core.c 196 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <linux/compiler.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  89. {
  90. unsigned long delta;
  91. ktime_t soft, hard, now;
  92. for (;;) {
  93. if (hrtimer_active(period_timer))
  94. break;
  95. now = hrtimer_cb_get_time(period_timer);
  96. hrtimer_forward(period_timer, now, period);
  97. soft = hrtimer_get_softexpires(period_timer);
  98. hard = hrtimer_get_expires(period_timer);
  99. delta = ktime_to_ns(ktime_sub(hard, soft));
  100. __hrtimer_start_range_ns(period_timer, soft, delta,
  101. HRTIMER_MODE_ABS_PINNED, 0);
  102. }
  103. }
  104. DEFINE_MUTEX(sched_domains_mutex);
  105. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  106. static void update_rq_clock_task(struct rq *rq, s64 delta);
  107. void update_rq_clock(struct rq *rq)
  108. {
  109. s64 delta;
  110. if (rq->skip_clock_update > 0)
  111. return;
  112. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  113. if (delta < 0)
  114. return;
  115. rq->clock += delta;
  116. update_rq_clock_task(rq, delta);
  117. }
  118. /*
  119. * Debugging: various feature bits
  120. */
  121. #define SCHED_FEAT(name, enabled) \
  122. (1UL << __SCHED_FEAT_##name) * enabled |
  123. const_debug unsigned int sysctl_sched_features =
  124. #include "features.h"
  125. 0;
  126. #undef SCHED_FEAT
  127. #ifdef CONFIG_SCHED_DEBUG
  128. #define SCHED_FEAT(name, enabled) \
  129. #name ,
  130. static const char * const sched_feat_names[] = {
  131. #include "features.h"
  132. };
  133. #undef SCHED_FEAT
  134. static int sched_feat_show(struct seq_file *m, void *v)
  135. {
  136. int i;
  137. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  138. if (!(sysctl_sched_features & (1UL << i)))
  139. seq_puts(m, "NO_");
  140. seq_printf(m, "%s ", sched_feat_names[i]);
  141. }
  142. seq_puts(m, "\n");
  143. return 0;
  144. }
  145. #ifdef HAVE_JUMP_LABEL
  146. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  147. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  148. #define SCHED_FEAT(name, enabled) \
  149. jump_label_key__##enabled ,
  150. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  151. #include "features.h"
  152. };
  153. #undef SCHED_FEAT
  154. static void sched_feat_disable(int i)
  155. {
  156. if (static_key_enabled(&sched_feat_keys[i]))
  157. static_key_slow_dec(&sched_feat_keys[i]);
  158. }
  159. static void sched_feat_enable(int i)
  160. {
  161. if (!static_key_enabled(&sched_feat_keys[i]))
  162. static_key_slow_inc(&sched_feat_keys[i]);
  163. }
  164. #else
  165. static void sched_feat_disable(int i) { };
  166. static void sched_feat_enable(int i) { };
  167. #endif /* HAVE_JUMP_LABEL */
  168. static int sched_feat_set(char *cmp)
  169. {
  170. int i;
  171. int neg = 0;
  172. if (strncmp(cmp, "NO_", 3) == 0) {
  173. neg = 1;
  174. cmp += 3;
  175. }
  176. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  177. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  178. if (neg) {
  179. sysctl_sched_features &= ~(1UL << i);
  180. sched_feat_disable(i);
  181. } else {
  182. sysctl_sched_features |= (1UL << i);
  183. sched_feat_enable(i);
  184. }
  185. break;
  186. }
  187. }
  188. return i;
  189. }
  190. static ssize_t
  191. sched_feat_write(struct file *filp, const char __user *ubuf,
  192. size_t cnt, loff_t *ppos)
  193. {
  194. char buf[64];
  195. char *cmp;
  196. int i;
  197. struct inode *inode;
  198. if (cnt > 63)
  199. cnt = 63;
  200. if (copy_from_user(&buf, ubuf, cnt))
  201. return -EFAULT;
  202. buf[cnt] = 0;
  203. cmp = strstrip(buf);
  204. /* Ensure the static_key remains in a consistent state */
  205. inode = file_inode(filp);
  206. mutex_lock(&inode->i_mutex);
  207. i = sched_feat_set(cmp);
  208. mutex_unlock(&inode->i_mutex);
  209. if (i == __SCHED_FEAT_NR)
  210. return -EINVAL;
  211. *ppos += cnt;
  212. return cnt;
  213. }
  214. static int sched_feat_open(struct inode *inode, struct file *filp)
  215. {
  216. return single_open(filp, sched_feat_show, NULL);
  217. }
  218. static const struct file_operations sched_feat_fops = {
  219. .open = sched_feat_open,
  220. .write = sched_feat_write,
  221. .read = seq_read,
  222. .llseek = seq_lseek,
  223. .release = single_release,
  224. };
  225. static __init int sched_init_debug(void)
  226. {
  227. debugfs_create_file("sched_features", 0644, NULL, NULL,
  228. &sched_feat_fops);
  229. return 0;
  230. }
  231. late_initcall(sched_init_debug);
  232. #endif /* CONFIG_SCHED_DEBUG */
  233. /*
  234. * Number of tasks to iterate in a single balance run.
  235. * Limited because this is done with IRQs disabled.
  236. */
  237. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  238. /*
  239. * period over which we average the RT time consumption, measured
  240. * in ms.
  241. *
  242. * default: 1s
  243. */
  244. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  245. /*
  246. * period over which we measure -rt task cpu usage in us.
  247. * default: 1s
  248. */
  249. unsigned int sysctl_sched_rt_period = 1000000;
  250. __read_mostly int scheduler_running;
  251. /*
  252. * part of the period that we allow rt tasks to run in us.
  253. * default: 0.95s
  254. */
  255. int sysctl_sched_rt_runtime = 950000;
  256. /*
  257. * __task_rq_lock - lock the rq @p resides on.
  258. */
  259. static inline struct rq *__task_rq_lock(struct task_struct *p)
  260. __acquires(rq->lock)
  261. {
  262. struct rq *rq;
  263. lockdep_assert_held(&p->pi_lock);
  264. for (;;) {
  265. rq = task_rq(p);
  266. raw_spin_lock(&rq->lock);
  267. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
  268. return rq;
  269. raw_spin_unlock(&rq->lock);
  270. while (unlikely(task_on_rq_migrating(p)))
  271. cpu_relax();
  272. }
  273. }
  274. /*
  275. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  276. */
  277. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  278. __acquires(p->pi_lock)
  279. __acquires(rq->lock)
  280. {
  281. struct rq *rq;
  282. for (;;) {
  283. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  284. rq = task_rq(p);
  285. raw_spin_lock(&rq->lock);
  286. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
  287. return rq;
  288. raw_spin_unlock(&rq->lock);
  289. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  290. while (unlikely(task_on_rq_migrating(p)))
  291. cpu_relax();
  292. }
  293. }
  294. static void __task_rq_unlock(struct rq *rq)
  295. __releases(rq->lock)
  296. {
  297. raw_spin_unlock(&rq->lock);
  298. }
  299. static inline void
  300. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  301. __releases(rq->lock)
  302. __releases(p->pi_lock)
  303. {
  304. raw_spin_unlock(&rq->lock);
  305. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  306. }
  307. /*
  308. * this_rq_lock - lock this runqueue and disable interrupts.
  309. */
  310. static struct rq *this_rq_lock(void)
  311. __acquires(rq->lock)
  312. {
  313. struct rq *rq;
  314. local_irq_disable();
  315. rq = this_rq();
  316. raw_spin_lock(&rq->lock);
  317. return rq;
  318. }
  319. #ifdef CONFIG_SCHED_HRTICK
  320. /*
  321. * Use HR-timers to deliver accurate preemption points.
  322. */
  323. static void hrtick_clear(struct rq *rq)
  324. {
  325. if (hrtimer_active(&rq->hrtick_timer))
  326. hrtimer_cancel(&rq->hrtick_timer);
  327. }
  328. /*
  329. * High-resolution timer tick.
  330. * Runs from hardirq context with interrupts disabled.
  331. */
  332. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  333. {
  334. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  335. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  336. raw_spin_lock(&rq->lock);
  337. update_rq_clock(rq);
  338. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  339. raw_spin_unlock(&rq->lock);
  340. return HRTIMER_NORESTART;
  341. }
  342. #ifdef CONFIG_SMP
  343. static int __hrtick_restart(struct rq *rq)
  344. {
  345. struct hrtimer *timer = &rq->hrtick_timer;
  346. ktime_t time = hrtimer_get_softexpires(timer);
  347. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  348. }
  349. /*
  350. * called from hardirq (IPI) context
  351. */
  352. static void __hrtick_start(void *arg)
  353. {
  354. struct rq *rq = arg;
  355. raw_spin_lock(&rq->lock);
  356. __hrtick_restart(rq);
  357. rq->hrtick_csd_pending = 0;
  358. raw_spin_unlock(&rq->lock);
  359. }
  360. /*
  361. * Called to set the hrtick timer state.
  362. *
  363. * called with rq->lock held and irqs disabled
  364. */
  365. void hrtick_start(struct rq *rq, u64 delay)
  366. {
  367. struct hrtimer *timer = &rq->hrtick_timer;
  368. ktime_t time;
  369. s64 delta;
  370. /*
  371. * Don't schedule slices shorter than 10000ns, that just
  372. * doesn't make sense and can cause timer DoS.
  373. */
  374. delta = max_t(s64, delay, 10000LL);
  375. time = ktime_add_ns(timer->base->get_time(), delta);
  376. hrtimer_set_expires(timer, time);
  377. if (rq == this_rq()) {
  378. __hrtick_restart(rq);
  379. } else if (!rq->hrtick_csd_pending) {
  380. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  381. rq->hrtick_csd_pending = 1;
  382. }
  383. }
  384. static int
  385. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  386. {
  387. int cpu = (int)(long)hcpu;
  388. switch (action) {
  389. case CPU_UP_CANCELED:
  390. case CPU_UP_CANCELED_FROZEN:
  391. case CPU_DOWN_PREPARE:
  392. case CPU_DOWN_PREPARE_FROZEN:
  393. case CPU_DEAD:
  394. case CPU_DEAD_FROZEN:
  395. hrtick_clear(cpu_rq(cpu));
  396. return NOTIFY_OK;
  397. }
  398. return NOTIFY_DONE;
  399. }
  400. static __init void init_hrtick(void)
  401. {
  402. hotcpu_notifier(hotplug_hrtick, 0);
  403. }
  404. #else
  405. /*
  406. * Called to set the hrtick timer state.
  407. *
  408. * called with rq->lock held and irqs disabled
  409. */
  410. void hrtick_start(struct rq *rq, u64 delay)
  411. {
  412. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  413. HRTIMER_MODE_REL_PINNED, 0);
  414. }
  415. static inline void init_hrtick(void)
  416. {
  417. }
  418. #endif /* CONFIG_SMP */
  419. static void init_rq_hrtick(struct rq *rq)
  420. {
  421. #ifdef CONFIG_SMP
  422. rq->hrtick_csd_pending = 0;
  423. rq->hrtick_csd.flags = 0;
  424. rq->hrtick_csd.func = __hrtick_start;
  425. rq->hrtick_csd.info = rq;
  426. #endif
  427. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  428. rq->hrtick_timer.function = hrtick;
  429. }
  430. #else /* CONFIG_SCHED_HRTICK */
  431. static inline void hrtick_clear(struct rq *rq)
  432. {
  433. }
  434. static inline void init_rq_hrtick(struct rq *rq)
  435. {
  436. }
  437. static inline void init_hrtick(void)
  438. {
  439. }
  440. #endif /* CONFIG_SCHED_HRTICK */
  441. /*
  442. * cmpxchg based fetch_or, macro so it works for different integer types
  443. */
  444. #define fetch_or(ptr, val) \
  445. ({ typeof(*(ptr)) __old, __val = *(ptr); \
  446. for (;;) { \
  447. __old = cmpxchg((ptr), __val, __val | (val)); \
  448. if (__old == __val) \
  449. break; \
  450. __val = __old; \
  451. } \
  452. __old; \
  453. })
  454. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  455. /*
  456. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  457. * this avoids any races wrt polling state changes and thereby avoids
  458. * spurious IPIs.
  459. */
  460. static bool set_nr_and_not_polling(struct task_struct *p)
  461. {
  462. struct thread_info *ti = task_thread_info(p);
  463. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  464. }
  465. /*
  466. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  467. *
  468. * If this returns true, then the idle task promises to call
  469. * sched_ttwu_pending() and reschedule soon.
  470. */
  471. static bool set_nr_if_polling(struct task_struct *p)
  472. {
  473. struct thread_info *ti = task_thread_info(p);
  474. typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
  475. for (;;) {
  476. if (!(val & _TIF_POLLING_NRFLAG))
  477. return false;
  478. if (val & _TIF_NEED_RESCHED)
  479. return true;
  480. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  481. if (old == val)
  482. break;
  483. val = old;
  484. }
  485. return true;
  486. }
  487. #else
  488. static bool set_nr_and_not_polling(struct task_struct *p)
  489. {
  490. set_tsk_need_resched(p);
  491. return true;
  492. }
  493. #ifdef CONFIG_SMP
  494. static bool set_nr_if_polling(struct task_struct *p)
  495. {
  496. return false;
  497. }
  498. #endif
  499. #endif
  500. /*
  501. * resched_curr - mark rq's current task 'to be rescheduled now'.
  502. *
  503. * On UP this means the setting of the need_resched flag, on SMP it
  504. * might also involve a cross-CPU call to trigger the scheduler on
  505. * the target CPU.
  506. */
  507. void resched_curr(struct rq *rq)
  508. {
  509. struct task_struct *curr = rq->curr;
  510. int cpu;
  511. lockdep_assert_held(&rq->lock);
  512. if (test_tsk_need_resched(curr))
  513. return;
  514. cpu = cpu_of(rq);
  515. if (cpu == smp_processor_id()) {
  516. set_tsk_need_resched(curr);
  517. set_preempt_need_resched();
  518. return;
  519. }
  520. if (set_nr_and_not_polling(curr))
  521. smp_send_reschedule(cpu);
  522. else
  523. trace_sched_wake_idle_without_ipi(cpu);
  524. }
  525. void resched_cpu(int cpu)
  526. {
  527. struct rq *rq = cpu_rq(cpu);
  528. unsigned long flags;
  529. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  530. return;
  531. resched_curr(rq);
  532. raw_spin_unlock_irqrestore(&rq->lock, flags);
  533. }
  534. #ifdef CONFIG_SMP
  535. #ifdef CONFIG_NO_HZ_COMMON
  536. /*
  537. * In the semi idle case, use the nearest busy cpu for migrating timers
  538. * from an idle cpu. This is good for power-savings.
  539. *
  540. * We don't do similar optimization for completely idle system, as
  541. * selecting an idle cpu will add more delays to the timers than intended
  542. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  543. */
  544. int get_nohz_timer_target(int pinned)
  545. {
  546. int cpu = smp_processor_id();
  547. int i;
  548. struct sched_domain *sd;
  549. if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
  550. return cpu;
  551. rcu_read_lock();
  552. for_each_domain(cpu, sd) {
  553. for_each_cpu(i, sched_domain_span(sd)) {
  554. if (!idle_cpu(i)) {
  555. cpu = i;
  556. goto unlock;
  557. }
  558. }
  559. }
  560. unlock:
  561. rcu_read_unlock();
  562. return cpu;
  563. }
  564. /*
  565. * When add_timer_on() enqueues a timer into the timer wheel of an
  566. * idle CPU then this timer might expire before the next timer event
  567. * which is scheduled to wake up that CPU. In case of a completely
  568. * idle system the next event might even be infinite time into the
  569. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  570. * leaves the inner idle loop so the newly added timer is taken into
  571. * account when the CPU goes back to idle and evaluates the timer
  572. * wheel for the next timer event.
  573. */
  574. static void wake_up_idle_cpu(int cpu)
  575. {
  576. struct rq *rq = cpu_rq(cpu);
  577. if (cpu == smp_processor_id())
  578. return;
  579. if (set_nr_and_not_polling(rq->idle))
  580. smp_send_reschedule(cpu);
  581. else
  582. trace_sched_wake_idle_without_ipi(cpu);
  583. }
  584. static bool wake_up_full_nohz_cpu(int cpu)
  585. {
  586. /*
  587. * We just need the target to call irq_exit() and re-evaluate
  588. * the next tick. The nohz full kick at least implies that.
  589. * If needed we can still optimize that later with an
  590. * empty IRQ.
  591. */
  592. if (tick_nohz_full_cpu(cpu)) {
  593. if (cpu != smp_processor_id() ||
  594. tick_nohz_tick_stopped())
  595. tick_nohz_full_kick_cpu(cpu);
  596. return true;
  597. }
  598. return false;
  599. }
  600. void wake_up_nohz_cpu(int cpu)
  601. {
  602. if (!wake_up_full_nohz_cpu(cpu))
  603. wake_up_idle_cpu(cpu);
  604. }
  605. static inline bool got_nohz_idle_kick(void)
  606. {
  607. int cpu = smp_processor_id();
  608. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  609. return false;
  610. if (idle_cpu(cpu) && !need_resched())
  611. return true;
  612. /*
  613. * We can't run Idle Load Balance on this CPU for this time so we
  614. * cancel it and clear NOHZ_BALANCE_KICK
  615. */
  616. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  617. return false;
  618. }
  619. #else /* CONFIG_NO_HZ_COMMON */
  620. static inline bool got_nohz_idle_kick(void)
  621. {
  622. return false;
  623. }
  624. #endif /* CONFIG_NO_HZ_COMMON */
  625. #ifdef CONFIG_NO_HZ_FULL
  626. bool sched_can_stop_tick(void)
  627. {
  628. /*
  629. * More than one running task need preemption.
  630. * nr_running update is assumed to be visible
  631. * after IPI is sent from wakers.
  632. */
  633. if (this_rq()->nr_running > 1)
  634. return false;
  635. return true;
  636. }
  637. #endif /* CONFIG_NO_HZ_FULL */
  638. void sched_avg_update(struct rq *rq)
  639. {
  640. s64 period = sched_avg_period();
  641. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  642. /*
  643. * Inline assembly required to prevent the compiler
  644. * optimising this loop into a divmod call.
  645. * See __iter_div_u64_rem() for another example of this.
  646. */
  647. asm("" : "+rm" (rq->age_stamp));
  648. rq->age_stamp += period;
  649. rq->rt_avg /= 2;
  650. }
  651. }
  652. #endif /* CONFIG_SMP */
  653. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  654. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  655. /*
  656. * Iterate task_group tree rooted at *from, calling @down when first entering a
  657. * node and @up when leaving it for the final time.
  658. *
  659. * Caller must hold rcu_lock or sufficient equivalent.
  660. */
  661. int walk_tg_tree_from(struct task_group *from,
  662. tg_visitor down, tg_visitor up, void *data)
  663. {
  664. struct task_group *parent, *child;
  665. int ret;
  666. parent = from;
  667. down:
  668. ret = (*down)(parent, data);
  669. if (ret)
  670. goto out;
  671. list_for_each_entry_rcu(child, &parent->children, siblings) {
  672. parent = child;
  673. goto down;
  674. up:
  675. continue;
  676. }
  677. ret = (*up)(parent, data);
  678. if (ret || parent == from)
  679. goto out;
  680. child = parent;
  681. parent = parent->parent;
  682. if (parent)
  683. goto up;
  684. out:
  685. return ret;
  686. }
  687. int tg_nop(struct task_group *tg, void *data)
  688. {
  689. return 0;
  690. }
  691. #endif
  692. static void set_load_weight(struct task_struct *p)
  693. {
  694. int prio = p->static_prio - MAX_RT_PRIO;
  695. struct load_weight *load = &p->se.load;
  696. /*
  697. * SCHED_IDLE tasks get minimal weight:
  698. */
  699. if (p->policy == SCHED_IDLE) {
  700. load->weight = scale_load(WEIGHT_IDLEPRIO);
  701. load->inv_weight = WMULT_IDLEPRIO;
  702. return;
  703. }
  704. load->weight = scale_load(prio_to_weight[prio]);
  705. load->inv_weight = prio_to_wmult[prio];
  706. }
  707. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  708. {
  709. update_rq_clock(rq);
  710. sched_info_queued(rq, p);
  711. p->sched_class->enqueue_task(rq, p, flags);
  712. }
  713. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  714. {
  715. update_rq_clock(rq);
  716. sched_info_dequeued(rq, p);
  717. p->sched_class->dequeue_task(rq, p, flags);
  718. }
  719. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  720. {
  721. if (task_contributes_to_load(p))
  722. rq->nr_uninterruptible--;
  723. enqueue_task(rq, p, flags);
  724. }
  725. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  726. {
  727. if (task_contributes_to_load(p))
  728. rq->nr_uninterruptible++;
  729. dequeue_task(rq, p, flags);
  730. }
  731. static void update_rq_clock_task(struct rq *rq, s64 delta)
  732. {
  733. /*
  734. * In theory, the compile should just see 0 here, and optimize out the call
  735. * to sched_rt_avg_update. But I don't trust it...
  736. */
  737. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  738. s64 steal = 0, irq_delta = 0;
  739. #endif
  740. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  741. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  742. /*
  743. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  744. * this case when a previous update_rq_clock() happened inside a
  745. * {soft,}irq region.
  746. *
  747. * When this happens, we stop ->clock_task and only update the
  748. * prev_irq_time stamp to account for the part that fit, so that a next
  749. * update will consume the rest. This ensures ->clock_task is
  750. * monotonic.
  751. *
  752. * It does however cause some slight miss-attribution of {soft,}irq
  753. * time, a more accurate solution would be to update the irq_time using
  754. * the current rq->clock timestamp, except that would require using
  755. * atomic ops.
  756. */
  757. if (irq_delta > delta)
  758. irq_delta = delta;
  759. rq->prev_irq_time += irq_delta;
  760. delta -= irq_delta;
  761. #endif
  762. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  763. if (static_key_false((&paravirt_steal_rq_enabled))) {
  764. steal = paravirt_steal_clock(cpu_of(rq));
  765. steal -= rq->prev_steal_time_rq;
  766. if (unlikely(steal > delta))
  767. steal = delta;
  768. rq->prev_steal_time_rq += steal;
  769. delta -= steal;
  770. }
  771. #endif
  772. rq->clock_task += delta;
  773. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  774. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  775. sched_rt_avg_update(rq, irq_delta + steal);
  776. #endif
  777. }
  778. void sched_set_stop_task(int cpu, struct task_struct *stop)
  779. {
  780. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  781. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  782. if (stop) {
  783. /*
  784. * Make it appear like a SCHED_FIFO task, its something
  785. * userspace knows about and won't get confused about.
  786. *
  787. * Also, it will make PI more or less work without too
  788. * much confusion -- but then, stop work should not
  789. * rely on PI working anyway.
  790. */
  791. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  792. stop->sched_class = &stop_sched_class;
  793. }
  794. cpu_rq(cpu)->stop = stop;
  795. if (old_stop) {
  796. /*
  797. * Reset it back to a normal scheduling class so that
  798. * it can die in pieces.
  799. */
  800. old_stop->sched_class = &rt_sched_class;
  801. }
  802. }
  803. /*
  804. * __normal_prio - return the priority that is based on the static prio
  805. */
  806. static inline int __normal_prio(struct task_struct *p)
  807. {
  808. return p->static_prio;
  809. }
  810. /*
  811. * Calculate the expected normal priority: i.e. priority
  812. * without taking RT-inheritance into account. Might be
  813. * boosted by interactivity modifiers. Changes upon fork,
  814. * setprio syscalls, and whenever the interactivity
  815. * estimator recalculates.
  816. */
  817. static inline int normal_prio(struct task_struct *p)
  818. {
  819. int prio;
  820. if (task_has_dl_policy(p))
  821. prio = MAX_DL_PRIO-1;
  822. else if (task_has_rt_policy(p))
  823. prio = MAX_RT_PRIO-1 - p->rt_priority;
  824. else
  825. prio = __normal_prio(p);
  826. return prio;
  827. }
  828. /*
  829. * Calculate the current priority, i.e. the priority
  830. * taken into account by the scheduler. This value might
  831. * be boosted by RT tasks, or might be boosted by
  832. * interactivity modifiers. Will be RT if the task got
  833. * RT-boosted. If not then it returns p->normal_prio.
  834. */
  835. static int effective_prio(struct task_struct *p)
  836. {
  837. p->normal_prio = normal_prio(p);
  838. /*
  839. * If we are RT tasks or we were boosted to RT priority,
  840. * keep the priority unchanged. Otherwise, update priority
  841. * to the normal priority:
  842. */
  843. if (!rt_prio(p->prio))
  844. return p->normal_prio;
  845. return p->prio;
  846. }
  847. /**
  848. * task_curr - is this task currently executing on a CPU?
  849. * @p: the task in question.
  850. *
  851. * Return: 1 if the task is currently executing. 0 otherwise.
  852. */
  853. inline int task_curr(const struct task_struct *p)
  854. {
  855. return cpu_curr(task_cpu(p)) == p;
  856. }
  857. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  858. const struct sched_class *prev_class,
  859. int oldprio)
  860. {
  861. if (prev_class != p->sched_class) {
  862. if (prev_class->switched_from)
  863. prev_class->switched_from(rq, p);
  864. p->sched_class->switched_to(rq, p);
  865. } else if (oldprio != p->prio || dl_task(p))
  866. p->sched_class->prio_changed(rq, p, oldprio);
  867. }
  868. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  869. {
  870. const struct sched_class *class;
  871. if (p->sched_class == rq->curr->sched_class) {
  872. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  873. } else {
  874. for_each_class(class) {
  875. if (class == rq->curr->sched_class)
  876. break;
  877. if (class == p->sched_class) {
  878. resched_curr(rq);
  879. break;
  880. }
  881. }
  882. }
  883. /*
  884. * A queue event has occurred, and we're going to schedule. In
  885. * this case, we can save a useless back to back clock update.
  886. */
  887. if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
  888. rq->skip_clock_update = 1;
  889. }
  890. #ifdef CONFIG_SMP
  891. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  892. {
  893. #ifdef CONFIG_SCHED_DEBUG
  894. /*
  895. * We should never call set_task_cpu() on a blocked task,
  896. * ttwu() will sort out the placement.
  897. */
  898. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  899. !(task_preempt_count(p) & PREEMPT_ACTIVE));
  900. #ifdef CONFIG_LOCKDEP
  901. /*
  902. * The caller should hold either p->pi_lock or rq->lock, when changing
  903. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  904. *
  905. * sched_move_task() holds both and thus holding either pins the cgroup,
  906. * see task_group().
  907. *
  908. * Furthermore, all task_rq users should acquire both locks, see
  909. * task_rq_lock().
  910. */
  911. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  912. lockdep_is_held(&task_rq(p)->lock)));
  913. #endif
  914. #endif
  915. trace_sched_migrate_task(p, new_cpu);
  916. if (task_cpu(p) != new_cpu) {
  917. if (p->sched_class->migrate_task_rq)
  918. p->sched_class->migrate_task_rq(p, new_cpu);
  919. p->se.nr_migrations++;
  920. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  921. }
  922. __set_task_cpu(p, new_cpu);
  923. }
  924. static void __migrate_swap_task(struct task_struct *p, int cpu)
  925. {
  926. if (task_on_rq_queued(p)) {
  927. struct rq *src_rq, *dst_rq;
  928. src_rq = task_rq(p);
  929. dst_rq = cpu_rq(cpu);
  930. deactivate_task(src_rq, p, 0);
  931. set_task_cpu(p, cpu);
  932. activate_task(dst_rq, p, 0);
  933. check_preempt_curr(dst_rq, p, 0);
  934. } else {
  935. /*
  936. * Task isn't running anymore; make it appear like we migrated
  937. * it before it went to sleep. This means on wakeup we make the
  938. * previous cpu our targer instead of where it really is.
  939. */
  940. p->wake_cpu = cpu;
  941. }
  942. }
  943. struct migration_swap_arg {
  944. struct task_struct *src_task, *dst_task;
  945. int src_cpu, dst_cpu;
  946. };
  947. static int migrate_swap_stop(void *data)
  948. {
  949. struct migration_swap_arg *arg = data;
  950. struct rq *src_rq, *dst_rq;
  951. int ret = -EAGAIN;
  952. src_rq = cpu_rq(arg->src_cpu);
  953. dst_rq = cpu_rq(arg->dst_cpu);
  954. double_raw_lock(&arg->src_task->pi_lock,
  955. &arg->dst_task->pi_lock);
  956. double_rq_lock(src_rq, dst_rq);
  957. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  958. goto unlock;
  959. if (task_cpu(arg->src_task) != arg->src_cpu)
  960. goto unlock;
  961. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  962. goto unlock;
  963. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  964. goto unlock;
  965. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  966. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  967. ret = 0;
  968. unlock:
  969. double_rq_unlock(src_rq, dst_rq);
  970. raw_spin_unlock(&arg->dst_task->pi_lock);
  971. raw_spin_unlock(&arg->src_task->pi_lock);
  972. return ret;
  973. }
  974. /*
  975. * Cross migrate two tasks
  976. */
  977. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  978. {
  979. struct migration_swap_arg arg;
  980. int ret = -EINVAL;
  981. arg = (struct migration_swap_arg){
  982. .src_task = cur,
  983. .src_cpu = task_cpu(cur),
  984. .dst_task = p,
  985. .dst_cpu = task_cpu(p),
  986. };
  987. if (arg.src_cpu == arg.dst_cpu)
  988. goto out;
  989. /*
  990. * These three tests are all lockless; this is OK since all of them
  991. * will be re-checked with proper locks held further down the line.
  992. */
  993. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  994. goto out;
  995. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  996. goto out;
  997. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  998. goto out;
  999. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  1000. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  1001. out:
  1002. return ret;
  1003. }
  1004. struct migration_arg {
  1005. struct task_struct *task;
  1006. int dest_cpu;
  1007. };
  1008. static int migration_cpu_stop(void *data);
  1009. /*
  1010. * wait_task_inactive - wait for a thread to unschedule.
