_SACK_ACKED) &&
  2342. tcp_try_undo_loss(sk, tp->undo_marker))
  2343. return;
  2344. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2345. if (after(tp->snd_nxt, tp->high_seq)) {
  2346. if (flag & FLAG_DATA_SACKED || is_dupack)
  2347. tp->frto = 0; /* Step 3.a. loss was real */
  2348. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2349. tp->high_seq = tp->snd_nxt;
  2350. /* Step 2.b. Try send new data (but deferred until cwnd
  2351. * is updated in tcp_ack()). Otherwise fall back to
  2352. * the conventional recovery.
  2353. */
  2354. if (tcp_send_head(sk) &&
  2355. after(tcp_wnd_end(tp), tp->snd_nxt)) {
  2356. *rexmit = REXMIT_NEW;
  2357. return;
  2358. }
  2359. tp->frto = 0;
  2360. }
  2361. }
  2362. if (recovered) {
  2363. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2364. tcp_try_undo_recovery(sk);
  2365. return;
  2366. }
  2367. if (tcp_is_reno(tp)) {
  2368. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2369. * delivered. Lower inflight to clock out (re)tranmissions.
  2370. */
  2371. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2372. tcp_add_reno_sack(sk);
  2373. else if (flag & FLAG_SND_UNA_ADVANCED)
  2374. tcp_reset_reno_sack(tp);
  2375. }
  2376. *rexmit = REXMIT_LOST;
  2377. }
  2378. /* Undo during fast recovery after partial ACK. */
  2379. static bool tcp_try_undo_partial(struct sock *sk, const int acked)
  2380. {
  2381. struct tcp_sock *tp = tcp_sk(sk);
  2382. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2383. /* Plain luck! Hole if filled with delayed
  2384. * packet, rather than with a retransmit.
  2385. */
  2386. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2387. /* We are getting evidence that the reordering degree is higher
  2388. * than we realized. If there are no retransmits out then we
  2389. * can undo. Otherwise we clock out new packets but do not
  2390. * mark more packets lost or retransmit more.
  2391. */
  2392. if (tp->retrans_out)
  2393. return true;
  2394. if (!tcp_any_retrans_done(sk))
  2395. tp->retrans_stamp = 0;
  2396. DBGUNDO(sk, "partial recovery");
  2397. tcp_undo_cwnd_reduction(sk, true);
  2398. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2399. tcp_try_keep_open(sk);
  2400. return true;
  2401. }
  2402. return false;
  2403. }
  2404. static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
  2405. {
  2406. struct tcp_sock *tp = tcp_sk(sk);
  2407. /* Use RACK to detect loss */
  2408. if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
  2409. u32 prior_retrans = tp->retrans_out;
  2410. tcp_rack_mark_lost(sk);
  2411. if (prior_retrans > tp->retrans_out)
  2412. *ack_flag |= FLAG_LOST_RETRANS;
  2413. }
  2414. }
  2415. /* Process an event, which can update packets-in-flight not trivially.
  2416. * Main goal of this function is to calculate new estimate for left_out,
  2417. * taking into account both packets sitting in receiver's buffer and
  2418. * packets lost by network.
  2419. *
  2420. * Besides that it updates the congestion state when packet loss or ECN
  2421. * is detected. But it does not reduce the cwnd, it is done by the
  2422. * congestion control later.
  2423. *
  2424. * It does _not_ decide what to send, it is made in function
  2425. * tcp_xmit_retransmit_queue().
  2426. */
  2427. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2428. bool is_dupack, int *ack_flag, int *rexmit)
  2429. {
  2430. struct inet_connection_sock *icsk = inet_csk(sk);
  2431. struct tcp_sock *tp = tcp_sk(sk);
  2432. int fast_rexmit = 0, flag = *ack_flag;
  2433. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2434. (tcp_fackets_out(tp) > tp->reordering));
  2435. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2436. tp->sacked_out = 0;
  2437. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2438. tp->fackets_out = 0;
  2439. /* Now state machine starts.
  2440. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2441. if (flag & FLAG_ECE)
  2442. tp->prior_ssthresh = 0;
  2443. /* B. In all the states check for reneging SACKs. */
  2444. if (tcp_check_sack_reneging(sk, flag))
  2445. return;
  2446. /* C. Check consistency of the current state. */
  2447. tcp_verify_left_out(tp);
  2448. /* D. Check state exit conditions. State can be terminated
  2449. * when high_seq is ACKed. */
  2450. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2451. WARN_ON(tp->retrans_out != 0);
  2452. tp->retrans_stamp = 0;
  2453. } else if (!before(tp->snd_una, tp->high_seq)) {
  2454. switch (icsk->icsk_ca_state) {
  2455. case TCP_CA_CWR:
  2456. /* CWR is to be held something *above* high_seq
  2457. * is ACKed for CWR bit to reach receiver. */
  2458. if (tp->snd_una != tp->high_seq) {
  2459. tcp_end_cwnd_reduction(sk);
  2460. tcp_set_ca_state(sk, TCP_CA_Open);
  2461. }
  2462. break;
  2463. case TCP_CA_Recovery:
  2464. if (tcp_is_reno(tp))
  2465. tcp_reset_reno_sack(tp);
  2466. if (tcp_try_undo_recovery(sk))
  2467. return;
  2468. tcp_end_cwnd_reduction(sk);
  2469. break;
  2470. }
  2471. }
  2472. /* E. Process state. */
  2473. switch (icsk->icsk_ca_state) {
  2474. case TCP_CA_Recovery:
  2475. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2476. if (tcp_is_reno(tp) && is_dupack)
  2477. tcp_add_reno_sack(sk);
  2478. } else {
  2479. if (tcp_try_undo_partial(sk, acked))
  2480. return;
  2481. /* Partial ACK arrived. Force fast retransmit. */
  2482. do_lost = tcp_is_reno(tp) ||
  2483. tcp_fackets_out(tp) > tp->reordering;
  2484. }
  2485. if (tcp_try_undo_dsack(sk)) {
  2486. tcp_try_keep_open(sk);
  2487. return;
  2488. }
  2489. tcp_rack_identify_loss(sk, ack_flag);
  2490. break;
  2491. case TCP_CA_Loss:
  2492. tcp_process_loss(sk, flag, is_dupack, rexmit);
  2493. tcp_rack_identify_loss(sk, ack_flag);
  2494. if (!(icsk->icsk_ca_state == TCP_CA_Open ||
  2495. (*ack_flag & FLAG_LOST_RETRANS)))
  2496. return;
  2497. /* Change state if cwnd is undone or retransmits are lost */
  2498. default:
  2499. if (tcp_is_reno(tp)) {
  2500. if (flag & FLAG_SND_UNA_ADVANCED)
  2501. tcp_reset_reno_sack(tp);
  2502. if (is_dupack)
  2503. tcp_add_reno_sack(sk);
  2504. }
  2505. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2506. tcp_try_undo_dsack(sk);
  2507. tcp_rack_identify_loss(sk, ack_flag);
  2508. if (!tcp_time_to_recover(sk, flag)) {
  2509. tcp_try_to_open(sk, flag);
  2510. return;
  2511. }
  2512. /* MTU probe failure: don't reduce cwnd */
  2513. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2514. icsk->icsk_mtup.probe_size &&
  2515. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2516. tcp_mtup_probe_failed(sk);
  2517. /* Restores the reduction we did in tcp_mtup_probe() */
  2518. tp->snd_cwnd++;
  2519. tcp_simple_retransmit(sk);
  2520. return;
  2521. }
  2522. /* Otherwise enter Recovery state */
  2523. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2524. fast_rexmit = 1;
  2525. }
  2526. if (do_lost)
  2527. tcp_update_scoreboard(sk, fast_rexmit);
  2528. *rexmit = REXMIT_LOST;
  2529. }
  2530. static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
  2531. {
  2532. struct tcp_sock *tp = tcp_sk(sk);
  2533. u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
  2534. minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
  2535. rtt_us ? : jiffies_to_usecs(1));
  2536. }
  2537. static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2538. long seq_rtt_us, long sack_rtt_us,
  2539. long ca_rtt_us, struct rate_sample *rs)
  2540. {
  2541. const struct tcp_sock *tp = tcp_sk(sk);
  2542. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2543. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2544. * Karn's algorithm forbids taking RTT if some retransmitted data
  2545. * is acked (RFC6298).
  2546. */
  2547. if (seq_rtt_us < 0)
  2548. seq_rtt_us = sack_rtt_us;
  2549. /* RTTM Rule: A TSecr value received in a segment is used to
  2550. * update the averaged RTT measurement only if the segment
  2551. * acknowledges some new data, i.e., only if it advances the
  2552. * left edge of the send window.
  2553. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2554. */
  2555. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2556. flag & FLAG_ACKED) {
  2557. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  2558. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  2559. seq_rtt_us = ca_rtt_us = delta_us;
  2560. }
  2561. rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
  2562. if (seq_rtt_us < 0)
  2563. return false;
  2564. /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
  2565. * always taken together with ACK, SACK, or TS-opts. Any negative
  2566. * values will be skipped with the seq_rtt_us < 0 check above.
  2567. */
  2568. tcp_update_rtt_min(sk, ca_rtt_us);
  2569. tcp_rtt_estimator(sk, seq_rtt_us);
  2570. tcp_set_rto(sk);
  2571. /* RFC6298: only reset backoff on valid RTT measurement. */
  2572. inet_csk(sk)->icsk_backoff = 0;
  2573. return true;
  2574. }
  2575. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2576. void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
  2577. {
  2578. struct rate_sample rs;
  2579. long rtt_us = -1L;
  2580. if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
  2581. rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
  2582. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
  2583. }
  2584. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2585. {
  2586. const struct inet_connection_sock *icsk = inet_csk(sk);
  2587. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2588. tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
  2589. }
  2590. /* Restart timer after forward progress on connection.
  2591. * RFC2988 recommends to restart timer to now+rto.
  2592. */
  2593. void tcp_rearm_rto(struct sock *sk)
  2594. {
  2595. const struct inet_connection_sock *icsk = inet_csk(sk);
  2596. struct tcp_sock *tp = tcp_sk(sk);
  2597. /* If the retrans timer is currently being used by Fast Open
  2598. * for SYN-ACK retrans purpose, stay put.
  2599. */
  2600. if (tp->fastopen_rsk)
  2601. return;
  2602. if (!tp->packets_out) {
  2603. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2604. } else {
  2605. u32 rto = inet_csk(sk)->icsk_rto;
  2606. /* Offset the time elapsed after installing regular RTO */
  2607. if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
  2608. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2609. s64 delta_us = tcp_rto_delta_us(sk);
  2610. /* delta_us may not be positive if the socket is locked
  2611. * when the retrans timer fires and is rescheduled.
  2612. */
  2613. rto = usecs_to_jiffies(max_t(int, delta_us, 1));
  2614. }
  2615. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2616. TCP_RTO_MAX);
  2617. }
  2618. }
  2619. /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
  2620. static void tcp_set_xmit_timer(struct sock *sk)
  2621. {
  2622. if (!tcp_schedule_loss_probe(sk))
  2623. tcp_rearm_rto(sk);
  2624. }
  2625. /* If we get here, the whole TSO packet has not been acked. */
  2626. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2627. {
  2628. struct tcp_sock *tp = tcp_sk(sk);
  2629. u32 packets_acked;
  2630. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2631. packets_acked = tcp_skb_pcount(skb);
  2632. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2633. return 0;
  2634. packets_acked -= tcp_skb_pcount(skb);
  2635. if (packets_acked) {
  2636. BUG_ON(tcp_skb_pcount(skb) == 0);
  2637. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2638. }
  2639. return packets_acked;
  2640. }
  2641. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2642. u32 prior_snd_una)
  2643. {
  2644. const struct skb_shared_info *shinfo;
  2645. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2646. if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
  2647. return;
  2648. shinfo = skb_shinfo(skb);
  2649. if (!before(shinfo->tskey, prior_snd_una) &&
  2650. before(shinfo->tskey, tcp_sk(sk)->snd_una))
  2651. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2652. }
  2653. /* Remove acknowledged frames from the retransmission queue. If our packet
  2654. * is before the ack sequence we can discard it as it's confirmed to have
  2655. * arrived at the other end.
  2656. */
  2657. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2658. u32 prior_snd_una, int *acked,
  2659. struct tcp_sacktag_state *sack)
  2660. {
  2661. const struct inet_connection_sock *icsk = inet_csk(sk);
  2662. u64 first_ackt, last_ackt;
  2663. struct tcp_sock *tp = tcp_sk(sk);
  2664. u32 prior_sacked = tp->sacked_out;
  2665. u32 reord = tp->packets_out;
  2666. bool fully_acked = true;
  2667. long sack_rtt_us = -1L;
  2668. long seq_rtt_us = -1L;
  2669. long ca_rtt_us = -1L;
  2670. struct sk_buff *skb;
  2671. u32 pkts_acked = 0;
  2672. u32 last_in_flight = 0;
  2673. bool rtt_update;
  2674. int flag = 0;
  2675. first_ackt = 0;
  2676. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2677. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2678. u8 sacked = scb->sacked;
  2679. u32 acked_pcount;
  2680. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2681. /* Determine how many packets and what bytes were acked, tso and else */
  2682. if (after(scb->end_seq, tp->snd_una)) {
  2683. if (tcp_skb_pcount(skb) == 1 ||
  2684. !after(tp->snd_una, scb->seq))
  2685. break;
  2686. acked_pcount = tcp_tso_acked(sk, skb);
  2687. if (!acked_pcount)
  2688. break;
  2689. fully_acked = false;
  2690. } else {
  2691. /* Speedup tcp_unlink_write_queue() and next loop */
  2692. prefetchw(skb->next);
  2693. acked_pcount = tcp_skb_pcount(skb);
  2694. }
  2695. if (unlikely(sacked & TCPCB_RETRANS)) {
  2696. if (sacked & TCPCB_SACKED_RETRANS)
  2697. tp->retrans_out -= acked_pcount;
  2698. flag |= FLAG_RETRANS_DATA_ACKED;
  2699. } else if (!(sacked & TCPCB_SACKED_ACKED)) {
  2700. last_ackt = skb->skb_mstamp;
  2701. WARN_ON_ONCE(last_ackt == 0);
  2702. if (!first_ackt)
  2703. first_ackt = last_ackt;
  2704. last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
  2705. reord = min(pkts_acked, reord);
  2706. if (!after(scb->end_seq, tp->high_seq))
  2707. flag |= FLAG_ORIG_SACK_ACKED;
  2708. }
  2709. if (sacked & TCPCB_SACKED_ACKED) {
  2710. tp->sacked_out -= acked_pcount;
  2711. } else if (tcp_is_sack(tp)) {
  2712. tp->delivered += acked_pcount;
  2713. if (!tcp_skb_spurious_retrans(tp, skb))
  2714. tcp_rack_advance(tp, sacked, scb->end_seq,
  2715. skb->skb_mstamp);
  2716. }
  2717. if (sacked & TCPCB_LOST)
  2718. tp->lost_out -= acked_pcount;
  2719. tp->packets_out -= acked_pcount;
  2720. pkts_acked += acked_pcount;
  2721. tcp_rate_skb_delivered(sk, skb, sack->rate);
  2722. /* Initial outgoing SYN's get put onto the write_queue
  2723. * just like anything else we transmit. It is not
  2724. * true data, and if we misinform our callers that
  2725. * this ACK acks real data, we will erroneously exit
  2726. * connection startup slow start one packet too
  2727. * quickly. This is severely frowned upon behavior.
