smp_pv.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487
  1. /*
  2. * Xen SMP support
  3. *
  4. * This file implements the Xen versions of smp_ops. SMP under Xen is
  5. * very straightforward. Bringing a CPU up is simply a matter of
  6. * loading its initial context and setting it running.
  7. *
  8. * IPIs are handled through the Xen event mechanism.
  9. *
  10. * Because virtual CPUs can be scheduled onto any real CPU, there's no
  11. * useful topology information for the kernel to make use of. As a
  12. * result, all CPUs are treated as if they're single-core and
  13. * single-threaded.
  14. */
  15. #include <linux/sched.h>
  16. #include <linux/err.h>
  17. #include <linux/slab.h>
  18. #include <linux/smp.h>
  19. #include <linux/irq_work.h>
  20. #include <linux/tick.h>
  21. #include <linux/nmi.h>
  22. #include <linux/cpuhotplug.h>
  23. #include <asm/paravirt.h>
  24. #include <asm/desc.h>
  25. #include <asm/pgtable.h>
  26. #include <asm/cpu.h>
  27. #include <xen/interface/xen.h>
  28. #include <xen/interface/vcpu.h>
  29. #include <xen/interface/xenpmu.h>
  30. #include <asm/xen/interface.h>
  31. #include <asm/xen/hypercall.h>
  32. #include <xen/xen.h>
  33. #include <xen/page.h>
  34. #include <xen/events.h>
  35. #include <xen/hvc-console.h>
  36. #include "xen-ops.h"
  37. #include "mmu.h"
  38. #include "smp.h"
  39. #include "pmu.h"
  40. cpumask_var_t xen_cpu_initialized_map;
  41. static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 };
  42. static DEFINE_PER_CPU(struct xen_common_irq, xen_pmu_irq) = { .irq = -1 };
  43. static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id);
  44. static void cpu_bringup(void)
  45. {
  46. int cpu;
  47. cpu_init();
  48. touch_softlockup_watchdog();
  49. preempt_disable();
  50. /* PVH runs in ring 0 and allows us to do native syscalls. Yay! */
  51. if (!xen_feature(XENFEAT_supervisor_mode_kernel)) {
  52. xen_enable_sysenter();
  53. xen_enable_syscall();
  54. }
  55. cpu = smp_processor_id();
  56. smp_store_cpu_info(cpu);
  57. cpu_data(cpu).x86_max_cores = 1;
  58. set_cpu_sibling_map(cpu);
  59. xen_setup_cpu_clockevents();
  60. notify_cpu_starting(cpu);
  61. set_cpu_online(cpu, true);
  62. cpu_set_state_online(cpu); /* Implies full memory barrier. */
  63. /* We can take interrupts now: we're officially "up". */
  64. local_irq_enable();
  65. }
  66. asmlinkage __visible void cpu_bringup_and_idle(void)
  67. {
  68. cpu_bringup();
  69. cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
  70. }
  71. void xen_smp_intr_free_pv(unsigned int cpu)
  72. {
  73. if (per_cpu(xen_irq_work, cpu).irq >= 0) {
  74. unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL);
  75. per_cpu(xen_irq_work, cpu).irq = -1;
  76. kfree(per_cpu(xen_irq_work, cpu).name);
  77. per_cpu(xen_irq_work, cpu).name = NULL;
  78. }
  79. if (per_cpu(xen_pmu_irq, cpu).irq >= 0) {
  80. unbind_from_irqhandler(per_cpu(xen_pmu_irq, cpu).irq, NULL);
  81. per_cpu(xen_pmu_irq, cpu).irq = -1;
  82. kfree(per_cpu(xen_pmu_irq, cpu).name);
  83. per_cpu(xen_pmu_irq, cpu).name = NULL;
  84. }
  85. }
  86. int xen_smp_intr_init_pv(unsigned int cpu)
  87. {
  88. int rc;
  89. char *callfunc_name, *pmu_name;
  90. callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu);
  91. rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR,