  1011. *
  1012. * If @match_state is nonzero, it's the @p->state value just checked and
  1013. * not expected to change. If it changes, i.e. @p might have woken up,
  1014. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1015. * we return a positive number (its total switch count). If a second call
  1016. * a short while later returns the same number, the caller can be sure that
  1017. * @p has remained unscheduled the whole time.
  1018. *
  1019. * The caller must ensure that the task *will* unschedule sometime soon,
  1020. * else this function might spin for a *long* time. This function can't
  1021. * be called with interrupts off, or it may introduce deadlock with
  1022. * smp_call_function() if an IPI is sent by the same process we are
  1023. * waiting to become inactive.
  1024. */
  1025. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1026. {
  1027. unsigned long flags;
  1028. int running, queued;
  1029. unsigned long ncsw;
  1030. struct rq *rq;
  1031. for (;;) {
  1032. /*
  1033. * We do the initial early heuristics without holding
  1034. * any task-queue locks at all. We'll only try to get
  1035. * the runqueue lock when things look like they will
  1036. * work out!
  1037. */
  1038. rq = task_rq(p);
  1039. /*
  1040. * If the task is actively running on another CPU
  1041. * still, just relax and busy-wait without holding
  1042. * any locks.
  1043. *
  1044. * NOTE! Since we don't hold any locks, it's not
  1045. * even sure that "rq" stays as the right runqueue!
  1046. * But we don't care, since "task_running()" will
  1047. * return false if the runqueue has changed and p
  1048. * is actually now running somewhere else!
  1049. */
  1050. while (task_running(rq, p)) {
  1051. if (match_state && unlikely(p->state != match_state))
  1052. return 0;
  1053. cpu_relax();
  1054. }
  1055. /*
  1056. * Ok, time to look more closely! We need the rq
  1057. * lock now, to be *sure*. If we're wrong, we'll
  1058. * just go back and repeat.
  1059. */
  1060. rq = task_rq_lock(p, &flags);
  1061. trace_sched_wait_task(p);
  1062. running = task_running(rq, p);
  1063. queued = task_on_rq_queued(p);
  1064. ncsw = 0;
  1065. if (!match_state || p->state == match_state)
  1066. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1067. task_rq_unlock(rq, p, &flags);
  1068. /*
  1069. * If it changed from the expected state, bail out now.
  1070. */
  1071. if (unlikely(!ncsw))
  1072. break;
  1073. /*
  1074. * Was it really running after all now that we
  1075. * checked with the proper locks actually held?
  1076. *
  1077. * Oops. Go back and try again..
  1078. */
  1079. if (unlikely(running)) {
  1080. cpu_relax();
  1081. continue;
  1082. }
  1083. /*
  1084. * It's not enough that it's not actively running,
  1085. * it must be off the runqueue _entirely_, and not
  1086. * preempted!
  1087. *
  1088. * So if it was still runnable (but just not actively
  1089. * running right now), it's preempted, and we should
  1090. * yield - it could be a while.
  1091. */
  1092. if (unlikely(queued)) {
  1093. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1094. set_current_state(TASK_UNINTERRUPTIBLE);
  1095. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1096. continue;
  1097. }
  1098. /*
  1099. * Ahh, all good. It wasn't running, and it wasn't
  1100. * runnable, which means that it will never become
  1101. * running in the future either. We're all done!
  1102. */
  1103. break;
  1104. }
  1105. return ncsw;
  1106. }
  1107. /***
  1108. * kick_process - kick a running thread to enter/exit the kernel
  1109. * @p: the to-be-kicked thread
  1110. *
  1111. * Cause a process which is running on another CPU to enter
  1112. * kernel-mode, without any delay. (to get signals handled.)
  1113. *
  1114. * NOTE: this function doesn't have to take the runqueue lock,
  1115. * because all it wants to ensure is that the remote task enters
  1116. * the kernel. If the IPI races and the task has been migrated
  1117. * to another CPU then no harm is done and the purpose has been
  1118. * achieved as well.
  1119. */
  1120. void kick_process(struct task_struct *p)
  1121. {
  1122. int cpu;
  1123. preempt_disable();
  1124. cpu = task_cpu(p);
  1125. if ((cpu != smp_processor_id()) && task_curr(p))
  1126. smp_send_reschedule(cpu);
  1127. preempt_enable();
  1128. }
  1129. EXPORT_SYMBOL_GPL(kick_process);
  1130. #endif /* CONFIG_SMP */
  1131. #ifdef CONFIG_SMP
  1132. /*
  1133. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1134. */
  1135. static int select_fallback_rq(int cpu, struct task_struct *p)
  1136. {
  1137. int nid = cpu_to_node(cpu);
  1138. const struct cpumask *nodemask = NULL;
  1139. enum { cpuset, possible, fail } state = cpuset;
  1140. int dest_cpu;
  1141. /*
  1142. * If the node that the cpu is on has been offlined, cpu_to_node()
  1143. * will return -1. There is no cpu on the node, and we should
  1144. * select the cpu on the other node.
  1145. */
  1146. if (nid != -1) {
  1147. nodemask = cpumask_of_node(nid);
  1148. /* Look for allowed, online CPU in same node. */
  1149. for_each_cpu(dest_cpu, nodemask) {
  1150. if (!cpu_online(dest_cpu))
  1151. continue;
  1152. if (!cpu_active(dest_cpu))
  1153. continue;
  1154. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1155. return dest_cpu;
  1156. }
  1157. }
  1158. for (;;) {
  1159. /* Any allowed, online CPU? */
  1160. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1161. if (!cpu_online(dest_cpu))
  1162. continue;
  1163. if (!cpu_active(dest_cpu))
  1164. continue;
  1165. goto out;
  1166. }
  1167. switch (state) {
  1168. case cpuset:
  1169. /* No more Mr. Nice Guy. */
  1170. cpuset_cpus_allowed_fallback(p);
  1171. state = possible;
  1172. break;
  1173. case possible:
  1174. do_set_cpus_allowed(p, cpu_possible_mask);
  1175. state = fail;
  1176. break;
  1177. case fail:
  1178. BUG();
  1179. break;
  1180. }
  1181. }
  1182. out:
  1183. if (state != cpuset) {
  1184. /*
  1185. * Don't tell them about moving exiting tasks or
  1186. * kernel threads (both mm NULL), since they never
  1187. * leave kernel.
  1188. */
  1189. if (p->mm && printk_ratelimit()) {
  1190. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1191. task_pid_nr(p), p->comm, cpu);
  1192. }
  1193. }
  1194. return dest_cpu;
  1195. }
  1196. /*
  1197. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1198. */
  1199. static inline
  1200. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1201. {
  1202. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1203. /*
  1204. * In order not to call set_task_cpu() on a blocking task we need
  1205. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1206. * cpu.
  1207. *
  1208. * Since this is common to all placement strategies, this lives here.
  1209. *
  1210. * [ this allows ->select_task() to simply return task_cpu(p) and
  1211. * not worry about this generic constraint ]
  1212. */
  1213. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1214. !cpu_online(cpu)))
  1215. cpu = select_fallback_rq(task_cpu(p), p);
  1216. return cpu;
  1217. }
  1218. static void update_avg(u64 *avg, u64 sample)
  1219. {
  1220. s64 diff = sample - *avg;
  1221. *avg += diff >> 3;
  1222. }
  1223. #endif
  1224. static void
  1225. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1226. {
  1227. #ifdef CONFIG_SCHEDSTATS
  1228. struct rq *rq = this_rq();
  1229. #ifdef CONFIG_SMP
  1230. int this_cpu = smp_processor_id();
  1231. if (cpu == this_cpu) {
  1232. schedstat_inc(rq, ttwu_local);
  1233. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1234. } else {
  1235. struct sched_domain *sd;
  1236. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1237. rcu_read_lock();
  1238. for_each_domain(this_cpu, sd) {
  1239. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1240. schedstat_inc(sd, ttwu_wake_remote);
  1241. break;
  1242. }
  1243. }
  1244. rcu_read_unlock();
  1245. }
  1246. if (wake_flags & WF_MIGRATED)
  1247. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1248. #endif /* CONFIG_SMP */
  1249. schedstat_inc(rq, ttwu_count);
  1250. schedstat_inc(p, se.statistics.nr_wakeups);
  1251. if (wake_flags & WF_SYNC)
  1252. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1253. #endif /* CONFIG_SCHEDSTATS */
  1254. }
  1255. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1256. {
  1257. activate_task(rq, p, en_flags);
  1258. p->on_rq = TASK_ON_RQ_QUEUED;
  1259. /* if a worker is waking up, notify workqueue */
  1260. if (p->flags & PF_WQ_WORKER)
  1261. wq_worker_waking_up(p, cpu_of(rq));
  1262. }
  1263. /*
  1264. * Mark the task runnable and perform wakeup-preemption.
  1265. */
  1266. static void
  1267. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1268. {
  1269. check_preempt_curr(rq, p, wake_flags);
  1270. trace_sched_wakeup(p, true);
  1271. p->state = TASK_RUNNING;
  1272. #ifdef CONFIG_SMP
  1273. if (p->sched_class->task_woken)
  1274. p->sched_class->task_woken(rq, p);
  1275. if (rq->idle_stamp) {
  1276. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1277. u64 max = 2*rq->max_idle_balance_cost;
  1278. update_avg(&rq->avg_idle, delta);
  1279. if (rq->avg_idle > max)
  1280. rq->avg_idle = max;
  1281. rq->idle_stamp = 0;
  1282. }
  1283. #endif
  1284. }
  1285. static void
  1286. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1287. {
  1288. #ifdef CONFIG_SMP
  1289. if (p->sched_contributes_to_load)
  1290. rq->nr_uninterruptible--;
  1291. #endif
  1292. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1293. ttwu_do_wakeup(rq, p, wake_flags);
  1294. }
  1295. /*
  1296. * Called in case the task @p isn't fully descheduled from its runqueue,
  1297. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1298. * since all we need to do is flip p->state to TASK_RUNNING, since
  1299. * the task is still ->on_rq.
  1300. */
  1301. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1302. {
  1303. struct rq *rq;
  1304. int ret = 0;
  1305. rq = __task_rq_lock(p);
  1306. if (task_on_rq_queued(p)) {
  1307. /* check_preempt_curr() may use rq clock */
  1308. update_rq_clock(rq);
  1309. ttwu_do_wakeup(rq, p, wake_flags);
  1310. ret = 1;
  1311. }
  1312. __task_rq_unlock(rq);
  1313. return ret;
  1314. }
  1315. #ifdef CONFIG_SMP
  1316. void sched_ttwu_pending(void)
  1317. {
  1318. struct rq *rq = this_rq();
  1319. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1320. struct task_struct *p;
  1321. unsigned long flags;
  1322. if (!llist)
  1323. return;
  1324. raw_spin_lock_irqsave(&rq->lock, flags);
  1325. while (llist) {
  1326. p = llist_entry(llist, struct task_struct, wake_entry);
  1327. llist = llist_next(llist);
  1328. ttwu_do_activate(rq, p, 0);
  1329. }
  1330. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1331. }
  1332. void scheduler_ipi(void)
  1333. {
  1334. /*
  1335. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1336. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1337. * this IPI.
  1338. */
  1339. preempt_fold_need_resched();
  1340. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1341. return;
  1342. /*
  1343. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1344. * traditionally all their work was done from the interrupt return
  1345. * path. Now that we actually do some work, we need to make sure
  1346. * we do call them.
  1347. *
  1348. * Some archs already do call them, luckily irq_enter/exit nest
  1349. * properly.
  1350. *
  1351. * Arguably we should visit all archs and update all handlers,
  1352. * however a fair share of IPIs are still resched only so this would
  1353. * somewhat pessimize the simple resched case.
  1354. */
  1355. irq_enter();
  1356. sched_ttwu_pending();
  1357. /*
  1358. * Check if someone kicked us for doing the nohz idle load balance.
  1359. */
  1360. if (unlikely(got_nohz_idle_kick())) {
  1361. this_rq()->idle_balance = 1;
  1362. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1363. }
  1364. irq_exit();
  1365. }
  1366. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1367. {
  1368. struct rq *rq = cpu_rq(cpu);
  1369. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1370. if (!set_nr_if_polling(rq->idle))
  1371. smp_send_reschedule(cpu);
  1372. else
  1373. trace_sched_wake_idle_without_ipi(cpu);
  1374. }
  1375. }
  1376. void wake_up_if_idle(int cpu)
  1377. {
  1378. struct rq *rq = cpu_rq(cpu);
  1379. unsigned long flags;
  1380. if (!is_idle_task(rq->curr))
  1381. return;
  1382. if (set_nr_if_polling(rq->idle)) {
  1383. trace_sched_wake_idle_without_ipi(cpu);
  1384. } else {
  1385. raw_spin_lock_irqsave(&rq->lock, flags);
  1386. if (is_idle_task(rq->curr))
  1387. smp_send_reschedule(cpu);
  1388. /* Else cpu is not in idle, do nothing here */
  1389. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1390. }
  1391. }
  1392. bool cpus_share_cache(int this_cpu, int that_cpu)
  1393. {
  1394. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1395. }
  1396. #endif /* CONFIG_SMP */
  1397. static void ttwu_queue(struct task_struct *p, int cpu)
  1398. {
  1399. struct rq *rq = cpu_rq(cpu);
  1400. #if defined(CONFIG_SMP)
  1401. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1402. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1403. ttwu_queue_remote(p, cpu);
  1404. return;
  1405. }
  1406. #endif
  1407. raw_spin_lock(&rq->lock);
  1408. ttwu_do_activate(rq, p, 0);
  1409. raw_spin_unlock(&rq->lock);
  1410. }
  1411. /**
  1412. * try_to_wake_up - wake up a thread
  1413. * @p: the thread to be awakened
  1414. * @state: the mask of task states that can be woken
  1415. * @wake_flags: wake modifier flags (WF_*)
  1416. *
  1417. * Put it on the run-queue if it's not already there. The "current"
  1418. * thread is always on the run-queue (except when the actual
  1419. * re-schedule is in progress), and as such you're allowed to do
  1420. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1421. * runnable without the overhead of this.
  1422. *
  1423. * Return: %true if @p was woken up, %false if it was already running.
  1424. * or @state didn't match @p's state.
  1425. */
  1426. static int
  1427. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1428. {
  1429. unsigned long flags;
  1430. int cpu, success = 0;
  1431. /*
  1432. * If we are going to wake up a thread waiting for CONDITION we
  1433. * need to ensure that CONDITION=1 done by the caller can not be
  1434. * reordered with p->state check below. This pairs with mb() in
  1435. * set_current_state() the waiting thread does.
  1436. */
  1437. smp_mb__before_spinlock();
  1438. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1439. if (!(p->state & state))
  1440. goto out;
  1441. success = 1; /* we're going to change ->state */
  1442. cpu = task_cpu(p);
  1443. if (p->on_rq && ttwu_remote(p, wake_flags))
  1444. goto stat;
  1445. #ifdef CONFIG_SMP
  1446. /*
  1447. * If the owning (remote) cpu is still in the middle of schedule() with
  1448. * this task as prev, wait until its done referencing the task.
  1449. */
  1450. while (p->on_cpu)
  1451. cpu_relax();
  1452. /*
  1453. * Pairs with the smp_wmb() in finish_lock_switch().
  1454. */
  1455. smp_rmb();
  1456. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1457. p->state = TASK_WAKING;
  1458. if (p->sched_class->task_waking)
  1459. p->sched_class->task_waking(p);
  1460. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1461. if (task_cpu(p) != cpu) {
  1462. wake_flags |= WF_MIGRATED;
  1463. set_task_cpu(p, cpu);
  1464. }
  1465. #endif /* CONFIG_SMP */
  1466. ttwu_queue(p, cpu);
  1467. stat:
  1468. ttwu_stat(p, cpu, wake_flags);
  1469. out:
  1470. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1471. return success;
  1472. }
  1473. /**
  1474. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1475. * @p: the thread to be awakened
  1476. *
  1477. * Put @p on the run-queue if it's not already there. The caller must
  1478. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1479. * the current task.
  1480. */
  1481. static void try_to_wake_up_local(struct task_struct *p)
  1482. {
  1483. struct rq *rq = task_rq(p);
  1484. if (WARN_ON_ONCE(rq != this_rq()) ||
  1485. WARN_ON_ONCE(p == current))
  1486. return;
  1487. lockdep_assert_held(&rq->lock);
  1488. if (!raw_spin_trylock(&p->pi_lock)) {
  1489. raw_spin_unlock(&rq->lock);
  1490. raw_spin_lock(&p->pi_lock);
  1491. raw_spin_lock(&rq->lock);
  1492. }
  1493. if (!(p->state & TASK_NORMAL))
  1494. goto out;
  1495. if (!task_on_rq_queued(p))
  1496. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1497. ttwu_do_wakeup(rq, p, 0);
  1498. ttwu_stat(p, smp_processor_id(), 0);
  1499. out:
  1500. raw_spin_unlock(&p->pi_lock);
  1501. }
  1502. /**
  1503. * wake_up_process - Wake up a specific process
  1504. * @p: The process to be woken up.
  1505. *
  1506. * Attempt to wake up the nominated process and move it to the set of runnable
  1507. * processes.
  1508. *
  1509. * Return: 1 if the process was woken up, 0 if it was already running.
  1510. *
  1511. * It may be assumed that this function implies a write memory barrier before
  1512. * changing the task state if and only if any tasks are woken up.
  1513. */
  1514. int wake_up_process(struct task_struct *p)
  1515. {
  1516. WARN_ON(task_is_stopped_or_traced(p));
  1517. return try_to_wake_up(p, TASK_NORMAL, 0);
  1518. }
  1519. EXPORT_SYMBOL(wake_up_process);
  1520. int wake_up_state(struct task_struct *p, unsigned int state)
  1521. {
  1522. return try_to_wake_up(p, state, 0);
  1523. }
  1524. /*
  1525. * This function clears the sched_dl_entity static params.
  1526. */
  1527. void __dl_clear_params(struct task_struct *p)
  1528. {
  1529. struct sched_dl_entity *dl_se = &p->dl;
  1530. dl_se->dl_runtime = 0;
  1531. dl_se->dl_deadline = 0;
  1532. dl_se->dl_period = 0;
  1533. dl_se->flags = 0;
  1534. dl_se->dl_bw = 0;
  1535. }
  1536. /*
  1537. * Perform scheduler related setup for a newly forked process p.
  1538. * p is forked by current.
  1539. *
  1540. * __sched_fork() is basic setup used by init_idle() too:
  1541. */
  1542. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1543. {
  1544. p->on_rq = 0;
  1545. p->se.on_rq = 0;
  1546. p->se.exec_start = 0;
  1547. p->se.sum_exec_runtime = 0;
  1548. p->se.prev_sum_exec_runtime = 0;
  1549. p->se.nr_migrations = 0;
  1550. p->se.vruntime = 0;
  1551. INIT_LIST_HEAD(&p->se.group_node);
  1552. #ifdef CONFIG_SCHEDSTATS
  1553. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1554. #endif
  1555. RB_CLEAR_NODE(&p->dl.rb_node);
  1556. hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1557. __dl_clear_params(p);
  1558. INIT_LIST_HEAD(&p->rt.run_list);
  1559. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1560. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1561. #endif
  1562. #ifdef CONFIG_NUMA_BALANCING
  1563. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1564. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1565. p->mm->numa_scan_seq = 0;
  1566. }
  1567. if (clone_flags & CLONE_VM)
  1568. p->numa_preferred_nid = current->numa_preferred_nid;
  1569. else
  1570. p->numa_preferred_nid = -1;
  1571. p->node_stamp = 0ULL;
  1572. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1573. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1574. p->numa_work.next = &p->numa_work;
  1575. p->numa_faults_memory = NULL;
  1576. p->numa_faults_buffer_memory = NULL;
  1577. p->last_task_numa_placement = 0;
  1578. p->last_sum_exec_runtime = 0;
  1579. INIT_LIST_HEAD(&p->numa_entry);
  1580. p->numa_group = NULL;
  1581. #endif /* CONFIG_NUMA_BALANCING */
  1582. }
  1583. #ifdef CONFIG_NUMA_BALANCING
  1584. #ifdef CONFIG_SCHED_DEBUG
  1585. void set_numabalancing_state(bool enabled)
  1586. {
  1587. if (enabled)
  1588. sched_feat_set("NUMA");
  1589. else
  1590. sched_feat_set("NO_NUMA");
  1591. }
  1592. #else
  1593. __read_mostly bool numabalancing_enabled;
  1594. void set_numabalancing_state(bool enabled)
  1595. {
  1596. numabalancing_enabled = enabled;
  1597. }
  1598. #endif /* CONFIG_SCHED_DEBUG */
  1599. #ifdef CONFIG_PROC_SYSCTL
  1600. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1601. void __user *buffer, size_t *lenp, loff_t *ppos)
  1602. {
  1603. struct ctl_table t;
  1604. int err;
  1605. int state = numabalancing_enabled;
  1606. if (write && !capable(CAP_SYS_ADMIN))
  1607. return -EPERM;
  1608. t = *table;
  1609. t.data = &state;
  1610. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1611. if (err < 0)
  1612. return err;
  1613. if (write)
  1614. set_numabalancing_state(state);
  1615. return err;
  1616. }
  1617. #endif
  1618. #endif
  1619. /*
  1620. * fork()/clone()-time setup:
  1621. */
  1622. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1623. {
  1624. unsigned long flags;
  1625. int cpu = get_cpu();
  1626. __sched_fork(clone_flags, p);
  1627. /*
  1628. * We mark the process as running here. This guarantees that
  1629. * nobody will actually run it, and a signal or other external
  1630. * event cannot wake it up and insert it on the runqueue either.
  1631. */
  1632. p->state = TASK_RUNNING;
  1633. /*
  1634. * Make sure we do not leak PI boosting priority to the child.
  1635. */
  1636. p->prio = current->normal_prio;
  1637. /*
  1638. * Revert to default priority/policy on fork if requested.
  1639. */
  1640. if (unlikely(p->sched_reset_on_fork)) {
  1641. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1642. p->policy = SCHED_NORMAL;
  1643. p->static_prio = NICE_TO_PRIO(0);
  1644. p->rt_priority = 0;
  1645. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1646. p->static_prio = NICE_TO_PRIO(0);
  1647. p->prio = p->normal_prio = __normal_prio(p);
  1648. set_load_weight(p);
  1649. /*
  1650. * We don't need the reset flag anymore after the fork. It has
  1651. * fulfilled its duty:
  1652. */
  1653. p->sched_reset_on_fork = 0;
  1654. }
  1655. if (dl_prio(p->prio)) {
  1656. put_cpu();
  1657. return -EAGAIN;
  1658. } else if (rt_prio(p->prio)) {
  1659. p->sched_class = &rt_sched_class;
  1660. } else {
  1661. p->sched_class = &fair_sched_class;
  1662. }
  1663. if (p->sched_class->task_fork)
  1664. p->sched_class->task_fork(p);
  1665. /*
  1666. * The child is not yet in the pid-hash so no cgroup attach races,
  1667. * and the cgroup is pinned to this child due to cgroup_fork()
  1668. * is ran before sched_fork().
  1669. *
  1670. * Silence PROVE_RCU.
  1671. */
  1672. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1673. set_task_cpu(p, cpu);
  1674. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1675. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1676. if (likely(sched_info_on()))
  1677. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1678. #endif
  1679. #if defined(CONFIG_SMP)
  1680. p->on_cpu = 0;
  1681. #endif
  1682. init_task_preempt_count(p);
  1683. #ifdef CONFIG_SMP
  1684. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1685. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1686. #endif
  1687. put_cpu();
  1688. return 0;
  1689. }
  1690. unsigned long to_ratio(u64 period, u64 runtime)
  1691. {
  1692. if (runtime == RUNTIME_INF)
  1693. return 1ULL << 20;
  1694. /*
  1695. * Doing this here saves a lot of checks in all
  1696. * the calling paths, and returning zero seems
  1697. * safe for them anyway.
  1698. */
  1699. if (period == 0)
  1700. return 0;
  1701. return div64_u64(runtime << 20, period);
  1702. }
  1703. #ifdef CONFIG_SMP
  1704. inline struct dl_bw *dl_bw_of(int i)
  1705. {
  1706. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1707. "sched RCU must be held");
  1708. return &cpu_rq(i)->rd->dl_bw;
  1709. }
  1710. static inline int dl_bw_cpus(int i)
  1711. {
  1712. struct root_domain *rd = cpu_rq(i)->rd;
  1713. int cpus = 0;
  1714. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1715. "sched RCU must be held");
  1716. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1717. cpus++;
  1718. return cpus;
  1719. }
  1720. #else
  1721. inline struct dl_bw *dl_bw_of(int i)
  1722. {
  1723. return &cpu_rq(i)->dl.dl_bw;
  1724. }
  1725. static inline int dl_bw_cpus(int i)
  1726. {
  1727. return 1;
  1728. }
  1729. #endif
  1730. static inline
  1731. void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
  1732. {
  1733. dl_b->total_bw -= tsk_bw;
  1734. }
  1735. static inline
  1736. void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
  1737. {
  1738. dl_b->total_bw += tsk_bw;
  1739. }
  1740. static inline
  1741. bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
  1742. {
  1743. return dl_b->bw != -1 &&
  1744. dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
  1745. }
  1746. /*
  1747. * We must be sure that accepting a new task (or allowing changing the
  1748. * parameters of an existing one) is consistent with the bandwidth
  1749. * constraints. If yes, this function also accordingly updates the currently
  1750. * allocated bandwidth to reflect the new situation.
  1751. *
  1752. * This function is called while holding p's rq->lock.
  1753. */
  1754. static int dl_overflow(struct task_struct *p, int policy,
  1755. const struct sched_attr *attr)
  1756. {
  1757. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1758. u64 period = attr->sched_period ?: attr->sched_deadline;
  1759. u64 runtime = attr->sched_runtime;
  1760. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1761. int cpus, err = -1;
  1762. if (new_bw == p->dl.dl_bw)
  1763. return 0;
  1764. /*
  1765. * Either if a task, enters, leave, or stays -deadline but changes
  1766. * its parameters, we may need to update accordingly the total
  1767. * allocated bandwidth of the container.
  1768. */
  1769. raw_spin_lock(&dl_b->lock);
  1770. cpus = dl_bw_cpus(task_cpu(p));
  1771. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1772. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1773. __dl_add(dl_b, new_bw);
  1774. err = 0;
  1775. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1776. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1777. __dl_clear(dl_b, p->dl.dl_bw);
  1778. __dl_add(dl_b, new_bw);
  1779. err = 0;
  1780. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1781. __dl_clear(dl_b, p->dl.dl_bw);
  1782. err = 0;
  1783. }
  1784. raw_spin_unlock(&dl_b->lock);
  1785. return err;
  1786. }
  1787. extern void init_dl_bw(struct dl_bw *dl_b);
  1788. /*
  1789. * wake_up_new_task - wake up a newly created task for the first time.
  1790. *
  1791. * This function will do some initial scheduler statistics housekeeping
  1792. * that must be done for every newly created context, then puts the task
  1793. * on the runqueue and wakes it.
  1794. */
  1795. void wake_up_new_task(struct task_struct *p)
  1796. {
  1797. unsigned long flags;
  1798. struct rq *rq;
  1799. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1800. #ifdef CONFIG_SMP
  1801. /*
  1802. * Fork balancing, do it here and not earlier because:
  1803. * - cpus_allowed can change in the fork path
  1804. * - any previously selected cpu might disappear through hotplug
  1805. */
  1806. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1807. #endif
  1808. /* Initialize new task's runnable average */
  1809. init_task_runnable_average(p);
  1810. rq = __task_rq_lock(p);
  1811. activate_task(rq, p, 0);
  1812. p->on_rq = TASK_ON_RQ_QUEUED;
  1813. trace_sched_wakeup_new(p, true);
  1814. check_preempt_curr(rq, p, WF_FORK);
  1815. #ifdef CONFIG_SMP
  1816. if (p->sched_class->task_woken)
  1817. p->sched_class->task_woken(rq, p);
  1818. #endif
  1819. task_rq_unlock(rq, p, &flags);
  1820. }
  1821. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1822. /**
  1823. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1824. * @notifier: notifier struct to register
  1825. */
  1826. void preempt_notifier_register(struct preempt_notifier *notifier)
  1827. {
  1828. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1829. }
  1830. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1831. /**
  1832. * preempt_notifier_unregister - no longer interested in preemption notifications
  1833. * @notifier: notifier struct to unregister
  1834. *
  1835. * This is safe to call from within a preemption notifier.
  1836. */
  1837. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1838. {
  1839. hlist_del(&notifier->link);
  1840. }
  1841. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1842. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1843. {
  1844. struct preempt_notifier *notifier;
  1845. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1846. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1847. }
  1848. static void
  1849. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1850. struct task_struct *next)
  1851. {
  1852. struct preempt_notifier *notifier;
  1853. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1854. notifier->ops->sched_out(notifier, next);
  1855. }
  1856. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1857. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1858. {
  1859. }
  1860. static void
  1861. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1862. struct task_struct *next)
  1863. {
  1864. }
  1865. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1866. /**
  1867. * prepare_task_switch - prepare to switch tasks
  1868. * @rq: the runqueue preparing to switch
  1869. * @prev: the current task that is being switched out
  1870. * @next: the task we are going to switch to.
  1871. *
  1872. * This is called with the rq lock held and interrupts off. It must
  1873. * be paired with a subsequent finish_task_switch after the context
  1874. * switch.
  1875. *
  1876. * prepare_task_switch sets up locking and calls architecture specific
  1877. * hooks.