  2728. */
  2729. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2730. flag |= FLAG_DATA_ACKED;
  2731. } else {
  2732. flag |= FLAG_SYN_ACKED;
  2733. tp->retrans_stamp = 0;
  2734. }
  2735. if (!fully_acked)
  2736. break;
  2737. tcp_unlink_write_queue(skb, sk);
  2738. sk_wmem_free_skb(sk, skb);
  2739. if (unlikely(skb == tp->retransmit_skb_hint))
  2740. tp->retransmit_skb_hint = NULL;
  2741. if (unlikely(skb == tp->lost_skb_hint))
  2742. tp->lost_skb_hint = NULL;
  2743. }
  2744. if (!skb)
  2745. tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
  2746. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2747. tp->snd_up = tp->snd_una;
  2748. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2749. flag |= FLAG_SACK_RENEGING;
  2750. if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
  2751. seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
  2752. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
  2753. }
  2754. if (sack->first_sackt) {
  2755. sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
  2756. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
  2757. }
  2758. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
  2759. ca_rtt_us, sack->rate);
  2760. if (flag & FLAG_ACKED) {
  2761. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2762. if (unlikely(icsk->icsk_mtup.probe_size &&
  2763. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2764. tcp_mtup_probe_success(sk);
  2765. }
  2766. if (tcp_is_reno(tp)) {
  2767. tcp_remove_reno_sacks(sk, pkts_acked);
  2768. } else {
  2769. int delta;
  2770. /* Non-retransmitted hole got filled? That's reordering */
  2771. if (reord < prior_fackets && reord <= tp->fackets_out)
  2772. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2773. delta = tcp_is_fack(tp) ? pkts_acked :
  2774. prior_sacked - tp->sacked_out;
  2775. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2776. }
  2777. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2778. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2779. sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
  2780. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2781. * after when the head was last (re)transmitted. Otherwise the
  2782. * timeout may continue to extend in loss recovery.
  2783. */
  2784. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2785. }
  2786. if (icsk->icsk_ca_ops->pkts_acked) {
  2787. struct ack_sample sample = { .pkts_acked = pkts_acked,
  2788. .rtt_us = sack->rate->rtt_us,
  2789. .in_flight = last_in_flight };
  2790. icsk->icsk_ca_ops->pkts_acked(sk, &sample);
  2791. }
  2792. #if FASTRETRANS_DEBUG > 0
  2793. WARN_ON((int)tp->sacked_out < 0);
  2794. WARN_ON((int)tp->lost_out < 0);
  2795. WARN_ON((int)tp->retrans_out < 0);
  2796. if (!tp->packets_out && tcp_is_sack(tp)) {
  2797. icsk = inet_csk(sk);
  2798. if (tp->lost_out) {
  2799. pr_debug("Leak l=%u %d\n",
  2800. tp->lost_out, icsk->icsk_ca_state);
  2801. tp->lost_out = 0;
  2802. }
  2803. if (tp->sacked_out) {
  2804. pr_debug("Leak s=%u %d\n",
  2805. tp->sacked_out, icsk->icsk_ca_state);
  2806. tp->sacked_out = 0;
  2807. }
  2808. if (tp->retrans_out) {
  2809. pr_debug("Leak r=%u %d\n",
  2810. tp->retrans_out, icsk->icsk_ca_state);
  2811. tp->retrans_out = 0;
  2812. }
  2813. }
  2814. #endif
  2815. *acked = pkts_acked;
  2816. return flag;
  2817. }
  2818. static void tcp_ack_probe(struct sock *sk)
  2819. {
  2820. const struct tcp_sock *tp = tcp_sk(sk);
  2821. struct inet_connection_sock *icsk = inet_csk(sk);
  2822. /* Was it a usable window open? */
  2823. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2824. icsk->icsk_backoff = 0;
  2825. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2826. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2827. * This function is not for random using!
  2828. */
  2829. } else {
  2830. unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
  2831. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2832. when, TCP_RTO_MAX);
  2833. }
  2834. }
  2835. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2836. {
  2837. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2838. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2839. }
  2840. /* Decide wheather to run the increase function of congestion control. */
  2841. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2842. {
  2843. /* If reordering is high then always grow cwnd whenever data is
  2844. * delivered regardless of its ordering. Otherwise stay conservative
  2845. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2846. * new SACK or ECE mark may first advance cwnd here and later reduce
  2847. * cwnd in tcp_fastretrans_alert() based on more states.
  2848. */
  2849. if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
  2850. return flag & FLAG_FORWARD_PROGRESS;
  2851. return flag & FLAG_DATA_ACKED;
  2852. }
  2853. /* The "ultimate" congestion control function that aims to replace the rigid
  2854. * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
  2855. * It's called toward the end of processing an ACK with precise rate
  2856. * information. All transmission or retransmission are delayed afterwards.
  2857. */
  2858. static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
  2859. int flag, const struct rate_sample *rs)
  2860. {
  2861. const struct inet_connection_sock *icsk = inet_csk(sk);
  2862. if (icsk->icsk_ca_ops->cong_control) {
  2863. icsk->icsk_ca_ops->cong_control(sk, rs);
  2864. return;
  2865. }
  2866. if (tcp_in_cwnd_reduction(sk)) {
  2867. /* Reduce cwnd if state mandates */
  2868. tcp_cwnd_reduction(sk, acked_sacked, flag);
  2869. } else if (tcp_may_raise_cwnd(sk, flag)) {
  2870. /* Advance cwnd if state allows */
  2871. tcp_cong_avoid(sk, ack, acked_sacked);
  2872. }
  2873. tcp_update_pacing_rate(sk);
  2874. }
  2875. /* Check that window update is acceptable.
  2876. * The function assumes that snd_una<=ack<=snd_next.
  2877. */
  2878. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2879. const u32 ack, const u32 ack_seq,
  2880. const u32 nwin)
  2881. {
  2882. return after(ack, tp->snd_una) ||
  2883. after(ack_seq, tp->snd_wl1) ||
  2884. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2885. }
  2886. /* If we update tp->snd_una, also update tp->bytes_acked */
  2887. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  2888. {
  2889. u32 delta = ack - tp->snd_una;
  2890. sock_owned_by_me((struct sock *)tp);
  2891. tp->bytes_acked += delta;
  2892. tp->snd_una = ack;
  2893. }
  2894. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  2895. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  2896. {
  2897. u32 delta = seq - tp->rcv_nxt;
  2898. sock_owned_by_me((struct sock *)tp);
  2899. tp->bytes_received += delta;
  2900. tp->rcv_nxt = seq;
  2901. }
  2902. /* Update our send window.
  2903. *
  2904. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2905. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2906. */
  2907. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2908. u32 ack_seq)
  2909. {
  2910. struct tcp_sock *tp = tcp_sk(sk);
  2911. int flag = 0;
  2912. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2913. if (likely(!tcp_hdr(skb)->syn))
  2914. nwin <<= tp->rx_opt.snd_wscale;
  2915. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2916. flag |= FLAG_WIN_UPDATE;
  2917. tcp_update_wl(tp, ack_seq);
  2918. if (tp->snd_wnd != nwin) {
  2919. tp->snd_wnd = nwin;
  2920. if (tcp_send_head(sk))
  2921. tcp_slow_start_after_idle_check(sk);
  2922. if (nwin > tp->max_window) {
  2923. tp->max_window = nwin;
  2924. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2925. }
  2926. }
  2927. }
  2928. tcp_snd_una_update(tp, ack);
  2929. return flag;
  2930. }
  2931. static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
  2932. u32 *last_oow_ack_time)
  2933. {
  2934. if (*last_oow_ack_time) {
  2935. s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
  2936. if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
  2937. NET_INC_STATS(net, mib_idx);
  2938. return true; /* rate-limited: don't send yet! */
  2939. }
  2940. }
  2941. *last_oow_ack_time = tcp_jiffies32;
  2942. return false; /* not rate-limited: go ahead, send dupack now! */
  2943. }
  2944. /* Return true if we're currently rate-limiting out-of-window ACKs and
  2945. * thus shouldn't send a dupack right now. We rate-limit dupacks in
  2946. * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
  2947. * attacks that send repeated SYNs or ACKs for the same connection. To
  2948. * do this, we do not send a duplicate SYNACK or ACK if the remote
  2949. * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
  2950. */
  2951. bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
  2952. int mib_idx, u32 *last_oow_ack_time)
  2953. {
  2954. /* Data packets without SYNs are not likely part of an ACK loop. */
  2955. if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
  2956. !tcp_hdr(skb)->syn)
  2957. return false;
  2958. return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
  2959. }
  2960. /* RFC 5961 7 [ACK Throttling] */
  2961. static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
  2962. {
  2963. /* unprotected vars, we dont care of overwrites */
  2964. static u32 challenge_timestamp;
  2965. static unsigned int challenge_count;
  2966. struct tcp_sock *tp = tcp_sk(sk);
  2967. u32 count, now;
  2968. /* First check our per-socket dupack rate limit. */
  2969. if (__tcp_oow_rate_limited(sock_net(sk),
  2970. LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
  2971. &tp->last_oow_ack_time))
  2972. return;
  2973. /* Then check host-wide RFC 5961 rate limit. */
  2974. now = jiffies / HZ;
  2975. if (now != challenge_timestamp) {
  2976. u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
  2977. challenge_timestamp = now;
  2978. WRITE_ONCE(challenge_count, half +
  2979. prandom_u32_max(sysctl_tcp_challenge_ack_limit));
  2980. }
  2981. count = READ_ONCE(challenge_count);
  2982. if (count > 0) {
  2983. WRITE_ONCE(challenge_count, count - 1);
  2984. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  2985. tcp_send_ack(sk);
  2986. }
  2987. }
  2988. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2989. {
  2990. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2991. tp->rx_opt.ts_recent_stamp = get_seconds();
  2992. }
  2993. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2994. {
  2995. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  2996. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  2997. * extra check below makes sure this can only happen
  2998. * for pure ACK frames. -DaveM
  2999. *
  3000. * Not only, also it occurs for expired timestamps.
  3001. */
  3002. if (tcp_paws_check(&tp->rx_opt, 0))
  3003. tcp_store_ts_recent(tp);
  3004. }
  3005. }
  3006. /* This routine deals with acks during a TLP episode.
  3007. * We mark the end of a TLP episode on receiving TLP dupack or when
  3008. * ack is after tlp_high_seq.
  3009. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  3010. */
  3011. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  3012. {
  3013. struct tcp_sock *tp = tcp_sk(sk);
  3014. if (before(ack, tp->tlp_high_seq))
  3015. return;
  3016. if (flag & FLAG_DSACKING_ACK) {
  3017. /* This DSACK means original and TLP probe arrived; no loss */
  3018. tp->tlp_high_seq = 0;
  3019. } else if (after(ack, tp->tlp_high_seq)) {
  3020. /* ACK advances: there was a loss, so reduce cwnd. Reset
  3021. * tlp_high_seq in tcp_init_cwnd_reduction()
  3022. */
  3023. tcp_init_cwnd_reduction(sk);
  3024. tcp_set_ca_state(sk, TCP_CA_CWR);
  3025. tcp_end_cwnd_reduction(sk);
  3026. tcp_try_keep_open(sk);
  3027. NET_INC_STATS(sock_net(sk),
  3028. LINUX_MIB_TCPLOSSPROBERECOVERY);
  3029. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  3030. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  3031. /* Pure dupack: original and TLP probe arrived; no loss */
  3032. tp->tlp_high_seq = 0;
  3033. }
  3034. }
  3035. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  3036. {
  3037. const struct inet_connection_sock *icsk = inet_csk(sk);
  3038. if (icsk->icsk_ca_ops->in_ack_event)
  3039. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  3040. }
  3041. /* Congestion control has updated the cwnd already. So if we're in
  3042. * loss recovery then now we do any new sends (for FRTO) or
  3043. * retransmits (for CA_Loss or CA_recovery) that make sense.