  92. cpu,
  93. xen_irq_work_interrupt,
  94. IRQF_PERCPU|IRQF_NOBALANCING,
  95. callfunc_name,
  96. NULL);
  97. if (rc < 0)
  98. goto fail;
  99. per_cpu(xen_irq_work, cpu).irq = rc;
  100. per_cpu(xen_irq_work, cpu).name = callfunc_name;
  101. if (is_xen_pmu(cpu)) {
  102. pmu_name = kasprintf(GFP_KERNEL, "pmu%d", cpu);
  103. rc = bind_virq_to_irqhandler(VIRQ_XENPMU, cpu,
  104. xen_pmu_irq_handler,
  105. IRQF_PERCPU|IRQF_NOBALANCING,
  106. pmu_name, NULL);
  107. if (rc < 0)
  108. goto fail;
  109. per_cpu(xen_pmu_irq, cpu).irq = rc;
  110. per_cpu(xen_pmu_irq, cpu).name = pmu_name;
  111. }
  112. return 0;
  113. fail:
  114. xen_smp_intr_free_pv(cpu);
  115. return rc;
  116. }
  117. static void __init xen_fill_possible_map(void)
  118. {
  119. int i, rc;
  120. if (xen_initial_domain())
  121. return;
  122. for (i = 0; i < nr_cpu_ids; i++) {
  123. rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
  124. if (rc >= 0) {
  125. num_processors++;
  126. set_cpu_possible(i, true);
  127. }
  128. }
  129. }
  130. static void __init xen_filter_cpu_maps(void)
  131. {
  132. int i, rc;
  133. unsigned int subtract = 0;
  134. if (!xen_initial_domain())
  135. return;
  136. num_processors = 0;
  137. disabled_cpus = 0;
  138. for (i = 0; i < nr_cpu_ids; i++) {
  139. rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
  140. if (rc >= 0) {
  141. num_processors++;
  142. set_cpu_possible(i, true);
  143. } else {
  144. set_cpu_possible(i, false);
  145. set_cpu_present(i, false);
  146. subtract++;
  147. }
  148. }
  149. #ifdef CONFIG_HOTPLUG_CPU
  150. /* This is akin to using 'nr_cpus' on the Linux command line.
  151. * Which is OK as when we use 'dom0_max_vcpus=X' we can only
  152. * have up to X, while nr_cpu_ids is greater than X. This
  153. * normally is not a problem, except when CPU hotplugging
  154. * is involved and then there might be more than X CPUs
  155. * in the guest - which will not work as there is no
  156. * hypercall to expand the max number of VCPUs an already
  157. * running guest has. So cap it up to X. */
  158. if (subtract)
  159. nr_cpu_ids = nr_cpu_ids - subtract;
  160. #endif
  161. }
  162. static void __init xen_pv_smp_prepare_boot_cpu(void)
  163. {
  164. BUG_ON(smp_processor_id() != 0);
  165. native_smp_prepare_boot_cpu();
  166. if (!xen_feature(XENFEAT_writable_page_tables))
  167. /* We've switched to the "real" per-cpu gdt, so make
  168. * sure the old memory can be recycled. */
  169. make_lowmem_page_readwrite(xen_initial_gdt);
  170. #ifdef CONFIG_X86_32
  171. /*
  172. * Xen starts us with XEN_FLAT_RING1_DS, but linux code
  173. * expects __USER_DS
  174. */
  175. loadsegment(ds, __USER_DS);
  176. loadsegment(es, __USER_DS);
  177. #endif
  178. xen_filter_cpu_maps();
  179. xen_setup_vcpu_info_placement();
  180. /*
  181. * The alternative logic (which patches the unlock/lock) runs before
  182. * the smp bootup up code is activated. Hence we need to set this up
  183. * the core kernel is being patched. Otherwise we will have only
  184. * modules patched but not core code.
  185. */
  186. xen_init_spinlocks();
  187. }
  188. static void __init xen_pv_smp_prepare_cpus(unsigned int max_cpus)
  189. {
  190. unsigned cpu;
  191. unsigned int i;
  192. if (skip_ioapic_setup) {
  193. char *m = (max_cpus == 0) ?