  1878. */
  1879. static inline void
  1880. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1881. struct task_struct *next)
  1882. {
  1883. trace_sched_switch(prev, next);
  1884. sched_info_switch(rq, prev, next);
  1885. perf_event_task_sched_out(prev, next);
  1886. fire_sched_out_preempt_notifiers(prev, next);
  1887. prepare_lock_switch(rq, next);
  1888. prepare_arch_switch(next);
  1889. }
  1890. /**
  1891. * finish_task_switch - clean up after a task-switch
  1892. * @rq: runqueue associated with task-switch
  1893. * @prev: the thread we just switched away from.
  1894. *
  1895. * finish_task_switch must be called after the context switch, paired
  1896. * with a prepare_task_switch call before the context switch.
  1897. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1898. * and do any other architecture-specific cleanup actions.
  1899. *
  1900. * Note that we may have delayed dropping an mm in context_switch(). If
  1901. * so, we finish that here outside of the runqueue lock. (Doing it
  1902. * with the lock held can cause deadlocks; see schedule() for
  1903. * details.)
  1904. */
  1905. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1906. __releases(rq->lock)
  1907. {
  1908. struct mm_struct *mm = rq->prev_mm;
  1909. long prev_state;
  1910. rq->prev_mm = NULL;
  1911. /*
  1912. * A task struct has one reference for the use as "current".
  1913. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1914. * schedule one last time. The schedule call will never return, and
  1915. * the scheduled task must drop that reference.
  1916. * The test for TASK_DEAD must occur while the runqueue locks are
  1917. * still held, otherwise prev could be scheduled on another cpu, die
  1918. * there before we look at prev->state, and then the reference would
  1919. * be dropped twice.
  1920. * Manfred Spraul <manfred@colorfullife.com>
  1921. */
  1922. prev_state = prev->state;
  1923. vtime_task_switch(prev);
  1924. finish_arch_switch(prev);
  1925. perf_event_task_sched_in(prev, current);
  1926. finish_lock_switch(rq, prev);
  1927. finish_arch_post_lock_switch();
  1928. fire_sched_in_preempt_notifiers(current);
  1929. if (mm)
  1930. mmdrop(mm);
  1931. if (unlikely(prev_state == TASK_DEAD)) {
  1932. if (prev->sched_class->task_dead)
  1933. prev->sched_class->task_dead(prev);
  1934. /*
  1935. * Remove function-return probe instances associated with this
  1936. * task and put them back on the free list.
  1937. */
  1938. kprobe_flush_task(prev);
  1939. put_task_struct(prev);
  1940. }
  1941. tick_nohz_task_switch(current);
  1942. }
  1943. #ifdef CONFIG_SMP
  1944. /* rq->lock is NOT held, but preemption is disabled */
  1945. static inline void post_schedule(struct rq *rq)
  1946. {
  1947. if (rq->post_schedule) {
  1948. unsigned long flags;
  1949. raw_spin_lock_irqsave(&rq->lock, flags);
  1950. if (rq->curr->sched_class->post_schedule)
  1951. rq->curr->sched_class->post_schedule(rq);
  1952. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1953. rq->post_schedule = 0;
  1954. }
  1955. }
  1956. #else
  1957. static inline void post_schedule(struct rq *rq)
  1958. {
  1959. }
  1960. #endif
  1961. /**
  1962. * schedule_tail - first thing a freshly forked thread must call.
  1963. * @prev: the thread we just switched away from.
  1964. */
  1965. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  1966. __releases(rq->lock)
  1967. {
  1968. struct rq *rq = this_rq();
  1969. finish_task_switch(rq, prev);
  1970. /*
  1971. * FIXME: do we need to worry about rq being invalidated by the
  1972. * task_switch?
  1973. */
  1974. post_schedule(rq);
  1975. if (current->set_child_tid)
  1976. put_user(task_pid_vnr(current), current->set_child_tid);
  1977. }
  1978. /*
  1979. * context_switch - switch to the new MM and the new
  1980. * thread's register state.
  1981. */
  1982. static inline void
  1983. context_switch(struct rq *rq, struct task_struct *prev,
  1984. struct task_struct *next)
  1985. {
  1986. struct mm_struct *mm, *oldmm;
  1987. prepare_task_switch(rq, prev, next);
  1988. mm = next->mm;
  1989. oldmm = prev->active_mm;
  1990. /*
  1991. * For paravirt, this is coupled with an exit in switch_to to
  1992. * combine the page table reload and the switch backend into
  1993. * one hypercall.
  1994. */
  1995. arch_start_context_switch(prev);
  1996. if (!mm) {
  1997. next->active_mm = oldmm;
  1998. atomic_inc(&oldmm->mm_count);
  1999. enter_lazy_tlb(oldmm, next);
  2000. } else
  2001. switch_mm(oldmm, mm, next);
  2002. if (!prev->mm) {
  2003. prev->active_mm = NULL;
  2004. rq->prev_mm = oldmm;
  2005. }
  2006. /*
  2007. * Since the runqueue lock will be released by the next
  2008. * task (which is an invalid locking op but in the case
  2009. * of the scheduler it's an obvious special-case), so we
  2010. * do an early lockdep release here:
  2011. */
  2012. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2013. context_tracking_task_switch(prev, next);
  2014. /* Here we just switch the register state and the stack. */
  2015. switch_to(prev, next, prev);
  2016. barrier();
  2017. /*
  2018. * this_rq must be evaluated again because prev may have moved
  2019. * CPUs since it called schedule(), thus the 'rq' on its stack
  2020. * frame will be invalid.
  2021. */
  2022. finish_task_switch(this_rq(), prev);
  2023. }
  2024. /*
  2025. * nr_running and nr_context_switches:
  2026. *
  2027. * externally visible scheduler statistics: current number of runnable
  2028. * threads, total number of context switches performed since bootup.
  2029. */
  2030. unsigned long nr_running(void)
  2031. {
  2032. unsigned long i, sum = 0;
  2033. for_each_online_cpu(i)
  2034. sum += cpu_rq(i)->nr_running;
  2035. return sum;
  2036. }
  2037. /*
  2038. * Check if only the current task is running on the cpu.
  2039. */
  2040. bool single_task_running(void)
  2041. {
  2042. if (cpu_rq(smp_processor_id())->nr_running == 1)
  2043. return true;
  2044. else
  2045. return false;
  2046. }
  2047. EXPORT_SYMBOL(single_task_running);
  2048. unsigned long long nr_context_switches(void)
  2049. {
  2050. int i;
  2051. unsigned long long sum = 0;
  2052. for_each_possible_cpu(i)
  2053. sum += cpu_rq(i)->nr_switches;
  2054. return sum;
  2055. }
  2056. unsigned long nr_iowait(void)
  2057. {
  2058. unsigned long i, sum = 0;
  2059. for_each_possible_cpu(i)
  2060. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2061. return sum;
  2062. }
  2063. unsigned long nr_iowait_cpu(int cpu)
  2064. {
  2065. struct rq *this = cpu_rq(cpu);
  2066. return atomic_read(&this->nr_iowait);
  2067. }
  2068. void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
  2069. {
  2070. struct rq *this = this_rq();
  2071. *nr_waiters = atomic_read(&this->nr_iowait);
  2072. *load = this->cpu_load[0];
  2073. }
  2074. #ifdef CONFIG_SMP
  2075. /*
  2076. * sched_exec - execve() is a valuable balancing opportunity, because at
  2077. * this point the task has the smallest effective memory and cache footprint.
  2078. */
  2079. void sched_exec(void)
  2080. {
  2081. struct task_struct *p = current;
  2082. unsigned long flags;
  2083. int dest_cpu;
  2084. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2085. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2086. if (dest_cpu == smp_processor_id())
  2087. goto unlock;
  2088. if (likely(cpu_active(dest_cpu))) {
  2089. struct migration_arg arg = { p, dest_cpu };
  2090. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2091. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2092. return;
  2093. }
  2094. unlock:
  2095. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2096. }
  2097. #endif
  2098. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2099. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2100. EXPORT_PER_CPU_SYMBOL(kstat);
  2101. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2102. /*
  2103. * Return any ns on the sched_clock that have not yet been accounted in
  2104. * @p in case that task is currently running.
  2105. *
  2106. * Called with task_rq_lock() held on @rq.
  2107. */
  2108. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2109. {
  2110. u64 ns = 0;
  2111. /*
  2112. * Must be ->curr _and_ ->on_rq. If dequeued, we would
  2113. * project cycles that may never be accounted to this
  2114. * thread, breaking clock_gettime().
  2115. */
  2116. if (task_current(rq, p) && task_on_rq_queued(p)) {
  2117. update_rq_clock(rq);
  2118. ns = rq_clock_task(rq) - p->se.exec_start;
  2119. if ((s64)ns < 0)
  2120. ns = 0;
  2121. }
  2122. return ns;
  2123. }
  2124. unsigned long long task_delta_exec(struct task_struct *p)
  2125. {
  2126. unsigned long flags;
  2127. struct rq *rq;
  2128. u64 ns = 0;
  2129. rq = task_rq_lock(p, &flags);
  2130. ns = do_task_delta_exec(p, rq);
  2131. task_rq_unlock(rq, p, &flags);
  2132. return ns;
  2133. }
  2134. /*
  2135. * Return accounted runtime for the task.
  2136. * In case the task is currently running, return the runtime plus current's
  2137. * pending runtime that have not been accounted yet.
  2138. */
  2139. unsigned long long task_sched_runtime(struct task_struct *p)
  2140. {
  2141. unsigned long flags;
  2142. struct rq *rq;
  2143. u64 ns = 0;
  2144. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2145. /*
  2146. * 64-bit doesn't need locks to atomically read a 64bit value.
  2147. * So we have a optimization chance when the task's delta_exec is 0.
  2148. * Reading ->on_cpu is racy, but this is ok.
  2149. *
  2150. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2151. * If we race with it entering cpu, unaccounted time is 0. This is
  2152. * indistinguishable from the read occurring a few cycles earlier.
  2153. * If we see ->on_cpu without ->on_rq, the task is leaving, and has
  2154. * been accounted, so we're correct here as well.
  2155. */
  2156. if (!p->on_cpu || !task_on_rq_queued(p))
  2157. return p->se.sum_exec_runtime;
  2158. #endif
  2159. rq = task_rq_lock(p, &flags);
  2160. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2161. task_rq_unlock(rq, p, &flags);
  2162. return ns;
  2163. }
  2164. /*
  2165. * This function gets called by the timer code, with HZ frequency.
  2166. * We call it with interrupts disabled.
  2167. */
  2168. void scheduler_tick(void)
  2169. {
  2170. int cpu = smp_processor_id();
  2171. struct rq *rq = cpu_rq(cpu);
  2172. struct task_struct *curr = rq->curr;
  2173. sched_clock_tick();
  2174. raw_spin_lock(&rq->lock);
  2175. update_rq_clock(rq);
  2176. curr->sched_class->task_tick(rq, curr, 0);
  2177. update_cpu_load_active(rq);
  2178. raw_spin_unlock(&rq->lock);
  2179. perf_event_task_tick();
  2180. #ifdef CONFIG_SMP
  2181. rq->idle_balance = idle_cpu(cpu);
  2182. trigger_load_balance(rq);
  2183. #endif
  2184. rq_last_tick_reset(rq);
  2185. }
  2186. #ifdef CONFIG_NO_HZ_FULL
  2187. /**
  2188. * scheduler_tick_max_deferment
  2189. *
  2190. * Keep at least one tick per second when a single
  2191. * active task is running because the scheduler doesn't
  2192. * yet completely support full dynticks environment.
  2193. *
  2194. * This makes sure that uptime, CFS vruntime, load
  2195. * balancing, etc... continue to move forward, even
  2196. * with a very low granularity.
  2197. *
  2198. * Return: Maximum deferment in nanoseconds.
  2199. */
  2200. u64 scheduler_tick_max_deferment(void)
  2201. {
  2202. struct rq *rq = this_rq();
  2203. unsigned long next, now = ACCESS_ONCE(jiffies);
  2204. next = rq->last_sched_tick + HZ;
  2205. if (time_before_eq(next, now))
  2206. return 0;
  2207. return jiffies_to_nsecs(next - now);
  2208. }
  2209. #endif
  2210. notrace unsigned long get_parent_ip(unsigned long addr)
  2211. {
  2212. if (in_lock_functions(addr)) {
  2213. addr = CALLER_ADDR2;
  2214. if (in_lock_functions(addr))
  2215. addr = CALLER_ADDR3;
  2216. }
  2217. return addr;
  2218. }
  2219. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2220. defined(CONFIG_PREEMPT_TRACER))
  2221. void preempt_count_add(int val)
  2222. {
  2223. #ifdef CONFIG_DEBUG_PREEMPT
  2224. /*
  2225. * Underflow?
  2226. */
  2227. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2228. return;
  2229. #endif
  2230. __preempt_count_add(val);
  2231. #ifdef CONFIG_DEBUG_PREEMPT
  2232. /*
  2233. * Spinlock count overflowing soon?
  2234. */
  2235. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2236. PREEMPT_MASK - 10);
  2237. #endif
  2238. if (preempt_count() == val) {
  2239. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2240. #ifdef CONFIG_DEBUG_PREEMPT
  2241. current->preempt_disable_ip = ip;
  2242. #endif
  2243. trace_preempt_off(CALLER_ADDR0, ip);
  2244. }
  2245. }
  2246. EXPORT_SYMBOL(preempt_count_add);
  2247. NOKPROBE_SYMBOL(preempt_count_add);
  2248. void preempt_count_sub(int val)
  2249. {
  2250. #ifdef CONFIG_DEBUG_PREEMPT
  2251. /*
  2252. * Underflow?
  2253. */
  2254. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2255. return;
  2256. /*
  2257. * Is the spinlock portion underflowing?
  2258. */
  2259. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2260. !(preempt_count() & PREEMPT_MASK)))
  2261. return;
  2262. #endif
  2263. if (preempt_count() == val)
  2264. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2265. __preempt_count_sub(val);
  2266. }
  2267. EXPORT_SYMBOL(preempt_count_sub);
  2268. NOKPROBE_SYMBOL(preempt_count_sub);
  2269. #endif
  2270. /*
  2271. * Print scheduling while atomic bug:
  2272. */
  2273. static noinline void __schedule_bug(struct task_struct *prev)
  2274. {
  2275. if (oops_in_progress)
  2276. return;
  2277. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2278. prev->comm, prev->pid, preempt_count());
  2279. debug_show_held_locks(prev);
  2280. print_modules();
  2281. if (irqs_disabled())
  2282. print_irqtrace_events(prev);
  2283. #ifdef CONFIG_DEBUG_PREEMPT
  2284. if (in_atomic_preempt_off()) {
  2285. pr_err("Preemption disabled at:");
  2286. print_ip_sym(current->preempt_disable_ip);
  2287. pr_cont("\n");
  2288. }
  2289. #endif
  2290. dump_stack();
  2291. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2292. }
  2293. /*
  2294. * Various schedule()-time debugging checks and statistics:
  2295. */
  2296. static inline void schedule_debug(struct task_struct *prev)
  2297. {
  2298. #ifdef CONFIG_SCHED_STACK_END_CHECK
  2299. BUG_ON(unlikely(task_stack_end_corrupted(prev)));
  2300. #endif
  2301. /*
  2302. * Test if we are atomic. Since do_exit() needs to call into
  2303. * schedule() atomically, we ignore that path. Otherwise whine
  2304. * if we are scheduling when we should not.
  2305. */
  2306. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2307. __schedule_bug(prev);
  2308. rcu_sleep_check();
  2309. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2310. schedstat_inc(this_rq(), sched_count);
  2311. }
  2312. /*
  2313. * Pick up the highest-prio task:
  2314. */
  2315. static inline struct task_struct *
  2316. pick_next_task(struct rq *rq, struct task_struct *prev)
  2317. {
  2318. const struct sched_class *class = &fair_sched_class;
  2319. struct task_struct *p;
  2320. /*
  2321. * Optimization: we know that if all tasks are in
  2322. * the fair class we can call that function directly:
  2323. */
  2324. if (likely(prev->sched_class == class &&
  2325. rq->nr_running == rq->cfs.h_nr_running)) {
  2326. p = fair_sched_class.pick_next_task(rq, prev);
  2327. if (unlikely(p == RETRY_TASK))
  2328. goto again;
  2329. /* assumes fair_sched_class->next == idle_sched_class */
  2330. if (unlikely(!p))
  2331. p = idle_sched_class.pick_next_task(rq, prev);
  2332. return p;
  2333. }
  2334. again:
  2335. for_each_class(class) {
  2336. p = class->pick_next_task(rq, prev);
  2337. if (p) {
  2338. if (unlikely(p == RETRY_TASK))
  2339. goto again;
  2340. return p;
  2341. }
  2342. }
  2343. BUG(); /* the idle class will always have a runnable task */
  2344. }
  2345. /*
  2346. * __schedule() is the main scheduler function.
  2347. *
  2348. * The main means of driving the scheduler and thus entering this function are:
  2349. *
  2350. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2351. *
  2352. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2353. * paths. For example, see arch/x86/entry_64.S.
  2354. *
  2355. * To drive preemption between tasks, the scheduler sets the flag in timer
  2356. * interrupt handler scheduler_tick().
  2357. *
  2358. * 3. Wakeups don't really cause entry into schedule(). They add a
  2359. * task to the run-queue and that's it.
  2360. *
  2361. * Now, if the new task added to the run-queue preempts the current
  2362. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2363. * called on the nearest possible occasion:
  2364. *
  2365. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2366. *
  2367. * - in syscall or exception context, at the next outmost
  2368. * preempt_enable(). (this might be as soon as the wake_up()'s
  2369. * spin_unlock()!)
  2370. *
  2371. * - in IRQ context, return from interrupt-handler to
  2372. * preemptible context
  2373. *
  2374. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2375. * then at the next:
  2376. *
  2377. * - cond_resched() call
  2378. * - explicit schedule() call
  2379. * - return from syscall or exception to user-space
  2380. * - return from interrupt-handler to user-space
  2381. */
  2382. static void __sched __schedule(void)
  2383. {
  2384. struct task_struct *prev, *next;
  2385. unsigned long *switch_count;
  2386. struct rq *rq;
  2387. int cpu;
  2388. need_resched:
  2389. preempt_disable();
  2390. cpu = smp_processor_id();
  2391. rq = cpu_rq(cpu);
  2392. rcu_note_context_switch(cpu);
  2393. prev = rq->curr;
  2394. schedule_debug(prev);
  2395. if (sched_feat(HRTICK))
  2396. hrtick_clear(rq);
  2397. /*
  2398. * Make sure that signal_pending_state()->signal_pending() below
  2399. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2400. * done by the caller to avoid the race with signal_wake_up().
  2401. */
  2402. smp_mb__before_spinlock();
  2403. raw_spin_lock_irq(&rq->lock);
  2404. switch_count = &prev->nivcsw;
  2405. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2406. if (unlikely(signal_pending_state(prev->state, prev))) {
  2407. prev->state = TASK_RUNNING;
  2408. } else {
  2409. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2410. prev->on_rq = 0;
  2411. /*
  2412. * If a worker went to sleep, notify and ask workqueue
  2413. * whether it wants to wake up a task to maintain
  2414. * concurrency.
  2415. */
  2416. if (prev->flags & PF_WQ_WORKER) {
  2417. struct task_struct *to_wakeup;
  2418. to_wakeup = wq_worker_sleeping(prev, cpu);
  2419. if (to_wakeup)
  2420. try_to_wake_up_local(to_wakeup);
  2421. }
  2422. }
  2423. switch_count = &prev->nvcsw;
  2424. }
  2425. if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
  2426. update_rq_clock(rq);
  2427. next = pick_next_task(rq, prev);
  2428. clear_tsk_need_resched(prev);
  2429. clear_preempt_need_resched();
  2430. rq->skip_clock_update = 0;
  2431. if (likely(prev != next)) {
  2432. rq->nr_switches++;
  2433. rq->curr = next;
  2434. ++*switch_count;
  2435. context_switch(rq, prev, next); /* unlocks the rq */
  2436. /*
  2437. * The context switch have flipped the stack from under us
  2438. * and restored the local variables which were saved when
  2439. * this task called schedule() in the past. prev == current
  2440. * is still correct, but it can be moved to another cpu/rq.
  2441. */
  2442. cpu = smp_processor_id();
  2443. rq = cpu_rq(cpu);
  2444. } else
  2445. raw_spin_unlock_irq(&rq->lock);
  2446. post_schedule(rq);
  2447. sched_preempt_enable_no_resched();
  2448. if (need_resched())
  2449. goto need_resched;
  2450. }
  2451. static inline void sched_submit_work(struct task_struct *tsk)
  2452. {
  2453. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2454. return;
  2455. /*
  2456. * If we are going to sleep and we have plugged IO queued,
  2457. * make sure to submit it to avoid deadlocks.
  2458. */
  2459. if (blk_needs_flush_plug(tsk))
  2460. blk_schedule_flush_plug(tsk);
  2461. }
  2462. asmlinkage __visible void __sched schedule(void)
  2463. {
  2464. struct task_struct *tsk = current;
  2465. sched_submit_work(tsk);
  2466. __schedule();
  2467. }
  2468. EXPORT_SYMBOL(schedule);
  2469. #ifdef CONFIG_CONTEXT_TRACKING
  2470. asmlinkage __visible void __sched schedule_user(void)
  2471. {
  2472. /*
  2473. * If we come here after a random call to set_need_resched(),
  2474. * or we have been woken up remotely but the IPI has not yet arrived,
  2475. * we haven't yet exited the RCU idle mode. Do it here manually until
  2476. * we find a better solution.
  2477. */
  2478. user_exit();
  2479. schedule();
  2480. user_enter();
  2481. }
  2482. #endif
  2483. /**
  2484. * schedule_preempt_disabled - called with preemption disabled
  2485. *
  2486. * Returns with preemption disabled. Note: preempt_count must be 1
  2487. */
  2488. void __sched schedule_preempt_disabled(void)
  2489. {
  2490. sched_preempt_enable_no_resched();
  2491. schedule();
  2492. preempt_disable();
  2493. }
  2494. #ifdef CONFIG_PREEMPT
  2495. /*
  2496. * this is the entry point to schedule() from in-kernel preemption
  2497. * off of preempt_enable. Kernel preemptions off return from interrupt
  2498. * occur there and call schedule directly.
  2499. */
  2500. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2501. {
  2502. /*
  2503. * If there is a non-zero preempt_count or interrupts are disabled,
  2504. * we do not want to preempt the current task. Just return..
  2505. */
  2506. if (likely(!preemptible()))
  2507. return;
  2508. do {
  2509. __preempt_count_add(PREEMPT_ACTIVE);
  2510. __schedule();
  2511. __preempt_count_sub(PREEMPT_ACTIVE);
  2512. /*
  2513. * Check again in case we missed a preemption opportunity
  2514. * between schedule and now.
  2515. */
  2516. barrier();
  2517. } while (need_resched());
  2518. }
  2519. NOKPROBE_SYMBOL(preempt_schedule);
  2520. EXPORT_SYMBOL(preempt_schedule);
  2521. #ifdef CONFIG_CONTEXT_TRACKING
  2522. /**
  2523. * preempt_schedule_context - preempt_schedule called by tracing
  2524. *
  2525. * The tracing infrastructure uses preempt_enable_notrace to prevent
  2526. * recursion and tracing preempt enabling caused by the tracing
  2527. * infrastructure itself. But as tracing can happen in areas coming
  2528. * from userspace or just about to enter userspace, a preempt enable
  2529. * can occur before user_exit() is called. This will cause the scheduler
  2530. * to be called when the system is still in usermode.
  2531. *
  2532. * To prevent this, the preempt_enable_notrace will use this function
  2533. * instead of preempt_schedule() to exit user context if needed before
  2534. * calling the scheduler.
  2535. */
  2536. asmlinkage __visible void __sched notrace preempt_schedule_context(void)
  2537. {
  2538. enum ctx_state prev_ctx;
  2539. if (likely(!preemptible()))
  2540. return;
  2541. do {
  2542. __preempt_count_add(PREEMPT_ACTIVE);
  2543. /*
  2544. * Needs preempt disabled in case user_exit() is traced
  2545. * and the tracer calls preempt_enable_notrace() causing
  2546. * an infinite recursion.
  2547. */
  2548. prev_ctx = exception_enter();
  2549. __schedule();
  2550. exception_exit(prev_ctx);
  2551. __preempt_count_sub(PREEMPT_ACTIVE);
  2552. barrier();
  2553. } while (need_resched());
  2554. }
  2555. EXPORT_SYMBOL_GPL(preempt_schedule_context);
  2556. #endif /* CONFIG_CONTEXT_TRACKING */
  2557. #endif /* CONFIG_PREEMPT */
  2558. /*
  2559. * this is the entry point to schedule() from kernel preemption
  2560. * off of irq context.
  2561. * Note, that this is called and return with irqs disabled. This will
  2562. * protect us against recursive calling from irq.
  2563. */
  2564. asmlinkage __visible void __sched preempt_schedule_irq(void)
  2565. {
  2566. enum ctx_state prev_state;
  2567. /* Catch callers which need to be fixed */
  2568. BUG_ON(preempt_count() || !irqs_disabled());
  2569. prev_state = exception_enter();
  2570. do {
  2571. __preempt_count_add(PREEMPT_ACTIVE);
  2572. local_irq_enable();
  2573. __schedule();
  2574. local_irq_disable();
  2575. __preempt_count_sub(PREEMPT_ACTIVE);
  2576. /*
  2577. * Check again in case we missed a preemption opportunity
  2578. * between schedule and now.
  2579. */
  2580. barrier();
  2581. } while (need_resched());
  2582. exception_exit(prev_state);
  2583. }
  2584. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2585. void *key)
  2586. {
  2587. return try_to_wake_up(curr->private, mode, wake_flags);
  2588. }
  2589. EXPORT_SYMBOL(default_wake_function);
  2590. #ifdef CONFIG_RT_MUTEXES
  2591. /*
  2592. * rt_mutex_setprio - set the current priority of a task
  2593. * @p: task
  2594. * @prio: prio value (kernel-internal form)
  2595. *
  2596. * This function changes the 'effective' priority of a task. It does
  2597. * not touch ->normal_prio like __setscheduler().
  2598. *
  2599. * Used by the rt_mutex code to implement priority inheritance
  2600. * logic. Call site only calls if the priority of the task changed.
  2601. */
  2602. void rt_mutex_setprio(struct task_struct *p, int prio)
  2603. {
  2604. int oldprio, queued, running, enqueue_flag = 0;
  2605. struct rq *rq;
  2606. const struct sched_class *prev_class;
  2607. BUG_ON(prio > MAX_PRIO);
  2608. rq = __task_rq_lock(p);
  2609. /*
  2610. * Idle task boosting is a nono in general. There is one
  2611. * exception, when PREEMPT_RT and NOHZ is active:
  2612. *
  2613. * The idle task calls get_next_timer_interrupt() and holds
  2614. * the timer wheel base->lock on the CPU and another CPU wants
  2615. * to access the timer (probably to cancel it). We can safely
  2616. * ignore the boosting request, as the idle CPU runs this code
  2617. * with interrupts disabled and will complete the lock
  2618. * protected section without being interrupted. So there is no
  2619. * real need to boost.
  2620. */
  2621. if (unlikely(p == rq->idle)) {
  2622. WARN_ON(p != rq->curr);
  2623. WARN_ON(p->pi_blocked_on);
  2624. goto out_unlock;
  2625. }
  2626. trace_sched_pi_setprio(p, prio);
  2627. oldprio = p->prio;
  2628. prev_class = p->sched_class;
  2629. queued = task_on_rq_queued(p);
  2630. running = task_current(rq, p);
  2631. if (queued)
  2632. dequeue_task(rq, p, 0);
  2633. if (running)
  2634. put_prev_task(rq, p);
  2635. /*
  2636. * Boosting condition are:
  2637. * 1. -rt task is running and holds mutex A
  2638. * --> -dl task blocks on mutex A
  2639. *
  2640. * 2. -dl task is running and holds mutex A
  2641. * --> -dl task blocks on mutex A and could preempt the
  2642. * running task
  2643. */
  2644. if (dl_prio(prio)) {
  2645. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  2646. if (!dl_prio(p->normal_prio) ||
  2647. (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
  2648. p->dl.dl_boosted = 1;
  2649. p->dl.dl_throttled = 0;
  2650. enqueue_flag = ENQUEUE_REPLENISH;
  2651. } else
  2652. p->dl.dl_boosted = 0;
  2653. p->sched_class = &dl_sched_class;
  2654. } else if (rt_prio(prio)) {
  2655. if (dl_prio(oldprio))
  2656. p->dl.dl_boosted = 0;
  2657. if (oldprio < prio)
  2658. enqueue_flag = ENQUEUE_HEAD;
  2659. p->sched_class = &rt_sched_class;
  2660. } else {
  2661. if (dl_prio(oldprio))
  2662. p->dl.dl_boosted = 0;
  2663. p->sched_class = &fair_sched_class;
  2664. }
  2665. p->prio = prio;
  2666. if (running)
  2667. p->sched_class->set_curr_task(rq);
  2668. if (queued)
  2669. enqueue_task(rq, p, enqueue_flag);
  2670. check_class_changed(rq, p, prev_class, oldprio);
  2671. out_unlock:
  2672. __task_rq_unlock(rq);
  2673. }
  2674. #endif
  2675. void set_user_nice(struct task_struct *p, long nice)
  2676. {
  2677. int old_prio, delta, queued;
  2678. unsigned long flags;
  2679. struct rq *rq;
  2680. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  2681. return;
  2682. /*
  2683. * We have to be careful, if called from sys_setpriority(),
  2684. * the task might be in the middle of scheduling on another CPU.
