spi-lantiq-ssc.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983
  1. /*
  2. * Copyright (C) 2011-2015 Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
  3. * Copyright (C) 2016 Hauke Mehrtens <hauke@hauke-m.de>
  4. *
  5. * This program is free software; you can distribute it and/or modify it
  6. * under the terms of the GNU General Public License (Version 2) as
  7. * published by the Free Software Foundation.
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/of_device.h>
  12. #include <linux/clk.h>
  13. #include <linux/io.h>
  14. #include <linux/delay.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/sched.h>
  17. #include <linux/completion.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/err.h>
  20. #include <linux/gpio.h>
  21. #include <linux/pm_runtime.h>
  22. #include <linux/spi/spi.h>
  23. #ifdef CONFIG_LANTIQ
  24. #include <lantiq_soc.h>
  25. #endif
  26. #define SPI_RX_IRQ_NAME "spi_rx"
  27. #define SPI_TX_IRQ_NAME "spi_tx"
  28. #define SPI_ERR_IRQ_NAME "spi_err"
  29. #define SPI_FRM_IRQ_NAME "spi_frm"
  30. #define SPI_CLC 0x00
  31. #define SPI_PISEL 0x04
  32. #define SPI_ID 0x08
  33. #define SPI_CON 0x10
  34. #define SPI_STAT 0x14
  35. #define SPI_WHBSTATE 0x18
  36. #define SPI_TB 0x20
  37. #define SPI_RB 0x24
  38. #define SPI_RXFCON 0x30
  39. #define SPI_TXFCON 0x34
  40. #define SPI_FSTAT 0x38
  41. #define SPI_BRT 0x40
  42. #define SPI_BRSTAT 0x44
  43. #define SPI_SFCON 0x60
  44. #define SPI_SFSTAT 0x64
  45. #define SPI_GPOCON 0x70
  46. #define SPI_GPOSTAT 0x74
  47. #define SPI_FPGO 0x78
  48. #define SPI_RXREQ 0x80
  49. #define SPI_RXCNT 0x84
  50. #define SPI_DMACON 0xec
  51. #define SPI_IRNEN 0xf4
  52. #define SPI_IRNICR 0xf8
  53. #define SPI_IRNCR 0xfc
  54. #define SPI_CLC_SMC_S 16 /* Clock divider for sleep mode */
  55. #define SPI_CLC_SMC_M (0xFF << SPI_CLC_SMC_S)
  56. #define SPI_CLC_RMC_S 8 /* Clock divider for normal run mode */
  57. #define SPI_CLC_RMC_M (0xFF << SPI_CLC_RMC_S)
  58. #define SPI_CLC_DISS BIT(1) /* Disable status bit */
  59. #define SPI_CLC_DISR BIT(0) /* Disable request bit */
  60. #define SPI_ID_TXFS_S 24 /* Implemented TX FIFO size */
  61. #define SPI_ID_TXFS_M (0x3F << SPI_ID_TXFS_S)
  62. #define SPI_ID_RXFS_S 16 /* Implemented RX FIFO size */
  63. #define SPI_ID_RXFS_M (0x3F << SPI_ID_RXFS_S)
  64. #define SPI_ID_MOD_S 8 /* Module ID */
  65. #define SPI_ID_MOD_M (0xff << SPI_ID_MOD_S)
  66. #define SPI_ID_CFG_S 5 /* DMA interface support */
  67. #define SPI_ID_CFG_M (1 << SPI_ID_CFG_S)
  68. #define SPI_ID_REV_M 0x1F /* Hardware revision number */
  69. #define SPI_CON_BM_S 16 /* Data width selection */
  70. #define SPI_CON_BM_M (0x1F << SPI_CON_BM_S)
  71. #define SPI_CON_EM BIT(24) /* Echo mode */
  72. #define SPI_CON_IDLE BIT(23) /* Idle bit value */
  73. #define SPI_CON_ENBV BIT(22) /* Enable byte valid control */
  74. #define SPI_CON_RUEN BIT(12) /* Receive underflow error enable */