  3044. */
  3045. static void tcp_xmit_recovery(struct sock *sk, int rexmit)
  3046. {
  3047. struct tcp_sock *tp = tcp_sk(sk);
  3048. if (rexmit == REXMIT_NONE)
  3049. return;
  3050. if (unlikely(rexmit == 2)) {
  3051. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  3052. TCP_NAGLE_OFF);
  3053. if (after(tp->snd_nxt, tp->high_seq))
  3054. return;
  3055. tp->frto = 0;
  3056. }
  3057. tcp_xmit_retransmit_queue(sk);
  3058. }
  3059. /* This routine deals with incoming acks, but not outgoing ones. */
  3060. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3061. {
  3062. struct inet_connection_sock *icsk = inet_csk(sk);
  3063. struct tcp_sock *tp = tcp_sk(sk);
  3064. struct tcp_sacktag_state sack_state;
  3065. struct rate_sample rs = { .prior_delivered = 0 };
  3066. u32 prior_snd_una = tp->snd_una;
  3067. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3068. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3069. bool is_dupack = false;
  3070. u32 prior_fackets;
  3071. int prior_packets = tp->packets_out;
  3072. u32 delivered = tp->delivered;
  3073. u32 lost = tp->lost;
  3074. int acked = 0; /* Number of packets newly acked */
  3075. int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
  3076. sack_state.first_sackt = 0;
  3077. sack_state.rate = &rs;
  3078. /* We very likely will need to access write queue head. */
  3079. prefetchw(sk->sk_write_queue.next);
  3080. /* If the ack is older than previous acks
  3081. * then we can probably ignore it.
  3082. */
  3083. if (before(ack, prior_snd_una)) {
  3084. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3085. if (before(ack, prior_snd_una - tp->max_window)) {
  3086. if (!(flag & FLAG_NO_CHALLENGE_ACK))
  3087. tcp_send_challenge_ack(sk, skb);
  3088. return -1;
  3089. }
  3090. goto old_ack;
  3091. }
  3092. /* If the ack includes data we haven't sent yet, discard
  3093. * this segment (RFC793 Section 3.9).
  3094. */
  3095. if (after(ack, tp->snd_nxt))
  3096. goto invalid_ack;
  3097. if (after(ack, prior_snd_una)) {
  3098. flag |= FLAG_SND_UNA_ADVANCED;
  3099. icsk->icsk_retransmits = 0;
  3100. }
  3101. prior_fackets = tp->fackets_out;
  3102. rs.prior_in_flight = tcp_packets_in_flight(tp);
  3103. /* ts_recent update must be made after we are sure that the packet
  3104. * is in window.
  3105. */
  3106. if (flag & FLAG_UPDATE_TS_RECENT)
  3107. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3108. {
  3109. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  3110. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3111. flag |= FLAG_DATA;
  3112. else
  3113. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3114. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3115. if (TCP_SKB_CB(skb)->sacked)
  3116. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3117. &sack_state);
  3118. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3119. flag |= FLAG_ECE;
  3120. ack_ev_flags |= CA_ACK_ECE;
  3121. }
  3122. if (flag & FLAG_WIN_UPDATE)
  3123. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3124. tcp_in_ack_event(sk, ack_ev_flags);
  3125. }
  3126. /* We passed data and got it acked, remove any soft error
  3127. * log. Something worked...
  3128. */
  3129. sk->sk_err_soft = 0;
  3130. icsk->icsk_probes_out = 0;
  3131. tp->rcv_tstamp = tcp_jiffies32;
  3132. if (!prior_packets)
  3133. goto no_queue;
  3134. /* See if we can take anything off of the retransmit queue. */
  3135. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
  3136. &sack_state);
  3137. if (tp->tlp_high_seq)
  3138. tcp_process_tlp_ack(sk, ack, flag);
  3139. /* If needed, reset TLP/RTO timer; RACK may later override this. */
  3140. if (flag & FLAG_SET_XMIT_TIMER)
  3141. tcp_set_xmit_timer(sk);
  3142. if (tcp_ack_is_dubious(sk, flag)) {
  3143. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3144. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3145. }
  3146. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3147. sk_dst_confirm(sk);
  3148. delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
  3149. lost = tp->lost - lost; /* freshly marked lost */
  3150. tcp_rate_gen(sk, delivered, lost, sack_state.rate);
  3151. tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
  3152. tcp_xmit_recovery(sk, rexmit);
  3153. return 1;
  3154. no_queue:
  3155. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3156. if (flag & FLAG_DSACKING_ACK)
  3157. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3158. /* If this ack opens up a zero window, clear backoff. It was
  3159. * being used to time the probes, and is probably far higher than
  3160. * it needs to be for normal retransmission.
  3161. */
  3162. if (tcp_send_head(sk))
  3163. tcp_ack_probe(sk);
  3164. if (tp->tlp_high_seq)
  3165. tcp_process_tlp_ack(sk, ack, flag);
  3166. return 1;
  3167. invalid_ack:
  3168. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3169. return -1;
  3170. old_ack:
  3171. /* If data was SACKed, tag it and see if we should send more data.
  3172. * If data was DSACKed, see if we can undo a cwnd reduction.
  3173. */
  3174. if (TCP_SKB_CB(skb)->sacked) {
  3175. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3176. &sack_state);
  3177. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3178. tcp_xmit_recovery(sk, rexmit);
  3179. }
  3180. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3181. return 0;
  3182. }
  3183. static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
  3184. bool syn, struct tcp_fastopen_cookie *foc,
  3185. bool exp_opt)
  3186. {
  3187. /* Valid only in SYN or SYN-ACK with an even length. */
  3188. if (!foc || !syn || len < 0 || (len & 1))
  3189. return;
  3190. if (len >= TCP_FASTOPEN_COOKIE_MIN &&
  3191. len <= TCP_FASTOPEN_COOKIE_MAX)
  3192. memcpy(foc->val, cookie, len);
  3193. else if (len != 0)
  3194. len = -1;
  3195. foc->len = len;
  3196. foc->exp = exp_opt;
  3197. }
  3198. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3199. * But, this can also be called on packets in the established flow when
  3200. * the fast version below fails.
  3201. */
  3202. void tcp_parse_options(const struct net *net,
  3203. const struct sk_buff *skb,
  3204. struct tcp_options_received *opt_rx, int estab,
  3205. struct tcp_fastopen_cookie *foc)
  3206. {
  3207. const unsigned char *ptr;
  3208. const struct tcphdr *th = tcp_hdr(skb);
  3209. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3210. ptr = (const unsigned char *)(th + 1);
  3211. opt_rx->saw_tstamp = 0;
  3212. while (length > 0) {
  3213. int opcode = *ptr++;
  3214. int opsize;
  3215. switch (opcode) {
  3216. case TCPOPT_EOL:
  3217. return;
  3218. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3219. length--;
  3220. continue;
  3221. default:
  3222. opsize = *ptr++;
  3223. if (opsize < 2) /* "silly options" */
  3224. return;
  3225. if (opsize > length)
  3226. return; /* don't parse partial options */
  3227. switch (opcode) {
  3228. case TCPOPT_MSS:
  3229. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3230. u16 in_mss = get_unaligned_be16(ptr);
  3231. if (in_mss) {
  3232. if (opt_rx->user_mss &&
  3233. opt_rx->user_mss < in_mss)
  3234. in_mss = opt_rx->user_mss;
  3235. opt_rx->mss_clamp = in_mss;
  3236. }
  3237. }
  3238. break;
  3239. case TCPOPT_WINDOW:
  3240. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3241. !estab && net->ipv4.sysctl_tcp_window_scaling) {
  3242. __u8 snd_wscale = *(__u8 *)ptr;
  3243. opt_rx->wscale_ok = 1;
  3244. if (snd_wscale > TCP_MAX_WSCALE) {
  3245. net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
  3246. __func__,
  3247. snd_wscale,
  3248. TCP_MAX_WSCALE);
  3249. snd_wscale = TCP_MAX_WSCALE;
  3250. }
  3251. opt_rx->snd_wscale = snd_wscale;
  3252. }
  3253. break;
  3254. case TCPOPT_TIMESTAMP:
  3255. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3256. ((estab && opt_rx->tstamp_ok) ||
  3257. (!estab && net->ipv4.sysctl_tcp_timestamps))) {
  3258. opt_rx->saw_tstamp = 1;
  3259. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3260. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3261. }
  3262. break;
  3263. case TCPOPT_SACK_PERM:
  3264. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3265. !estab && net->ipv4.sysctl_tcp_sack) {
  3266. opt_rx->sack_ok = TCP_SACK_SEEN;
  3267. tcp_sack_reset(opt_rx);
  3268. }
  3269. break;
  3270. case TCPOPT_SACK:
  3271. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3272. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3273. opt_rx->sack_ok) {
  3274. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3275. }
  3276. break;
  3277. #ifdef CONFIG_TCP_MD5SIG
  3278. case TCPOPT_MD5SIG:
  3279. /*
  3280. * The MD5 Hash has already been
  3281. * checked (see tcp_v{4,6}_do_rcv()).
  3282. */
  3283. break;
  3284. #endif
  3285. case TCPOPT_FASTOPEN:
  3286. tcp_parse_fastopen_option(
  3287. opsize - TCPOLEN_FASTOPEN_BASE,
  3288. ptr, th->syn, foc, false);
  3289. break;
  3290. case TCPOPT_EXP:
  3291. /* Fast Open option shares code 254 using a
  3292. * 16 bits magic number.
  3293. */
  3294. if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
  3295. get_unaligned_be16(ptr) ==
  3296. TCPOPT_FASTOPEN_MAGIC)
  3297. tcp_parse_fastopen_option(opsize -
  3298. TCPOLEN_EXP_FASTOPEN_BASE,
  3299. ptr + 2, th->syn, foc, true);
  3300. break;
  3301. }
  3302. ptr += opsize-2;
  3303. length -= opsize;
  3304. }
  3305. }
  3306. }
  3307. EXPORT_SYMBOL(tcp_parse_options);
  3308. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3309. {
  3310. const __be32 *ptr = (const __be32 *)(th + 1);
  3311. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3312. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3313. tp->rx_opt.saw_tstamp = 1;
  3314. ++ptr;
  3315. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3316. ++ptr;
  3317. if (*ptr)
  3318. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3319. else
  3320. tp->rx_opt.rcv_tsecr = 0;
  3321. return true;
  3322. }
  3323. return false;
  3324. }
  3325. /* Fast parse options. This hopes to only see timestamps.
  3326. * If it is wrong it falls back on tcp_parse_options().
  3327. */
  3328. static bool tcp_fast_parse_options(const struct net *net,
  3329. const struct sk_buff *skb,
  3330. const struct tcphdr *th, struct tcp_sock *tp)
  3331. {
  3332. /* In the spirit of fast parsing, compare doff directly to constant
  3333. * values. Because equality is used, short doff can be ignored here.
  3334. */
  3335. if (th->doff == (sizeof(*th) / 4)) {
  3336. tp->rx_opt.saw_tstamp = 0;
  3337. return false;
  3338. } else if (tp->rx_opt.tstamp_ok &&
  3339. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3340. if (tcp_parse_aligned_timestamp(tp, th))
  3341. return true;
  3342. }
  3343. tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
  3344. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3345. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3346. return true;
  3347. }
  3348. #ifdef CONFIG_TCP_MD5SIG
  3349. /*
  3350. * Parse MD5 Signature option
  3351. */
  3352. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3353. {
  3354. int length = (th->doff << 2) - sizeof(*th);
  3355. const u8 *ptr = (const u8 *)(th + 1);
  3356. /* If the TCP option is too short, we can short cut */
  3357. if (length < TCPOLEN_MD5SIG)
  3358. return NULL;
  3359. while (length > 0) {
  3360. int opcode = *ptr++;
  3361. int opsize;
  3362. switch (opcode) {
  3363. case TCPOPT_EOL:
  3364. return NULL;
  3365. case TCPOPT_NOP:
  3366. length--;
  3367. continue;
  3368. default:
  3369. opsize = *ptr++;
  3370. if (opsize < 2 || opsize > length)
  3371. return NULL;
  3372. if (opcode == TCPOPT_MD5SIG)
  3373. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3374. }
  3375. ptr += opsize - 2;
  3376. length -= opsize;
  3377. }
  3378. return NULL;
  3379. }
  3380. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3381. #endif
  3382. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3383. *
  3384. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3385. * it can pass through stack. So, the following predicate verifies that
  3386. * this segment is not used for anything but congestion avoidance or
  3387. * fast retransmit. Moreover, we even are able to eliminate most of such
  3388. * second order effects, if we apply some small "replay" window (~RTO)
  3389. * to timestamp space.
  3390. *
  3391. * All these measures still do not guarantee that we reject wrapped ACKs
  3392. * on networks with high bandwidth, when sequence space is recycled fastly,
  3393. * but it guarantees that such events will be very rare and do not affect
  3394. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3395. * buggy extension.
  3396. *
  3397. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3398. * states that events when retransmit arrives after original data are rare.
  3399. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3400. * the biggest problem on large power networks even with minor reordering.
  3401. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3402. * up to bandwidth of 18Gigabit/sec. 8) ]
  3403. */
  3404. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3405. {
  3406. const struct tcp_sock *tp = tcp_sk(sk);
  3407. const struct tcphdr *th = tcp_hdr(skb);
  3408. u32 seq = TCP_SKB_CB(skb)->seq;
  3409. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3410. return (/* 1. Pure ACK with correct sequence number. */
  3411. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3412. /* 2. ... and duplicate ACK. */
  3413. ack == tp->snd_una &&
  3414. /* 3. ... and does not update window. */
  3415. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3416. /* 4. ... and sits in replay window. */
  3417. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3418. }
  3419. static inline bool tcp_paws_discard(const struct sock *sk,
  3420. const struct sk_buff *skb)
  3421. {
  3422. const struct tcp_sock *tp = tcp_sk(sk);
  3423. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3424. !tcp_disordered_ack(sk, skb);
  3425. }
  3426. /* Check segment sequence number for validity.
  3427. *
  3428. * Segment controls are considered valid, if the segment
  3429. * fits to the window after truncation to the window. Acceptability
  3430. * of data (and SYN, FIN, of course) is checked separately.
  3431. * See tcp_data_queue(), for example.