  2685. */
  2686. rq = task_rq_lock(p, &flags);
  2687. /*
  2688. * The RT priorities are set via sched_setscheduler(), but we still
  2689. * allow the 'normal' nice value to be set - but as expected
  2690. * it wont have any effect on scheduling until the task is
  2691. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2692. */
  2693. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2694. p->static_prio = NICE_TO_PRIO(nice);
  2695. goto out_unlock;
  2696. }
  2697. queued = task_on_rq_queued(p);
  2698. if (queued)
  2699. dequeue_task(rq, p, 0);
  2700. p->static_prio = NICE_TO_PRIO(nice);
  2701. set_load_weight(p);
  2702. old_prio = p->prio;
  2703. p->prio = effective_prio(p);
  2704. delta = p->prio - old_prio;
  2705. if (queued) {
  2706. enqueue_task(rq, p, 0);
  2707. /*
  2708. * If the task increased its priority or is running and
  2709. * lowered its priority, then reschedule its CPU:
  2710. */
  2711. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2712. resched_curr(rq);
  2713. }
  2714. out_unlock:
  2715. task_rq_unlock(rq, p, &flags);
  2716. }
  2717. EXPORT_SYMBOL(set_user_nice);
  2718. /*
  2719. * can_nice - check if a task can reduce its nice value
  2720. * @p: task
  2721. * @nice: nice value
  2722. */
  2723. int can_nice(const struct task_struct *p, const int nice)
  2724. {
  2725. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2726. int nice_rlim = nice_to_rlimit(nice);
  2727. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2728. capable(CAP_SYS_NICE));
  2729. }
  2730. #ifdef __ARCH_WANT_SYS_NICE
  2731. /*
  2732. * sys_nice - change the priority of the current process.
  2733. * @increment: priority increment
  2734. *
  2735. * sys_setpriority is a more generic, but much slower function that
  2736. * does similar things.
  2737. */
  2738. SYSCALL_DEFINE1(nice, int, increment)
  2739. {
  2740. long nice, retval;
  2741. /*
  2742. * Setpriority might change our priority at the same moment.
  2743. * We don't have to worry. Conceptually one call occurs first
  2744. * and we have a single winner.
  2745. */
  2746. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  2747. nice = task_nice(current) + increment;
  2748. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  2749. if (increment < 0 && !can_nice(current, nice))
  2750. return -EPERM;
  2751. retval = security_task_setnice(current, nice);
  2752. if (retval)
  2753. return retval;
  2754. set_user_nice(current, nice);
  2755. return 0;
  2756. }
  2757. #endif
  2758. /**
  2759. * task_prio - return the priority value of a given task.
  2760. * @p: the task in question.
  2761. *
  2762. * Return: The priority value as seen by users in /proc.
  2763. * RT tasks are offset by -200. Normal tasks are centered
  2764. * around 0, value goes from -16 to +15.
  2765. */
  2766. int task_prio(const struct task_struct *p)
  2767. {
  2768. return p->prio - MAX_RT_PRIO;
  2769. }
  2770. /**
  2771. * idle_cpu - is a given cpu idle currently?
  2772. * @cpu: the processor in question.
  2773. *
  2774. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2775. */
  2776. int idle_cpu(int cpu)
  2777. {
  2778. struct rq *rq = cpu_rq(cpu);
  2779. if (rq->curr != rq->idle)
  2780. return 0;
  2781. if (rq->nr_running)
  2782. return 0;
  2783. #ifdef CONFIG_SMP
  2784. if (!llist_empty(&rq->wake_list))
  2785. return 0;
  2786. #endif
  2787. return 1;
  2788. }
  2789. /**
  2790. * idle_task - return the idle task for a given cpu.
  2791. * @cpu: the processor in question.
  2792. *
  2793. * Return: The idle task for the cpu @cpu.
  2794. */
  2795. struct task_struct *idle_task(int cpu)
  2796. {
  2797. return cpu_rq(cpu)->idle;
  2798. }
  2799. /**
  2800. * find_process_by_pid - find a process with a matching PID value.
  2801. * @pid: the pid in question.
  2802. *
  2803. * The task of @pid, if found. %NULL otherwise.
  2804. */
  2805. static struct task_struct *find_process_by_pid(pid_t pid)
  2806. {
  2807. return pid ? find_task_by_vpid(pid) : current;
  2808. }
  2809. /*
  2810. * This function initializes the sched_dl_entity of a newly becoming
  2811. * SCHED_DEADLINE task.
  2812. *
  2813. * Only the static values are considered here, the actual runtime and the
  2814. * absolute deadline will be properly calculated when the task is enqueued
  2815. * for the first time with its new policy.
  2816. */
  2817. static void
  2818. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  2819. {
  2820. struct sched_dl_entity *dl_se = &p->dl;
  2821. init_dl_task_timer(dl_se);
  2822. dl_se->dl_runtime = attr->sched_runtime;
  2823. dl_se->dl_deadline = attr->sched_deadline;
  2824. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  2825. dl_se->flags = attr->sched_flags;
  2826. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  2827. dl_se->dl_throttled = 0;
  2828. dl_se->dl_new = 1;
  2829. dl_se->dl_yielded = 0;
  2830. }
  2831. /*
  2832. * sched_setparam() passes in -1 for its policy, to let the functions
  2833. * it calls know not to change it.
  2834. */
  2835. #define SETPARAM_POLICY -1
  2836. static void __setscheduler_params(struct task_struct *p,
  2837. const struct sched_attr *attr)
  2838. {
  2839. int policy = attr->sched_policy;
  2840. if (policy == SETPARAM_POLICY)
  2841. policy = p->policy;
  2842. p->policy = policy;
  2843. if (dl_policy(policy))
  2844. __setparam_dl(p, attr);
  2845. else if (fair_policy(policy))
  2846. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  2847. /*
  2848. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  2849. * !rt_policy. Always setting this ensures that things like
  2850. * getparam()/getattr() don't report silly values for !rt tasks.
  2851. */
  2852. p->rt_priority = attr->sched_priority;
  2853. p->normal_prio = normal_prio(p);
  2854. set_load_weight(p);
  2855. }
  2856. /* Actually do priority change: must hold pi & rq lock. */
  2857. static void __setscheduler(struct rq *rq, struct task_struct *p,
  2858. const struct sched_attr *attr)
  2859. {
  2860. __setscheduler_params(p, attr);
  2861. /*
  2862. * If we get here, there was no pi waiters boosting the
  2863. * task. It is safe to use the normal prio.
  2864. */
  2865. p->prio = normal_prio(p);
  2866. if (dl_prio(p->prio))
  2867. p->sched_class = &dl_sched_class;
  2868. else if (rt_prio(p->prio))
  2869. p->sched_class = &rt_sched_class;
  2870. else
  2871. p->sched_class = &fair_sched_class;
  2872. }
  2873. static void
  2874. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  2875. {
  2876. struct sched_dl_entity *dl_se = &p->dl;
  2877. attr->sched_priority = p->rt_priority;
  2878. attr->sched_runtime = dl_se->dl_runtime;
  2879. attr->sched_deadline = dl_se->dl_deadline;
  2880. attr->sched_period = dl_se->dl_period;
  2881. attr->sched_flags = dl_se->flags;
  2882. }
  2883. /*
  2884. * This function validates the new parameters of a -deadline task.
  2885. * We ask for the deadline not being zero, and greater or equal
  2886. * than the runtime, as well as the period of being zero or
  2887. * greater than deadline. Furthermore, we have to be sure that
  2888. * user parameters are above the internal resolution of 1us (we
  2889. * check sched_runtime only since it is always the smaller one) and
  2890. * below 2^63 ns (we have to check both sched_deadline and
  2891. * sched_period, as the latter can be zero).
  2892. */
  2893. static bool
  2894. __checkparam_dl(const struct sched_attr *attr)
  2895. {
  2896. /* deadline != 0 */
  2897. if (attr->sched_deadline == 0)
  2898. return false;
  2899. /*
  2900. * Since we truncate DL_SCALE bits, make sure we're at least
  2901. * that big.
  2902. */
  2903. if (attr->sched_runtime < (1ULL << DL_SCALE))
  2904. return false;
  2905. /*
  2906. * Since we use the MSB for wrap-around and sign issues, make
  2907. * sure it's not set (mind that period can be equal to zero).
  2908. */
  2909. if (attr->sched_deadline & (1ULL << 63) ||
  2910. attr->sched_period & (1ULL << 63))
  2911. return false;
  2912. /* runtime <= deadline <= period (if period != 0) */
  2913. if ((attr->sched_period != 0 &&
  2914. attr->sched_period < attr->sched_deadline) ||
  2915. attr->sched_deadline < attr->sched_runtime)
  2916. return false;
  2917. return true;
  2918. }
  2919. /*
  2920. * check the target process has a UID that matches the current process's
  2921. */
  2922. static bool check_same_owner(struct task_struct *p)
  2923. {
  2924. const struct cred *cred = current_cred(), *pcred;
  2925. bool match;
  2926. rcu_read_lock();
  2927. pcred = __task_cred(p);
  2928. match = (uid_eq(cred->euid, pcred->euid) ||
  2929. uid_eq(cred->euid, pcred->uid));
  2930. rcu_read_unlock();
  2931. return match;
  2932. }
  2933. static int __sched_setscheduler(struct task_struct *p,
  2934. const struct sched_attr *attr,
  2935. bool user)
  2936. {
  2937. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  2938. MAX_RT_PRIO - 1 - attr->sched_priority;
  2939. int retval, oldprio, oldpolicy = -1, queued, running;
  2940. int policy = attr->sched_policy;
  2941. unsigned long flags;
  2942. const struct sched_class *prev_class;
  2943. struct rq *rq;
  2944. int reset_on_fork;
  2945. /* may grab non-irq protected spin_locks */
  2946. BUG_ON(in_interrupt());
  2947. recheck:
  2948. /* double check policy once rq lock held */
  2949. if (policy < 0) {
  2950. reset_on_fork = p->sched_reset_on_fork;
  2951. policy = oldpolicy = p->policy;
  2952. } else {
  2953. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  2954. if (policy != SCHED_DEADLINE &&
  2955. policy != SCHED_FIFO && policy != SCHED_RR &&
  2956. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2957. policy != SCHED_IDLE)
  2958. return -EINVAL;
  2959. }
  2960. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  2961. return -EINVAL;
  2962. /*
  2963. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2964. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2965. * SCHED_BATCH and SCHED_IDLE is 0.
  2966. */
  2967. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  2968. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  2969. return -EINVAL;
  2970. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  2971. (rt_policy(policy) != (attr->sched_priority != 0)))
  2972. return -EINVAL;
  2973. /*
  2974. * Allow unprivileged RT tasks to decrease priority:
  2975. */
  2976. if (user && !capable(CAP_SYS_NICE)) {
  2977. if (fair_policy(policy)) {
  2978. if (attr->sched_nice < task_nice(p) &&
  2979. !can_nice(p, attr->sched_nice))
  2980. return -EPERM;
  2981. }
  2982. if (rt_policy(policy)) {
  2983. unsigned long rlim_rtprio =
  2984. task_rlimit(p, RLIMIT_RTPRIO);
  2985. /* can't set/change the rt policy */
  2986. if (policy != p->policy && !rlim_rtprio)
  2987. return -EPERM;
  2988. /* can't increase priority */
  2989. if (attr->sched_priority > p->rt_priority &&
  2990. attr->sched_priority > rlim_rtprio)
  2991. return -EPERM;
  2992. }
  2993. /*
  2994. * Can't set/change SCHED_DEADLINE policy at all for now
  2995. * (safest behavior); in the future we would like to allow
  2996. * unprivileged DL tasks to increase their relative deadline
  2997. * or reduce their runtime (both ways reducing utilization)
  2998. */
  2999. if (dl_policy(policy))
  3000. return -EPERM;
  3001. /*
  3002. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3003. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3004. */
  3005. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3006. if (!can_nice(p, task_nice(p)))
  3007. return -EPERM;
  3008. }
  3009. /* can't change other user's priorities */
  3010. if (!check_same_owner(p))
  3011. return -EPERM;
  3012. /* Normal users shall not reset the sched_reset_on_fork flag */
  3013. if (p->sched_reset_on_fork && !reset_on_fork)
  3014. return -EPERM;
  3015. }
  3016. if (user) {
  3017. retval = security_task_setscheduler(p);
  3018. if (retval)
  3019. return retval;
  3020. }
  3021. /*
  3022. * make sure no PI-waiters arrive (or leave) while we are
  3023. * changing the priority of the task:
  3024. *
  3025. * To be able to change p->policy safely, the appropriate
  3026. * runqueue lock must be held.
  3027. */
  3028. rq = task_rq_lock(p, &flags);
  3029. /*
  3030. * Changing the policy of the stop threads its a very bad idea
  3031. */
  3032. if (p == rq->stop) {
  3033. task_rq_unlock(rq, p, &flags);
  3034. return -EINVAL;
  3035. }
  3036. /*
  3037. * If not changing anything there's no need to proceed further,
  3038. * but store a possible modification of reset_on_fork.
  3039. */
  3040. if (unlikely(policy == p->policy)) {
  3041. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  3042. goto change;
  3043. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  3044. goto change;
  3045. if (dl_policy(policy))
  3046. goto change;
  3047. p->sched_reset_on_fork = reset_on_fork;
  3048. task_rq_unlock(rq, p, &flags);
  3049. return 0;
  3050. }
  3051. change:
  3052. if (user) {
  3053. #ifdef CONFIG_RT_GROUP_SCHED
  3054. /*
  3055. * Do not allow realtime tasks into groups that have no runtime
  3056. * assigned.
  3057. */
  3058. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3059. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3060. !task_group_is_autogroup(task_group(p))) {
  3061. task_rq_unlock(rq, p, &flags);
  3062. return -EPERM;
  3063. }
  3064. #endif
  3065. #ifdef CONFIG_SMP
  3066. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  3067. cpumask_t *span = rq->rd->span;
  3068. /*
  3069. * Don't allow tasks with an affinity mask smaller than
  3070. * the entire root_domain to become SCHED_DEADLINE. We
  3071. * will also fail if there's no bandwidth available.
  3072. */
  3073. if (!cpumask_subset(span, &p->cpus_allowed) ||
  3074. rq->rd->dl_bw.bw == 0) {
  3075. task_rq_unlock(rq, p, &flags);
  3076. return -EPERM;
  3077. }
  3078. }
  3079. #endif
  3080. }
  3081. /* recheck policy now with rq lock held */
  3082. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3083. policy = oldpolicy = -1;
  3084. task_rq_unlock(rq, p, &flags);
  3085. goto recheck;
  3086. }
  3087. /*
  3088. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  3089. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  3090. * is available.
  3091. */
  3092. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  3093. task_rq_unlock(rq, p, &flags);
  3094. return -EBUSY;
  3095. }
  3096. p->sched_reset_on_fork = reset_on_fork;
  3097. oldprio = p->prio;
  3098. /*
  3099. * Special case for priority boosted tasks.
  3100. *
  3101. * If the new priority is lower or equal (user space view)
  3102. * than the current (boosted) priority, we just store the new
  3103. * normal parameters and do not touch the scheduler class and
  3104. * the runqueue. This will be done when the task deboost
  3105. * itself.
  3106. */
  3107. if (rt_mutex_check_prio(p, newprio)) {
  3108. __setscheduler_params(p, attr);
  3109. task_rq_unlock(rq, p, &flags);
  3110. return 0;
  3111. }
  3112. queued = task_on_rq_queued(p);
  3113. running = task_current(rq, p);
  3114. if (queued)
  3115. dequeue_task(rq, p, 0);
  3116. if (running)
  3117. put_prev_task(rq, p);
  3118. prev_class = p->sched_class;
  3119. __setscheduler(rq, p, attr);
  3120. if (running)
  3121. p->sched_class->set_curr_task(rq);
  3122. if (queued) {
  3123. /*
  3124. * We enqueue to tail when the priority of a task is
  3125. * increased (user space view).
  3126. */
  3127. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  3128. }
  3129. check_class_changed(rq, p, prev_class, oldprio);
  3130. task_rq_unlock(rq, p, &flags);
  3131. rt_mutex_adjust_pi(p);
  3132. return 0;
  3133. }
  3134. static int _sched_setscheduler(struct task_struct *p, int policy,
  3135. const struct sched_param *param, bool check)
  3136. {
  3137. struct sched_attr attr = {
  3138. .sched_policy = policy,
  3139. .sched_priority = param->sched_priority,
  3140. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3141. };
  3142. /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
  3143. if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
  3144. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3145. policy &= ~SCHED_RESET_ON_FORK;
  3146. attr.sched_policy = policy;
  3147. }
  3148. return __sched_setscheduler(p, &attr, check);
  3149. }
  3150. /**
  3151. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3152. * @p: the task in question.
  3153. * @policy: new policy.
  3154. * @param: structure containing the new RT priority.
  3155. *
  3156. * Return: 0 on success. An error code otherwise.
  3157. *
  3158. * NOTE that the task may be already dead.
  3159. */
  3160. int sched_setscheduler(struct task_struct *p, int policy,
  3161. const struct sched_param *param)
  3162. {
  3163. return _sched_setscheduler(p, policy, param, true);
  3164. }
  3165. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3166. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3167. {
  3168. return __sched_setscheduler(p, attr, true);
  3169. }
  3170. EXPORT_SYMBOL_GPL(sched_setattr);
  3171. /**
  3172. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3173. * @p: the task in question.
  3174. * @policy: new policy.
  3175. * @param: structure containing the new RT priority.
  3176. *
  3177. * Just like sched_setscheduler, only don't bother checking if the
  3178. * current context has permission. For example, this is needed in
  3179. * stop_machine(): we create temporary high priority worker threads,
  3180. * but our caller might not have that capability.
  3181. *
  3182. * Return: 0 on success. An error code otherwise.
  3183. */
  3184. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3185. const struct sched_param *param)
  3186. {
  3187. return _sched_setscheduler(p, policy, param, false);
  3188. }
  3189. static int
  3190. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3191. {
  3192. struct sched_param lparam;
  3193. struct task_struct *p;
  3194. int retval;
  3195. if (!param || pid < 0)
  3196. return -EINVAL;
  3197. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3198. return -EFAULT;
  3199. rcu_read_lock();
  3200. retval = -ESRCH;
  3201. p = find_process_by_pid(pid);
  3202. if (p != NULL)
  3203. retval = sched_setscheduler(p, policy, &lparam);
  3204. rcu_read_unlock();
  3205. return retval;
  3206. }
  3207. /*
  3208. * Mimics kernel/events/core.c perf_copy_attr().
  3209. */
  3210. static int sched_copy_attr(struct sched_attr __user *uattr,
  3211. struct sched_attr *attr)
  3212. {
  3213. u32 size;
  3214. int ret;
  3215. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3216. return -EFAULT;
  3217. /*
  3218. * zero the full structure, so that a short copy will be nice.
  3219. */
  3220. memset(attr, 0, sizeof(*attr));
  3221. ret = get_user(size, &uattr->size);
  3222. if (ret)
  3223. return ret;
  3224. if (size > PAGE_SIZE) /* silly large */
  3225. goto err_size;
  3226. if (!size) /* abi compat */
  3227. size = SCHED_ATTR_SIZE_VER0;
  3228. if (size < SCHED_ATTR_SIZE_VER0)
  3229. goto err_size;
  3230. /*
  3231. * If we're handed a bigger struct than we know of,
  3232. * ensure all the unknown bits are 0 - i.e. new
  3233. * user-space does not rely on any kernel feature
  3234. * extensions we dont know about yet.
  3235. */
  3236. if (size > sizeof(*attr)) {
  3237. unsigned char __user *addr;
  3238. unsigned char __user *end;
  3239. unsigned char val;
  3240. addr = (void __user *)uattr + sizeof(*attr);
  3241. end = (void __user *)uattr + size;
  3242. for (; addr < end; addr++) {
  3243. ret = get_user(val, addr);
  3244. if (ret)
  3245. return ret;
  3246. if (val)
  3247. goto err_size;
  3248. }
  3249. size = sizeof(*attr);
  3250. }
  3251. ret = copy_from_user(attr, uattr, size);
  3252. if (ret)
  3253. return -EFAULT;
  3254. /*
  3255. * XXX: do we want to be lenient like existing syscalls; or do we want
  3256. * to be strict and return an error on out-of-bounds values?
  3257. */
  3258. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3259. return 0;
  3260. err_size:
  3261. put_user(sizeof(*attr), &uattr->size);
  3262. return -E2BIG;
  3263. }
  3264. /**
  3265. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3266. * @pid: the pid in question.
  3267. * @policy: new policy.
  3268. * @param: structure containing the new RT priority.
  3269. *
  3270. * Return: 0 on success. An error code otherwise.
  3271. */
  3272. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3273. struct sched_param __user *, param)
  3274. {
  3275. /* negative values for policy are not valid */
  3276. if (policy < 0)
  3277. return -EINVAL;
  3278. return do_sched_setscheduler(pid, policy, param);
  3279. }
  3280. /**
  3281. * sys_sched_setparam - set/change the RT priority of a thread
  3282. * @pid: the pid in question.
  3283. * @param: structure containing the new RT priority.
  3284. *
  3285. * Return: 0 on success. An error code otherwise.
  3286. */
  3287. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3288. {
  3289. return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
  3290. }
  3291. /**
  3292. * sys_sched_setattr - same as above, but with extended sched_attr
  3293. * @pid: the pid in question.
  3294. * @uattr: structure containing the extended parameters.
  3295. * @flags: for future extension.
  3296. */
  3297. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3298. unsigned int, flags)
  3299. {
  3300. struct sched_attr attr;
  3301. struct task_struct *p;
  3302. int retval;
  3303. if (!uattr || pid < 0 || flags)
  3304. return -EINVAL;
  3305. retval = sched_copy_attr(uattr, &attr);
  3306. if (retval)
  3307. return retval;
  3308. if ((int)attr.sched_policy < 0)
  3309. return -EINVAL;
  3310. rcu_read_lock();
  3311. retval = -ESRCH;
  3312. p = find_process_by_pid(pid);
  3313. if (p != NULL)
  3314. retval = sched_setattr(p, &attr);
  3315. rcu_read_unlock();
  3316. return retval;
  3317. }
  3318. /**
  3319. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3320. * @pid: the pid in question.
  3321. *
  3322. * Return: On success, the policy of the thread. Otherwise, a negative error
  3323. * code.
  3324. */
  3325. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3326. {
  3327. struct task_struct *p;
  3328. int retval;
  3329. if (pid < 0)
  3330. return -EINVAL;
  3331. retval = -ESRCH;
  3332. rcu_read_lock();
  3333. p = find_process_by_pid(pid);
  3334. if (p) {
  3335. retval = security_task_getscheduler(p);
  3336. if (!retval)
  3337. retval = p->policy
  3338. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3339. }
  3340. rcu_read_unlock();
  3341. return retval;
  3342. }
  3343. /**
  3344. * sys_sched_getparam - get the RT priority of a thread
  3345. * @pid: the pid in question.
  3346. * @param: structure containing the RT priority.
  3347. *
  3348. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3349. * code.
  3350. */
  3351. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3352. {
  3353. struct sched_param lp = { .sched_priority = 0 };
  3354. struct task_struct *p;
  3355. int retval;
  3356. if (!param || pid < 0)
  3357. return -EINVAL;
  3358. rcu_read_lock();
  3359. p = find_process_by_pid(pid);
  3360. retval = -ESRCH;
  3361. if (!p)
  3362. goto out_unlock;
  3363. retval = security_task_getscheduler(p);
  3364. if (retval)
  3365. goto out_unlock;
  3366. if (task_has_rt_policy(p))
  3367. lp.sched_priority = p->rt_priority;
  3368. rcu_read_unlock();
  3369. /*
  3370. * This one might sleep, we cannot do it with a spinlock held ...
  3371. */
  3372. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3373. return retval;
  3374. out_unlock:
  3375. rcu_read_unlock();
  3376. return retval;
  3377. }
  3378. static int sched_read_attr(struct sched_attr __user *uattr,
  3379. struct sched_attr *attr,
  3380. unsigned int usize)
  3381. {
  3382. int ret;
  3383. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3384. return -EFAULT;
  3385. /*
  3386. * If we're handed a smaller struct than we know of,
  3387. * ensure all the unknown bits are 0 - i.e. old
  3388. * user-space does not get uncomplete information.
  3389. */
  3390. if (usize < sizeof(*attr)) {
  3391. unsigned char *addr;
  3392. unsigned char *end;
  3393. addr = (void *)attr + usize;
  3394. end = (void *)attr + sizeof(*attr);
  3395. for (; addr < end; addr++) {
  3396. if (*addr)
  3397. return -EFBIG;
  3398. }
  3399. attr->size = usize;
  3400. }
  3401. ret = copy_to_user(uattr, attr, attr->size);
  3402. if (ret)
  3403. return -EFAULT;
  3404. return 0;
  3405. }
  3406. /**
  3407. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3408. * @pid: the pid in question.
  3409. * @uattr: structure containing the extended parameters.
  3410. * @size: sizeof(attr) for fwd/bwd comp.
  3411. * @flags: for future extension.
  3412. */
  3413. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3414. unsigned int, size, unsigned int, flags)
  3415. {
  3416. struct sched_attr attr = {
  3417. .size = sizeof(struct sched_attr),
  3418. };
  3419. struct task_struct *p;
  3420. int retval;
  3421. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3422. size < SCHED_ATTR_SIZE_VER0 || flags)
  3423. return -EINVAL;
  3424. rcu_read_lock();
  3425. p = find_process_by_pid(pid);
  3426. retval = -ESRCH;
  3427. if (!p)
  3428. goto out_unlock;
  3429. retval = security_task_getscheduler(p);
  3430. if (retval)
  3431. goto out_unlock;
  3432. attr.sched_policy = p->policy;
  3433. if (p->sched_reset_on_fork)
  3434. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3435. if (task_has_dl_policy(p))
  3436. __getparam_dl(p, &attr);
  3437. else if (task_has_rt_policy(p))
  3438. attr.sched_priority = p->rt_priority;
  3439. else
  3440. attr.sched_nice = task_nice(p);
  3441. rcu_read_unlock();
  3442. retval = sched_read_attr(uattr, &attr, size);
  3443. return retval;
  3444. out_unlock:
  3445. rcu_read_unlock();
  3446. return retval;
  3447. }
  3448. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3449. {
  3450. cpumask_var_t cpus_allowed, new_mask;
  3451. struct task_struct *p;
  3452. int retval;
  3453. rcu_read_lock();
  3454. p = find_process_by_pid(pid);
  3455. if (!p) {
  3456. rcu_read_unlock();
  3457. return -ESRCH;
  3458. }
  3459. /* Prevent p going away */
  3460. get_task_struct(p);
  3461. rcu_read_unlock();
  3462. if (p->flags & PF_NO_SETAFFINITY) {
  3463. retval = -EINVAL;
  3464. goto out_put_task;
  3465. }
  3466. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3467. retval = -ENOMEM;
  3468. goto out_put_task;
  3469. }
  3470. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3471. retval = -ENOMEM;
  3472. goto out_free_cpus_allowed;
  3473. }
  3474. retval = -EPERM;
  3475. if (!check_same_owner(p)) {
  3476. rcu_read_lock();
  3477. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3478. rcu_read_unlock();
  3479. goto out_free_new_mask;
  3480. }
  3481. rcu_read_unlock();
  3482. }
  3483. retval = security_task_setscheduler(p);
  3484. if (retval)
  3485. goto out_free_new_mask;
  3486. cpuset_cpus_allowed(p, cpus_allowed);
  3487. cpumask_and(new_mask, in_mask, cpus_allowed);
  3488. /*
  3489. * Since bandwidth control happens on root_domain basis,
  3490. * if admission test is enabled, we only admit -deadline
  3491. * tasks allowed to run on all the CPUs in the task's
  3492. * root_domain.
  3493. */
  3494. #ifdef CONFIG_SMP
  3495. if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
  3496. rcu_read_lock();
  3497. if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
  3498. retval = -EBUSY;
  3499. rcu_read_unlock();
  3500. goto out_free_new_mask;
  3501. }
  3502. rcu_read_unlock();
  3503. }
  3504. #endif
  3505. again:
  3506. retval = set_cpus_allowed_ptr(p, new_mask);
  3507. if (!retval) {
  3508. cpuset_cpus_allowed(p, cpus_allowed);
  3509. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3510. /*
  3511. * We must have raced with a concurrent cpuset
  3512. * update. Just reset the cpus_allowed to the
  3513. * cpuset's cpus_allowed
  3514. */
  3515. cpumask_copy(new_mask, cpus_allowed);
  3516. goto again;
  3517. }
  3518. }
  3519. out_free_new_mask:
  3520. free_cpumask_var(new_mask);
  3521. out_free_cpus_allowed:
  3522. free_cpumask_var(cpus_allowed);
  3523. out_put_task:
  3524. put_task_struct(p);
  3525. return retval;
  3526. }
  3527. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3528. struct cpumask *new_mask)
  3529. {
  3530. if (len < cpumask_size())
  3531. cpumask_clear(new_mask);
  3532. else if (len > cpumask_size())
  3533. len = cpumask_size();
  3534. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3535. }
  3536. /**
  3537. * sys_sched_setaffinity - set the cpu affinity of a process
  3538. * @pid: pid of the process
  3539. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3540. * @user_mask_ptr: user-space pointer to the new cpu mask
  3541. *
  3542. * Return: 0 on success. An error code otherwise.
  3543. */
  3544. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3545. unsigned long __user *, user_mask_ptr)
  3546. {
  3547. cpumask_var_t new_mask;
  3548. int retval;
  3549. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3550. return -ENOMEM;
  3551. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3552. if (retval == 0)
  3553. retval = sched_setaffinity(pid, new_mask);
  3554. free_cpumask_var(new_mask);
  3555. return retval;
  3556. }
  3557. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3558. {
  3559. struct task_struct *p;
  3560. unsigned long flags;
  3561. int retval;
  3562. rcu_read_lock();
  3563. retval = -ESRCH;
  3564. p = find_process_by_pid(pid);
  3565. if (!p)
  3566. goto out_unlock;
  3567. retval = security_task_getscheduler(p);
  3568. if (retval)
  3569. goto out_unlock;
  3570. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3571. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3572. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3573. out_unlock:
  3574. rcu_read_unlock();
  3575. return retval;
  3576. }
  3577. /**
  3578. * sys_sched_getaffinity - get the cpu affinity of a process
  3579. * @pid: pid of the process
  3580. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3581. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3582. *
  3583. * Return: 0 on success. An error code otherwise.