  75. #define SPI_CON_TUEN BIT(11) /* Transmit underflow error enable */
  76. #define SPI_CON_AEN BIT(10) /* Abort error enable */
  77. #define SPI_CON_REN BIT(9) /* Receive overflow error enable */
  78. #define SPI_CON_TEN BIT(8) /* Transmit overflow error enable */
  79. #define SPI_CON_LB BIT(7) /* Loopback control */
  80. #define SPI_CON_PO BIT(6) /* Clock polarity control */
  81. #define SPI_CON_PH BIT(5) /* Clock phase control */
  82. #define SPI_CON_HB BIT(4) /* Heading control */
  83. #define SPI_CON_RXOFF BIT(1) /* Switch receiver off */
  84. #define SPI_CON_TXOFF BIT(0) /* Switch transmitter off */
  85. #define SPI_STAT_RXBV_S 28
  86. #define SPI_STAT_RXBV_M (0x7 << SPI_STAT_RXBV_S)
  87. #define SPI_STAT_BSY BIT(13) /* Busy flag */
  88. #define SPI_STAT_RUE BIT(12) /* Receive underflow error flag */
  89. #define SPI_STAT_TUE BIT(11) /* Transmit underflow error flag */
  90. #define SPI_STAT_AE BIT(10) /* Abort error flag */
  91. #define SPI_STAT_RE BIT(9) /* Receive error flag */
  92. #define SPI_STAT_TE BIT(8) /* Transmit error flag */
  93. #define SPI_STAT_ME BIT(7) /* Mode error flag */
  94. #define SPI_STAT_MS BIT(1) /* Master/slave select bit */
  95. #define SPI_STAT_EN BIT(0) /* Enable bit */
  96. #define SPI_STAT_ERRORS (SPI_STAT_ME | SPI_STAT_TE | SPI_STAT_RE | \
  97. SPI_STAT_AE | SPI_STAT_TUE | SPI_STAT_RUE)
  98. #define SPI_WHBSTATE_SETTUE BIT(15) /* Set transmit underflow error flag */
  99. #define SPI_WHBSTATE_SETAE BIT(14) /* Set abort error flag */
  100. #define SPI_WHBSTATE_SETRE BIT(13) /* Set receive error flag */
  101. #define SPI_WHBSTATE_SETTE BIT(12) /* Set transmit error flag */
  102. #define SPI_WHBSTATE_CLRTUE BIT(11) /* Clear transmit underflow error flag */
  103. #define SPI_WHBSTATE_CLRAE BIT(10) /* Clear abort error flag */
  104. #define SPI_WHBSTATE_CLRRE BIT(9) /* Clear receive error flag */
  105. #define SPI_WHBSTATE_CLRTE BIT(8) /* Clear transmit error flag */
  106. #define SPI_WHBSTATE_SETME BIT(7) /* Set mode error flag */
  107. #define SPI_WHBSTATE_CLRME BIT(6) /* Clear mode error flag */
  108. #define SPI_WHBSTATE_SETRUE BIT(5) /* Set receive underflow error flag */
  109. #define SPI_WHBSTATE_CLRRUE BIT(4) /* Clear receive underflow error flag */
  110. #define SPI_WHBSTATE_SETMS BIT(3) /* Set master select bit */
  111. #define SPI_WHBSTATE_CLRMS BIT(2) /* Clear master select bit */
  112. #define SPI_WHBSTATE_SETEN BIT(1) /* Set enable bit (operational mode) */
  113. #define SPI_WHBSTATE_CLREN BIT(0) /* Clear enable bit (config mode */
  114. #define SPI_WHBSTATE_CLR_ERRORS (SPI_WHBSTATE_CLRRUE | SPI_WHBSTATE_CLRME | \
  115. SPI_WHBSTATE_CLRTE | SPI_WHBSTATE_CLRRE | \
  116. SPI_WHBSTATE_CLRAE | SPI_WHBSTATE_CLRTUE)
  117. #define SPI_RXFCON_RXFITL_S 8 /* FIFO interrupt trigger level */
  118. #define SPI_RXFCON_RXFITL_M (0x3F << SPI_RXFCON_RXFITL_S)
  119. #define SPI_RXFCON_RXFLU BIT(1) /* FIFO flush */