  3432. *
  3433. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3434. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3435. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3436. * (borrowed from freebsd)
  3437. */
  3438. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3439. {
  3440. return !before(end_seq, tp->rcv_wup) &&
  3441. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3442. }
  3443. /* When we get a reset we do this. */
  3444. void tcp_reset(struct sock *sk)
  3445. {
  3446. /* We want the right error as BSD sees it (and indeed as we do). */
  3447. switch (sk->sk_state) {
  3448. case TCP_SYN_SENT:
  3449. sk->sk_err = ECONNREFUSED;
  3450. break;
  3451. case TCP_CLOSE_WAIT:
  3452. sk->sk_err = EPIPE;
  3453. break;
  3454. case TCP_CLOSE:
  3455. return;
  3456. default:
  3457. sk->sk_err = ECONNRESET;
  3458. }
  3459. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3460. smp_wmb();
  3461. tcp_done(sk);
  3462. if (!sock_flag(sk, SOCK_DEAD))
  3463. sk->sk_error_report(sk);
  3464. }
  3465. /*
  3466. * Process the FIN bit. This now behaves as it is supposed to work
  3467. * and the FIN takes effect when it is validly part of sequence
  3468. * space. Not before when we get holes.
  3469. *
  3470. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3471. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3472. * TIME-WAIT)
  3473. *
  3474. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3475. * close and we go into CLOSING (and later onto TIME-WAIT)
  3476. *
  3477. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3478. */
  3479. void tcp_fin(struct sock *sk)
  3480. {
  3481. struct tcp_sock *tp = tcp_sk(sk);
  3482. inet_csk_schedule_ack(sk);
  3483. sk->sk_shutdown |= RCV_SHUTDOWN;
  3484. sock_set_flag(sk, SOCK_DONE);
  3485. switch (sk->sk_state) {
  3486. case TCP_SYN_RECV:
  3487. case TCP_ESTABLISHED:
  3488. /* Move to CLOSE_WAIT */
  3489. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3490. inet_csk(sk)->icsk_ack.pingpong = 1;
  3491. break;
  3492. case TCP_CLOSE_WAIT:
  3493. case TCP_CLOSING:
  3494. /* Received a retransmission of the FIN, do
  3495. * nothing.
  3496. */
  3497. break;
  3498. case TCP_LAST_ACK:
  3499. /* RFC793: Remain in the LAST-ACK state. */
  3500. break;
  3501. case TCP_FIN_WAIT1:
  3502. /* This case occurs when a simultaneous close
  3503. * happens, we must ack the received FIN and
  3504. * enter the CLOSING state.
  3505. */
  3506. tcp_send_ack(sk);
  3507. tcp_set_state(sk, TCP_CLOSING);
  3508. break;
  3509. case TCP_FIN_WAIT2:
  3510. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3511. tcp_send_ack(sk);
  3512. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3513. break;
  3514. default:
  3515. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3516. * cases we should never reach this piece of code.
  3517. */
  3518. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3519. __func__, sk->sk_state);
  3520. break;
  3521. }
  3522. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3523. * Probably, we should reset in this case. For now drop them.
  3524. */
  3525. skb_rbtree_purge(&tp->out_of_order_queue);
  3526. if (tcp_is_sack(tp))
  3527. tcp_sack_reset(&tp->rx_opt);
  3528. sk_mem_reclaim(sk);
  3529. if (!sock_flag(sk, SOCK_DEAD)) {
  3530. sk->sk_state_change(sk);
  3531. /* Do not send POLL_HUP for half duplex close. */
  3532. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3533. sk->sk_state == TCP_CLOSE)
  3534. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3535. else
  3536. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3537. }
  3538. }
  3539. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3540. u32 end_seq)
  3541. {
  3542. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3543. if (before(seq, sp->start_seq))
  3544. sp->start_seq = seq;
  3545. if (after(end_seq, sp->end_seq))
  3546. sp->end_seq = end_seq;
  3547. return true;
  3548. }
  3549. return false;
  3550. }
  3551. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3552. {
  3553. struct tcp_sock *tp = tcp_sk(sk);
  3554. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3555. int mib_idx;
  3556. if (before(seq, tp->rcv_nxt))
  3557. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3558. else
  3559. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3560. NET_INC_STATS(sock_net(sk), mib_idx);
  3561. tp->rx_opt.dsack = 1;
  3562. tp->duplicate_sack[0].start_seq = seq;
  3563. tp->duplicate_sack[0].end_seq = end_seq;
  3564. }
  3565. }
  3566. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3567. {
  3568. struct tcp_sock *tp = tcp_sk(sk);
  3569. if (!tp->rx_opt.dsack)
  3570. tcp_dsack_set(sk, seq, end_seq);
  3571. else
  3572. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3573. }
  3574. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3575. {
  3576. struct tcp_sock *tp = tcp_sk(sk);
  3577. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3578. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3579. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3580. tcp_enter_quickack_mode(sk);
  3581. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3582. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3583. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3584. end_seq = tp->rcv_nxt;
  3585. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3586. }
  3587. }
  3588. tcp_send_ack(sk);
  3589. }
  3590. /* These routines update the SACK block as out-of-order packets arrive or
  3591. * in-order packets close up the sequence space.
  3592. */
  3593. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3594. {
  3595. int this_sack;
  3596. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3597. struct tcp_sack_block *swalk = sp + 1;
  3598. /* See if the recent change to the first SACK eats into
  3599. * or hits the sequence space of other SACK blocks, if so coalesce.
  3600. */
  3601. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3602. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3603. int i;
  3604. /* Zap SWALK, by moving every further SACK up by one slot.
  3605. * Decrease num_sacks.
  3606. */
  3607. tp->rx_opt.num_sacks--;
  3608. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3609. sp[i] = sp[i + 1];
  3610. continue;
  3611. }
  3612. this_sack++, swalk++;
  3613. }
  3614. }
  3615. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3616. {
  3617. struct tcp_sock *tp = tcp_sk(sk);
  3618. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3619. int cur_sacks = tp->rx_opt.num_sacks;
  3620. int this_sack;
  3621. if (!cur_sacks)
  3622. goto new_sack;
  3623. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3624. if (tcp_sack_extend(sp, seq, end_seq)) {
  3625. /* Rotate this_sack to the first one. */
  3626. for (; this_sack > 0; this_sack--, sp--)
  3627. swap(*sp, *(sp - 1));
  3628. if (cur_sacks > 1)
  3629. tcp_sack_maybe_coalesce(tp);
  3630. return;
  3631. }
  3632. }
  3633. /* Could not find an adjacent existing SACK, build a new one,
  3634. * put it at the front, and shift everyone else down. We
  3635. * always know there is at least one SACK present already here.
  3636. *
  3637. * If the sack array is full, forget about the last one.
  3638. */
  3639. if (this_sack >= TCP_NUM_SACKS) {
  3640. this_sack--;
  3641. tp->rx_opt.num_sacks--;
  3642. sp--;
  3643. }
  3644. for (; this_sack > 0; this_sack--, sp--)
  3645. *sp = *(sp - 1);
  3646. new_sack:
  3647. /* Build the new head SACK, and we're done. */
  3648. sp->start_seq = seq;
  3649. sp->end_seq = end_seq;
  3650. tp->rx_opt.num_sacks++;
  3651. }
  3652. /* RCV.NXT advances, some SACKs should be eaten. */
  3653. static void tcp_sack_remove(struct tcp_sock *tp)
  3654. {
  3655. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3656. int num_sacks = tp->rx_opt.num_sacks;
  3657. int this_sack;
  3658. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3659. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3660. tp->rx_opt.num_sacks = 0;
  3661. return;
  3662. }
  3663. for (this_sack = 0; this_sack < num_sacks;) {
  3664. /* Check if the start of the sack is covered by RCV.NXT. */
  3665. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3666. int i;
  3667. /* RCV.NXT must cover all the block! */
  3668. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3669. /* Zap this SACK, by moving forward any other SACKS. */
  3670. for (i = this_sack+1; i < num_sacks; i++)
  3671. tp->selective_acks[i-1] = tp->selective_acks[i];
  3672. num_sacks--;
  3673. continue;
  3674. }
  3675. this_sack++;
  3676. sp++;
  3677. }
  3678. tp->rx_opt.num_sacks = num_sacks;
  3679. }
  3680. enum tcp_queue {
  3681. OOO_QUEUE,
  3682. RCV_QUEUE,
  3683. };
  3684. /**
  3685. * tcp_try_coalesce - try to merge skb to prior one
  3686. * @sk: socket
  3687. * @dest: destination queue
  3688. * @to: prior buffer
  3689. * @from: buffer to add in queue
  3690. * @fragstolen: pointer to boolean
  3691. *
  3692. * Before queueing skb @from after @to, try to merge them
  3693. * to reduce overall memory use and queue lengths, if cost is small.
  3694. * Packets in ofo or receive queues can stay a long time.
  3695. * Better try to coalesce them right now to avoid future collapses.
  3696. * Returns true if caller should free @from instead of queueing it
  3697. */
  3698. static bool tcp_try_coalesce(struct sock *sk,
  3699. enum tcp_queue dest,
  3700. struct sk_buff *to,
  3701. struct sk_buff *from,
  3702. bool *fragstolen)
  3703. {
  3704. int delta;
  3705. *fragstolen = false;
  3706. /* Its possible this segment overlaps with prior segment in queue */
  3707. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3708. return false;
  3709. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3710. return false;
  3711. atomic_add(delta, &sk->sk_rmem_alloc);
  3712. sk_mem_charge(sk, delta);
  3713. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3714. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3715. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3716. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3717. if (TCP_SKB_CB(from)->has_rxtstamp) {
  3718. TCP_SKB_CB(to)->has_rxtstamp = true;
  3719. if (dest == OOO_QUEUE)
  3720. TCP_SKB_CB(to)->swtstamp = TCP_SKB_CB(from)->swtstamp;
  3721. else
  3722. to->tstamp = from->tstamp;
  3723. }
  3724. return true;
  3725. }
  3726. static void tcp_drop(struct sock *sk, struct sk_buff *skb)
  3727. {
  3728. sk_drops_add(sk, skb);
  3729. __kfree_skb(skb);
  3730. }
  3731. /* This one checks to see if we can put data from the
  3732. * out_of_order queue into the receive_queue.
  3733. */
  3734. static void tcp_ofo_queue(struct sock *sk)
  3735. {
  3736. struct tcp_sock *tp = tcp_sk(sk);
  3737. __u32 dsack_high = tp->rcv_nxt;
  3738. bool fin, fragstolen, eaten;
  3739. struct sk_buff *skb, *tail;
  3740. struct rb_node *p;
  3741. p = rb_first(&tp->out_of_order_queue);
  3742. while (p) {
  3743. skb = rb_entry(p, struct sk_buff, rbnode);
  3744. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3745. break;
  3746. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3747. __u32 dsack = dsack_high;
  3748. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3749. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3750. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3751. }
  3752. p = rb_next(p);
  3753. rb_erase(&skb->rbnode, &tp->out_of_order_queue);
  3754. /* Replace tstamp which was stomped by rbnode */
  3755. if (TCP_SKB_CB(skb)->has_rxtstamp)
  3756. skb->tstamp = TCP_SKB_CB(skb)->swtstamp;
  3757. if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
  3758. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3759. tcp_drop(sk, skb);
  3760. continue;
  3761. }
  3762. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3763. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3764. TCP_SKB_CB(skb)->end_seq);
  3765. tail = skb_peek_tail(&sk->sk_receive_queue);
  3766. eaten = tail && tcp_try_coalesce(sk, RCV_QUEUE,
  3767. tail, skb, &fragstolen);
  3768. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3769. fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
  3770. if (!eaten)
  3771. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3772. else
  3773. kfree_skb_partial(skb, fragstolen);
  3774. if (unlikely(fin)) {
  3775. tcp_fin(sk);
  3776. /* tcp_fin() purges tp->out_of_order_queue,
  3777. * so we must end this loop right now.
  3778. */
  3779. break;
  3780. }
  3781. }
  3782. }
  3783. static bool tcp_prune_ofo_queue(struct sock *sk);
  3784. static int tcp_prune_queue(struct sock *sk);
  3785. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3786. unsigned int size)
  3787. {
  3788. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3789. !sk_rmem_schedule(sk, skb, size)) {
  3790. if (tcp_prune_queue(sk) < 0)
  3791. return -1;
  3792. while (!sk_rmem_schedule(sk, skb, size)) {
  3793. if (!tcp_prune_ofo_queue(sk))
  3794. return -1;
  3795. }
  3796. }
  3797. return 0;
  3798. }
  3799. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3800. {
  3801. struct tcp_sock *tp = tcp_sk(sk);
  3802. struct rb_node **p, *q, *parent;
  3803. struct sk_buff *skb1;
  3804. u32 seq, end_seq;
  3805. bool fragstolen;
  3806. tcp_ecn_check_ce(tp, skb);
  3807. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3808. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3809. tcp_drop(sk, skb);
  3810. return;
  3811. }
  3812. /* Stash tstamp to avoid being stomped on by rbnode */
  3813. if (TCP_SKB_CB(skb)->has_rxtstamp)
  3814. TCP_SKB_CB(skb)->swtstamp = skb->tstamp;
  3815. inet_csk_schedule_ack(sk);
  3816. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3817. seq = TCP_SKB_CB(skb)->seq;
  3818. end_seq = TCP_SKB_CB(skb)->end_seq;
  3819. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3820. tp->rcv_nxt, seq, end_seq);
  3821. p = &tp->out_of_order_queue.rb_node;
  3822. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3823. /* Initial out of order segment, build 1 SACK. */
  3824. if (tcp_is_sack(tp)) {
  3825. tp->rx_opt.num_sacks = 1;
  3826. tp->selective_acks[0].start_seq = seq;
  3827. tp->selective_acks[0].end_seq = end_seq;
  3828. }
  3829. rb_link_node(&skb->rbnode, NULL, p);
  3830. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3831. tp->ooo_last_skb = skb;
  3832. goto end;
  3833. }
  3834. /* In the typical case, we are adding an skb to the end of the list.