  3584. */
  3585. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3586. unsigned long __user *, user_mask_ptr)
  3587. {
  3588. int ret;
  3589. cpumask_var_t mask;
  3590. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3591. return -EINVAL;
  3592. if (len & (sizeof(unsigned long)-1))
  3593. return -EINVAL;
  3594. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3595. return -ENOMEM;
  3596. ret = sched_getaffinity(pid, mask);
  3597. if (ret == 0) {
  3598. size_t retlen = min_t(size_t, len, cpumask_size());
  3599. if (copy_to_user(user_mask_ptr, mask, retlen))
  3600. ret = -EFAULT;
  3601. else
  3602. ret = retlen;
  3603. }
  3604. free_cpumask_var(mask);
  3605. return ret;
  3606. }
  3607. /**
  3608. * sys_sched_yield - yield the current processor to other threads.
  3609. *
  3610. * This function yields the current CPU to other tasks. If there are no
  3611. * other threads running on this CPU then this function will return.
  3612. *
  3613. * Return: 0.
  3614. */
  3615. SYSCALL_DEFINE0(sched_yield)
  3616. {
  3617. struct rq *rq = this_rq_lock();
  3618. schedstat_inc(rq, yld_count);
  3619. current->sched_class->yield_task(rq);
  3620. /*
  3621. * Since we are going to call schedule() anyway, there's
  3622. * no need to preempt or enable interrupts:
  3623. */
  3624. __release(rq->lock);
  3625. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3626. do_raw_spin_unlock(&rq->lock);
  3627. sched_preempt_enable_no_resched();
  3628. schedule();
  3629. return 0;
  3630. }
  3631. static void __cond_resched(void)
  3632. {
  3633. __preempt_count_add(PREEMPT_ACTIVE);
  3634. __schedule();
  3635. __preempt_count_sub(PREEMPT_ACTIVE);
  3636. }
  3637. int __sched _cond_resched(void)
  3638. {
  3639. if (should_resched()) {
  3640. __cond_resched();
  3641. return 1;
  3642. }
  3643. return 0;
  3644. }
  3645. EXPORT_SYMBOL(_cond_resched);
  3646. /*
  3647. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3648. * call schedule, and on return reacquire the lock.
  3649. *
  3650. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3651. * operations here to prevent schedule() from being called twice (once via
  3652. * spin_unlock(), once by hand).
  3653. */
  3654. int __cond_resched_lock(spinlock_t *lock)
  3655. {
  3656. int resched = should_resched();
  3657. int ret = 0;
  3658. lockdep_assert_held(lock);
  3659. if (spin_needbreak(lock) || resched) {
  3660. spin_unlock(lock);
  3661. if (resched)
  3662. __cond_resched();
  3663. else
  3664. cpu_relax();
  3665. ret = 1;
  3666. spin_lock(lock);
  3667. }
  3668. return ret;
  3669. }
  3670. EXPORT_SYMBOL(__cond_resched_lock);
  3671. int __sched __cond_resched_softirq(void)
  3672. {
  3673. BUG_ON(!in_softirq());
  3674. if (should_resched()) {
  3675. local_bh_enable();
  3676. __cond_resched();
  3677. local_bh_disable();
  3678. return 1;
  3679. }
  3680. return 0;
  3681. }
  3682. EXPORT_SYMBOL(__cond_resched_softirq);
  3683. /**
  3684. * yield - yield the current processor to other threads.
  3685. *
  3686. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3687. *
  3688. * The scheduler is at all times free to pick the calling task as the most
  3689. * eligible task to run, if removing the yield() call from your code breaks
  3690. * it, its already broken.
  3691. *
  3692. * Typical broken usage is:
  3693. *
  3694. * while (!event)
  3695. * yield();
  3696. *
  3697. * where one assumes that yield() will let 'the other' process run that will
  3698. * make event true. If the current task is a SCHED_FIFO task that will never
  3699. * happen. Never use yield() as a progress guarantee!!
  3700. *
  3701. * If you want to use yield() to wait for something, use wait_event().
  3702. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3703. * If you still want to use yield(), do not!
  3704. */
  3705. void __sched yield(void)
  3706. {
  3707. set_current_state(TASK_RUNNING);
  3708. sys_sched_yield();
  3709. }
  3710. EXPORT_SYMBOL(yield);
  3711. /**
  3712. * yield_to - yield the current processor to another thread in
  3713. * your thread group, or accelerate that thread toward the
  3714. * processor it's on.
  3715. * @p: target task
  3716. * @preempt: whether task preemption is allowed or not
  3717. *
  3718. * It's the caller's job to ensure that the target task struct
  3719. * can't go away on us before we can do any checks.
  3720. *
  3721. * Return:
  3722. * true (>0) if we indeed boosted the target task.
  3723. * false (0) if we failed to boost the target.
  3724. * -ESRCH if there's no task to yield to.
  3725. */
  3726. int __sched yield_to(struct task_struct *p, bool preempt)
  3727. {
  3728. struct task_struct *curr = current;
  3729. struct rq *rq, *p_rq;
  3730. unsigned long flags;
  3731. int yielded = 0;
  3732. local_irq_save(flags);
  3733. rq = this_rq();
  3734. again:
  3735. p_rq = task_rq(p);
  3736. /*
  3737. * If we're the only runnable task on the rq and target rq also
  3738. * has only one task, there's absolutely no point in yielding.
  3739. */
  3740. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3741. yielded = -ESRCH;
  3742. goto out_irq;
  3743. }
  3744. double_rq_lock(rq, p_rq);
  3745. if (task_rq(p) != p_rq) {
  3746. double_rq_unlock(rq, p_rq);
  3747. goto again;
  3748. }
  3749. if (!curr->sched_class->yield_to_task)
  3750. goto out_unlock;
  3751. if (curr->sched_class != p->sched_class)
  3752. goto out_unlock;
  3753. if (task_running(p_rq, p) || p->state)
  3754. goto out_unlock;
  3755. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3756. if (yielded) {
  3757. schedstat_inc(rq, yld_count);
  3758. /*
  3759. * Make p's CPU reschedule; pick_next_entity takes care of
  3760. * fairness.
  3761. */
  3762. if (preempt && rq != p_rq)
  3763. resched_curr(p_rq);
  3764. }
  3765. out_unlock:
  3766. double_rq_unlock(rq, p_rq);
  3767. out_irq:
  3768. local_irq_restore(flags);
  3769. if (yielded > 0)
  3770. schedule();
  3771. return yielded;
  3772. }
  3773. EXPORT_SYMBOL_GPL(yield_to);
  3774. /*
  3775. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3776. * that process accounting knows that this is a task in IO wait state.
  3777. */
  3778. void __sched io_schedule(void)
  3779. {
  3780. struct rq *rq = raw_rq();
  3781. delayacct_blkio_start();
  3782. atomic_inc(&rq->nr_iowait);
  3783. blk_flush_plug(current);
  3784. current->in_iowait = 1;
  3785. schedule();
  3786. current->in_iowait = 0;
  3787. atomic_dec(&rq->nr_iowait);
  3788. delayacct_blkio_end();
  3789. }
  3790. EXPORT_SYMBOL(io_schedule);
  3791. long __sched io_schedule_timeout(long timeout)
  3792. {
  3793. struct rq *rq = raw_rq();
  3794. long ret;
  3795. delayacct_blkio_start();
  3796. atomic_inc(&rq->nr_iowait);
  3797. blk_flush_plug(current);
  3798. current->in_iowait = 1;
  3799. ret = schedule_timeout(timeout);
  3800. current->in_iowait = 0;
  3801. atomic_dec(&rq->nr_iowait);
  3802. delayacct_blkio_end();
  3803. return ret;
  3804. }
  3805. /**
  3806. * sys_sched_get_priority_max - return maximum RT priority.
  3807. * @policy: scheduling class.
  3808. *
  3809. * Return: On success, this syscall returns the maximum
  3810. * rt_priority that can be used by a given scheduling class.
  3811. * On failure, a negative error code is returned.
  3812. */
  3813. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3814. {
  3815. int ret = -EINVAL;
  3816. switch (policy) {
  3817. case SCHED_FIFO:
  3818. case SCHED_RR:
  3819. ret = MAX_USER_RT_PRIO-1;
  3820. break;
  3821. case SCHED_DEADLINE:
  3822. case SCHED_NORMAL:
  3823. case SCHED_BATCH:
  3824. case SCHED_IDLE:
  3825. ret = 0;
  3826. break;
  3827. }
  3828. return ret;
  3829. }
  3830. /**
  3831. * sys_sched_get_priority_min - return minimum RT priority.
  3832. * @policy: scheduling class.
  3833. *
  3834. * Return: On success, this syscall returns the minimum
  3835. * rt_priority that can be used by a given scheduling class.
  3836. * On failure, a negative error code is returned.
  3837. */
  3838. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3839. {
  3840. int ret = -EINVAL;
  3841. switch (policy) {
  3842. case SCHED_FIFO:
  3843. case SCHED_RR:
  3844. ret = 1;
  3845. break;
  3846. case SCHED_DEADLINE:
  3847. case SCHED_NORMAL:
  3848. case SCHED_BATCH:
  3849. case SCHED_IDLE:
  3850. ret = 0;
  3851. }
  3852. return ret;
  3853. }
  3854. /**
  3855. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3856. * @pid: pid of the process.
  3857. * @interval: userspace pointer to the timeslice value.
  3858. *
  3859. * this syscall writes the default timeslice value of a given process
  3860. * into the user-space timespec buffer. A value of '0' means infinity.
  3861. *
  3862. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3863. * an error code.
  3864. */
  3865. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3866. struct timespec __user *, interval)
  3867. {
  3868. struct task_struct *p;
  3869. unsigned int time_slice;
  3870. unsigned long flags;
  3871. struct rq *rq;
  3872. int retval;
  3873. struct timespec t;
  3874. if (pid < 0)
  3875. return -EINVAL;
  3876. retval = -ESRCH;
  3877. rcu_read_lock();
  3878. p = find_process_by_pid(pid);
  3879. if (!p)
  3880. goto out_unlock;
  3881. retval = security_task_getscheduler(p);
  3882. if (retval)
  3883. goto out_unlock;
  3884. rq = task_rq_lock(p, &flags);
  3885. time_slice = 0;
  3886. if (p->sched_class->get_rr_interval)
  3887. time_slice = p->sched_class->get_rr_interval(rq, p);
  3888. task_rq_unlock(rq, p, &flags);
  3889. rcu_read_unlock();
  3890. jiffies_to_timespec(time_slice, &t);
  3891. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3892. return retval;
  3893. out_unlock:
  3894. rcu_read_unlock();
  3895. return retval;
  3896. }
  3897. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3898. void sched_show_task(struct task_struct *p)
  3899. {
  3900. unsigned long free = 0;
  3901. int ppid;
  3902. unsigned state;
  3903. state = p->state ? __ffs(p->state) + 1 : 0;
  3904. printk(KERN_INFO "%-15.15s %c", p->comm,
  3905. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3906. #if BITS_PER_LONG == 32
  3907. if (state == TASK_RUNNING)
  3908. printk(KERN_CONT " running ");
  3909. else
  3910. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3911. #else
  3912. if (state == TASK_RUNNING)
  3913. printk(KERN_CONT " running task ");
  3914. else
  3915. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3916. #endif
  3917. #ifdef CONFIG_DEBUG_STACK_USAGE
  3918. free = stack_not_used(p);
  3919. #endif
  3920. rcu_read_lock();
  3921. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3922. rcu_read_unlock();
  3923. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3924. task_pid_nr(p), ppid,
  3925. (unsigned long)task_thread_info(p)->flags);
  3926. print_worker_info(KERN_INFO, p);
  3927. show_stack(p, NULL);
  3928. }
  3929. void show_state_filter(unsigned long state_filter)
  3930. {
  3931. struct task_struct *g, *p;
  3932. #if BITS_PER_LONG == 32
  3933. printk(KERN_INFO
  3934. " task PC stack pid father\n");
  3935. #else
  3936. printk(KERN_INFO
  3937. " task PC stack pid father\n");
  3938. #endif
  3939. rcu_read_lock();
  3940. for_each_process_thread(g, p) {
  3941. /*
  3942. * reset the NMI-timeout, listing all files on a slow
  3943. * console might take a lot of time:
  3944. */
  3945. touch_nmi_watchdog();
  3946. if (!state_filter || (p->state & state_filter))
  3947. sched_show_task(p);
  3948. }
  3949. touch_all_softlockup_watchdogs();
  3950. #ifdef CONFIG_SCHED_DEBUG
  3951. sysrq_sched_debug_show();
  3952. #endif
  3953. rcu_read_unlock();
  3954. /*
  3955. * Only show locks if all tasks are dumped:
  3956. */
  3957. if (!state_filter)
  3958. debug_show_all_locks();
  3959. }
  3960. void init_idle_bootup_task(struct task_struct *idle)
  3961. {
  3962. idle->sched_class = &idle_sched_class;
  3963. }
  3964. /**
  3965. * init_idle - set up an idle thread for a given CPU
  3966. * @idle: task in question
  3967. * @cpu: cpu the idle task belongs to
  3968. *
  3969. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3970. * flag, to make booting more robust.
  3971. */
  3972. void init_idle(struct task_struct *idle, int cpu)
  3973. {
  3974. struct rq *rq = cpu_rq(cpu);
  3975. unsigned long flags;
  3976. raw_spin_lock_irqsave(&rq->lock, flags);
  3977. __sched_fork(0, idle);
  3978. idle->state = TASK_RUNNING;
  3979. idle->se.exec_start = sched_clock();
  3980. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3981. /*
  3982. * We're having a chicken and egg problem, even though we are
  3983. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3984. * lockdep check in task_group() will fail.
  3985. *
  3986. * Similar case to sched_fork(). / Alternatively we could
  3987. * use task_rq_lock() here and obtain the other rq->lock.
  3988. *
  3989. * Silence PROVE_RCU
  3990. */
  3991. rcu_read_lock();
  3992. __set_task_cpu(idle, cpu);
  3993. rcu_read_unlock();
  3994. rq->curr = rq->idle = idle;
  3995. idle->on_rq = TASK_ON_RQ_QUEUED;
  3996. #if defined(CONFIG_SMP)
  3997. idle->on_cpu = 1;
  3998. #endif
  3999. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4000. /* Set the preempt count _outside_ the spinlocks! */
  4001. init_idle_preempt_count(idle, cpu);
  4002. /*
  4003. * The idle tasks have their own, simple scheduling class:
  4004. */
  4005. idle->sched_class = &idle_sched_class;
  4006. ftrace_graph_init_idle_task(idle, cpu);
  4007. vtime_init_idle(idle, cpu);
  4008. #if defined(CONFIG_SMP)
  4009. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4010. #endif
  4011. }
  4012. #ifdef CONFIG_SMP
  4013. /*
  4014. * move_queued_task - move a queued task to new rq.
  4015. *
  4016. * Returns (locked) new rq. Old rq's lock is released.
  4017. */
  4018. static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
  4019. {
  4020. struct rq *rq = task_rq(p);
  4021. lockdep_assert_held(&rq->lock);
  4022. dequeue_task(rq, p, 0);
  4023. p->on_rq = TASK_ON_RQ_MIGRATING;
  4024. set_task_cpu(p, new_cpu);
  4025. raw_spin_unlock(&rq->lock);
  4026. rq = cpu_rq(new_cpu);
  4027. raw_spin_lock(&rq->lock);
  4028. BUG_ON(task_cpu(p) != new_cpu);
  4029. p->on_rq = TASK_ON_RQ_QUEUED;
  4030. enqueue_task(rq, p, 0);
  4031. check_preempt_curr(rq, p, 0);
  4032. return rq;
  4033. }
  4034. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4035. {
  4036. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4037. p->sched_class->set_cpus_allowed(p, new_mask);
  4038. cpumask_copy(&p->cpus_allowed, new_mask);
  4039. p->nr_cpus_allowed = cpumask_weight(new_mask);
  4040. }
  4041. /*
  4042. * This is how migration works:
  4043. *
  4044. * 1) we invoke migration_cpu_stop() on the target CPU using
  4045. * stop_one_cpu().
  4046. * 2) stopper starts to run (implicitly forcing the migrated thread
  4047. * off the CPU)
  4048. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4049. * 4) if it's in the wrong runqueue then the migration thread removes
  4050. * it and puts it into the right queue.
  4051. * 5) stopper completes and stop_one_cpu() returns and the migration
  4052. * is done.
  4053. */
  4054. /*
  4055. * Change a given task's CPU affinity. Migrate the thread to a
  4056. * proper CPU and schedule it away if the CPU it's executing on
  4057. * is removed from the allowed bitmask.
  4058. *
  4059. * NOTE: the caller must have a valid reference to the task, the
  4060. * task must not exit() & deallocate itself prematurely. The
  4061. * call is not atomic; no spinlocks may be held.
  4062. */
  4063. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4064. {
  4065. unsigned long flags;
  4066. struct rq *rq;
  4067. unsigned int dest_cpu;
  4068. int ret = 0;
  4069. rq = task_rq_lock(p, &flags);
  4070. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4071. goto out;
  4072. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4073. ret = -EINVAL;
  4074. goto out;
  4075. }
  4076. do_set_cpus_allowed(p, new_mask);
  4077. /* Can the task run on the task's current CPU? If so, we're done */
  4078. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4079. goto out;
  4080. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4081. if (task_running(rq, p) || p->state == TASK_WAKING) {
  4082. struct migration_arg arg = { p, dest_cpu };
  4083. /* Need help from migration thread: drop lock and wait. */
  4084. task_rq_unlock(rq, p, &flags);
  4085. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4086. tlb_migrate_finish(p->mm);
  4087. return 0;
  4088. } else if (task_on_rq_queued(p))
  4089. rq = move_queued_task(p, dest_cpu);
  4090. out:
  4091. task_rq_unlock(rq, p, &flags);
  4092. return ret;
  4093. }
  4094. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4095. /*
  4096. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4097. * this because either it can't run here any more (set_cpus_allowed()
  4098. * away from this CPU, or CPU going down), or because we're
  4099. * attempting to rebalance this task on exec (sched_exec).
  4100. *
  4101. * So we race with normal scheduler movements, but that's OK, as long
  4102. * as the task is no longer on this CPU.
  4103. *
  4104. * Returns non-zero if task was successfully migrated.
  4105. */
  4106. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4107. {
  4108. struct rq *rq;
  4109. int ret = 0;
  4110. if (unlikely(!cpu_active(dest_cpu)))
  4111. return ret;
  4112. rq = cpu_rq(src_cpu);
  4113. raw_spin_lock(&p->pi_lock);
  4114. raw_spin_lock(&rq->lock);
  4115. /* Already moved. */
  4116. if (task_cpu(p) != src_cpu)
  4117. goto done;
  4118. /* Affinity changed (again). */
  4119. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4120. goto fail;
  4121. /*
  4122. * If we're not on a rq, the next wake-up will ensure we're
  4123. * placed properly.
  4124. */
  4125. if (task_on_rq_queued(p))
  4126. rq = move_queued_task(p, dest_cpu);
  4127. done:
  4128. ret = 1;
  4129. fail:
  4130. raw_spin_unlock(&rq->lock);
  4131. raw_spin_unlock(&p->pi_lock);
  4132. return ret;
  4133. }
  4134. #ifdef CONFIG_NUMA_BALANCING
  4135. /* Migrate current task p to target_cpu */
  4136. int migrate_task_to(struct task_struct *p, int target_cpu)
  4137. {
  4138. struct migration_arg arg = { p, target_cpu };
  4139. int curr_cpu = task_cpu(p);
  4140. if (curr_cpu == target_cpu)
  4141. return 0;
  4142. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  4143. return -EINVAL;
  4144. /* TODO: This is not properly updating schedstats */
  4145. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4146. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4147. }
  4148. /*
  4149. * Requeue a task on a given node and accurately track the number of NUMA
  4150. * tasks on the runqueues
  4151. */
  4152. void sched_setnuma(struct task_struct *p, int nid)
  4153. {
  4154. struct rq *rq;
  4155. unsigned long flags;
  4156. bool queued, running;
  4157. rq = task_rq_lock(p, &flags);
  4158. queued = task_on_rq_queued(p);
  4159. running = task_current(rq, p);
  4160. if (queued)
  4161. dequeue_task(rq, p, 0);
  4162. if (running)
  4163. put_prev_task(rq, p);
  4164. p->numa_preferred_nid = nid;
  4165. if (running)
  4166. p->sched_class->set_curr_task(rq);
  4167. if (queued)
  4168. enqueue_task(rq, p, 0);
  4169. task_rq_unlock(rq, p, &flags);
  4170. }
  4171. #endif
  4172. /*
  4173. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4174. * and performs thread migration by bumping thread off CPU then
  4175. * 'pushing' onto another runqueue.
  4176. */
  4177. static int migration_cpu_stop(void *data)
  4178. {
  4179. struct migration_arg *arg = data;
  4180. /*
  4181. * The original target cpu might have gone down and we might
  4182. * be on another cpu but it doesn't matter.
  4183. */
  4184. local_irq_disable();
  4185. /*
  4186. * We need to explicitly wake pending tasks before running
  4187. * __migrate_task() such that we will not miss enforcing cpus_allowed
  4188. * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
  4189. */
  4190. sched_ttwu_pending();
  4191. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4192. local_irq_enable();
  4193. return 0;
  4194. }
  4195. #ifdef CONFIG_HOTPLUG_CPU
  4196. /*
  4197. * Ensures that the idle task is using init_mm right before its cpu goes
  4198. * offline.
  4199. */
  4200. void idle_task_exit(void)
  4201. {
  4202. struct mm_struct *mm = current->active_mm;
  4203. BUG_ON(cpu_online(smp_processor_id()));
  4204. if (mm != &init_mm) {
  4205. switch_mm(mm, &init_mm, current);
  4206. finish_arch_post_lock_switch();
  4207. }
  4208. mmdrop(mm);
  4209. }
  4210. /*
  4211. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4212. * we might have. Assumes we're called after migrate_tasks() so that the
  4213. * nr_active count is stable.
  4214. *
  4215. * Also see the comment "Global load-average calculations".
  4216. */
  4217. static void calc_load_migrate(struct rq *rq)
  4218. {
  4219. long delta = calc_load_fold_active(rq);
  4220. if (delta)
  4221. atomic_long_add(delta, &calc_load_tasks);
  4222. }
  4223. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4224. {
  4225. }
  4226. static const struct sched_class fake_sched_class = {
  4227. .put_prev_task = put_prev_task_fake,
  4228. };
  4229. static struct task_struct fake_task = {
  4230. /*
  4231. * Avoid pull_{rt,dl}_task()
  4232. */
  4233. .prio = MAX_PRIO + 1,
  4234. .sched_class = &fake_sched_class,
  4235. };
  4236. /*
  4237. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4238. * try_to_wake_up()->select_task_rq().
  4239. *
  4240. * Called with rq->lock held even though we'er in stop_machine() and
  4241. * there's no concurrency possible, we hold the required locks anyway
  4242. * because of lock validation efforts.
  4243. */
  4244. static void migrate_tasks(unsigned int dead_cpu)
  4245. {
  4246. struct rq *rq = cpu_rq(dead_cpu);
  4247. struct task_struct *next, *stop = rq->stop;
  4248. int dest_cpu;
  4249. /*
  4250. * Fudge the rq selection such that the below task selection loop
  4251. * doesn't get stuck on the currently eligible stop task.
  4252. *
  4253. * We're currently inside stop_machine() and the rq is either stuck
  4254. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4255. * either way we should never end up calling schedule() until we're
  4256. * done here.
  4257. */
  4258. rq->stop = NULL;
  4259. /*
  4260. * put_prev_task() and pick_next_task() sched
  4261. * class method both need to have an up-to-date
  4262. * value of rq->clock[_task]
  4263. */
  4264. update_rq_clock(rq);
  4265. for ( ; ; ) {
  4266. /*
  4267. * There's this thread running, bail when that's the only
  4268. * remaining thread.
  4269. */
  4270. if (rq->nr_running == 1)
  4271. break;
  4272. next = pick_next_task(rq, &fake_task);
  4273. BUG_ON(!next);
  4274. next->sched_class->put_prev_task(rq, next);
  4275. /* Find suitable destination for @next, with force if needed. */
  4276. dest_cpu = select_fallback_rq(dead_cpu, next);
  4277. raw_spin_unlock(&rq->lock);
  4278. __migrate_task(next, dead_cpu, dest_cpu);
  4279. raw_spin_lock(&rq->lock);
  4280. }
  4281. rq->stop = stop;
  4282. }
  4283. #endif /* CONFIG_HOTPLUG_CPU */
  4284. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4285. static struct ctl_table sd_ctl_dir[] = {
  4286. {
  4287. .procname = "sched_domain",
  4288. .mode = 0555,
  4289. },
  4290. {}
  4291. };
  4292. static struct ctl_table sd_ctl_root[] = {
  4293. {
  4294. .procname = "kernel",
  4295. .mode = 0555,
  4296. .child = sd_ctl_dir,
  4297. },
  4298. {}
  4299. };
  4300. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4301. {
  4302. struct ctl_table *entry =
  4303. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4304. return entry;
  4305. }
  4306. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4307. {
  4308. struct ctl_table *entry;
  4309. /*
  4310. * In the intermediate directories, both the child directory and
  4311. * procname are dynamically allocated and could fail but the mode
  4312. * will always be set. In the lowest directory the names are
  4313. * static strings and all have proc handlers.
  4314. */
  4315. for (entry = *tablep; entry->mode; entry++) {
  4316. if (entry->child)
  4317. sd_free_ctl_entry(&entry->child);
  4318. if (entry->proc_handler == NULL)
  4319. kfree(entry->procname);
  4320. }
  4321. kfree(*tablep);
  4322. *tablep = NULL;
  4323. }
  4324. static int min_load_idx = 0;
  4325. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4326. static void
  4327. set_table_entry(struct ctl_table *entry,
  4328. const char *procname, void *data, int maxlen,
  4329. umode_t mode, proc_handler *proc_handler,
  4330. bool load_idx)
  4331. {
  4332. entry->procname = procname;
  4333. entry->data = data;
  4334. entry->maxlen = maxlen;
  4335. entry->mode = mode;
  4336. entry->proc_handler = proc_handler;
  4337. if (load_idx) {
  4338. entry->extra1 = &min_load_idx;
  4339. entry->extra2 = &max_load_idx;
  4340. }
  4341. }
  4342. static struct ctl_table *
  4343. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4344. {
  4345. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4346. if (table == NULL)
  4347. return NULL;
  4348. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4349. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4350. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4351. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4352. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4353. sizeof(int), 0644, proc_dointvec_minmax, true);
  4354. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4355. sizeof(int), 0644, proc_dointvec_minmax, true);
  4356. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4357. sizeof(int), 0644, proc_dointvec_minmax, true);
  4358. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4359. sizeof(int), 0644, proc_dointvec_minmax, true);
  4360. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4361. sizeof(int), 0644, proc_dointvec_minmax, true);
  4362. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4363. sizeof(int), 0644, proc_dointvec_minmax, false);
  4364. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4365. sizeof(int), 0644, proc_dointvec_minmax, false);
  4366. set_table_entry(&table[9], "cache_nice_tries",
  4367. &sd->cache_nice_tries,
  4368. sizeof(int), 0644, proc_dointvec_minmax, false);
  4369. set_table_entry(&table[10], "flags", &sd->flags,
  4370. sizeof(int), 0644, proc_dointvec_minmax, false);
  4371. set_table_entry(&table[11], "max_newidle_lb_cost",
  4372. &sd->max_newidle_lb_cost,
  4373. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4374. set_table_entry(&table[12], "name", sd->name,
  4375. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4376. /* &table[13] is terminator */
  4377. return table;
  4378. }
  4379. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4380. {
  4381. struct ctl_table *entry, *table;
  4382. struct sched_domain *sd;
  4383. int domain_num = 0, i;
  4384. char buf[32];
  4385. for_each_domain(cpu, sd)
  4386. domain_num++;
  4387. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4388. if (table == NULL)
  4389. return NULL;
  4390. i = 0;
  4391. for_each_domain(cpu, sd) {
  4392. snprintf(buf, 32, "domain%d", i);
  4393. entry->procname = kstrdup(buf, GFP_KERNEL);
  4394. entry->mode = 0555;
  4395. entry->child = sd_alloc_ctl_domain_table(sd);
  4396. entry++;
  4397. i++;
  4398. }
  4399. return table;
  4400. }
  4401. static struct ctl_table_header *sd_sysctl_header;
  4402. static void register_sched_domain_sysctl(void)
  4403. {
  4404. int i, cpu_num = num_possible_cpus();
  4405. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4406. char buf[32];
  4407. WARN_ON(sd_ctl_dir[0].child);
  4408. sd_ctl_dir[0].child = entry;
  4409. if (entry == NULL)
  4410. return;
  4411. for_each_possible_cpu(i) {
  4412. snprintf(buf, 32, "cpu%d", i);
  4413. entry->procname = kstrdup(buf, GFP_KERNEL);
  4414. entry->mode = 0555;
  4415. entry->child = sd_alloc_ctl_cpu_table(i);
  4416. entry++;
  4417. }
  4418. WARN_ON(sd_sysctl_header);
  4419. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4420. }
  4421. /* may be called multiple times per register */
  4422. static void unregister_sched_domain_sysctl(void)
  4423. {
  4424. if (sd_sysctl_header)
  4425. unregister_sysctl_table(sd_sysctl_header);
  4426. sd_sysctl_header = NULL;
  4427. if (sd_ctl_dir[0].child)
  4428. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4429. }
  4430. #else
  4431. static void register_sched_domain_sysctl(void)
  4432. {
  4433. }
  4434. static void unregister_sched_domain_sysctl(void)
  4435. {
  4436. }
  4437. #endif
  4438. static void set_rq_online(struct rq *rq)
  4439. {
  4440. if (!rq->online) {
  4441. const struct sched_class *class;
  4442. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4443. rq->online = 1;
  4444. for_each_class(class) {
  4445. if (class->rq_online)
  4446. class->rq_online(rq);
  4447. }
  4448. }
  4449. }
  4450. static void set_rq_offline(struct rq *rq)
  4451. {
  4452. if (rq->online) {
  4453. const struct sched_class *class;
  4454. for_each_class(class) {
  4455. if (class->rq_offline)
  4456. class->rq_offline(rq);
  4457. }
  4458. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4459. rq->online = 0;
  4460. }
  4461. }
  4462. /*
  4463. * migration_call - callback that gets triggered when a CPU is added.