  120. #define SPI_RXFCON_RXFEN BIT(0) /* FIFO enable */
  121. #define SPI_TXFCON_TXFITL_S 8 /* FIFO interrupt trigger level */
  122. #define SPI_TXFCON_TXFITL_M (0x3F << SPI_TXFCON_TXFITL_S)
  123. #define SPI_TXFCON_TXFLU BIT(1) /* FIFO flush */
  124. #define SPI_TXFCON_TXFEN BIT(0) /* FIFO enable */
  125. #define SPI_FSTAT_RXFFL_S 0
  126. #define SPI_FSTAT_RXFFL_M (0x3f << SPI_FSTAT_RXFFL_S)
  127. #define SPI_FSTAT_TXFFL_S 8
  128. #define SPI_FSTAT_TXFFL_M (0x3f << SPI_FSTAT_TXFFL_S)
  129. #define SPI_GPOCON_ISCSBN_S 8
  130. #define SPI_GPOCON_INVOUTN_S 0
  131. #define SPI_FGPO_SETOUTN_S 8
  132. #define SPI_FGPO_CLROUTN_S 0
  133. #define SPI_RXREQ_RXCNT_M 0xFFFF /* Receive count value */
  134. #define SPI_RXCNT_TODO_M 0xFFFF /* Recevie to-do value */
  135. #define SPI_IRNEN_TFI BIT(4) /* TX finished interrupt */
  136. #define SPI_IRNEN_F BIT(3) /* Frame end interrupt request */
  137. #define SPI_IRNEN_E BIT(2) /* Error end interrupt request */
  138. #define SPI_IRNEN_T_XWAY BIT(1) /* Transmit end interrupt request */
  139. #define SPI_IRNEN_R_XWAY BIT(0) /* Receive end interrupt request */
  140. #define SPI_IRNEN_R_XRX BIT(1) /* Transmit end interrupt request */
  141. #define SPI_IRNEN_T_XRX BIT(0) /* Receive end interrupt request */
  142. #define SPI_IRNEN_ALL 0x1F
  143. struct lantiq_ssc_hwcfg {
  144. unsigned int irnen_r;
  145. unsigned int irnen_t;
  146. };
  147. struct lantiq_ssc_spi {
  148. struct spi_master *master;
  149. struct device *dev;
  150. void __iomem *regbase;
  151. struct clk *spi_clk;
  152. struct clk *fpi_clk;
  153. const struct lantiq_ssc_hwcfg *hwcfg;
  154. spinlock_t lock;
  155. struct workqueue_struct *wq;
  156. struct work_struct work;
  157. const u8 *tx;
  158. u8 *rx;
  159. unsigned int tx_todo;
  160. unsigned int rx_todo;
  161. unsigned int bits_per_word;
  162. unsigned int speed_hz;
  163. unsigned int tx_fifo_size;
  164. unsigned int rx_fifo_size;
  165. unsigned int base_cs;
  166. };
  167. static u32 lantiq_ssc_readl(const struct lantiq_ssc_spi *spi, u32 reg)
  168. {
  169. return __raw_readl(spi->regbase + reg);
  170. }
  171. static void lantiq_ssc_writel(const struct lantiq_ssc_spi *spi, u32 val,
  172. u32 reg)
  173. {
  174. __raw_writel(val, spi->regbase + reg);
  175. }
  176. static void lantiq_ssc_maskl(const struct lantiq_ssc_spi *spi, u32 clr,
  177. u32 set, u32 reg)
  178. {
  179. u32 val = __raw_readl(spi->regbase + reg);
  180. val &= ~clr;
  181. val |= set;
  182. __raw_writel(val, spi->regbase + reg);
  183. }
  184. static unsigned int tx_fifo_level(const struct lantiq_ssc_spi *spi)
  185. {
  186. u32 fstat = lantiq_ssc_readl(spi, SPI_FSTAT);
  187. return (fstat & SPI_FSTAT_TXFFL_M) >> SPI_FSTAT_TXFFL_S;
  188. }
  189. static unsigned int rx_fifo_level(const struct lantiq_ssc_spi *spi)
  190. {
  191. u32 fstat = lantiq_ssc_readl(spi, SPI_FSTAT);
  192. return fstat & SPI_FSTAT_RXFFL_M;