  3835. * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
  3836. */
  3837. if (tcp_try_coalesce(sk, OOO_QUEUE, tp->ooo_last_skb,
  3838. skb, &fragstolen)) {
  3839. coalesce_done:
  3840. tcp_grow_window(sk, skb);
  3841. kfree_skb_partial(skb, fragstolen);
  3842. skb = NULL;
  3843. goto add_sack;
  3844. }
  3845. /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
  3846. if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
  3847. parent = &tp->ooo_last_skb->rbnode;
  3848. p = &parent->rb_right;
  3849. goto insert;
  3850. }
  3851. /* Find place to insert this segment. Handle overlaps on the way. */
  3852. parent = NULL;
  3853. while (*p) {
  3854. parent = *p;
  3855. skb1 = rb_entry(parent, struct sk_buff, rbnode);
  3856. if (before(seq, TCP_SKB_CB(skb1)->seq)) {
  3857. p = &parent->rb_left;
  3858. continue;
  3859. }
  3860. if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3861. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3862. /* All the bits are present. Drop. */
  3863. NET_INC_STATS(sock_net(sk),
  3864. LINUX_MIB_TCPOFOMERGE);
  3865. __kfree_skb(skb);
  3866. skb = NULL;
  3867. tcp_dsack_set(sk, seq, end_seq);
  3868. goto add_sack;
  3869. }
  3870. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3871. /* Partial overlap. */
  3872. tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
  3873. } else {
  3874. /* skb's seq == skb1's seq and skb covers skb1.
  3875. * Replace skb1 with skb.
  3876. */
  3877. rb_replace_node(&skb1->rbnode, &skb->rbnode,
  3878. &tp->out_of_order_queue);
  3879. tcp_dsack_extend(sk,
  3880. TCP_SKB_CB(skb1)->seq,
  3881. TCP_SKB_CB(skb1)->end_seq);
  3882. NET_INC_STATS(sock_net(sk),
  3883. LINUX_MIB_TCPOFOMERGE);
  3884. __kfree_skb(skb1);
  3885. goto merge_right;
  3886. }
  3887. } else if (tcp_try_coalesce(sk, OOO_QUEUE, skb1,
  3888. skb, &fragstolen)) {
  3889. goto coalesce_done;
  3890. }
  3891. p = &parent->rb_right;
  3892. }
  3893. insert:
  3894. /* Insert segment into RB tree. */
  3895. rb_link_node(&skb->rbnode, parent, p);
  3896. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3897. merge_right:
  3898. /* Remove other segments covered by skb. */
  3899. while ((q = rb_next(&skb->rbnode)) != NULL) {
  3900. skb1 = rb_entry(q, struct sk_buff, rbnode);
  3901. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3902. break;
  3903. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3904. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3905. end_seq);
  3906. break;
  3907. }
  3908. rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
  3909. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3910. TCP_SKB_CB(skb1)->end_seq);
  3911. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3912. tcp_drop(sk, skb1);
  3913. }
  3914. /* If there is no skb after us, we are the last_skb ! */
  3915. if (!q)
  3916. tp->ooo_last_skb = skb;
  3917. add_sack:
  3918. if (tcp_is_sack(tp))
  3919. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3920. end:
  3921. if (skb) {
  3922. tcp_grow_window(sk, skb);
  3923. skb_condense(skb);
  3924. skb_set_owner_r(skb, sk);
  3925. }
  3926. }
  3927. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3928. bool *fragstolen)
  3929. {
  3930. int eaten;
  3931. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3932. __skb_pull(skb, hdrlen);
  3933. eaten = (tail &&
  3934. tcp_try_coalesce(sk, RCV_QUEUE, tail,
  3935. skb, fragstolen)) ? 1 : 0;
  3936. tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
  3937. if (!eaten) {
  3938. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3939. skb_set_owner_r(skb, sk);
  3940. }
  3941. return eaten;
  3942. }
  3943. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3944. {
  3945. struct sk_buff *skb;
  3946. int err = -ENOMEM;
  3947. int data_len = 0;
  3948. bool fragstolen;
  3949. if (size == 0)
  3950. return 0;
  3951. if (size > PAGE_SIZE) {
  3952. int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
  3953. data_len = npages << PAGE_SHIFT;
  3954. size = data_len + (size & ~PAGE_MASK);
  3955. }
  3956. skb = alloc_skb_with_frags(size - data_len, data_len,
  3957. PAGE_ALLOC_COSTLY_ORDER,
  3958. &err, sk->sk_allocation);
  3959. if (!skb)
  3960. goto err;
  3961. skb_put(skb, size - data_len);
  3962. skb->data_len = data_len;
  3963. skb->len = size;
  3964. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3965. goto err_free;
  3966. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
  3967. if (err)
  3968. goto err_free;
  3969. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3970. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3971. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3972. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  3973. WARN_ON_ONCE(fragstolen); /* should not happen */
  3974. __kfree_skb(skb);
  3975. }
  3976. return size;
  3977. err_free:
  3978. kfree_skb(skb);
  3979. err:
  3980. return err;
  3981. }
  3982. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3983. {
  3984. struct tcp_sock *tp = tcp_sk(sk);
  3985. bool fragstolen;
  3986. int eaten;
  3987. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
  3988. __kfree_skb(skb);
  3989. return;
  3990. }
  3991. skb_dst_drop(skb);
  3992. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  3993. tcp_ecn_accept_cwr(tp, skb);
  3994. tp->rx_opt.dsack = 0;
  3995. /* Queue data for delivery to the user.
  3996. * Packets in sequence go to the receive queue.
  3997. * Out of sequence packets to the out_of_order_queue.
  3998. */
  3999. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  4000. if (tcp_receive_window(tp) == 0)
  4001. goto out_of_window;
  4002. /* Ok. In sequence. In window. */
  4003. queue_and_out:
  4004. if (skb_queue_len(&sk->sk_receive_queue) == 0)
  4005. sk_forced_mem_schedule(sk, skb->truesize);
  4006. else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  4007. goto drop;
  4008. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  4009. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4010. if (skb->len)
  4011. tcp_event_data_recv(sk, skb);
  4012. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  4013. tcp_fin(sk);
  4014. if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  4015. tcp_ofo_queue(sk);
  4016. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4017. * gap in queue is filled.
  4018. */
  4019. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4020. inet_csk(sk)->icsk_ack.pingpong = 0;
  4021. }
  4022. if (tp->rx_opt.num_sacks)
  4023. tcp_sack_remove(tp);
  4024. if (eaten > 0)
  4025. kfree_skb_partial(skb, fragstolen);
  4026. if (!sock_flag(sk, SOCK_DEAD))
  4027. sk->sk_data_ready(sk);
  4028. return;
  4029. }
  4030. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4031. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4032. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4033. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4034. out_of_window:
  4035. tcp_enter_quickack_mode(sk);
  4036. inet_csk_schedule_ack(sk);
  4037. drop:
  4038. tcp_drop(sk, skb);
  4039. return;
  4040. }
  4041. /* Out of window. F.e. zero window probe. */
  4042. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4043. goto out_of_window;
  4044. tcp_enter_quickack_mode(sk);
  4045. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4046. /* Partial packet, seq < rcv_next < end_seq */
  4047. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4048. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4049. TCP_SKB_CB(skb)->end_seq);
  4050. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4051. /* If window is closed, drop tail of packet. But after
  4052. * remembering D-SACK for its head made in previous line.
  4053. */
  4054. if (!tcp_receive_window(tp))
  4055. goto out_of_window;
  4056. goto queue_and_out;
  4057. }
  4058. tcp_data_queue_ofo(sk, skb);
  4059. }
  4060. static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
  4061. {
  4062. if (list)
  4063. return !skb_queue_is_last(list, skb) ? skb->next : NULL;
  4064. return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
  4065. }
  4066. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4067. struct sk_buff_head *list,
  4068. struct rb_root *root)
  4069. {
  4070. struct sk_buff *next = tcp_skb_next(skb, list);
  4071. if (list)
  4072. __skb_unlink(skb, list);
  4073. else
  4074. rb_erase(&skb->rbnode, root);
  4075. __kfree_skb(skb);
  4076. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4077. return next;
  4078. }
  4079. /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
  4080. static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
  4081. {
  4082. struct rb_node **p = &root->rb_node;
  4083. struct rb_node *parent = NULL;
  4084. struct sk_buff *skb1;
  4085. while (*p) {
  4086. parent = *p;
  4087. skb1 = rb_entry(parent, struct sk_buff, rbnode);
  4088. if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
  4089. p = &parent->rb_left;
  4090. else
  4091. p = &parent->rb_right;
  4092. }
  4093. rb_link_node(&skb->rbnode, parent, p);
  4094. rb_insert_color(&skb->rbnode, root);
  4095. }
  4096. /* Collapse contiguous sequence of skbs head..tail with
  4097. * sequence numbers start..end.
  4098. *
  4099. * If tail is NULL, this means until the end of the queue.
  4100. *
  4101. * Segments with FIN/SYN are not collapsed (only because this
  4102. * simplifies code)
  4103. */
  4104. static void
  4105. tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
  4106. struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
  4107. {
  4108. struct sk_buff *skb = head, *n;
  4109. struct sk_buff_head tmp;
  4110. bool end_of_skbs;
  4111. /* First, check that queue is collapsible and find
  4112. * the point where collapsing can be useful.
  4113. */
  4114. restart:
  4115. for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
  4116. n = tcp_skb_next(skb, list);
  4117. /* No new bits? It is possible on ofo queue. */
  4118. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4119. skb = tcp_collapse_one(sk, skb, list, root);
  4120. if (!skb)
  4121. break;
  4122. goto restart;
  4123. }
  4124. /* The first skb to collapse is:
  4125. * - not SYN/FIN and
  4126. * - bloated or contains data before "start" or
  4127. * overlaps to the next one.
  4128. */
  4129. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  4130. (tcp_win_from_space(skb->truesize) > skb->len ||
  4131. before(TCP_SKB_CB(skb)->seq, start))) {
  4132. end_of_skbs = false;
  4133. break;
  4134. }
  4135. if (n && n != tail &&
  4136. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
  4137. end_of_skbs = false;
  4138. break;
  4139. }
  4140. /* Decided to skip this, advance start seq. */
  4141. start = TCP_SKB_CB(skb)->end_seq;
  4142. }
  4143. if (end_of_skbs ||
  4144. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4145. return;
  4146. __skb_queue_head_init(&tmp);
  4147. while (before(start, end)) {
  4148. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  4149. struct sk_buff *nskb;
  4150. nskb = alloc_skb(copy, GFP_ATOMIC);
  4151. if (!nskb)
  4152. break;
  4153. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4154. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4155. if (list)
  4156. __skb_queue_before(list, skb, nskb);
  4157. else
  4158. __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
  4159. skb_set_owner_r(nskb, sk);
  4160. /* Copy data, releasing collapsed skbs. */
  4161. while (copy > 0) {
  4162. int offset = start - TCP_SKB_CB(skb)->seq;
  4163. int size = TCP_SKB_CB(skb)->end_seq - start;
  4164. BUG_ON(offset < 0);
  4165. if (size > 0) {
  4166. size = min(copy, size);
  4167. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4168. BUG();
  4169. TCP_SKB_CB(nskb)->end_seq += size;
  4170. copy -= size;
  4171. start += size;
  4172. }
  4173. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4174. skb = tcp_collapse_one(sk, skb, list, root);
  4175. if (!skb ||
  4176. skb == tail ||
  4177. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4178. goto end;
  4179. }
  4180. }
  4181. }
  4182. end:
  4183. skb_queue_walk_safe(&tmp, skb, n)
  4184. tcp_rbtree_insert(root, skb);
  4185. }
  4186. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4187. * and tcp_collapse() them until all the queue is collapsed.
  4188. */
  4189. static void tcp_collapse_ofo_queue(struct sock *sk)
  4190. {
  4191. struct tcp_sock *tp = tcp_sk(sk);
  4192. struct sk_buff *skb, *head;
  4193. struct rb_node *p;
  4194. u32 start, end;
  4195. p = rb_first(&tp->out_of_order_queue);
  4196. skb = rb_entry_safe(p, struct sk_buff, rbnode);
  4197. new_range:
  4198. if (!skb) {
  4199. p = rb_last(&tp->out_of_order_queue);
  4200. /* Note: This is possible p is NULL here. We do not
  4201. * use rb_entry_safe(), as ooo_last_skb is valid only
  4202. * if rbtree is not empty.
  4203. */
  4204. tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
  4205. return;
  4206. }
  4207. start = TCP_SKB_CB(skb)->seq;
  4208. end = TCP_SKB_CB(skb)->end_seq;
  4209. for (head = skb;;) {
  4210. skb = tcp_skb_next(skb, NULL);
  4211. /* Range is terminated when we see a gap or when
  4212. * we are at the queue end.
  4213. */
  4214. if (!skb ||
  4215. after(TCP_SKB_CB(skb)->seq, end) ||
  4216. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4217. tcp_collapse(sk, NULL, &tp->out_of_order_queue,
  4218. head, skb, start, end);
  4219. goto new_range;
  4220. }
  4221. if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
  4222. start = TCP_SKB_CB(skb)->seq;
  4223. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4224. end = TCP_SKB_CB(skb)->end_seq;
  4225. }
  4226. }
  4227. /*
  4228. * Clean the out-of-order queue to make room.
  4229. * We drop high sequences packets to :
  4230. * 1) Let a chance for holes to be filled.
  4231. * 2) not add too big latencies if thousands of packets sit there.
  4232. * (But if application shrinks SO_RCVBUF, we could still end up
  4233. * freeing whole queue here)
  4234. *
  4235. * Return true if queue has shrunk.
  4236. */
  4237. static bool tcp_prune_ofo_queue(struct sock *sk)
  4238. {
  4239. struct tcp_sock *tp = tcp_sk(sk);
  4240. struct rb_node *node, *prev;
  4241. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4242. return false;
  4243. NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4244. node = &tp->ooo_last_skb->rbnode;
  4245. do {
  4246. prev = rb_prev(node);
  4247. rb_erase(node, &tp->out_of_order_queue);
  4248. tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
  4249. sk_mem_reclaim(sk);
  4250. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  4251. !tcp_under_memory_pressure(sk))
  4252. break;
  4253. node = prev;
  4254. } while (node);
  4255. tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
  4256. /* Reset SACK state. A conforming SACK implementation will
  4257. * do the same at a timeout based retransmit. When a connection
  4258. * is in a sad state like this, we care only about integrity
  4259. * of the connection not performance.