  4464. * Here we can start up the necessary migration thread for the new CPU.
  4465. */
  4466. static int
  4467. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4468. {
  4469. int cpu = (long)hcpu;
  4470. unsigned long flags;
  4471. struct rq *rq = cpu_rq(cpu);
  4472. switch (action & ~CPU_TASKS_FROZEN) {
  4473. case CPU_UP_PREPARE:
  4474. rq->calc_load_update = calc_load_update;
  4475. break;
  4476. case CPU_ONLINE:
  4477. /* Update our root-domain */
  4478. raw_spin_lock_irqsave(&rq->lock, flags);
  4479. if (rq->rd) {
  4480. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4481. set_rq_online(rq);
  4482. }
  4483. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4484. break;
  4485. #ifdef CONFIG_HOTPLUG_CPU
  4486. case CPU_DYING:
  4487. sched_ttwu_pending();
  4488. /* Update our root-domain */
  4489. raw_spin_lock_irqsave(&rq->lock, flags);
  4490. if (rq->rd) {
  4491. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4492. set_rq_offline(rq);
  4493. }
  4494. migrate_tasks(cpu);
  4495. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4496. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4497. break;
  4498. case CPU_DEAD:
  4499. calc_load_migrate(rq);
  4500. break;
  4501. #endif
  4502. }
  4503. update_max_interval();
  4504. return NOTIFY_OK;
  4505. }
  4506. /*
  4507. * Register at high priority so that task migration (migrate_all_tasks)
  4508. * happens before everything else. This has to be lower priority than
  4509. * the notifier in the perf_event subsystem, though.
  4510. */
  4511. static struct notifier_block migration_notifier = {
  4512. .notifier_call = migration_call,
  4513. .priority = CPU_PRI_MIGRATION,
  4514. };
  4515. static void __cpuinit set_cpu_rq_start_time(void)
  4516. {
  4517. int cpu = smp_processor_id();
  4518. struct rq *rq = cpu_rq(cpu);
  4519. rq->age_stamp = sched_clock_cpu(cpu);
  4520. }
  4521. static int sched_cpu_active(struct notifier_block *nfb,
  4522. unsigned long action, void *hcpu)
  4523. {
  4524. switch (action & ~CPU_TASKS_FROZEN) {
  4525. case CPU_STARTING:
  4526. set_cpu_rq_start_time();
  4527. return NOTIFY_OK;
  4528. case CPU_DOWN_FAILED:
  4529. set_cpu_active((long)hcpu, true);
  4530. return NOTIFY_OK;
  4531. default:
  4532. return NOTIFY_DONE;
  4533. }
  4534. }
  4535. static int sched_cpu_inactive(struct notifier_block *nfb,
  4536. unsigned long action, void *hcpu)
  4537. {
  4538. unsigned long flags;
  4539. long cpu = (long)hcpu;
  4540. struct dl_bw *dl_b;
  4541. switch (action & ~CPU_TASKS_FROZEN) {
  4542. case CPU_DOWN_PREPARE:
  4543. set_cpu_active(cpu, false);
  4544. /* explicitly allow suspend */
  4545. if (!(action & CPU_TASKS_FROZEN)) {
  4546. bool overflow;
  4547. int cpus;
  4548. rcu_read_lock_sched();
  4549. dl_b = dl_bw_of(cpu);
  4550. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4551. cpus = dl_bw_cpus(cpu);
  4552. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  4553. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4554. rcu_read_unlock_sched();
  4555. if (overflow)
  4556. return notifier_from_errno(-EBUSY);
  4557. }
  4558. return NOTIFY_OK;
  4559. }
  4560. return NOTIFY_DONE;
  4561. }
  4562. static int __init migration_init(void)
  4563. {
  4564. void *cpu = (void *)(long)smp_processor_id();
  4565. int err;
  4566. /* Initialize migration for the boot CPU */
  4567. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4568. BUG_ON(err == NOTIFY_BAD);
  4569. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4570. register_cpu_notifier(&migration_notifier);
  4571. /* Register cpu active notifiers */
  4572. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4573. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4574. return 0;
  4575. }
  4576. early_initcall(migration_init);
  4577. #endif
  4578. #ifdef CONFIG_SMP
  4579. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4580. #ifdef CONFIG_SCHED_DEBUG
  4581. static __read_mostly int sched_debug_enabled;
  4582. static int __init sched_debug_setup(char *str)
  4583. {
  4584. sched_debug_enabled = 1;
  4585. return 0;
  4586. }
  4587. early_param("sched_debug", sched_debug_setup);
  4588. static inline bool sched_debug(void)
  4589. {
  4590. return sched_debug_enabled;
  4591. }
  4592. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4593. struct cpumask *groupmask)
  4594. {
  4595. struct sched_group *group = sd->groups;
  4596. char str[256];
  4597. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4598. cpumask_clear(groupmask);
  4599. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4600. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4601. printk("does not load-balance\n");
  4602. if (sd->parent)
  4603. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4604. " has parent");
  4605. return -1;
  4606. }
  4607. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4608. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4609. printk(KERN_ERR "ERROR: domain->span does not contain "
  4610. "CPU%d\n", cpu);
  4611. }
  4612. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4613. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4614. " CPU%d\n", cpu);
  4615. }
  4616. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4617. do {
  4618. if (!group) {
  4619. printk("\n");
  4620. printk(KERN_ERR "ERROR: group is NULL\n");
  4621. break;
  4622. }
  4623. /*
  4624. * Even though we initialize ->capacity to something semi-sane,
  4625. * we leave capacity_orig unset. This allows us to detect if
  4626. * domain iteration is still funny without causing /0 traps.
  4627. */
  4628. if (!group->sgc->capacity_orig) {
  4629. printk(KERN_CONT "\n");
  4630. printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
  4631. break;
  4632. }
  4633. if (!cpumask_weight(sched_group_cpus(group))) {
  4634. printk(KERN_CONT "\n");
  4635. printk(KERN_ERR "ERROR: empty group\n");
  4636. break;
  4637. }
  4638. if (!(sd->flags & SD_OVERLAP) &&
  4639. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4640. printk(KERN_CONT "\n");
  4641. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4642. break;
  4643. }
  4644. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4645. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4646. printk(KERN_CONT " %s", str);
  4647. if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
  4648. printk(KERN_CONT " (cpu_capacity = %d)",
  4649. group->sgc->capacity);
  4650. }
  4651. group = group->next;
  4652. } while (group != sd->groups);
  4653. printk(KERN_CONT "\n");
  4654. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4655. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4656. if (sd->parent &&
  4657. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4658. printk(KERN_ERR "ERROR: parent span is not a superset "
  4659. "of domain->span\n");
  4660. return 0;
  4661. }
  4662. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4663. {
  4664. int level = 0;
  4665. if (!sched_debug_enabled)
  4666. return;
  4667. if (!sd) {
  4668. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4669. return;
  4670. }
  4671. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4672. for (;;) {
  4673. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4674. break;
  4675. level++;
  4676. sd = sd->parent;
  4677. if (!sd)
  4678. break;
  4679. }
  4680. }
  4681. #else /* !CONFIG_SCHED_DEBUG */
  4682. # define sched_domain_debug(sd, cpu) do { } while (0)
  4683. static inline bool sched_debug(void)
  4684. {
  4685. return false;
  4686. }
  4687. #endif /* CONFIG_SCHED_DEBUG */
  4688. static int sd_degenerate(struct sched_domain *sd)
  4689. {
  4690. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4691. return 1;
  4692. /* Following flags need at least 2 groups */
  4693. if (sd->flags & (SD_LOAD_BALANCE |
  4694. SD_BALANCE_NEWIDLE |
  4695. SD_BALANCE_FORK |
  4696. SD_BALANCE_EXEC |
  4697. SD_SHARE_CPUCAPACITY |
  4698. SD_SHARE_PKG_RESOURCES |
  4699. SD_SHARE_POWERDOMAIN)) {
  4700. if (sd->groups != sd->groups->next)
  4701. return 0;
  4702. }
  4703. /* Following flags don't use groups */
  4704. if (sd->flags & (SD_WAKE_AFFINE))
  4705. return 0;
  4706. return 1;
  4707. }
  4708. static int
  4709. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4710. {
  4711. unsigned long cflags = sd->flags, pflags = parent->flags;
  4712. if (sd_degenerate(parent))
  4713. return 1;
  4714. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4715. return 0;
  4716. /* Flags needing groups don't count if only 1 group in parent */
  4717. if (parent->groups == parent->groups->next) {
  4718. pflags &= ~(SD_LOAD_BALANCE |
  4719. SD_BALANCE_NEWIDLE |
  4720. SD_BALANCE_FORK |
  4721. SD_BALANCE_EXEC |
  4722. SD_SHARE_CPUCAPACITY |
  4723. SD_SHARE_PKG_RESOURCES |
  4724. SD_PREFER_SIBLING |
  4725. SD_SHARE_POWERDOMAIN);
  4726. if (nr_node_ids == 1)
  4727. pflags &= ~SD_SERIALIZE;
  4728. }
  4729. if (~cflags & pflags)
  4730. return 0;
  4731. return 1;
  4732. }
  4733. static void free_rootdomain(struct rcu_head *rcu)
  4734. {
  4735. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4736. cpupri_cleanup(&rd->cpupri);
  4737. cpudl_cleanup(&rd->cpudl);
  4738. free_cpumask_var(rd->dlo_mask);
  4739. free_cpumask_var(rd->rto_mask);
  4740. free_cpumask_var(rd->online);
  4741. free_cpumask_var(rd->span);
  4742. kfree(rd);
  4743. }
  4744. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4745. {
  4746. struct root_domain *old_rd = NULL;
  4747. unsigned long flags;
  4748. raw_spin_lock_irqsave(&rq->lock, flags);
  4749. if (rq->rd) {
  4750. old_rd = rq->rd;
  4751. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4752. set_rq_offline(rq);
  4753. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4754. /*
  4755. * If we dont want to free the old_rd yet then
  4756. * set old_rd to NULL to skip the freeing later
  4757. * in this function:
  4758. */
  4759. if (!atomic_dec_and_test(&old_rd->refcount))
  4760. old_rd = NULL;
  4761. }
  4762. atomic_inc(&rd->refcount);
  4763. rq->rd = rd;
  4764. cpumask_set_cpu(rq->cpu, rd->span);
  4765. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4766. set_rq_online(rq);
  4767. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4768. if (old_rd)
  4769. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4770. }
  4771. static int init_rootdomain(struct root_domain *rd)
  4772. {
  4773. memset(rd, 0, sizeof(*rd));
  4774. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4775. goto out;
  4776. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4777. goto free_span;
  4778. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4779. goto free_online;
  4780. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4781. goto free_dlo_mask;
  4782. init_dl_bw(&rd->dl_bw);
  4783. if (cpudl_init(&rd->cpudl) != 0)
  4784. goto free_dlo_mask;
  4785. if (cpupri_init(&rd->cpupri) != 0)
  4786. goto free_rto_mask;
  4787. return 0;
  4788. free_rto_mask:
  4789. free_cpumask_var(rd->rto_mask);
  4790. free_dlo_mask:
  4791. free_cpumask_var(rd->dlo_mask);
  4792. free_online:
  4793. free_cpumask_var(rd->online);
  4794. free_span:
  4795. free_cpumask_var(rd->span);
  4796. out:
  4797. return -ENOMEM;
  4798. }
  4799. /*
  4800. * By default the system creates a single root-domain with all cpus as
  4801. * members (mimicking the global state we have today).
  4802. */
  4803. struct root_domain def_root_domain;
  4804. static void init_defrootdomain(void)
  4805. {
  4806. init_rootdomain(&def_root_domain);
  4807. atomic_set(&def_root_domain.refcount, 1);
  4808. }
  4809. static struct root_domain *alloc_rootdomain(void)
  4810. {
  4811. struct root_domain *rd;
  4812. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4813. if (!rd)
  4814. return NULL;
  4815. if (init_rootdomain(rd) != 0) {
  4816. kfree(rd);
  4817. return NULL;
  4818. }
  4819. return rd;
  4820. }
  4821. static void free_sched_groups(struct sched_group *sg, int free_sgc)
  4822. {
  4823. struct sched_group *tmp, *first;
  4824. if (!sg)
  4825. return;
  4826. first = sg;
  4827. do {
  4828. tmp = sg->next;
  4829. if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
  4830. kfree(sg->sgc);
  4831. kfree(sg);
  4832. sg = tmp;
  4833. } while (sg != first);
  4834. }
  4835. static void free_sched_domain(struct rcu_head *rcu)
  4836. {
  4837. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4838. /*
  4839. * If its an overlapping domain it has private groups, iterate and
  4840. * nuke them all.
  4841. */
  4842. if (sd->flags & SD_OVERLAP) {
  4843. free_sched_groups(sd->groups, 1);
  4844. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4845. kfree(sd->groups->sgc);
  4846. kfree(sd->groups);
  4847. }
  4848. kfree(sd);
  4849. }
  4850. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4851. {
  4852. call_rcu(&sd->rcu, free_sched_domain);
  4853. }
  4854. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4855. {
  4856. for (; sd; sd = sd->parent)
  4857. destroy_sched_domain(sd, cpu);
  4858. }
  4859. /*
  4860. * Keep a special pointer to the highest sched_domain that has
  4861. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4862. * allows us to avoid some pointer chasing select_idle_sibling().
  4863. *
  4864. * Also keep a unique ID per domain (we use the first cpu number in
  4865. * the cpumask of the domain), this allows us to quickly tell if
  4866. * two cpus are in the same cache domain, see cpus_share_cache().
  4867. */
  4868. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4869. DEFINE_PER_CPU(int, sd_llc_size);
  4870. DEFINE_PER_CPU(int, sd_llc_id);
  4871. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4872. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4873. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4874. static void update_top_cache_domain(int cpu)
  4875. {
  4876. struct sched_domain *sd;
  4877. struct sched_domain *busy_sd = NULL;
  4878. int id = cpu;
  4879. int size = 1;
  4880. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4881. if (sd) {
  4882. id = cpumask_first(sched_domain_span(sd));
  4883. size = cpumask_weight(sched_domain_span(sd));
  4884. busy_sd = sd->parent; /* sd_busy */
  4885. }
  4886. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  4887. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4888. per_cpu(sd_llc_size, cpu) = size;
  4889. per_cpu(sd_llc_id, cpu) = id;
  4890. sd = lowest_flag_domain(cpu, SD_NUMA);
  4891. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4892. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4893. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4894. }
  4895. /*
  4896. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4897. * hold the hotplug lock.
  4898. */
  4899. static void
  4900. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4901. {
  4902. struct rq *rq = cpu_rq(cpu);
  4903. struct sched_domain *tmp;
  4904. /* Remove the sched domains which do not contribute to scheduling. */
  4905. for (tmp = sd; tmp; ) {
  4906. struct sched_domain *parent = tmp->parent;
  4907. if (!parent)
  4908. break;
  4909. if (sd_parent_degenerate(tmp, parent)) {
  4910. tmp->parent = parent->parent;
  4911. if (parent->parent)
  4912. parent->parent->child = tmp;
  4913. /*
  4914. * Transfer SD_PREFER_SIBLING down in case of a
  4915. * degenerate parent; the spans match for this
  4916. * so the property transfers.
  4917. */
  4918. if (parent->flags & SD_PREFER_SIBLING)
  4919. tmp->flags |= SD_PREFER_SIBLING;
  4920. destroy_sched_domain(parent, cpu);
  4921. } else
  4922. tmp = tmp->parent;
  4923. }
  4924. if (sd && sd_degenerate(sd)) {
  4925. tmp = sd;
  4926. sd = sd->parent;
  4927. destroy_sched_domain(tmp, cpu);
  4928. if (sd)
  4929. sd->child = NULL;
  4930. }
  4931. sched_domain_debug(sd, cpu);
  4932. rq_attach_root(rq, rd);
  4933. tmp = rq->sd;
  4934. rcu_assign_pointer(rq->sd, sd);
  4935. destroy_sched_domains(tmp, cpu);
  4936. update_top_cache_domain(cpu);
  4937. }
  4938. /* cpus with isolated domains */
  4939. static cpumask_var_t cpu_isolated_map;
  4940. /* Setup the mask of cpus configured for isolated domains */
  4941. static int __init isolated_cpu_setup(char *str)
  4942. {
  4943. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4944. cpulist_parse(str, cpu_isolated_map);
  4945. return 1;
  4946. }
  4947. __setup("isolcpus=", isolated_cpu_setup);
  4948. struct s_data {
  4949. struct sched_domain ** __percpu sd;
  4950. struct root_domain *rd;
  4951. };
  4952. enum s_alloc {
  4953. sa_rootdomain,
  4954. sa_sd,
  4955. sa_sd_storage,
  4956. sa_none,
  4957. };
  4958. /*
  4959. * Build an iteration mask that can exclude certain CPUs from the upwards
  4960. * domain traversal.
  4961. *
  4962. * Asymmetric node setups can result in situations where the domain tree is of
  4963. * unequal depth, make sure to skip domains that already cover the entire
  4964. * range.
  4965. *
  4966. * In that case build_sched_domains() will have terminated the iteration early
  4967. * and our sibling sd spans will be empty. Domains should always include the
  4968. * cpu they're built on, so check that.
  4969. *
  4970. */
  4971. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4972. {
  4973. const struct cpumask *span = sched_domain_span(sd);
  4974. struct sd_data *sdd = sd->private;
  4975. struct sched_domain *sibling;
  4976. int i;
  4977. for_each_cpu(i, span) {
  4978. sibling = *per_cpu_ptr(sdd->sd, i);
  4979. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4980. continue;
  4981. cpumask_set_cpu(i, sched_group_mask(sg));
  4982. }
  4983. }
  4984. /*
  4985. * Return the canonical balance cpu for this group, this is the first cpu
  4986. * of this group that's also in the iteration mask.
  4987. */
  4988. int group_balance_cpu(struct sched_group *sg)
  4989. {
  4990. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4991. }
  4992. static int
  4993. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4994. {
  4995. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4996. const struct cpumask *span = sched_domain_span(sd);
  4997. struct cpumask *covered = sched_domains_tmpmask;
  4998. struct sd_data *sdd = sd->private;
  4999. struct sched_domain *sibling;
  5000. int i;
  5001. cpumask_clear(covered);
  5002. for_each_cpu(i, span) {
  5003. struct cpumask *sg_span;
  5004. if (cpumask_test_cpu(i, covered))
  5005. continue;
  5006. sibling = *per_cpu_ptr(sdd->sd, i);
  5007. /* See the comment near build_group_mask(). */
  5008. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5009. continue;
  5010. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5011. GFP_KERNEL, cpu_to_node(cpu));
  5012. if (!sg)
  5013. goto fail;
  5014. sg_span = sched_group_cpus(sg);
  5015. if (sibling->child)
  5016. cpumask_copy(sg_span, sched_domain_span(sibling->child));
  5017. else
  5018. cpumask_set_cpu(i, sg_span);
  5019. cpumask_or(covered, covered, sg_span);
  5020. sg->sgc = *per_cpu_ptr(sdd->sgc, i);
  5021. if (atomic_inc_return(&sg->sgc->ref) == 1)
  5022. build_group_mask(sd, sg);
  5023. /*
  5024. * Initialize sgc->capacity such that even if we mess up the
  5025. * domains and no possible iteration will get us here, we won't
  5026. * die on a /0 trap.
  5027. */
  5028. sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
  5029. sg->sgc->capacity_orig = sg->sgc->capacity;
  5030. /*
  5031. * Make sure the first group of this domain contains the
  5032. * canonical balance cpu. Otherwise the sched_domain iteration
  5033. * breaks. See update_sg_lb_stats().
  5034. */
  5035. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  5036. group_balance_cpu(sg) == cpu)
  5037. groups = sg;
  5038. if (!first)
  5039. first = sg;
  5040. if (last)
  5041. last->next = sg;
  5042. last = sg;
  5043. last->next = first;
  5044. }
  5045. sd->groups = groups;
  5046. return 0;
  5047. fail:
  5048. free_sched_groups(first, 0);
  5049. return -ENOMEM;
  5050. }
  5051. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5052. {
  5053. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5054. struct sched_domain *child = sd->child;
  5055. if (child)
  5056. cpu = cpumask_first(sched_domain_span(child));
  5057. if (sg) {
  5058. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5059. (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
  5060. atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
  5061. }
  5062. return cpu;
  5063. }
  5064. /*
  5065. * build_sched_groups will build a circular linked list of the groups
  5066. * covered by the given span, and will set each group's ->cpumask correctly,
  5067. * and ->cpu_capacity to 0.
  5068. *
  5069. * Assumes the sched_domain tree is fully constructed
  5070. */
  5071. static int
  5072. build_sched_groups(struct sched_domain *sd, int cpu)
  5073. {
  5074. struct sched_group *first = NULL, *last = NULL;
  5075. struct sd_data *sdd = sd->private;
  5076. const struct cpumask *span = sched_domain_span(sd);
  5077. struct cpumask *covered;
  5078. int i;
  5079. get_group(cpu, sdd, &sd->groups);
  5080. atomic_inc(&sd->groups->ref);
  5081. if (cpu != cpumask_first(span))
  5082. return 0;
  5083. lockdep_assert_held(&sched_domains_mutex);
  5084. covered = sched_domains_tmpmask;
  5085. cpumask_clear(covered);
  5086. for_each_cpu(i, span) {
  5087. struct sched_group *sg;
  5088. int group, j;
  5089. if (cpumask_test_cpu(i, covered))
  5090. continue;
  5091. group = get_group(i, sdd, &sg);
  5092. cpumask_setall(sched_group_mask(sg));
  5093. for_each_cpu(j, span) {
  5094. if (get_group(j, sdd, NULL) != group)
  5095. continue;
  5096. cpumask_set_cpu(j, covered);
  5097. cpumask_set_cpu(j, sched_group_cpus(sg));
  5098. }
  5099. if (!first)
  5100. first = sg;
  5101. if (last)
  5102. last->next = sg;
  5103. last = sg;
  5104. }
  5105. last->next = first;
  5106. return 0;
  5107. }
  5108. /*
  5109. * Initialize sched groups cpu_capacity.
  5110. *
  5111. * cpu_capacity indicates the capacity of sched group, which is used while
  5112. * distributing the load between different sched groups in a sched domain.
  5113. * Typically cpu_capacity for all the groups in a sched domain will be same
  5114. * unless there are asymmetries in the topology. If there are asymmetries,
  5115. * group having more cpu_capacity will pickup more load compared to the
  5116. * group having less cpu_capacity.
  5117. */
  5118. static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
  5119. {
  5120. struct sched_group *sg = sd->groups;
  5121. WARN_ON(!sg);
  5122. do {
  5123. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5124. sg = sg->next;
  5125. } while (sg != sd->groups);
  5126. if (cpu != group_balance_cpu(sg))
  5127. return;
  5128. update_group_capacity(sd, cpu);
  5129. atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
  5130. }
  5131. /*
  5132. * Initializers for schedule domains
  5133. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5134. */
  5135. static int default_relax_domain_level = -1;
  5136. int sched_domain_level_max;
  5137. static int __init setup_relax_domain_level(char *str)
  5138. {
  5139. if (kstrtoint(str, 0, &default_relax_domain_level))
  5140. pr_warn("Unable to set relax_domain_level\n");
  5141. return 1;
  5142. }
  5143. __setup("relax_domain_level=", setup_relax_domain_level);
  5144. static void set_domain_attribute(struct sched_domain *sd,
  5145. struct sched_domain_attr *attr)
  5146. {
  5147. int request;
  5148. if (!attr || attr->relax_domain_level < 0) {
  5149. if (default_relax_domain_level < 0)
  5150. return;
  5151. else
  5152. request = default_relax_domain_level;
  5153. } else
  5154. request = attr->relax_domain_level;
  5155. if (request < sd->level) {
  5156. /* turn off idle balance on this domain */
  5157. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5158. } else {
  5159. /* turn on idle balance on this domain */
  5160. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5161. }
  5162. }
  5163. static void __sdt_free(const struct cpumask *cpu_map);
  5164. static int __sdt_alloc(const struct cpumask *cpu_map);
  5165. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5166. const struct cpumask *cpu_map)
  5167. {
  5168. switch (what) {
  5169. case sa_rootdomain:
  5170. if (!atomic_read(&d->rd->refcount))
  5171. free_rootdomain(&d->rd->rcu); /* fall through */
  5172. case sa_sd:
  5173. free_percpu(d->sd); /* fall through */
  5174. case sa_sd_storage:
  5175. __sdt_free(cpu_map); /* fall through */
  5176. case sa_none:
  5177. break;
  5178. }
  5179. }
  5180. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5181. const struct cpumask *cpu_map)
  5182. {
  5183. memset(d, 0, sizeof(*d));
  5184. if (__sdt_alloc(cpu_map))
  5185. return sa_sd_storage;
  5186. d->sd = alloc_percpu(struct sched_domain *);
  5187. if (!d->sd)
  5188. return sa_sd_storage;
  5189. d->rd = alloc_rootdomain();
  5190. if (!d->rd)
  5191. return sa_sd;
  5192. return sa_rootdomain;
  5193. }
  5194. /*
  5195. * NULL the sd_data elements we've used to build the sched_domain and
  5196. * sched_group structure so that the subsequent __free_domain_allocs()
  5197. * will not free the data we're using.
  5198. */
  5199. static void claim_allocations(int cpu, struct sched_domain *sd)
  5200. {
  5201. struct sd_data *sdd = sd->private;
  5202. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5203. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5204. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5205. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5206. if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
  5207. *per_cpu_ptr(sdd->sgc, cpu) = NULL;
  5208. }
  5209. #ifdef CONFIG_NUMA
  5210. static int sched_domains_numa_levels;
  5211. static int *sched_domains_numa_distance;
  5212. static struct cpumask ***sched_domains_numa_masks;
  5213. static int sched_domains_curr_level;
  5214. #endif
  5215. /*
  5216. * SD_flags allowed in topology descriptions.
  5217. *
  5218. * SD_SHARE_CPUCAPACITY - describes SMT topologies
  5219. * SD_SHARE_PKG_RESOURCES - describes shared caches
  5220. * SD_NUMA - describes NUMA topologies
  5221. * SD_SHARE_POWERDOMAIN - describes shared power domain
  5222. *
  5223. * Odd one out:
  5224. * SD_ASYM_PACKING - describes SMT quirks
  5225. */
  5226. #define TOPOLOGY_SD_FLAGS \
  5227. (SD_SHARE_CPUCAPACITY | \
  5228. SD_SHARE_PKG_RESOURCES | \
  5229. SD_NUMA | \
  5230. SD_ASYM_PACKING | \
  5231. SD_SHARE_POWERDOMAIN)
  5232. static struct sched_domain *
  5233. sd_init(struct sched_domain_topology_level *tl, int cpu)
  5234. {
  5235. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5236. int sd_weight, sd_flags = 0;
  5237. #ifdef CONFIG_NUMA
  5238. /*
  5239. * Ugly hack to pass state to sd_numa_mask()...
  5240. */
  5241. sched_domains_curr_level = tl->numa_level;
  5242. #endif
  5243. sd_weight = cpumask_weight(tl->mask(cpu));
  5244. if (tl->sd_flags)
  5245. sd_flags = (*tl->sd_flags)();
  5246. if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
  5247. "wrong sd_flags in topology description\n"))
  5248. sd_flags &= ~TOPOLOGY_SD_FLAGS;
  5249. *sd = (struct sched_domain){
  5250. .min_interval = sd_weight,
  5251. .max_interval = 2*sd_weight,
  5252. .busy_factor = 32,
  5253. .imbalance_pct = 125,
  5254. .cache_nice_tries = 0,
  5255. .busy_idx = 0,
  5256. .idle_idx = 0,
  5257. .newidle_idx = 0,
  5258. .wake_idx = 0,
  5259. .forkexec_idx = 0,
  5260. .flags = 1*SD_LOAD_BALANCE
  5261. | 1*SD_BALANCE_NEWIDLE
  5262. | 1*SD_BALANCE_EXEC
  5263. | 1*SD_BALANCE_FORK
  5264. | 0*SD_BALANCE_WAKE
  5265. | 1*SD_WAKE_AFFINE
  5266. | 0*SD_SHARE_CPUCAPACITY
  5267. | 0*SD_SHARE_PKG_RESOURCES
  5268. | 0*SD_SERIALIZE
  5269. | 0*SD_PREFER_SIBLING
  5270. | 0*SD_NUMA
  5271. | sd_flags
  5272. ,
  5273. .last_balance = jiffies,
  5274. .balance_interval = sd_weight,
  5275. .smt_gain = 0,
  5276. .max_newidle_lb_cost = 0,
  5277. .next_decay_max_lb_cost = jiffies,
  5278. #ifdef CONFIG_SCHED_DEBUG
  5279. .name = tl->name,
  5280. #endif
  5281. };
  5282. /*
  5283. * Convert topological properties into behaviour.