  194. "The nosmp parameter is incompatible with Xen; " \
  195. "use Xen dom0_max_vcpus=1 parameter" :
  196. "The noapic parameter is incompatible with Xen";
  197. xen_raw_printk(m);
  198. panic(m);
  199. }
  200. xen_init_lock_cpu(0);
  201. smp_store_boot_cpu_info();
  202. cpu_data(0).x86_max_cores = 1;
  203. for_each_possible_cpu(i) {
  204. zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
  205. zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
  206. zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
  207. }
  208. set_cpu_sibling_map(0);
  209. xen_pmu_init(0);
  210. if (xen_smp_intr_init(0) || xen_smp_intr_init_pv(0))
  211. BUG();
  212. if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL))
  213. panic("could not allocate xen_cpu_initialized_map\n");
  214. cpumask_copy(xen_cpu_initialized_map, cpumask_of(0));
  215. /* Restrict the possible_map according to max_cpus. */
  216. while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
  217. for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--)
  218. continue;
  219. set_cpu_possible(cpu, false);
  220. }
  221. for_each_possible_cpu(cpu)
  222. set_cpu_present(cpu, true);
  223. }
  224. static int
  225. cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
  226. {
  227. struct vcpu_guest_context *ctxt;
  228. struct desc_struct *gdt;
  229. unsigned long gdt_mfn;
  230. /* used to tell cpu_init() that it can proceed with initialization */
  231. cpumask_set_cpu(cpu, cpu_callout_mask);
  232. if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map))
  233. return 0;
  234. ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
  235. if (ctxt == NULL)
  236. return -ENOMEM;
  237. gdt = get_cpu_gdt_rw(cpu);
  238. #ifdef CONFIG_X86_32
  239. ctxt->user_regs.fs = __KERNEL_PERCPU;
  240. ctxt->user_regs.gs = __KERNEL_STACK_CANARY;
  241. #endif
  242. memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
  243. ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
  244. ctxt->flags = VGCF_IN_KERNEL;
  245. ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
  246. ctxt->user_regs.ds = __USER_DS;
  247. ctxt->user_regs.es = __USER_DS;
  248. ctxt->user_regs.ss = __KERNEL_DS;
  249. xen_copy_trap_info(ctxt->trap_ctxt);
  250. ctxt->ldt_ents = 0;
  251. BUG_ON((unsigned long)gdt & ~PAGE_MASK);
  252. gdt_mfn = arbitrary_virt_to_mfn(gdt);
  253. make_lowmem_page_readonly(gdt);
  254. make_lowmem_page_readonly(mfn_to_virt(gdt_mfn));
  255. ctxt->gdt_frames[0] = gdt_mfn;
  256. ctxt->gdt_ents = GDT_ENTRIES;
  257. ctxt->kernel_ss = __KERNEL_DS;
  258. ctxt->kernel_sp = idle->thread.sp0;
  259. #ifdef CONFIG_X86_32
  260. ctxt->event_callback_cs = __KERNEL_CS;
  261. ctxt->failsafe_callback_cs = __KERNEL_CS;
  262. #else
  263. ctxt->gs_base_kernel = per_cpu_offset(cpu);
  264. #endif
  265. ctxt->event_callback_eip =
  266. (unsigned long)xen_hypervisor_callback;
  267. ctxt->failsafe_callback_eip =
  268. (unsigned long)xen_failsafe_callback;
  269. ctxt->user_regs.cs = __KERNEL_CS;
  270. per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
  271. ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
  272. ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_gfn(swapper_pg_dir));
  273. if (HYPERVISOR_vcpu_op(VCPUOP_initialise, xen_vcpu_nr(cpu), ctxt))
  274. BUG();
  275. kfree(ctxt);
  276. return 0;
  277. }
  278. static int xen_pv_cpu_up(unsigned int cpu, struct task_struct *idle)
  279. {
  280. int rc;
  281. common_cpu_up(cpu, idle);
  282. xen_setup_runstate_info(cpu);
  283. /*
  284. * PV VCPUs are always successfully taken down (see 'while' loop
  285. * in xen_cpu_die()), so -EBUSY is an error.