  4260. */
  4261. if (tp->rx_opt.sack_ok)
  4262. tcp_sack_reset(&tp->rx_opt);
  4263. return true;
  4264. }
  4265. /* Reduce allocated memory if we can, trying to get
  4266. * the socket within its memory limits again.
  4267. *
  4268. * Return less than zero if we should start dropping frames
  4269. * until the socket owning process reads some of the data
  4270. * to stabilize the situation.
  4271. */
  4272. static int tcp_prune_queue(struct sock *sk)
  4273. {
  4274. struct tcp_sock *tp = tcp_sk(sk);
  4275. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4276. NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4277. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4278. tcp_clamp_window(sk);
  4279. else if (tcp_under_memory_pressure(sk))
  4280. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4281. tcp_collapse_ofo_queue(sk);
  4282. if (!skb_queue_empty(&sk->sk_receive_queue))
  4283. tcp_collapse(sk, &sk->sk_receive_queue, NULL,
  4284. skb_peek(&sk->sk_receive_queue),
  4285. NULL,
  4286. tp->copied_seq, tp->rcv_nxt);
  4287. sk_mem_reclaim(sk);
  4288. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4289. return 0;
  4290. /* Collapsing did not help, destructive actions follow.
  4291. * This must not ever occur. */
  4292. tcp_prune_ofo_queue(sk);
  4293. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4294. return 0;
  4295. /* If we are really being abused, tell the caller to silently
  4296. * drop receive data on the floor. It will get retransmitted
  4297. * and hopefully then we'll have sufficient space.
  4298. */
  4299. NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4300. /* Massive buffer overcommit. */
  4301. return -1;
  4302. }
  4303. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4304. {
  4305. const struct tcp_sock *tp = tcp_sk(sk);
  4306. /* If the user specified a specific send buffer setting, do
  4307. * not modify it.
  4308. */
  4309. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4310. return false;
  4311. /* If we are under global TCP memory pressure, do not expand. */
  4312. if (tcp_under_memory_pressure(sk))
  4313. return false;
  4314. /* If we are under soft global TCP memory pressure, do not expand. */
  4315. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4316. return false;
  4317. /* If we filled the congestion window, do not expand. */
  4318. if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
  4319. return false;
  4320. return true;
  4321. }
  4322. /* When incoming ACK allowed to free some skb from write_queue,
  4323. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4324. * on the exit from tcp input handler.
  4325. *
  4326. * PROBLEM: sndbuf expansion does not work well with largesend.
  4327. */
  4328. static void tcp_new_space(struct sock *sk)
  4329. {
  4330. struct tcp_sock *tp = tcp_sk(sk);
  4331. if (tcp_should_expand_sndbuf(sk)) {
  4332. tcp_sndbuf_expand(sk);
  4333. tp->snd_cwnd_stamp = tcp_jiffies32;
  4334. }
  4335. sk->sk_write_space(sk);
  4336. }
  4337. static void tcp_check_space(struct sock *sk)
  4338. {
  4339. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4340. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4341. /* pairs with tcp_poll() */
  4342. smp_mb();
  4343. if (sk->sk_socket &&
  4344. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4345. tcp_new_space(sk);
  4346. if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4347. tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
  4348. }
  4349. }
  4350. }
  4351. static inline void tcp_data_snd_check(struct sock *sk)
  4352. {
  4353. tcp_push_pending_frames(sk);
  4354. tcp_check_space(sk);
  4355. }
  4356. /*
  4357. * Check if sending an ack is needed.
  4358. */
  4359. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4360. {
  4361. struct tcp_sock *tp = tcp_sk(sk);
  4362. /* More than one full frame received... */
  4363. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4364. /* ... and right edge of window advances far enough.
  4365. * (tcp_recvmsg() will send ACK otherwise). Or...
  4366. */
  4367. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4368. /* We ACK each frame or... */
  4369. tcp_in_quickack_mode(sk) ||
  4370. /* We have out of order data. */
  4371. (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
  4372. /* Then ack it now */
  4373. tcp_send_ack(sk);
  4374. } else {
  4375. /* Else, send delayed ack. */
  4376. tcp_send_delayed_ack(sk);
  4377. }
  4378. }
  4379. static inline void tcp_ack_snd_check(struct sock *sk)
  4380. {
  4381. if (!inet_csk_ack_scheduled(sk)) {
  4382. /* We sent a data segment already. */
  4383. return;
  4384. }
  4385. __tcp_ack_snd_check(sk, 1);
  4386. }
  4387. /*
  4388. * This routine is only called when we have urgent data
  4389. * signaled. Its the 'slow' part of tcp_urg. It could be
  4390. * moved inline now as tcp_urg is only called from one
  4391. * place. We handle URGent data wrong. We have to - as
  4392. * BSD still doesn't use the correction from RFC961.
  4393. * For 1003.1g we should support a new option TCP_STDURG to permit
  4394. * either form (or just set the sysctl tcp_stdurg).
  4395. */
  4396. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4397. {
  4398. struct tcp_sock *tp = tcp_sk(sk);
  4399. u32 ptr = ntohs(th->urg_ptr);
  4400. if (ptr && !sysctl_tcp_stdurg)
  4401. ptr--;
  4402. ptr += ntohl(th->seq);
  4403. /* Ignore urgent data that we've already seen and read. */
  4404. if (after(tp->copied_seq, ptr))
  4405. return;
  4406. /* Do not replay urg ptr.
  4407. *
  4408. * NOTE: interesting situation not covered by specs.
  4409. * Misbehaving sender may send urg ptr, pointing to segment,
  4410. * which we already have in ofo queue. We are not able to fetch
  4411. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4412. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4413. * situations. But it is worth to think about possibility of some
  4414. * DoSes using some hypothetical application level deadlock.
  4415. */
  4416. if (before(ptr, tp->rcv_nxt))
  4417. return;
  4418. /* Do we already have a newer (or duplicate) urgent pointer? */
  4419. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4420. return;
  4421. /* Tell the world about our new urgent pointer. */
  4422. sk_send_sigurg(sk);
  4423. /* We may be adding urgent data when the last byte read was
  4424. * urgent. To do this requires some care. We cannot just ignore
  4425. * tp->copied_seq since we would read the last urgent byte again
  4426. * as data, nor can we alter copied_seq until this data arrives
  4427. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4428. *
  4429. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4430. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4431. * and expect that both A and B disappear from stream. This is _wrong_.
  4432. * Though this happens in BSD with high probability, this is occasional.
  4433. * Any application relying on this is buggy. Note also, that fix "works"
  4434. * only in this artificial test. Insert some normal data between A and B and we will
  4435. * decline of BSD again. Verdict: it is better to remove to trap
  4436. * buggy users.
  4437. */
  4438. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4439. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4440. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4441. tp->copied_seq++;
  4442. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4443. __skb_unlink(skb, &sk->sk_receive_queue);
  4444. __kfree_skb(skb);
  4445. }
  4446. }
  4447. tp->urg_data = TCP_URG_NOTYET;
  4448. tp->urg_seq = ptr;
  4449. }
  4450. /* This is the 'fast' part of urgent handling. */
  4451. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4452. {
  4453. struct tcp_sock *tp = tcp_sk(sk);
  4454. /* Check if we get a new urgent pointer - normally not. */
  4455. if (th->urg)
  4456. tcp_check_urg(sk, th);
  4457. /* Do we wait for any urgent data? - normally not... */
  4458. if (tp->urg_data == TCP_URG_NOTYET) {
  4459. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4460. th->syn;
  4461. /* Is the urgent pointer pointing into this packet? */
  4462. if (ptr < skb->len) {
  4463. u8 tmp;
  4464. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4465. BUG();
  4466. tp->urg_data = TCP_URG_VALID | tmp;
  4467. if (!sock_flag(sk, SOCK_DEAD))
  4468. sk->sk_data_ready(sk);
  4469. }
  4470. }
  4471. }
  4472. /* Accept RST for rcv_nxt - 1 after a FIN.
  4473. * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
  4474. * FIN is sent followed by a RST packet. The RST is sent with the same
  4475. * sequence number as the FIN, and thus according to RFC 5961 a challenge
  4476. * ACK should be sent. However, Mac OSX rate limits replies to challenge
  4477. * ACKs on the closed socket. In addition middleboxes can drop either the
  4478. * challenge ACK or a subsequent RST.
  4479. */
  4480. static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
  4481. {
  4482. struct tcp_sock *tp = tcp_sk(sk);
  4483. return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
  4484. (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
  4485. TCPF_CLOSING));
  4486. }
  4487. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4488. * play significant role here.
  4489. */
  4490. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4491. const struct tcphdr *th, int syn_inerr)
  4492. {
  4493. struct tcp_sock *tp = tcp_sk(sk);
  4494. bool rst_seq_match = false;
  4495. /* RFC1323: H1. Apply PAWS check first. */
  4496. if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
  4497. tp->rx_opt.saw_tstamp &&
  4498. tcp_paws_discard(sk, skb)) {
  4499. if (!th->rst) {
  4500. NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4501. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4502. LINUX_MIB_TCPACKSKIPPEDPAWS,
  4503. &tp->last_oow_ack_time))
  4504. tcp_send_dupack(sk, skb);
  4505. goto discard;
  4506. }
  4507. /* Reset is accepted even if it did not pass PAWS. */
  4508. }
  4509. /* Step 1: check sequence number */
  4510. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4511. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4512. * (RST) segments are validated by checking their SEQ-fields."
  4513. * And page 69: "If an incoming segment is not acceptable,
  4514. * an acknowledgment should be sent in reply (unless the RST
  4515. * bit is set, if so drop the segment and return)".
  4516. */
  4517. if (!th->rst) {
  4518. if (th->syn)
  4519. goto syn_challenge;
  4520. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4521. LINUX_MIB_TCPACKSKIPPEDSEQ,
  4522. &tp->last_oow_ack_time))
  4523. tcp_send_dupack(sk, skb);
  4524. } else if (tcp_reset_check(sk, skb)) {
  4525. tcp_reset(sk);
  4526. }
  4527. goto discard;
  4528. }
  4529. /* Step 2: check RST bit */
  4530. if (th->rst) {
  4531. /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
  4532. * FIN and SACK too if available):
  4533. * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
  4534. * the right-most SACK block,
  4535. * then
  4536. * RESET the connection
  4537. * else
  4538. * Send a challenge ACK
  4539. */
  4540. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
  4541. tcp_reset_check(sk, skb)) {
  4542. rst_seq_match = true;
  4543. } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
  4544. struct tcp_sack_block *sp = &tp->selective_acks[0];
  4545. int max_sack = sp[0].end_seq;
  4546. int this_sack;
  4547. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
  4548. ++this_sack) {
  4549. max_sack = after(sp[this_sack].end_seq,
  4550. max_sack) ?
  4551. sp[this_sack].end_seq : max_sack;
  4552. }
  4553. if (TCP_SKB_CB(skb)->seq == max_sack)
  4554. rst_seq_match = true;
  4555. }
  4556. if (rst_seq_match)
  4557. tcp_reset(sk);
  4558. else {
  4559. /* Disable TFO if RST is out-of-order
  4560. * and no data has been received
  4561. * for current active TFO socket
  4562. */
  4563. if (tp->syn_fastopen && !tp->data_segs_in &&
  4564. sk->sk_state == TCP_ESTABLISHED)
  4565. tcp_fastopen_active_disable(sk);
  4566. tcp_send_challenge_ack(sk, skb);
  4567. }
  4568. goto discard;
  4569. }
  4570. /* step 3: check security and precedence [ignored] */
  4571. /* step 4: Check for a SYN
  4572. * RFC 5961 4.2 : Send a challenge ack
  4573. */
  4574. if (th->syn) {
  4575. syn_challenge:
  4576. if (syn_inerr)
  4577. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4578. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4579. tcp_send_challenge_ack(sk, skb);
  4580. goto discard;
  4581. }
  4582. return true;
  4583. discard:
  4584. tcp_drop(sk, skb);
  4585. return false;
  4586. }
  4587. /*
  4588. * TCP receive function for the ESTABLISHED state.
  4589. */
  4590. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4591. const struct tcphdr *th)
  4592. {
  4593. unsigned int len = skb->len;
  4594. struct tcp_sock *tp = tcp_sk(sk);
  4595. tcp_mstamp_refresh(tp);
  4596. if (unlikely(!sk->sk_rx_dst))
  4597. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4598. tp->rx_opt.saw_tstamp = 0;
  4599. if (len < (th->doff << 2) || tcp_checksum_complete(skb))
  4600. goto csum_error;
  4601. if (!th->ack && !th->rst && !th->syn)
  4602. goto discard;
  4603. if (!tcp_validate_incoming(sk, skb, th, 1))
  4604. return;
  4605. if (tcp_ack(sk, skb, FLAG_UPDATE_TS_RECENT) < 0)
  4606. goto discard;
  4607. tcp_rcv_rtt_measure_ts(sk, skb);
  4608. /* Process urgent data. */
  4609. tcp_urg(sk, skb, th);
  4610. /* step 7: process the segment text */
  4611. tcp_data_queue(sk, skb);
  4612. tcp_data_snd_check(sk);
  4613. tcp_ack_snd_check(sk);
  4614. return;
  4615. csum_error:
  4616. TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
  4617. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4618. discard:
  4619. tcp_drop(sk, skb);
  4620. }
  4621. EXPORT_SYMBOL(tcp_rcv_established);
  4622. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4623. {
  4624. struct tcp_sock *tp = tcp_sk(sk);
  4625. struct inet_connection_sock *icsk = inet_csk(sk);
  4626. tcp_set_state(sk, TCP_ESTABLISHED);
  4627. icsk->icsk_ack.lrcvtime = tcp_jiffies32;
  4628. if (skb) {
  4629. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4630. security_inet_conn_established(sk, skb);
  4631. }
  4632. /* Make sure socket is routed, for correct metrics. */
  4633. icsk->icsk_af_ops->rebuild_header(sk);
  4634. tcp_init_metrics(sk);
  4635. tcp_call_bpf(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
  4636. tcp_init_congestion_control(sk);
  4637. /* Prevent spurious tcp_cwnd_restart() on first data
  4638. * packet.