  5284. */
  5285. if (sd->flags & SD_SHARE_CPUCAPACITY) {
  5286. sd->imbalance_pct = 110;
  5287. sd->smt_gain = 1178; /* ~15% */
  5288. } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
  5289. sd->imbalance_pct = 117;
  5290. sd->cache_nice_tries = 1;
  5291. sd->busy_idx = 2;
  5292. #ifdef CONFIG_NUMA
  5293. } else if (sd->flags & SD_NUMA) {
  5294. sd->cache_nice_tries = 2;
  5295. sd->busy_idx = 3;
  5296. sd->idle_idx = 2;
  5297. sd->flags |= SD_SERIALIZE;
  5298. if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
  5299. sd->flags &= ~(SD_BALANCE_EXEC |
  5300. SD_BALANCE_FORK |
  5301. SD_WAKE_AFFINE);
  5302. }
  5303. #endif
  5304. } else {
  5305. sd->flags |= SD_PREFER_SIBLING;
  5306. sd->cache_nice_tries = 1;
  5307. sd->busy_idx = 2;
  5308. sd->idle_idx = 1;
  5309. }
  5310. sd->private = &tl->data;
  5311. return sd;
  5312. }
  5313. /*
  5314. * Topology list, bottom-up.
  5315. */
  5316. static struct sched_domain_topology_level default_topology[] = {
  5317. #ifdef CONFIG_SCHED_SMT
  5318. { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
  5319. #endif
  5320. #ifdef CONFIG_SCHED_MC
  5321. { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
  5322. #endif
  5323. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  5324. { NULL, },
  5325. };
  5326. struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5327. #define for_each_sd_topology(tl) \
  5328. for (tl = sched_domain_topology; tl->mask; tl++)
  5329. void set_sched_topology(struct sched_domain_topology_level *tl)
  5330. {
  5331. sched_domain_topology = tl;
  5332. }
  5333. #ifdef CONFIG_NUMA
  5334. static const struct cpumask *sd_numa_mask(int cpu)
  5335. {
  5336. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5337. }
  5338. static void sched_numa_warn(const char *str)
  5339. {
  5340. static int done = false;
  5341. int i,j;
  5342. if (done)
  5343. return;
  5344. done = true;
  5345. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5346. for (i = 0; i < nr_node_ids; i++) {
  5347. printk(KERN_WARNING " ");
  5348. for (j = 0; j < nr_node_ids; j++)
  5349. printk(KERN_CONT "%02d ", node_distance(i,j));
  5350. printk(KERN_CONT "\n");
  5351. }
  5352. printk(KERN_WARNING "\n");
  5353. }
  5354. static bool find_numa_distance(int distance)
  5355. {
  5356. int i;
  5357. if (distance == node_distance(0, 0))
  5358. return true;
  5359. for (i = 0; i < sched_domains_numa_levels; i++) {
  5360. if (sched_domains_numa_distance[i] == distance)
  5361. return true;
  5362. }
  5363. return false;
  5364. }
  5365. static void sched_init_numa(void)
  5366. {
  5367. int next_distance, curr_distance = node_distance(0, 0);
  5368. struct sched_domain_topology_level *tl;
  5369. int level = 0;
  5370. int i, j, k;
  5371. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5372. if (!sched_domains_numa_distance)
  5373. return;
  5374. /*
  5375. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5376. * unique distances in the node_distance() table.
  5377. *
  5378. * Assumes node_distance(0,j) includes all distances in
  5379. * node_distance(i,j) in order to avoid cubic time.
  5380. */
  5381. next_distance = curr_distance;
  5382. for (i = 0; i < nr_node_ids; i++) {
  5383. for (j = 0; j < nr_node_ids; j++) {
  5384. for (k = 0; k < nr_node_ids; k++) {
  5385. int distance = node_distance(i, k);
  5386. if (distance > curr_distance &&
  5387. (distance < next_distance ||
  5388. next_distance == curr_distance))
  5389. next_distance = distance;
  5390. /*
  5391. * While not a strong assumption it would be nice to know
  5392. * about cases where if node A is connected to B, B is not
  5393. * equally connected to A.
  5394. */
  5395. if (sched_debug() && node_distance(k, i) != distance)
  5396. sched_numa_warn("Node-distance not symmetric");
  5397. if (sched_debug() && i && !find_numa_distance(distance))
  5398. sched_numa_warn("Node-0 not representative");
  5399. }
  5400. if (next_distance != curr_distance) {
  5401. sched_domains_numa_distance[level++] = next_distance;
  5402. sched_domains_numa_levels = level;
  5403. curr_distance = next_distance;
  5404. } else break;
  5405. }
  5406. /*
  5407. * In case of sched_debug() we verify the above assumption.
  5408. */
  5409. if (!sched_debug())
  5410. break;
  5411. }
  5412. if (!level)
  5413. return;
  5414. /*
  5415. * 'level' contains the number of unique distances, excluding the
  5416. * identity distance node_distance(i,i).
  5417. *
  5418. * The sched_domains_numa_distance[] array includes the actual distance
  5419. * numbers.
  5420. */
  5421. /*
  5422. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5423. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5424. * the array will contain less then 'level' members. This could be
  5425. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5426. * in other functions.
  5427. *
  5428. * We reset it to 'level' at the end of this function.
  5429. */
  5430. sched_domains_numa_levels = 0;
  5431. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5432. if (!sched_domains_numa_masks)
  5433. return;
  5434. /*
  5435. * Now for each level, construct a mask per node which contains all
  5436. * cpus of nodes that are that many hops away from us.
  5437. */
  5438. for (i = 0; i < level; i++) {
  5439. sched_domains_numa_masks[i] =
  5440. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5441. if (!sched_domains_numa_masks[i])
  5442. return;
  5443. for (j = 0; j < nr_node_ids; j++) {
  5444. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5445. if (!mask)
  5446. return;
  5447. sched_domains_numa_masks[i][j] = mask;
  5448. for (k = 0; k < nr_node_ids; k++) {
  5449. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5450. continue;
  5451. cpumask_or(mask, mask, cpumask_of_node(k));
  5452. }
  5453. }
  5454. }
  5455. /* Compute default topology size */
  5456. for (i = 0; sched_domain_topology[i].mask; i++);
  5457. tl = kzalloc((i + level + 1) *
  5458. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5459. if (!tl)
  5460. return;
  5461. /*
  5462. * Copy the default topology bits..
  5463. */
  5464. for (i = 0; sched_domain_topology[i].mask; i++)
  5465. tl[i] = sched_domain_topology[i];
  5466. /*
  5467. * .. and append 'j' levels of NUMA goodness.
  5468. */
  5469. for (j = 0; j < level; i++, j++) {
  5470. tl[i] = (struct sched_domain_topology_level){
  5471. .mask = sd_numa_mask,
  5472. .sd_flags = cpu_numa_flags,
  5473. .flags = SDTL_OVERLAP,
  5474. .numa_level = j,
  5475. SD_INIT_NAME(NUMA)
  5476. };
  5477. }
  5478. sched_domain_topology = tl;
  5479. sched_domains_numa_levels = level;
  5480. }
  5481. static void sched_domains_numa_masks_set(int cpu)
  5482. {
  5483. int i, j;
  5484. int node = cpu_to_node(cpu);
  5485. for (i = 0; i < sched_domains_numa_levels; i++) {
  5486. for (j = 0; j < nr_node_ids; j++) {
  5487. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5488. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5489. }
  5490. }
  5491. }
  5492. static void sched_domains_numa_masks_clear(int cpu)
  5493. {
  5494. int i, j;
  5495. for (i = 0; i < sched_domains_numa_levels; i++) {
  5496. for (j = 0; j < nr_node_ids; j++)
  5497. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5498. }
  5499. }
  5500. /*
  5501. * Update sched_domains_numa_masks[level][node] array when new cpus
  5502. * are onlined.
  5503. */
  5504. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5505. unsigned long action,
  5506. void *hcpu)
  5507. {
  5508. int cpu = (long)hcpu;
  5509. switch (action & ~CPU_TASKS_FROZEN) {
  5510. case CPU_ONLINE:
  5511. sched_domains_numa_masks_set(cpu);
  5512. break;
  5513. case CPU_DEAD:
  5514. sched_domains_numa_masks_clear(cpu);
  5515. break;
  5516. default:
  5517. return NOTIFY_DONE;
  5518. }
  5519. return NOTIFY_OK;
  5520. }
  5521. #else
  5522. static inline void sched_init_numa(void)
  5523. {
  5524. }
  5525. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5526. unsigned long action,
  5527. void *hcpu)
  5528. {
  5529. return 0;
  5530. }
  5531. #endif /* CONFIG_NUMA */
  5532. static int __sdt_alloc(const struct cpumask *cpu_map)
  5533. {
  5534. struct sched_domain_topology_level *tl;
  5535. int j;
  5536. for_each_sd_topology(tl) {
  5537. struct sd_data *sdd = &tl->data;
  5538. sdd->sd = alloc_percpu(struct sched_domain *);
  5539. if (!sdd->sd)
  5540. return -ENOMEM;
  5541. sdd->sg = alloc_percpu(struct sched_group *);
  5542. if (!sdd->sg)
  5543. return -ENOMEM;
  5544. sdd->sgc = alloc_percpu(struct sched_group_capacity *);
  5545. if (!sdd->sgc)
  5546. return -ENOMEM;
  5547. for_each_cpu(j, cpu_map) {
  5548. struct sched_domain *sd;
  5549. struct sched_group *sg;
  5550. struct sched_group_capacity *sgc;
  5551. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5552. GFP_KERNEL, cpu_to_node(j));
  5553. if (!sd)
  5554. return -ENOMEM;
  5555. *per_cpu_ptr(sdd->sd, j) = sd;
  5556. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5557. GFP_KERNEL, cpu_to_node(j));
  5558. if (!sg)
  5559. return -ENOMEM;
  5560. sg->next = sg;
  5561. *per_cpu_ptr(sdd->sg, j) = sg;
  5562. sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
  5563. GFP_KERNEL, cpu_to_node(j));
  5564. if (!sgc)
  5565. return -ENOMEM;
  5566. *per_cpu_ptr(sdd->sgc, j) = sgc;
  5567. }
  5568. }
  5569. return 0;
  5570. }
  5571. static void __sdt_free(const struct cpumask *cpu_map)
  5572. {
  5573. struct sched_domain_topology_level *tl;
  5574. int j;
  5575. for_each_sd_topology(tl) {
  5576. struct sd_data *sdd = &tl->data;
  5577. for_each_cpu(j, cpu_map) {
  5578. struct sched_domain *sd;
  5579. if (sdd->sd) {
  5580. sd = *per_cpu_ptr(sdd->sd, j);
  5581. if (sd && (sd->flags & SD_OVERLAP))
  5582. free_sched_groups(sd->groups, 0);
  5583. kfree(*per_cpu_ptr(sdd->sd, j));
  5584. }
  5585. if (sdd->sg)
  5586. kfree(*per_cpu_ptr(sdd->sg, j));
  5587. if (sdd->sgc)
  5588. kfree(*per_cpu_ptr(sdd->sgc, j));
  5589. }
  5590. free_percpu(sdd->sd);
  5591. sdd->sd = NULL;
  5592. free_percpu(sdd->sg);
  5593. sdd->sg = NULL;
  5594. free_percpu(sdd->sgc);
  5595. sdd->sgc = NULL;
  5596. }
  5597. }
  5598. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5599. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5600. struct sched_domain *child, int cpu)
  5601. {
  5602. struct sched_domain *sd = sd_init(tl, cpu);
  5603. if (!sd)
  5604. return child;
  5605. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5606. if (child) {
  5607. sd->level = child->level + 1;
  5608. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5609. child->parent = sd;
  5610. sd->child = child;
  5611. if (!cpumask_subset(sched_domain_span(child),
  5612. sched_domain_span(sd))) {
  5613. pr_err("BUG: arch topology borken\n");
  5614. #ifdef CONFIG_SCHED_DEBUG
  5615. pr_err(" the %s domain not a subset of the %s domain\n",
  5616. child->name, sd->name);
  5617. #endif
  5618. /* Fixup, ensure @sd has at least @child cpus. */
  5619. cpumask_or(sched_domain_span(sd),
  5620. sched_domain_span(sd),
  5621. sched_domain_span(child));
  5622. }
  5623. }
  5624. set_domain_attribute(sd, attr);
  5625. return sd;
  5626. }
  5627. /*
  5628. * Build sched domains for a given set of cpus and attach the sched domains
  5629. * to the individual cpus
  5630. */
  5631. static int build_sched_domains(const struct cpumask *cpu_map,
  5632. struct sched_domain_attr *attr)
  5633. {
  5634. enum s_alloc alloc_state;
  5635. struct sched_domain *sd;
  5636. struct s_data d;
  5637. int i, ret = -ENOMEM;
  5638. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5639. if (alloc_state != sa_rootdomain)
  5640. goto error;
  5641. /* Set up domains for cpus specified by the cpu_map. */
  5642. for_each_cpu(i, cpu_map) {
  5643. struct sched_domain_topology_level *tl;
  5644. sd = NULL;
  5645. for_each_sd_topology(tl) {
  5646. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5647. if (tl == sched_domain_topology)
  5648. *per_cpu_ptr(d.sd, i) = sd;
  5649. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5650. sd->flags |= SD_OVERLAP;
  5651. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5652. break;
  5653. }
  5654. }
  5655. /* Build the groups for the domains */
  5656. for_each_cpu(i, cpu_map) {
  5657. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5658. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5659. if (sd->flags & SD_OVERLAP) {
  5660. if (build_overlap_sched_groups(sd, i))
  5661. goto error;
  5662. } else {
  5663. if (build_sched_groups(sd, i))
  5664. goto error;
  5665. }
  5666. }
  5667. }
  5668. /* Calculate CPU capacity for physical packages and nodes */
  5669. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5670. if (!cpumask_test_cpu(i, cpu_map))
  5671. continue;
  5672. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5673. claim_allocations(i, sd);
  5674. init_sched_groups_capacity(i, sd);
  5675. }
  5676. }
  5677. /* Attach the domains */
  5678. rcu_read_lock();
  5679. for_each_cpu(i, cpu_map) {
  5680. sd = *per_cpu_ptr(d.sd, i);
  5681. cpu_attach_domain(sd, d.rd, i);
  5682. }
  5683. rcu_read_unlock();
  5684. ret = 0;
  5685. error:
  5686. __free_domain_allocs(&d, alloc_state, cpu_map);
  5687. return ret;
  5688. }
  5689. static cpumask_var_t *doms_cur; /* current sched domains */
  5690. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5691. static struct sched_domain_attr *dattr_cur;
  5692. /* attribues of custom domains in 'doms_cur' */
  5693. /*
  5694. * Special case: If a kmalloc of a doms_cur partition (array of
  5695. * cpumask) fails, then fallback to a single sched domain,
  5696. * as determined by the single cpumask fallback_doms.
  5697. */
  5698. static cpumask_var_t fallback_doms;
  5699. /*
  5700. * arch_update_cpu_topology lets virtualized architectures update the
  5701. * cpu core maps. It is supposed to return 1 if the topology changed
  5702. * or 0 if it stayed the same.
  5703. */
  5704. int __weak arch_update_cpu_topology(void)
  5705. {
  5706. return 0;
  5707. }
  5708. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5709. {
  5710. int i;
  5711. cpumask_var_t *doms;
  5712. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5713. if (!doms)
  5714. return NULL;
  5715. for (i = 0; i < ndoms; i++) {
  5716. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5717. free_sched_domains(doms, i);
  5718. return NULL;
  5719. }
  5720. }
  5721. return doms;
  5722. }
  5723. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5724. {
  5725. unsigned int i;
  5726. for (i = 0; i < ndoms; i++)
  5727. free_cpumask_var(doms[i]);
  5728. kfree(doms);
  5729. }
  5730. /*
  5731. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5732. * For now this just excludes isolated cpus, but could be used to
  5733. * exclude other special cases in the future.
  5734. */
  5735. static int init_sched_domains(const struct cpumask *cpu_map)
  5736. {
  5737. int err;
  5738. arch_update_cpu_topology();
  5739. ndoms_cur = 1;
  5740. doms_cur = alloc_sched_domains(ndoms_cur);
  5741. if (!doms_cur)
  5742. doms_cur = &fallback_doms;
  5743. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5744. err = build_sched_domains(doms_cur[0], NULL);
  5745. register_sched_domain_sysctl();
  5746. return err;
  5747. }
  5748. /*
  5749. * Detach sched domains from a group of cpus specified in cpu_map
  5750. * These cpus will now be attached to the NULL domain
  5751. */
  5752. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5753. {
  5754. int i;
  5755. rcu_read_lock();
  5756. for_each_cpu(i, cpu_map)
  5757. cpu_attach_domain(NULL, &def_root_domain, i);
  5758. rcu_read_unlock();
  5759. }
  5760. /* handle null as "default" */
  5761. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5762. struct sched_domain_attr *new, int idx_new)
  5763. {
  5764. struct sched_domain_attr tmp;
  5765. /* fast path */
  5766. if (!new && !cur)
  5767. return 1;
  5768. tmp = SD_ATTR_INIT;
  5769. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5770. new ? (new + idx_new) : &tmp,
  5771. sizeof(struct sched_domain_attr));
  5772. }
  5773. /*
  5774. * Partition sched domains as specified by the 'ndoms_new'
  5775. * cpumasks in the array doms_new[] of cpumasks. This compares
  5776. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5777. * It destroys each deleted domain and builds each new domain.
  5778. *
  5779. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5780. * The masks don't intersect (don't overlap.) We should setup one
  5781. * sched domain for each mask. CPUs not in any of the cpumasks will
  5782. * not be load balanced. If the same cpumask appears both in the
  5783. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5784. * it as it is.
  5785. *
  5786. * The passed in 'doms_new' should be allocated using
  5787. * alloc_sched_domains. This routine takes ownership of it and will
  5788. * free_sched_domains it when done with it. If the caller failed the
  5789. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5790. * and partition_sched_domains() will fallback to the single partition
  5791. * 'fallback_doms', it also forces the domains to be rebuilt.
  5792. *
  5793. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5794. * ndoms_new == 0 is a special case for destroying existing domains,
  5795. * and it will not create the default domain.
  5796. *
  5797. * Call with hotplug lock held
  5798. */
  5799. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5800. struct sched_domain_attr *dattr_new)
  5801. {
  5802. int i, j, n;
  5803. int new_topology;
  5804. mutex_lock(&sched_domains_mutex);
  5805. /* always unregister in case we don't destroy any domains */
  5806. unregister_sched_domain_sysctl();
  5807. /* Let architecture update cpu core mappings. */
  5808. new_topology = arch_update_cpu_topology();
  5809. n = doms_new ? ndoms_new : 0;
  5810. /* Destroy deleted domains */
  5811. for (i = 0; i < ndoms_cur; i++) {
  5812. for (j = 0; j < n && !new_topology; j++) {
  5813. if (cpumask_equal(doms_cur[i], doms_new[j])
  5814. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5815. goto match1;
  5816. }
  5817. /* no match - a current sched domain not in new doms_new[] */
  5818. detach_destroy_domains(doms_cur[i]);
  5819. match1:
  5820. ;
  5821. }
  5822. n = ndoms_cur;
  5823. if (doms_new == NULL) {
  5824. n = 0;
  5825. doms_new = &fallback_doms;
  5826. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5827. WARN_ON_ONCE(dattr_new);
  5828. }
  5829. /* Build new domains */
  5830. for (i = 0; i < ndoms_new; i++) {
  5831. for (j = 0; j < n && !new_topology; j++) {
  5832. if (cpumask_equal(doms_new[i], doms_cur[j])
  5833. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5834. goto match2;
  5835. }
  5836. /* no match - add a new doms_new */
  5837. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5838. match2:
  5839. ;
  5840. }
  5841. /* Remember the new sched domains */
  5842. if (doms_cur != &fallback_doms)
  5843. free_sched_domains(doms_cur, ndoms_cur);
  5844. kfree(dattr_cur); /* kfree(NULL) is safe */
  5845. doms_cur = doms_new;
  5846. dattr_cur = dattr_new;
  5847. ndoms_cur = ndoms_new;
  5848. register_sched_domain_sysctl();
  5849. mutex_unlock(&sched_domains_mutex);
  5850. }
  5851. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5852. /*
  5853. * Update cpusets according to cpu_active mask. If cpusets are
  5854. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5855. * around partition_sched_domains().
  5856. *
  5857. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5858. * want to restore it back to its original state upon resume anyway.
  5859. */
  5860. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5861. void *hcpu)
  5862. {
  5863. switch (action) {
  5864. case CPU_ONLINE_FROZEN:
  5865. case CPU_DOWN_FAILED_FROZEN:
  5866. /*
  5867. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5868. * resume sequence. As long as this is not the last online
  5869. * operation in the resume sequence, just build a single sched
  5870. * domain, ignoring cpusets.
  5871. */
  5872. num_cpus_frozen--;
  5873. if (likely(num_cpus_frozen)) {
  5874. partition_sched_domains(1, NULL, NULL);
  5875. break;
  5876. }
  5877. /*
  5878. * This is the last CPU online operation. So fall through and
  5879. * restore the original sched domains by considering the
  5880. * cpuset configurations.
  5881. */
  5882. case CPU_ONLINE:
  5883. case CPU_DOWN_FAILED:
  5884. cpuset_update_active_cpus(true);
  5885. break;
  5886. default:
  5887. return NOTIFY_DONE;
  5888. }
  5889. return NOTIFY_OK;
  5890. }
  5891. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5892. void *hcpu)
  5893. {
  5894. switch (action) {
  5895. case CPU_DOWN_PREPARE:
  5896. cpuset_update_active_cpus(false);
  5897. break;
  5898. case CPU_DOWN_PREPARE_FROZEN:
  5899. num_cpus_frozen++;
  5900. partition_sched_domains(1, NULL, NULL);
  5901. break;
  5902. default:
  5903. return NOTIFY_DONE;
  5904. }
  5905. return NOTIFY_OK;
  5906. }
  5907. void __init sched_init_smp(void)
  5908. {
  5909. cpumask_var_t non_isolated_cpus;
  5910. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5911. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5912. sched_init_numa();
  5913. /*
  5914. * There's no userspace yet to cause hotplug operations; hence all the
  5915. * cpu masks are stable and all blatant races in the below code cannot
  5916. * happen.
  5917. */
  5918. mutex_lock(&sched_domains_mutex);
  5919. init_sched_domains(cpu_active_mask);
  5920. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5921. if (cpumask_empty(non_isolated_cpus))
  5922. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5923. mutex_unlock(&sched_domains_mutex);
  5924. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5925. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5926. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5927. init_hrtick();
  5928. /* Move init over to a non-isolated CPU */
  5929. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5930. BUG();
  5931. sched_init_granularity();
  5932. free_cpumask_var(non_isolated_cpus);
  5933. init_sched_rt_class();
  5934. init_sched_dl_class();
  5935. }
  5936. #else
  5937. void __init sched_init_smp(void)
  5938. {
  5939. sched_init_granularity();
  5940. }
  5941. #endif /* CONFIG_SMP */
  5942. const_debug unsigned int sysctl_timer_migration = 1;
  5943. int in_sched_functions(unsigned long addr)
  5944. {
  5945. return in_lock_functions(addr) ||
  5946. (addr >= (unsigned long)__sched_text_start
  5947. && addr < (unsigned long)__sched_text_end);
  5948. }
  5949. #ifdef CONFIG_CGROUP_SCHED
  5950. /*
  5951. * Default task group.
  5952. * Every task in system belongs to this group at bootup.
  5953. */
  5954. struct task_group root_task_group;
  5955. LIST_HEAD(task_groups);
  5956. #endif
  5957. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  5958. void __init sched_init(void)
  5959. {
  5960. int i, j;
  5961. unsigned long alloc_size = 0, ptr;
  5962. #ifdef CONFIG_FAIR_GROUP_SCHED
  5963. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5964. #endif
  5965. #ifdef CONFIG_RT_GROUP_SCHED
  5966. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5967. #endif
  5968. #ifdef CONFIG_CPUMASK_OFFSTACK
  5969. alloc_size += num_possible_cpus() * cpumask_size();
  5970. #endif
  5971. if (alloc_size) {
  5972. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5973. #ifdef CONFIG_FAIR_GROUP_SCHED
  5974. root_task_group.se = (struct sched_entity **)ptr;
  5975. ptr += nr_cpu_ids * sizeof(void **);
  5976. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5977. ptr += nr_cpu_ids * sizeof(void **);
  5978. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5979. #ifdef CONFIG_RT_GROUP_SCHED
  5980. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5981. ptr += nr_cpu_ids * sizeof(void **);
  5982. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5983. ptr += nr_cpu_ids * sizeof(void **);
  5984. #endif /* CONFIG_RT_GROUP_SCHED */
  5985. #ifdef CONFIG_CPUMASK_OFFSTACK
  5986. for_each_possible_cpu(i) {
  5987. per_cpu(load_balance_mask, i) = (void *)ptr;
  5988. ptr += cpumask_size();
  5989. }
  5990. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5991. }
  5992. init_rt_bandwidth(&def_rt_bandwidth,
  5993. global_rt_period(), global_rt_runtime());
  5994. init_dl_bandwidth(&def_dl_bandwidth,
  5995. global_rt_period(), global_rt_runtime());
  5996. #ifdef CONFIG_SMP
  5997. init_defrootdomain();
  5998. #endif
  5999. #ifdef CONFIG_RT_GROUP_SCHED
  6000. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6001. global_rt_period(), global_rt_runtime());
  6002. #endif /* CONFIG_RT_GROUP_SCHED */
  6003. #ifdef CONFIG_CGROUP_SCHED
  6004. list_add(&root_task_group.list, &task_groups);
  6005. INIT_LIST_HEAD(&root_task_group.children);
  6006. INIT_LIST_HEAD(&root_task_group.siblings);
  6007. autogroup_init(&init_task);
  6008. #endif /* CONFIG_CGROUP_SCHED */
  6009. for_each_possible_cpu(i) {
  6010. struct rq *rq;
  6011. rq = cpu_rq(i);
  6012. raw_spin_lock_init(&rq->lock);
  6013. rq->nr_running = 0;
  6014. rq->calc_load_active = 0;
  6015. rq->calc_load_update = jiffies + LOAD_FREQ;
  6016. init_cfs_rq(&rq->cfs);
  6017. init_rt_rq(&rq->rt, rq);
  6018. init_dl_rq(&rq->dl, rq);
  6019. #ifdef CONFIG_FAIR_GROUP_SCHED
  6020. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  6021. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6022. /*
  6023. * How much cpu bandwidth does root_task_group get?
  6024. *
  6025. * In case of task-groups formed thr' the cgroup filesystem, it
  6026. * gets 100% of the cpu resources in the system. This overall
  6027. * system cpu resource is divided among the tasks of
  6028. * root_task_group and its child task-groups in a fair manner,
  6029. * based on each entity's (task or task-group's) weight
  6030. * (se->load.weight).
  6031. *
  6032. * In other words, if root_task_group has 10 tasks of weight
  6033. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6034. * then A0's share of the cpu resource is:
  6035. *
  6036. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6037. *
  6038. * We achieve this by letting root_task_group's tasks sit
  6039. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6040. */
  6041. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6042. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6043. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6044. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6045. #ifdef CONFIG_RT_GROUP_SCHED
  6046. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6047. #endif
  6048. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6049. rq->cpu_load[j] = 0;
  6050. rq->last_load_update_tick = jiffies;
  6051. #ifdef CONFIG_SMP
  6052. rq->sd = NULL;
  6053. rq->rd = NULL;
  6054. rq->cpu_capacity = SCHED_CAPACITY_SCALE;
  6055. rq->post_schedule = 0;
  6056. rq->active_balance = 0;
  6057. rq->next_balance = jiffies;
  6058. rq->push_cpu = 0;
  6059. rq->cpu = i;
  6060. rq->online = 0;
  6061. rq->idle_stamp = 0;
  6062. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6063. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  6064. INIT_LIST_HEAD(&rq->cfs_tasks);
  6065. rq_attach_root(rq, &def_root_domain);
  6066. #ifdef CONFIG_NO_HZ_COMMON
  6067. rq->nohz_flags = 0;
  6068. #endif
  6069. #ifdef CONFIG_NO_HZ_FULL
  6070. rq->last_sched_tick = 0;
  6071. #endif
  6072. #endif
  6073. init_rq_hrtick(rq);
  6074. atomic_set(&rq->nr_iowait, 0);
  6075. }
  6076. set_load_weight(&init_task);
  6077. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6078. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6079. #endif
  6080. /*
  6081. * The boot idle thread does lazy MMU switching as well:
  6082. */
  6083. atomic_inc(&init_mm.mm_count);
  6084. enter_lazy_tlb(&init_mm, current);
  6085. /*
  6086. * Make us the idle thread. Technically, schedule() should not be
  6087. * called from this thread, however somewhere below it might be,
  6088. * but because we are the idle thread, we just pick up running again
  6089. * when this runqueue becomes "idle".