  193. }
  194. static unsigned int tx_fifo_free(const struct lantiq_ssc_spi *spi)
  195. {
  196. return spi->tx_fifo_size - tx_fifo_level(spi);
  197. }
  198. static void rx_fifo_reset(const struct lantiq_ssc_spi *spi)
  199. {
  200. u32 val = spi->rx_fifo_size << SPI_RXFCON_RXFITL_S;
  201. val |= SPI_RXFCON_RXFEN | SPI_RXFCON_RXFLU;
  202. lantiq_ssc_writel(spi, val, SPI_RXFCON);
  203. }
  204. static void tx_fifo_reset(const struct lantiq_ssc_spi *spi)
  205. {
  206. u32 val = 1 << SPI_TXFCON_TXFITL_S;
  207. val |= SPI_TXFCON_TXFEN | SPI_TXFCON_TXFLU;
  208. lantiq_ssc_writel(spi, val, SPI_TXFCON);
  209. }
  210. static void rx_fifo_flush(const struct lantiq_ssc_spi *spi)
  211. {
  212. lantiq_ssc_maskl(spi, 0, SPI_RXFCON_RXFLU, SPI_RXFCON);
  213. }
  214. static void tx_fifo_flush(const struct lantiq_ssc_spi *spi)
  215. {
  216. lantiq_ssc_maskl(spi, 0, SPI_TXFCON_TXFLU, SPI_TXFCON);
  217. }
  218. static void hw_enter_config_mode(const struct lantiq_ssc_spi *spi)
  219. {
  220. lantiq_ssc_writel(spi, SPI_WHBSTATE_CLREN, SPI_WHBSTATE);
  221. }
  222. static void hw_enter_active_mode(const struct lantiq_ssc_spi *spi)
  223. {
  224. lantiq_ssc_writel(spi, SPI_WHBSTATE_SETEN, SPI_WHBSTATE);
  225. }
  226. static void hw_setup_speed_hz(const struct lantiq_ssc_spi *spi,
  227. unsigned int max_speed_hz)
  228. {
  229. u32 spi_clk, brt;
  230. /*
  231. * SPI module clock is derived from FPI bus clock dependent on
  232. * divider value in CLC.RMS which is always set to 1.
  233. *
  234. * f_SPI
  235. * baudrate = --------------
  236. * 2 * (BR + 1)
  237. */
  238. spi_clk = clk_get_rate(spi->fpi_clk) / 2;
  239. if (max_speed_hz > spi_clk)
  240. brt = 0;
  241. else
  242. brt = spi_clk / max_speed_hz - 1;
  243. if (brt > 0xFFFF)
  244. brt = 0xFFFF;
  245. dev_dbg(spi->dev, "spi_clk %u, max_speed_hz %u, brt %u\n",
  246. spi_clk, max_speed_hz, brt);
  247. lantiq_ssc_writel(spi, brt, SPI_BRT);
  248. }
  249. static void hw_setup_bits_per_word(const struct lantiq_ssc_spi *spi,
  250. unsigned int bits_per_word)
  251. {
  252. u32 bm;
  253. /* CON.BM value = bits_per_word - 1 */
  254. bm = (bits_per_word - 1) << SPI_CON_BM_S;
  255. lantiq_ssc_maskl(spi, SPI_CON_BM_M, bm, SPI_CON);
  256. }
  257. static void hw_setup_clock_mode(const struct lantiq_ssc_spi *spi,
  258. unsigned int mode)
  259. {
  260. u32 con_set = 0, con_clr = 0;
  261. /*
  262. * SPI mode mapping in CON register:
  263. * Mode CPOL CPHA CON.PO CON.PH
  264. * 0 0 0 0 1
  265. * 1 0 1 0 0
  266. * 2 1 0 1 1
  267. * 3 1 1 1 0
  268. */
  269. if (mode & SPI_CPHA)
  270. con_clr |= SPI_CON_PH;
  271. else
  272. con_set |= SPI_CON_PH;
  273. if (mode & SPI_CPOL)
  274. con_set |= SPI_CON_PO | SPI_CON_IDLE;
  275. else
  276. con_clr |= SPI_CON_PO | SPI_CON_IDLE;
  277. /* Set heading control */
  278. if (mode & SPI_LSB_FIRST)
  279. con_clr |= SPI_CON_HB;
  280. else
  281. con_set |= SPI_CON_HB;