  4639. */
  4640. tp->lsndtime = tcp_jiffies32;
  4641. tcp_init_buffer_space(sk);
  4642. if (sock_flag(sk, SOCK_KEEPOPEN))
  4643. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4644. }
  4645. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4646. struct tcp_fastopen_cookie *cookie)
  4647. {
  4648. struct tcp_sock *tp = tcp_sk(sk);
  4649. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4650. u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
  4651. bool syn_drop = false;
  4652. if (mss == tp->rx_opt.user_mss) {
  4653. struct tcp_options_received opt;
  4654. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4655. tcp_clear_options(&opt);
  4656. opt.user_mss = opt.mss_clamp = 0;
  4657. tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
  4658. mss = opt.mss_clamp;
  4659. }
  4660. if (!tp->syn_fastopen) {
  4661. /* Ignore an unsolicited cookie */
  4662. cookie->len = -1;
  4663. } else if (tp->total_retrans) {
  4664. /* SYN timed out and the SYN-ACK neither has a cookie nor
  4665. * acknowledges data. Presumably the remote received only
  4666. * the retransmitted (regular) SYNs: either the original
  4667. * SYN-data or the corresponding SYN-ACK was dropped.
  4668. */
  4669. syn_drop = (cookie->len < 0 && data);
  4670. } else if (cookie->len < 0 && !tp->syn_data) {
  4671. /* We requested a cookie but didn't get it. If we did not use
  4672. * the (old) exp opt format then try so next time (try_exp=1).
  4673. * Otherwise we go back to use the RFC7413 opt (try_exp=2).
  4674. */
  4675. try_exp = tp->syn_fastopen_exp ? 2 : 1;
  4676. }
  4677. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
  4678. if (data) { /* Retransmit unacked data in SYN */
  4679. tcp_for_write_queue_from(data, sk) {
  4680. if (data == tcp_send_head(sk) ||
  4681. __tcp_retransmit_skb(sk, data, 1))
  4682. break;
  4683. }
  4684. tcp_rearm_rto(sk);
  4685. NET_INC_STATS(sock_net(sk),
  4686. LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4687. return true;
  4688. }
  4689. tp->syn_data_acked = tp->syn_data;
  4690. if (tp->syn_data_acked)
  4691. NET_INC_STATS(sock_net(sk),
  4692. LINUX_MIB_TCPFASTOPENACTIVE);
  4693. tcp_fastopen_add_skb(sk, synack);
  4694. return false;
  4695. }
  4696. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4697. const struct tcphdr *th)
  4698. {
  4699. struct inet_connection_sock *icsk = inet_csk(sk);
  4700. struct tcp_sock *tp = tcp_sk(sk);
  4701. struct tcp_fastopen_cookie foc = { .len = -1 };
  4702. int saved_clamp = tp->rx_opt.mss_clamp;
  4703. bool fastopen_fail;
  4704. tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
  4705. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4706. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4707. if (th->ack) {
  4708. /* rfc793:
  4709. * "If the state is SYN-SENT then
  4710. * first check the ACK bit
  4711. * If the ACK bit is set
  4712. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4713. * a reset (unless the RST bit is set, if so drop
  4714. * the segment and return)"
  4715. */
  4716. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4717. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4718. goto reset_and_undo;
  4719. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4720. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4721. tcp_time_stamp(tp))) {
  4722. NET_INC_STATS(sock_net(sk),
  4723. LINUX_MIB_PAWSACTIVEREJECTED);
  4724. goto reset_and_undo;
  4725. }
  4726. /* Now ACK is acceptable.
  4727. *
  4728. * "If the RST bit is set
  4729. * If the ACK was acceptable then signal the user "error:
  4730. * connection reset", drop the segment, enter CLOSED state,
  4731. * delete TCB, and return."
  4732. */
  4733. if (th->rst) {
  4734. tcp_reset(sk);
  4735. goto discard;
  4736. }
  4737. /* rfc793:
  4738. * "fifth, if neither of the SYN or RST bits is set then
  4739. * drop the segment and return."
  4740. *
  4741. * See note below!
  4742. * --ANK(990513)
  4743. */
  4744. if (!th->syn)
  4745. goto discard_and_undo;
  4746. /* rfc793:
  4747. * "If the SYN bit is on ...
  4748. * are acceptable then ...
  4749. * (our SYN has been ACKed), change the connection
  4750. * state to ESTABLISHED..."
  4751. */
  4752. tcp_ecn_rcv_synack(tp, th);
  4753. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4754. tcp_ack(sk, skb, 0);
  4755. /* Ok.. it's good. Set up sequence numbers and
  4756. * move to established.
  4757. */
  4758. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4759. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4760. /* RFC1323: The window in SYN & SYN/ACK segments is
  4761. * never scaled.
  4762. */
  4763. tp->snd_wnd = ntohs(th->window);
  4764. if (!tp->rx_opt.wscale_ok) {
  4765. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4766. tp->window_clamp = min(tp->window_clamp, 65535U);
  4767. }
  4768. if (tp->rx_opt.saw_tstamp) {
  4769. tp->rx_opt.tstamp_ok = 1;
  4770. tp->tcp_header_len =
  4771. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4772. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4773. tcp_store_ts_recent(tp);
  4774. } else {
  4775. tp->tcp_header_len = sizeof(struct tcphdr);
  4776. }
  4777. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4778. tcp_enable_fack(tp);
  4779. tcp_mtup_init(sk);
  4780. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4781. tcp_initialize_rcv_mss(sk);
  4782. /* Remember, tcp_poll() does not lock socket!
  4783. * Change state from SYN-SENT only after copied_seq
  4784. * is initialized. */
  4785. tp->copied_seq = tp->rcv_nxt;
  4786. smp_mb();
  4787. tcp_finish_connect(sk, skb);
  4788. fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
  4789. tcp_rcv_fastopen_synack(sk, skb, &foc);
  4790. if (!sock_flag(sk, SOCK_DEAD)) {
  4791. sk->sk_state_change(sk);
  4792. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4793. }
  4794. if (fastopen_fail)
  4795. return -1;
  4796. if (sk->sk_write_pending ||
  4797. icsk->icsk_accept_queue.rskq_defer_accept ||
  4798. icsk->icsk_ack.pingpong) {
  4799. /* Save one ACK. Data will be ready after
  4800. * several ticks, if write_pending is set.
  4801. *
  4802. * It may be deleted, but with this feature tcpdumps
  4803. * look so _wonderfully_ clever, that I was not able
  4804. * to stand against the temptation 8) --ANK
  4805. */
  4806. inet_csk_schedule_ack(sk);
  4807. tcp_enter_quickack_mode(sk);
  4808. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4809. TCP_DELACK_MAX, TCP_RTO_MAX);
  4810. discard:
  4811. tcp_drop(sk, skb);
  4812. return 0;
  4813. } else {
  4814. tcp_send_ack(sk);
  4815. }
  4816. return -1;
  4817. }
  4818. /* No ACK in the segment */
  4819. if (th->rst) {
  4820. /* rfc793:
  4821. * "If the RST bit is set
  4822. *
  4823. * Otherwise (no ACK) drop the segment and return."
  4824. */
  4825. goto discard_and_undo;
  4826. }
  4827. /* PAWS check. */
  4828. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4829. tcp_paws_reject(&tp->rx_opt, 0))
  4830. goto discard_and_undo;
  4831. if (th->syn) {
  4832. /* We see SYN without ACK. It is attempt of
  4833. * simultaneous connect with crossed SYNs.
  4834. * Particularly, it can be connect to self.
  4835. */
  4836. tcp_set_state(sk, TCP_SYN_RECV);
  4837. if (tp->rx_opt.saw_tstamp) {
  4838. tp->rx_opt.tstamp_ok = 1;
  4839. tcp_store_ts_recent(tp);
  4840. tp->tcp_header_len =
  4841. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4842. } else {
  4843. tp->tcp_header_len = sizeof(struct tcphdr);
  4844. }
  4845. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4846. tp->copied_seq = tp->rcv_nxt;
  4847. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4848. /* RFC1323: The window in SYN & SYN/ACK segments is
  4849. * never scaled.
  4850. */
  4851. tp->snd_wnd = ntohs(th->window);
  4852. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4853. tp->max_window = tp->snd_wnd;
  4854. tcp_ecn_rcv_syn(tp, th);
  4855. tcp_mtup_init(sk);
  4856. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4857. tcp_initialize_rcv_mss(sk);
  4858. tcp_send_synack(sk);
  4859. #if 0
  4860. /* Note, we could accept data and URG from this segment.
  4861. * There are no obstacles to make this (except that we must
  4862. * either change tcp_recvmsg() to prevent it from returning data
  4863. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4864. *
  4865. * However, if we ignore data in ACKless segments sometimes,
  4866. * we have no reasons to accept it sometimes.
  4867. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4868. * is not flawless. So, discard packet for sanity.
  4869. * Uncomment this return to process the data.
  4870. */
  4871. return -1;
  4872. #else
  4873. goto discard;
  4874. #endif
  4875. }
  4876. /* "fifth, if neither of the SYN or RST bits is set then
  4877. * drop the segment and return."
  4878. */
  4879. discard_and_undo:
  4880. tcp_clear_options(&tp->rx_opt);
  4881. tp->rx_opt.mss_clamp = saved_clamp;
  4882. goto discard;
  4883. reset_and_undo:
  4884. tcp_clear_options(&tp->rx_opt);
  4885. tp->rx_opt.mss_clamp = saved_clamp;
  4886. return 1;
  4887. }
  4888. /*
  4889. * This function implements the receiving procedure of RFC 793 for
  4890. * all states except ESTABLISHED and TIME_WAIT.
  4891. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4892. * address independent.
  4893. */
  4894. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
  4895. {
  4896. struct tcp_sock *tp = tcp_sk(sk);
  4897. struct inet_connection_sock *icsk = inet_csk(sk);
  4898. const struct tcphdr *th = tcp_hdr(skb);
  4899. struct request_sock *req;
  4900. int queued = 0;
  4901. bool acceptable;
  4902. switch (sk->sk_state) {
  4903. case TCP_CLOSE:
  4904. goto discard;
  4905. case TCP_LISTEN:
  4906. if (th->ack)
  4907. return 1;
  4908. if (th->rst)
  4909. goto discard;
  4910. if (th->syn) {
  4911. if (th->fin)
  4912. goto discard;
  4913. /* It is possible that we process SYN packets from backlog,
  4914. * so we need to make sure to disable BH right there.
  4915. */
  4916. local_bh_disable();
  4917. acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
  4918. local_bh_enable();
  4919. if (!acceptable)
  4920. return 1;
  4921. consume_skb(skb);
  4922. return 0;
  4923. }
  4924. goto discard;
  4925. case TCP_SYN_SENT:
  4926. tp->rx_opt.saw_tstamp = 0;
  4927. tcp_mstamp_refresh(tp);
  4928. queued = tcp_rcv_synsent_state_process(sk, skb, th);
  4929. if (queued >= 0)
  4930. return queued;
  4931. /* Do step6 onward by hand. */
  4932. tcp_urg(sk, skb, th);
  4933. __kfree_skb(skb);
  4934. tcp_data_snd_check(sk);
  4935. return 0;
  4936. }
  4937. tcp_mstamp_refresh(tp);
  4938. tp->rx_opt.saw_tstamp = 0;
  4939. req = tp->fastopen_rsk;
  4940. if (req) {
  4941. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  4942. sk->sk_state != TCP_FIN_WAIT1);
  4943. if (!tcp_check_req(sk, skb, req, true))
  4944. goto discard;
  4945. }
  4946. if (!th->ack && !th->rst && !th->syn)
  4947. goto discard;
  4948. if (!tcp_validate_incoming(sk, skb, th, 0))
  4949. return 0;
  4950. /* step 5: check the ACK field */
  4951. acceptable = tcp_ack(sk, skb, FLAG_UPDATE_TS_RECENT |
  4952. FLAG_NO_CHALLENGE_ACK) > 0;
  4953. if (!acceptable) {
  4954. if (sk->sk_state == TCP_SYN_RECV)
  4955. return 1; /* send one RST */
  4956. tcp_send_challenge_ack(sk, skb);
  4957. goto discard;
  4958. }
  4959. switch (sk->sk_state) {
  4960. case TCP_SYN_RECV:
  4961. if (!tp->srtt_us)
  4962. tcp_synack_rtt_meas(sk, req);
  4963. /* Once we leave TCP_SYN_RECV, we no longer need req
  4964. * so release it.
  4965. */
  4966. if (req) {
  4967. inet_csk(sk)->icsk_retransmits = 0;
  4968. reqsk_fastopen_remove(sk, req, false);
  4969. } else {
  4970. /* Make sure socket is routed, for correct metrics. */
  4971. icsk->icsk_af_ops->rebuild_header(sk);
  4972. tcp_call_bpf(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
  4973. tcp_init_congestion_control(sk);
  4974. tcp_mtup_init(sk);
  4975. tp->copied_seq = tp->rcv_nxt;
  4976. tcp_init_buffer_space(sk);
  4977. }
  4978. smp_mb();
  4979. tcp_set_state(sk, TCP_ESTABLISHED);
  4980. sk->sk_state_change(sk);
  4981. /* Note, that this wakeup is only for marginal crossed SYN case.
  4982. * Passively open sockets are not waked up, because
  4983. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  4984. */
  4985. if (sk->sk_socket)
  4986. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4987. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4988. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  4989. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4990. if (tp->rx_opt.tstamp_ok)
  4991. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4992. if (req) {
  4993. /* Re-arm the timer because data may have been sent out.
  4994. * This is similar to the regular data transmission case
  4995. * when new data has just been ack'ed.