  6090. */
  6091. init_idle(current, smp_processor_id());
  6092. calc_load_update = jiffies + LOAD_FREQ;
  6093. /*
  6094. * During early bootup we pretend to be a normal task:
  6095. */
  6096. current->sched_class = &fair_sched_class;
  6097. #ifdef CONFIG_SMP
  6098. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6099. /* May be allocated at isolcpus cmdline parse time */
  6100. if (cpu_isolated_map == NULL)
  6101. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6102. idle_thread_set_boot_cpu();
  6103. set_cpu_rq_start_time();
  6104. #endif
  6105. init_sched_fair_class();
  6106. scheduler_running = 1;
  6107. }
  6108. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6109. static inline int preempt_count_equals(int preempt_offset)
  6110. {
  6111. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6112. return (nested == preempt_offset);
  6113. }
  6114. void __might_sleep(const char *file, int line, int preempt_offset)
  6115. {
  6116. static unsigned long prev_jiffy; /* ratelimiting */
  6117. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6118. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  6119. !is_idle_task(current)) ||
  6120. system_state != SYSTEM_RUNNING || oops_in_progress)
  6121. return;
  6122. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6123. return;
  6124. prev_jiffy = jiffies;
  6125. printk(KERN_ERR
  6126. "BUG: sleeping function called from invalid context at %s:%d\n",
  6127. file, line);
  6128. printk(KERN_ERR
  6129. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6130. in_atomic(), irqs_disabled(),
  6131. current->pid, current->comm);
  6132. debug_show_held_locks(current);
  6133. if (irqs_disabled())
  6134. print_irqtrace_events(current);
  6135. #ifdef CONFIG_DEBUG_PREEMPT
  6136. if (!preempt_count_equals(preempt_offset)) {
  6137. pr_err("Preemption disabled at:");
  6138. print_ip_sym(current->preempt_disable_ip);
  6139. pr_cont("\n");
  6140. }
  6141. #endif
  6142. dump_stack();
  6143. }
  6144. EXPORT_SYMBOL(__might_sleep);
  6145. #endif
  6146. #ifdef CONFIG_MAGIC_SYSRQ
  6147. static void normalize_task(struct rq *rq, struct task_struct *p)
  6148. {
  6149. const struct sched_class *prev_class = p->sched_class;
  6150. struct sched_attr attr = {
  6151. .sched_policy = SCHED_NORMAL,
  6152. };
  6153. int old_prio = p->prio;
  6154. int queued;
  6155. queued = task_on_rq_queued(p);
  6156. if (queued)
  6157. dequeue_task(rq, p, 0);
  6158. __setscheduler(rq, p, &attr);
  6159. if (queued) {
  6160. enqueue_task(rq, p, 0);
  6161. resched_curr(rq);
  6162. }
  6163. check_class_changed(rq, p, prev_class, old_prio);
  6164. }
  6165. void normalize_rt_tasks(void)
  6166. {
  6167. struct task_struct *g, *p;
  6168. unsigned long flags;
  6169. struct rq *rq;
  6170. read_lock(&tasklist_lock);
  6171. for_each_process_thread(g, p) {
  6172. /*
  6173. * Only normalize user tasks:
  6174. */
  6175. if (p->flags & PF_KTHREAD)
  6176. continue;
  6177. p->se.exec_start = 0;
  6178. #ifdef CONFIG_SCHEDSTATS
  6179. p->se.statistics.wait_start = 0;
  6180. p->se.statistics.sleep_start = 0;
  6181. p->se.statistics.block_start = 0;
  6182. #endif
  6183. if (!dl_task(p) && !rt_task(p)) {
  6184. /*
  6185. * Renice negative nice level userspace
  6186. * tasks back to 0:
  6187. */
  6188. if (task_nice(p) < 0)
  6189. set_user_nice(p, 0);
  6190. continue;
  6191. }
  6192. rq = task_rq_lock(p, &flags);
  6193. normalize_task(rq, p);
  6194. task_rq_unlock(rq, p, &flags);
  6195. }
  6196. read_unlock(&tasklist_lock);
  6197. }
  6198. #endif /* CONFIG_MAGIC_SYSRQ */
  6199. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6200. /*
  6201. * These functions are only useful for the IA64 MCA handling, or kdb.
  6202. *
  6203. * They can only be called when the whole system has been
  6204. * stopped - every CPU needs to be quiescent, and no scheduling
  6205. * activity can take place. Using them for anything else would
  6206. * be a serious bug, and as a result, they aren't even visible
  6207. * under any other configuration.
  6208. */
  6209. /**
  6210. * curr_task - return the current task for a given cpu.
  6211. * @cpu: the processor in question.
  6212. *
  6213. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6214. *
  6215. * Return: The current task for @cpu.
  6216. */
  6217. struct task_struct *curr_task(int cpu)
  6218. {
  6219. return cpu_curr(cpu);
  6220. }
  6221. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6222. #ifdef CONFIG_IA64
  6223. /**
  6224. * set_curr_task - set the current task for a given cpu.
  6225. * @cpu: the processor in question.
  6226. * @p: the task pointer to set.
  6227. *
  6228. * Description: This function must only be used when non-maskable interrupts
  6229. * are serviced on a separate stack. It allows the architecture to switch the
  6230. * notion of the current task on a cpu in a non-blocking manner. This function
  6231. * must be called with all CPU's synchronized, and interrupts disabled, the
  6232. * and caller must save the original value of the current task (see
  6233. * curr_task() above) and restore that value before reenabling interrupts and
  6234. * re-starting the system.
  6235. *
  6236. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6237. */
  6238. void set_curr_task(int cpu, struct task_struct *p)
  6239. {
  6240. cpu_curr(cpu) = p;
  6241. }
  6242. #endif
  6243. #ifdef CONFIG_CGROUP_SCHED
  6244. /* task_group_lock serializes the addition/removal of task groups */
  6245. static DEFINE_SPINLOCK(task_group_lock);
  6246. static void free_sched_group(struct task_group *tg)
  6247. {
  6248. free_fair_sched_group(tg);
  6249. free_rt_sched_group(tg);
  6250. autogroup_free(tg);
  6251. kfree(tg);
  6252. }
  6253. /* allocate runqueue etc for a new task group */
  6254. struct task_group *sched_create_group(struct task_group *parent)
  6255. {
  6256. struct task_group *tg;
  6257. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6258. if (!tg)
  6259. return ERR_PTR(-ENOMEM);
  6260. if (!alloc_fair_sched_group(tg, parent))
  6261. goto err;
  6262. if (!alloc_rt_sched_group(tg, parent))
  6263. goto err;
  6264. return tg;
  6265. err:
  6266. free_sched_group(tg);
  6267. return ERR_PTR(-ENOMEM);
  6268. }
  6269. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6270. {
  6271. unsigned long flags;
  6272. spin_lock_irqsave(&task_group_lock, flags);
  6273. list_add_rcu(&tg->list, &task_groups);
  6274. WARN_ON(!parent); /* root should already exist */
  6275. tg->parent = parent;
  6276. INIT_LIST_HEAD(&tg->children);
  6277. list_add_rcu(&tg->siblings, &parent->children);
  6278. spin_unlock_irqrestore(&task_group_lock, flags);
  6279. }
  6280. /* rcu callback to free various structures associated with a task group */
  6281. static void free_sched_group_rcu(struct rcu_head *rhp)
  6282. {
  6283. /* now it should be safe to free those cfs_rqs */
  6284. free_sched_group(container_of(rhp, struct task_group, rcu));
  6285. }
  6286. /* Destroy runqueue etc associated with a task group */
  6287. void sched_destroy_group(struct task_group *tg)
  6288. {
  6289. /* wait for possible concurrent references to cfs_rqs complete */
  6290. call_rcu(&tg->rcu, free_sched_group_rcu);
  6291. }
  6292. void sched_offline_group(struct task_group *tg)
  6293. {
  6294. unsigned long flags;
  6295. int i;
  6296. /* end participation in shares distribution */
  6297. for_each_possible_cpu(i)
  6298. unregister_fair_sched_group(tg, i);
  6299. spin_lock_irqsave(&task_group_lock, flags);
  6300. list_del_rcu(&tg->list);
  6301. list_del_rcu(&tg->siblings);
  6302. spin_unlock_irqrestore(&task_group_lock, flags);
  6303. }
  6304. /* change task's runqueue when it moves between groups.
  6305. * The caller of this function should have put the task in its new group
  6306. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6307. * reflect its new group.
  6308. */
  6309. void sched_move_task(struct task_struct *tsk)
  6310. {
  6311. struct task_group *tg;
  6312. int queued, running;
  6313. unsigned long flags;
  6314. struct rq *rq;
  6315. rq = task_rq_lock(tsk, &flags);
  6316. running = task_current(rq, tsk);
  6317. queued = task_on_rq_queued(tsk);
  6318. if (queued)
  6319. dequeue_task(rq, tsk, 0);
  6320. if (unlikely(running))
  6321. put_prev_task(rq, tsk);
  6322. /*
  6323. * All callers are synchronized by task_rq_lock(); we do not use RCU
  6324. * which is pointless here. Thus, we pass "true" to task_css_check()
  6325. * to prevent lockdep warnings.
  6326. */
  6327. tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
  6328. struct task_group, css);
  6329. tg = autogroup_task_group(tsk, tg);
  6330. tsk->sched_task_group = tg;
  6331. #ifdef CONFIG_FAIR_GROUP_SCHED
  6332. if (tsk->sched_class->task_move_group)
  6333. tsk->sched_class->task_move_group(tsk, queued);
  6334. else
  6335. #endif
  6336. set_task_rq(tsk, task_cpu(tsk));
  6337. if (unlikely(running))
  6338. tsk->sched_class->set_curr_task(rq);
  6339. if (queued)
  6340. enqueue_task(rq, tsk, 0);
  6341. task_rq_unlock(rq, tsk, &flags);
  6342. }
  6343. #endif /* CONFIG_CGROUP_SCHED */
  6344. #ifdef CONFIG_RT_GROUP_SCHED
  6345. /*
  6346. * Ensure that the real time constraints are schedulable.
  6347. */
  6348. static DEFINE_MUTEX(rt_constraints_mutex);
  6349. /* Must be called with tasklist_lock held */
  6350. static inline int tg_has_rt_tasks(struct task_group *tg)
  6351. {
  6352. struct task_struct *g, *p;
  6353. for_each_process_thread(g, p) {
  6354. if (rt_task(p) && task_group(p) == tg)
  6355. return 1;
  6356. }
  6357. return 0;
  6358. }
  6359. struct rt_schedulable_data {
  6360. struct task_group *tg;
  6361. u64 rt_period;
  6362. u64 rt_runtime;
  6363. };
  6364. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6365. {
  6366. struct rt_schedulable_data *d = data;
  6367. struct task_group *child;
  6368. unsigned long total, sum = 0;
  6369. u64 period, runtime;
  6370. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6371. runtime = tg->rt_bandwidth.rt_runtime;
  6372. if (tg == d->tg) {
  6373. period = d->rt_period;
  6374. runtime = d->rt_runtime;
  6375. }
  6376. /*
  6377. * Cannot have more runtime than the period.
  6378. */
  6379. if (runtime > period && runtime != RUNTIME_INF)
  6380. return -EINVAL;
  6381. /*
  6382. * Ensure we don't starve existing RT tasks.
  6383. */
  6384. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6385. return -EBUSY;
  6386. total = to_ratio(period, runtime);
  6387. /*
  6388. * Nobody can have more than the global setting allows.
  6389. */
  6390. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6391. return -EINVAL;
  6392. /*
  6393. * The sum of our children's runtime should not exceed our own.
  6394. */
  6395. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6396. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6397. runtime = child->rt_bandwidth.rt_runtime;
  6398. if (child == d->tg) {
  6399. period = d->rt_period;
  6400. runtime = d->rt_runtime;
  6401. }
  6402. sum += to_ratio(period, runtime);
  6403. }
  6404. if (sum > total)
  6405. return -EINVAL;
  6406. return 0;
  6407. }
  6408. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6409. {
  6410. int ret;
  6411. struct rt_schedulable_data data = {
  6412. .tg = tg,
  6413. .rt_period = period,
  6414. .rt_runtime = runtime,
  6415. };
  6416. rcu_read_lock();
  6417. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6418. rcu_read_unlock();
  6419. return ret;
  6420. }
  6421. static int tg_set_rt_bandwidth(struct task_group *tg,
  6422. u64 rt_period, u64 rt_runtime)
  6423. {
  6424. int i, err = 0;
  6425. mutex_lock(&rt_constraints_mutex);
  6426. read_lock(&tasklist_lock);
  6427. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6428. if (err)
  6429. goto unlock;
  6430. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6431. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6432. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6433. for_each_possible_cpu(i) {
  6434. struct rt_rq *rt_rq = tg->rt_rq[i];
  6435. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6436. rt_rq->rt_runtime = rt_runtime;
  6437. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6438. }
  6439. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6440. unlock:
  6441. read_unlock(&tasklist_lock);
  6442. mutex_unlock(&rt_constraints_mutex);
  6443. return err;
  6444. }
  6445. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6446. {
  6447. u64 rt_runtime, rt_period;
  6448. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6449. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6450. if (rt_runtime_us < 0)
  6451. rt_runtime = RUNTIME_INF;
  6452. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6453. }
  6454. static long sched_group_rt_runtime(struct task_group *tg)
  6455. {
  6456. u64 rt_runtime_us;
  6457. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6458. return -1;
  6459. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6460. do_div(rt_runtime_us, NSEC_PER_USEC);
  6461. return rt_runtime_us;
  6462. }
  6463. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6464. {
  6465. u64 rt_runtime, rt_period;
  6466. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6467. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6468. if (rt_period == 0)
  6469. return -EINVAL;
  6470. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6471. }
  6472. static long sched_group_rt_period(struct task_group *tg)
  6473. {
  6474. u64 rt_period_us;
  6475. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6476. do_div(rt_period_us, NSEC_PER_USEC);
  6477. return rt_period_us;
  6478. }
  6479. #endif /* CONFIG_RT_GROUP_SCHED */
  6480. #ifdef CONFIG_RT_GROUP_SCHED
  6481. static int sched_rt_global_constraints(void)
  6482. {
  6483. int ret = 0;
  6484. mutex_lock(&rt_constraints_mutex);
  6485. read_lock(&tasklist_lock);
  6486. ret = __rt_schedulable(NULL, 0, 0);
  6487. read_unlock(&tasklist_lock);
  6488. mutex_unlock(&rt_constraints_mutex);
  6489. return ret;
  6490. }
  6491. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6492. {
  6493. /* Don't accept realtime tasks when there is no way for them to run */
  6494. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6495. return 0;
  6496. return 1;
  6497. }
  6498. #else /* !CONFIG_RT_GROUP_SCHED */
  6499. static int sched_rt_global_constraints(void)
  6500. {
  6501. unsigned long flags;
  6502. int i, ret = 0;
  6503. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6504. for_each_possible_cpu(i) {
  6505. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6506. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6507. rt_rq->rt_runtime = global_rt_runtime();
  6508. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6509. }
  6510. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6511. return ret;
  6512. }
  6513. #endif /* CONFIG_RT_GROUP_SCHED */
  6514. static int sched_dl_global_constraints(void)
  6515. {
  6516. u64 runtime = global_rt_runtime();
  6517. u64 period = global_rt_period();
  6518. u64 new_bw = to_ratio(period, runtime);
  6519. struct dl_bw *dl_b;
  6520. int cpu, ret = 0;
  6521. unsigned long flags;
  6522. /*
  6523. * Here we want to check the bandwidth not being set to some
  6524. * value smaller than the currently allocated bandwidth in
  6525. * any of the root_domains.
  6526. *
  6527. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6528. * cycling on root_domains... Discussion on different/better
  6529. * solutions is welcome!
  6530. */
  6531. for_each_possible_cpu(cpu) {
  6532. rcu_read_lock_sched();
  6533. dl_b = dl_bw_of(cpu);
  6534. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6535. if (new_bw < dl_b->total_bw)
  6536. ret = -EBUSY;
  6537. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6538. rcu_read_unlock_sched();
  6539. if (ret)
  6540. break;
  6541. }
  6542. return ret;
  6543. }
  6544. static void sched_dl_do_global(void)
  6545. {
  6546. u64 new_bw = -1;
  6547. struct dl_bw *dl_b;
  6548. int cpu;
  6549. unsigned long flags;
  6550. def_dl_bandwidth.dl_period = global_rt_period();
  6551. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6552. if (global_rt_runtime() != RUNTIME_INF)
  6553. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6554. /*
  6555. * FIXME: As above...
  6556. */
  6557. for_each_possible_cpu(cpu) {
  6558. rcu_read_lock_sched();
  6559. dl_b = dl_bw_of(cpu);
  6560. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6561. dl_b->bw = new_bw;
  6562. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6563. rcu_read_unlock_sched();
  6564. }
  6565. }
  6566. static int sched_rt_global_validate(void)
  6567. {
  6568. if (sysctl_sched_rt_period <= 0)
  6569. return -EINVAL;
  6570. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6571. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6572. return -EINVAL;
  6573. return 0;
  6574. }
  6575. static void sched_rt_do_global(void)
  6576. {
  6577. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6578. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6579. }
  6580. int sched_rt_handler(struct ctl_table *table, int write,
  6581. void __user *buffer, size_t *lenp,
  6582. loff_t *ppos)
  6583. {
  6584. int old_period, old_runtime;
  6585. static DEFINE_MUTEX(mutex);
  6586. int ret;
  6587. mutex_lock(&mutex);
  6588. old_period = sysctl_sched_rt_period;
  6589. old_runtime = sysctl_sched_rt_runtime;
  6590. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6591. if (!ret && write) {
  6592. ret = sched_rt_global_validate();
  6593. if (ret)
  6594. goto undo;
  6595. ret = sched_rt_global_constraints();
  6596. if (ret)
  6597. goto undo;
  6598. ret = sched_dl_global_constraints();
  6599. if (ret)
  6600. goto undo;
  6601. sched_rt_do_global();
  6602. sched_dl_do_global();
  6603. }
  6604. if (0) {
  6605. undo:
  6606. sysctl_sched_rt_period = old_period;
  6607. sysctl_sched_rt_runtime = old_runtime;
  6608. }
  6609. mutex_unlock(&mutex);
  6610. return ret;
  6611. }
  6612. int sched_rr_handler(struct ctl_table *table, int write,
  6613. void __user *buffer, size_t *lenp,
  6614. loff_t *ppos)
  6615. {
  6616. int ret;
  6617. static DEFINE_MUTEX(mutex);
  6618. mutex_lock(&mutex);
  6619. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6620. /* make sure that internally we keep jiffies */
  6621. /* also, writing zero resets timeslice to default */
  6622. if (!ret && write) {
  6623. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6624. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6625. }
  6626. mutex_unlock(&mutex);
  6627. return ret;
  6628. }
  6629. #ifdef CONFIG_CGROUP_SCHED
  6630. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6631. {
  6632. return css ? container_of(css, struct task_group, css) : NULL;
  6633. }
  6634. static struct cgroup_subsys_state *
  6635. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6636. {
  6637. struct task_group *parent = css_tg(parent_css);
  6638. struct task_group *tg;
  6639. if (!parent) {
  6640. /* This is early initialization for the top cgroup */
  6641. return &root_task_group.css;
  6642. }
  6643. tg = sched_create_group(parent);
  6644. if (IS_ERR(tg))
  6645. return ERR_PTR(-ENOMEM);
  6646. return &tg->css;
  6647. }
  6648. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6649. {
  6650. struct task_group *tg = css_tg(css);
  6651. struct task_group *parent = css_tg(css->parent);
  6652. if (parent)
  6653. sched_online_group(tg, parent);
  6654. return 0;
  6655. }
  6656. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6657. {
  6658. struct task_group *tg = css_tg(css);
  6659. sched_destroy_group(tg);
  6660. }
  6661. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6662. {
  6663. struct task_group *tg = css_tg(css);
  6664. sched_offline_group(tg);
  6665. }
  6666. static void cpu_cgroup_fork(struct task_struct *task)
  6667. {
  6668. sched_move_task(task);
  6669. }
  6670. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6671. struct cgroup_taskset *tset)
  6672. {
  6673. struct task_struct *task;
  6674. cgroup_taskset_for_each(task, tset) {
  6675. #ifdef CONFIG_RT_GROUP_SCHED
  6676. if (!sched_rt_can_attach(css_tg(css), task))
  6677. return -EINVAL;
  6678. #else
  6679. /* We don't support RT-tasks being in separate groups */
  6680. if (task->sched_class != &fair_sched_class)
  6681. return -EINVAL;
  6682. #endif
  6683. }
  6684. return 0;
  6685. }
  6686. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6687. struct cgroup_taskset *tset)
  6688. {
  6689. struct task_struct *task;
  6690. cgroup_taskset_for_each(task, tset)
  6691. sched_move_task(task);
  6692. }
  6693. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6694. struct cgroup_subsys_state *old_css,
  6695. struct task_struct *task)
  6696. {
  6697. /*
  6698. * cgroup_exit() is called in the copy_process() failure path.
  6699. * Ignore this case since the task hasn't ran yet, this avoids
  6700. * trying to poke a half freed task state from generic code.
  6701. */
  6702. if (!(task->flags & PF_EXITING))
  6703. return;
  6704. sched_move_task(task);
  6705. }
  6706. #ifdef CONFIG_FAIR_GROUP_SCHED
  6707. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6708. struct cftype *cftype, u64 shareval)
  6709. {
  6710. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6711. }
  6712. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6713. struct cftype *cft)
  6714. {
  6715. struct task_group *tg = css_tg(css);
  6716. return (u64) scale_load_down(tg->shares);
  6717. }
  6718. #ifdef CONFIG_CFS_BANDWIDTH
  6719. static DEFINE_MUTEX(cfs_constraints_mutex);
  6720. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6721. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6722. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6723. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6724. {
  6725. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6726. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6727. if (tg == &root_task_group)
  6728. return -EINVAL;
  6729. /*
  6730. * Ensure we have at some amount of bandwidth every period. This is
  6731. * to prevent reaching a state of large arrears when throttled via
  6732. * entity_tick() resulting in prolonged exit starvation.
  6733. */
  6734. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6735. return -EINVAL;
  6736. /*
  6737. * Likewise, bound things on the otherside by preventing insane quota
  6738. * periods. This also allows us to normalize in computing quota
  6739. * feasibility.
  6740. */
  6741. if (period > max_cfs_quota_period)
  6742. return -EINVAL;
  6743. /*
  6744. * Prevent race between setting of cfs_rq->runtime_enabled and
  6745. * unthrottle_offline_cfs_rqs().
  6746. */
  6747. get_online_cpus();
  6748. mutex_lock(&cfs_constraints_mutex);
  6749. ret = __cfs_schedulable(tg, period, quota);
  6750. if (ret)
  6751. goto out_unlock;
  6752. runtime_enabled = quota != RUNTIME_INF;
  6753. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6754. /*
  6755. * If we need to toggle cfs_bandwidth_used, off->on must occur
  6756. * before making related changes, and on->off must occur afterwards
  6757. */
  6758. if (runtime_enabled && !runtime_was_enabled)
  6759. cfs_bandwidth_usage_inc();
  6760. raw_spin_lock_irq(&cfs_b->lock);
  6761. cfs_b->period = ns_to_ktime(period);
  6762. cfs_b->quota = quota;
  6763. __refill_cfs_bandwidth_runtime(cfs_b);
  6764. /* restart the period timer (if active) to handle new period expiry */
  6765. if (runtime_enabled && cfs_b->timer_active) {
  6766. /* force a reprogram */
  6767. __start_cfs_bandwidth(cfs_b, true);
  6768. }
  6769. raw_spin_unlock_irq(&cfs_b->lock);
  6770. for_each_online_cpu(i) {
  6771. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6772. struct rq *rq = cfs_rq->rq;
  6773. raw_spin_lock_irq(&rq->lock);
  6774. cfs_rq->runtime_enabled = runtime_enabled;
  6775. cfs_rq->runtime_remaining = 0;
  6776. if (cfs_rq->throttled)
  6777. unthrottle_cfs_rq(cfs_rq);
  6778. raw_spin_unlock_irq(&rq->lock);
  6779. }
  6780. if (runtime_was_enabled && !runtime_enabled)
  6781. cfs_bandwidth_usage_dec();
  6782. out_unlock:
  6783. mutex_unlock(&cfs_constraints_mutex);
  6784. put_online_cpus();
  6785. return ret;
  6786. }
  6787. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6788. {
  6789. u64 quota, period;
  6790. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6791. if (cfs_quota_us < 0)
  6792. quota = RUNTIME_INF;
  6793. else
  6794. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6795. return tg_set_cfs_bandwidth(tg, period, quota);
  6796. }
  6797. long tg_get_cfs_quota(struct task_group *tg)
  6798. {
  6799. u64 quota_us;
  6800. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6801. return -1;
  6802. quota_us = tg->cfs_bandwidth.quota;
  6803. do_div(quota_us, NSEC_PER_USEC);
  6804. return quota_us;
  6805. }
  6806. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6807. {
  6808. u64 quota, period;
  6809. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6810. quota = tg->cfs_bandwidth.quota;
  6811. return tg_set_cfs_bandwidth(tg, period, quota);
  6812. }
  6813. long tg_get_cfs_period(struct task_group *tg)
  6814. {
  6815. u64 cfs_period_us;
  6816. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6817. do_div(cfs_period_us, NSEC_PER_USEC);
  6818. return cfs_period_us;
  6819. }
  6820. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6821. struct cftype *cft)
  6822. {
  6823. return tg_get_cfs_quota(css_tg(css));
  6824. }
  6825. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6826. struct cftype *cftype, s64 cfs_quota_us)
  6827. {
  6828. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6829. }
  6830. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6831. struct cftype *cft)
  6832. {
  6833. return tg_get_cfs_period(css_tg(css));
  6834. }
  6835. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6836. struct cftype *cftype, u64 cfs_period_us)
  6837. {
  6838. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6839. }
  6840. struct cfs_schedulable_data {
  6841. struct task_group *tg;
  6842. u64 period, quota;
  6843. };
  6844. /*
  6845. * normalize group quota/period to be quota/max_period
  6846. * note: units are usecs
  6847. */
  6848. static u64 normalize_cfs_quota(struct task_group *tg,
  6849. struct cfs_schedulable_data *d)
  6850. {
  6851. u64 quota, period;
  6852. if (tg == d->tg) {
  6853. period = d->period;
  6854. quota = d->quota;
  6855. } else {
  6856. period = tg_get_cfs_period(tg);
  6857. quota = tg_get_cfs_quota(tg);
  6858. }
  6859. /* note: these should typically be equivalent */
  6860. if (quota == RUNTIME_INF || quota == -1)
  6861. return RUNTIME_INF;
  6862. return to_ratio(period, quota);
  6863. }
  6864. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6865. {
  6866. struct cfs_schedulable_data *d = data;
  6867. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6868. s64 quota = 0, parent_quota = -1;
  6869. if (!tg->parent) {
  6870. quota = RUNTIME_INF;
  6871. } else {
  6872. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6873. quota = normalize_cfs_quota(tg, d);
  6874. parent_quota = parent_b->hierarchical_quota;
  6875. /*
  6876. * ensure max(child_quota) <= parent_quota, inherit when no
  6877. * limit is set
  6878. */
  6879. if (quota == RUNTIME_INF)
  6880. quota = parent_quota;
  6881. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6882. return -EINVAL;
  6883. }
  6884. cfs_b->hierarchical_quota = quota;
  6885. return 0;
  6886. }
  6887. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6888. {
  6889. int ret;
  6890. struct cfs_schedulable_data data = {
  6891. .tg = tg,
  6892. .period = period,
  6893. .quota = quota,
  6894. };
  6895. if (quota != RUNTIME_INF) {
  6896. do_div(data.period, NSEC_PER_USEC);
  6897. do_div(data.quota, NSEC_PER_USEC);
  6898. }
  6899. rcu_read_lock();
  6900. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6901. rcu_read_unlock();
  6902. return ret;
  6903. }
  6904. static int cpu_stats_show(struct seq_file *sf, void *v)
  6905. {
  6906. struct task_group *tg = css_tg(seq_css(sf));
  6907. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6908. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  6909. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  6910. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  6911. return 0;
  6912. }
  6913. #endif /* CONFIG_CFS_BANDWIDTH */
  6914. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6915. #ifdef CONFIG_RT_GROUP_SCHED
  6916. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  6917. struct cftype *cft, s64 val)
  6918. {
  6919. return sched_group_set_rt_runtime(css_tg(css), val);
  6920. }
  6921. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  6922. struct cftype *cft)
  6923. {
  6924. return sched_group_rt_runtime(css_tg(css));
  6925. }
  6926. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  6927. struct cftype *cftype, u64 rt_period_us)
  6928. {
  6929. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  6930. }
  6931. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  6932. struct cftype *cft)
  6933. {
  6934. return sched_group_rt_period(css_tg(css));
  6935. }
  6936. #endif /* CONFIG_RT_GROUP_SCHED */
  6937. static struct cftype cpu_files[] = {
  6938. #ifdef CONFIG_FAIR_GROUP_SCHED
  6939. {
  6940. .name = "shares",
  6941. .read_u64 = cpu_shares_read_u64,
  6942. .write_u64 = cpu_shares_write_u64,
  6943. },
  6944. #endif
  6945. #ifdef CONFIG_CFS_BANDWIDTH
  6946. {
  6947. .name = "cfs_quota_us",
  6948. .read_s64 = cpu_cfs_quota_read_s64,
  6949. .write_s64 = cpu_cfs_quota_write_s64,
  6950. },
  6951. {
  6952. .name = "cfs_period_us",
  6953. .read_u64 = cpu_cfs_period_read_u64,
  6954. .write_u64 = cpu_cfs_period_write_u64,
  6955. },
  6956. {
  6957. .name = "stat",
  6958. .seq_show = cpu_stats_show,
  6959. },
  6960. #endif
  6961. #ifdef CONFIG_RT_GROUP_SCHED
  6962. {
  6963. .name = "rt_runtime_us",
  6964. .read_s64 = cpu_rt_runtime_read,
  6965. .write_s64 = cpu_rt_runtime_write,
  6966. },
  6967. {
  6968. .name = "rt_period_us",
  6969. .read_u64 = cpu_rt_period_read_uint,
  6970. .write_u64 = cpu_rt_period_write_uint,
  6971. },
  6972. #endif
  6973. { } /* terminate */
  6974. };
  6975. struct cgroup_subsys cpu_cgrp_subsys = {
  6976. .css_alloc = cpu_cgroup_css_alloc,
  6977. .css_free = cpu_cgroup_css_free,
  6978. .css_online = cpu_cgroup_css_online,
  6979. .css_offline = cpu_cgroup_css_offline,
  6980. .fork = cpu_cgroup_fork,
  6981. .can_attach = cpu_cgroup_can_attach,
  6982. .attach = cpu_cgroup_attach,
  6983. .exit = cpu_cgroup_exit,
  6984. .legacy_cftypes = cpu_files,
  6985. .early_init = 1,
  6986. };
  6987. #endif /* CONFIG_CGROUP_SCHED */
  6988. void dump_cpu_task(int cpu)
  6989. {
  6990. pr_info("Task dump for CPU %d:\n", cpu);
  6991. sched_show_task(cpu_curr(cpu));
  6992. }