  286. */
  287. rc = cpu_check_up_prepare(cpu);
  288. if (rc)
  289. return rc;
  290. /* make sure interrupts start blocked */
  291. per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
  292. rc = cpu_initialize_context(cpu, idle);
  293. if (rc)
  294. return rc;
  295. xen_pmu_init(cpu);
  296. rc = HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL);
  297. BUG_ON(rc);
  298. while (cpu_report_state(cpu) != CPU_ONLINE)
  299. HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
  300. return 0;
  301. }
  302. #ifdef CONFIG_HOTPLUG_CPU
  303. static int xen_pv_cpu_disable(void)
  304. {
  305. unsigned int cpu = smp_processor_id();
  306. if (cpu == 0)
  307. return -EBUSY;
  308. cpu_disable_common();
  309. load_cr3(swapper_pg_dir);
  310. return 0;
  311. }
  312. static void xen_pv_cpu_die(unsigned int cpu)
  313. {
  314. while (HYPERVISOR_vcpu_op(VCPUOP_is_up,
  315. xen_vcpu_nr(cpu), NULL)) {
  316. __set_current_state(TASK_UNINTERRUPTIBLE);
  317. schedule_timeout(HZ/10);
  318. }
  319. if (common_cpu_die(cpu) == 0) {
  320. xen_smp_intr_free(cpu);
  321. xen_uninit_lock_cpu(cpu);
  322. xen_teardown_timer(cpu);
  323. xen_pmu_finish(cpu);
  324. }
  325. }
  326. static void xen_pv_play_dead(void) /* used only with HOTPLUG_CPU */
  327. {
  328. play_dead_common();
  329. HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(smp_processor_id()), NULL);
  330. cpu_bringup();
  331. /*
  332. * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down)
  333. * clears certain data that the cpu_idle loop (which called us
  334. * and that we return from) expects. The only way to get that
  335. * data back is to call:
  336. */
  337. tick_nohz_idle_enter();
  338. cpuhp_online_idle(CPUHP_AP_ONLINE_IDLE);
  339. }
  340. #else /* !CONFIG_HOTPLUG_CPU */
  341. static int xen_pv_cpu_disable(void)
  342. {
  343. return -ENOSYS;
  344. }
  345. static void xen_pv_cpu_die(unsigned int cpu)
  346. {
  347. BUG();
  348. }
  349. static void xen_pv_play_dead(void)
  350. {
  351. BUG();
  352. }
  353. #endif
  354. static void stop_self(void *v)
  355. {
  356. int cpu = smp_processor_id();
  357. /* make sure we're not pinning something down */
  358. load_cr3(swapper_pg_dir);
  359. /* should set up a minimal gdt */
  360. set_cpu_online(cpu, false);
  361. HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL);
  362. BUG();
  363. }
  364. static void xen_pv_stop_other_cpus(int wait)
  365. {
  366. smp_call_function(stop_self, NULL, wait);
  367. }
  368. static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id)
  369. {
  370. irq_enter();
  371. irq_work_run();
  372. inc_irq_stat(apic_irq_work_irqs);
  373. irq_exit();
  374. return IRQ_HANDLED;
  375. }
  376. static const struct smp_ops xen_smp_ops __initconst = {
  377. .smp_prepare_boot_cpu = xen_pv_smp_prepare_boot_cpu,
  378. .smp_prepare_cpus = xen_pv_smp_prepare_cpus,
  379. .smp_cpus_done = xen_smp_cpus_done,
  380. .cpu_up = xen_pv_cpu_up,
  381. .cpu_die = xen_pv_cpu_die,
  382. .cpu_disable = xen_pv_cpu_disable,
  383. .play_dead = xen_pv_play_dead,
  384. .stop_other_cpus = xen_pv_stop_other_cpus,
  385. .smp_send_reschedule = xen_smp_send_reschedule,
  386. .send_call_func_ipi = xen_smp_send_call_function_ipi,
  387. .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi,
  388. };
  389. void __init xen_smp_init(void)
  390. {
  391. smp_ops = xen_smp_ops;
  392. xen_fill_possible_map();
  393. }