  4996. *
  4997. * (TFO) - we could try to be more aggressive and
  4998. * retransmitting any data sooner based on when they
  4999. * are sent out.
  5000. */
  5001. tcp_rearm_rto(sk);
  5002. } else
  5003. tcp_init_metrics(sk);
  5004. if (!inet_csk(sk)->icsk_ca_ops->cong_control)
  5005. tcp_update_pacing_rate(sk);
  5006. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  5007. tp->lsndtime = tcp_jiffies32;
  5008. tcp_initialize_rcv_mss(sk);
  5009. break;
  5010. case TCP_FIN_WAIT1: {
  5011. int tmo;
  5012. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5013. * Fast Open socket and this is the first acceptable
  5014. * ACK we have received, this would have acknowledged
  5015. * our SYNACK so stop the SYNACK timer.
  5016. */
  5017. if (req) {
  5018. /* We no longer need the request sock. */
  5019. reqsk_fastopen_remove(sk, req, false);
  5020. tcp_rearm_rto(sk);
  5021. }
  5022. if (tp->snd_una != tp->write_seq)
  5023. break;
  5024. tcp_set_state(sk, TCP_FIN_WAIT2);
  5025. sk->sk_shutdown |= SEND_SHUTDOWN;
  5026. sk_dst_confirm(sk);
  5027. if (!sock_flag(sk, SOCK_DEAD)) {
  5028. /* Wake up lingering close() */
  5029. sk->sk_state_change(sk);
  5030. break;
  5031. }
  5032. if (tp->linger2 < 0) {
  5033. tcp_done(sk);
  5034. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5035. return 1;
  5036. }
  5037. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5038. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5039. /* Receive out of order FIN after close() */
  5040. if (tp->syn_fastopen && th->fin)
  5041. tcp_fastopen_active_disable(sk);
  5042. tcp_done(sk);
  5043. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5044. return 1;
  5045. }
  5046. tmo = tcp_fin_time(sk);
  5047. if (tmo > TCP_TIMEWAIT_LEN) {
  5048. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5049. } else if (th->fin || sock_owned_by_user(sk)) {
  5050. /* Bad case. We could lose such FIN otherwise.
  5051. * It is not a big problem, but it looks confusing
  5052. * and not so rare event. We still can lose it now,
  5053. * if it spins in bh_lock_sock(), but it is really
  5054. * marginal case.
  5055. */
  5056. inet_csk_reset_keepalive_timer(sk, tmo);
  5057. } else {
  5058. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5059. goto discard;
  5060. }
  5061. break;
  5062. }
  5063. case TCP_CLOSING:
  5064. if (tp->snd_una == tp->write_seq) {
  5065. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5066. goto discard;
  5067. }
  5068. break;
  5069. case TCP_LAST_ACK:
  5070. if (tp->snd_una == tp->write_seq) {
  5071. tcp_update_metrics(sk);
  5072. tcp_done(sk);
  5073. goto discard;
  5074. }
  5075. break;
  5076. }
  5077. /* step 6: check the URG bit */
  5078. tcp_urg(sk, skb, th);
  5079. /* step 7: process the segment text */
  5080. switch (sk->sk_state) {
  5081. case TCP_CLOSE_WAIT:
  5082. case TCP_CLOSING:
  5083. case TCP_LAST_ACK:
  5084. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5085. break;
  5086. case TCP_FIN_WAIT1:
  5087. case TCP_FIN_WAIT2:
  5088. /* RFC 793 says to queue data in these states,
  5089. * RFC 1122 says we MUST send a reset.
  5090. * BSD 4.4 also does reset.
  5091. */
  5092. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5093. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5094. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5095. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5096. tcp_reset(sk);
  5097. return 1;
  5098. }
  5099. }
  5100. /* Fall through */
  5101. case TCP_ESTABLISHED:
  5102. tcp_data_queue(sk, skb);
  5103. queued = 1;
  5104. break;
  5105. }
  5106. /* tcp_data could move socket to TIME-WAIT */
  5107. if (sk->sk_state != TCP_CLOSE) {
  5108. tcp_data_snd_check(sk);
  5109. tcp_ack_snd_check(sk);
  5110. }
  5111. if (!queued) {
  5112. discard:
  5113. tcp_drop(sk, skb);
  5114. }
  5115. return 0;
  5116. }
  5117. EXPORT_SYMBOL(tcp_rcv_state_process);
  5118. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5119. {
  5120. struct inet_request_sock *ireq = inet_rsk(req);
  5121. if (family == AF_INET)
  5122. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5123. &ireq->ir_rmt_addr, port);
  5124. #if IS_ENABLED(CONFIG_IPV6)
  5125. else if (family == AF_INET6)
  5126. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5127. &ireq->ir_v6_rmt_addr, port);
  5128. #endif
  5129. }
  5130. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5131. *
  5132. * If we receive a SYN packet with these bits set, it means a
  5133. * network is playing bad games with TOS bits. In order to
  5134. * avoid possible false congestion notifications, we disable
  5135. * TCP ECN negotiation.
  5136. *
  5137. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5138. * congestion control: Linux DCTCP asserts ECT on all packets,
  5139. * including SYN, which is most optimal solution; however,
  5140. * others, such as FreeBSD do not.
  5141. */
  5142. static void tcp_ecn_create_request(struct request_sock *req,
  5143. const struct sk_buff *skb,
  5144. const struct sock *listen_sk,
  5145. const struct dst_entry *dst)
  5146. {
  5147. const struct tcphdr *th = tcp_hdr(skb);
  5148. const struct net *net = sock_net(listen_sk);
  5149. bool th_ecn = th->ece && th->cwr;
  5150. bool ect, ecn_ok;
  5151. u32 ecn_ok_dst;
  5152. if (!th_ecn)
  5153. return;
  5154. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5155. ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
  5156. ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
  5157. if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
  5158. (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
  5159. tcp_bpf_ca_needs_ecn((struct sock *)req))
  5160. inet_rsk(req)->ecn_ok = 1;
  5161. }
  5162. static void tcp_openreq_init(struct request_sock *req,
  5163. const struct tcp_options_received *rx_opt,
  5164. struct sk_buff *skb, const struct sock *sk)
  5165. {
  5166. struct inet_request_sock *ireq = inet_rsk(req);
  5167. req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
  5168. req->cookie_ts = 0;
  5169. tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
  5170. tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5171. tcp_rsk(req)->snt_synack = tcp_clock_us();
  5172. tcp_rsk(req)->last_oow_ack_time = 0;
  5173. req->mss = rx_opt->mss_clamp;
  5174. req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
  5175. ireq->tstamp_ok = rx_opt->tstamp_ok;
  5176. ireq->sack_ok = rx_opt->sack_ok;
  5177. ireq->snd_wscale = rx_opt->snd_wscale;
  5178. ireq->wscale_ok = rx_opt->wscale_ok;
  5179. ireq->acked = 0;
  5180. ireq->ecn_ok = 0;
  5181. ireq->ir_rmt_port = tcp_hdr(skb)->source;
  5182. ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
  5183. ireq->ir_mark = inet_request_mark(sk, skb);
  5184. }
  5185. struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
  5186. struct sock *sk_listener,
  5187. bool attach_listener)
  5188. {
  5189. struct request_sock *req = reqsk_alloc(ops, sk_listener,
  5190. attach_listener);
  5191. if (req) {
  5192. struct inet_request_sock *ireq = inet_rsk(req);
  5193. kmemcheck_annotate_bitfield(ireq, flags);
  5194. ireq->opt = NULL;
  5195. #if IS_ENABLED(CONFIG_IPV6)
  5196. ireq->pktopts = NULL;
  5197. #endif
  5198. atomic64_set(&ireq->ir_cookie, 0);
  5199. ireq->ireq_state = TCP_NEW_SYN_RECV;
  5200. write_pnet(&ireq->ireq_net, sock_net(sk_listener));
  5201. ireq->ireq_family = sk_listener->sk_family;
  5202. }
  5203. return req;
  5204. }
  5205. EXPORT_SYMBOL(inet_reqsk_alloc);
  5206. /*
  5207. * Return true if a syncookie should be sent
  5208. */
  5209. static bool tcp_syn_flood_action(const struct sock *sk,
  5210. const struct sk_buff *skb,
  5211. const char *proto)
  5212. {
  5213. struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
  5214. const char *msg = "Dropping request";
  5215. bool want_cookie = false;
  5216. struct net *net = sock_net(sk);
  5217. #ifdef CONFIG_SYN_COOKIES
  5218. if (net->ipv4.sysctl_tcp_syncookies) {
  5219. msg = "Sending cookies";
  5220. want_cookie = true;
  5221. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
  5222. } else
  5223. #endif
  5224. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
  5225. if (!queue->synflood_warned &&
  5226. net->ipv4.sysctl_tcp_syncookies != 2 &&
  5227. xchg(&queue->synflood_warned, 1) == 0)
  5228. pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
  5229. proto, ntohs(tcp_hdr(skb)->dest), msg);
  5230. return want_cookie;
  5231. }
  5232. static void tcp_reqsk_record_syn(const struct sock *sk,
  5233. struct request_sock *req,
  5234. const struct sk_buff *skb)
  5235. {
  5236. if (tcp_sk(sk)->save_syn) {
  5237. u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
  5238. u32 *copy;
  5239. copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
  5240. if (copy) {
  5241. copy[0] = len;
  5242. memcpy(&copy[1], skb_network_header(skb), len);
  5243. req->saved_syn = copy;
  5244. }
  5245. }
  5246. }
  5247. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5248. const struct tcp_request_sock_ops *af_ops,
  5249. struct sock *sk, struct sk_buff *skb)
  5250. {
  5251. struct tcp_fastopen_cookie foc = { .len = -1 };
  5252. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5253. struct tcp_options_received tmp_opt;
  5254. struct tcp_sock *tp = tcp_sk(sk);
  5255. struct net *net = sock_net(sk);
  5256. struct sock *fastopen_sk = NULL;
  5257. struct request_sock *req;
  5258. bool want_cookie = false;
  5259. struct dst_entry *dst;
  5260. struct flowi fl;
  5261. /* TW buckets are converted to open requests without
  5262. * limitations, they conserve resources and peer is
  5263. * evidently real one.
  5264. */
  5265. if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
  5266. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5267. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5268. if (!want_cookie)
  5269. goto drop;
  5270. }
  5271. if (sk_acceptq_is_full(sk)) {
  5272. NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5273. goto drop;
  5274. }
  5275. req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
  5276. if (!req)
  5277. goto drop;
  5278. tcp_rsk(req)->af_specific = af_ops;
  5279. tcp_rsk(req)->ts_off = 0;
  5280. tcp_clear_options(&tmp_opt);
  5281. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5282. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5283. tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
  5284. want_cookie ? NULL : &foc);
  5285. if (want_cookie && !tmp_opt.saw_tstamp)
  5286. tcp_clear_options(&tmp_opt);
  5287. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5288. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5289. inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
  5290. /* Note: tcp_v6_init_req() might override ir_iif for link locals */
  5291. inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
  5292. af_ops->init_req(req, sk, skb);
  5293. if (security_inet_conn_request(sk, skb, req))
  5294. goto drop_and_free;
  5295. if (tmp_opt.tstamp_ok)
  5296. tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
  5297. dst = af_ops->route_req(sk, &fl, req);
  5298. if (!dst)
  5299. goto drop_and_free;
  5300. if (!want_cookie && !isn) {
  5301. /* Kill the following clause, if you dislike this way. */
  5302. if (!net->ipv4.sysctl_tcp_syncookies &&
  5303. (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5304. (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
  5305. !tcp_peer_is_proven(req, dst)) {
  5306. /* Without syncookies last quarter of
  5307. * backlog is filled with destinations,
  5308. * proven to be alive.
  5309. * It means that we continue to communicate
  5310. * to destinations, already remembered
  5311. * to the moment of synflood.
  5312. */
  5313. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5314. rsk_ops->family);
  5315. goto drop_and_release;
  5316. }
  5317. isn = af_ops->init_seq(skb);
  5318. }
  5319. tcp_ecn_create_request(req, skb, sk, dst);
  5320. if (want_cookie) {
  5321. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5322. req->cookie_ts = tmp_opt.tstamp_ok;
  5323. if (!tmp_opt.tstamp_ok)
  5324. inet_rsk(req)->ecn_ok = 0;
  5325. }
  5326. tcp_rsk(req)->snt_isn = isn;
  5327. tcp_rsk(req)->txhash = net_tx_rndhash();
  5328. tcp_openreq_init_rwin(req, sk, dst);
  5329. if (!want_cookie) {
  5330. tcp_reqsk_record_syn(sk, req, skb);
  5331. fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc);
  5332. }
  5333. if (fastopen_sk) {
  5334. af_ops->send_synack(fastopen_sk, dst, &fl, req,
  5335. &foc, TCP_SYNACK_FASTOPEN);
  5336. /* Add the child socket directly into the accept queue */
  5337. inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
  5338. sk->sk_data_ready(sk);
  5339. bh_unlock_sock(fastopen_sk);
  5340. sock_put(fastopen_sk);
  5341. } else {
  5342. tcp_rsk(req)->tfo_listener = false;
  5343. if (!want_cookie)
  5344. inet_csk_reqsk_queue_hash_add(sk, req,
  5345. tcp_timeout_init((struct sock *)req));
  5346. af_ops->send_synack(sk, dst, &fl, req, &foc,
  5347. !want_cookie ? TCP_SYNACK_NORMAL :
  5348. TCP_SYNACK_COOKIE);
  5349. if (want_cookie) {
  5350. reqsk_free(req);
  5351. return 0;
  5352. }
  5353. }
  5354. reqsk_put(req);
  5355. return 0;
  5356. drop_and_release:
  5357. dst_release(dst);
  5358. drop_and_free:
  5359. reqsk_free(req);
  5360. drop:
  5361. tcp_listendrop(sk);
  5362. return 0;
  5363. }
  5364. EXPORT_SYMBOL(tcp_conn_request);