  282. /* Set loopback mode */
  283. if (mode & SPI_LOOP)
  284. con_set |= SPI_CON_LB;
  285. else
  286. con_clr |= SPI_CON_LB;
  287. lantiq_ssc_maskl(spi, con_clr, con_set, SPI_CON);
  288. }
  289. static void lantiq_ssc_hw_init(const struct lantiq_ssc_spi *spi)
  290. {
  291. const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
  292. /*
  293. * Set clock divider for run mode to 1 to
  294. * run at same frequency as FPI bus
  295. */
  296. lantiq_ssc_writel(spi, 1 << SPI_CLC_RMC_S, SPI_CLC);
  297. /* Put controller into config mode */
  298. hw_enter_config_mode(spi);
  299. /* Clear error flags */
  300. lantiq_ssc_maskl(spi, 0, SPI_WHBSTATE_CLR_ERRORS, SPI_WHBSTATE);
  301. /* Enable error checking, disable TX/RX */
  302. lantiq_ssc_writel(spi, SPI_CON_RUEN | SPI_CON_AEN | SPI_CON_TEN |
  303. SPI_CON_REN | SPI_CON_TXOFF | SPI_CON_RXOFF, SPI_CON);
  304. /* Setup default SPI mode */
  305. hw_setup_bits_per_word(spi, spi->bits_per_word);
  306. hw_setup_clock_mode(spi, SPI_MODE_0);
  307. /* Enable master mode and clear error flags */
  308. lantiq_ssc_writel(spi, SPI_WHBSTATE_SETMS | SPI_WHBSTATE_CLR_ERRORS,
  309. SPI_WHBSTATE);
  310. /* Reset GPIO/CS registers */
  311. lantiq_ssc_writel(spi, 0, SPI_GPOCON);
  312. lantiq_ssc_writel(spi, 0xFF00, SPI_FPGO);
  313. /* Enable and flush FIFOs */
  314. rx_fifo_reset(spi);
  315. tx_fifo_reset(spi);
  316. /* Enable interrupts */
  317. lantiq_ssc_writel(spi, hwcfg->irnen_t | hwcfg->irnen_r | SPI_IRNEN_E,
  318. SPI_IRNEN);
  319. }
  320. static int lantiq_ssc_setup(struct spi_device *spidev)
  321. {
  322. struct spi_master *master = spidev->master;
  323. struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
  324. unsigned int cs = spidev->chip_select;
  325. u32 gpocon;
  326. /* GPIOs are used for CS */
  327. if (gpio_is_valid(spidev->cs_gpio))
  328. return 0;
  329. dev_dbg(spi->dev, "using internal chipselect %u\n", cs);
  330. if (cs < spi->base_cs) {
  331. dev_err(spi->dev,
  332. "chipselect %i too small (min %i)\n", cs, spi->base_cs);
  333. return -EINVAL;
  334. }
  335. /* set GPO pin to CS mode */
  336. gpocon = 1 << ((cs - spi->base_cs) + SPI_GPOCON_ISCSBN_S);
  337. /* invert GPO pin */
  338. if (spidev->mode & SPI_CS_HIGH)
  339. gpocon |= 1 << (cs - spi->base_cs);
  340. lantiq_ssc_maskl(spi, 0, gpocon, SPI_GPOCON);
  341. return 0;
  342. }
  343. static int lantiq_ssc_prepare_message(struct spi_master *master,
  344. struct spi_message *message)
  345. {
  346. struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
  347. hw_enter_config_mode(spi);
  348. hw_setup_clock_mode(spi, message->spi->mode);
  349. hw_enter_active_mode(spi);
  350. return 0;
  351. }
  352. static void hw_setup_transfer(struct lantiq_ssc_spi *spi,
  353. struct spi_device *spidev, struct spi_transfer *t)
  354. {
  355. unsigned int speed_hz = t->speed_hz;
  356. unsigned int bits_per_word = t->bits_per_word;
  357. u32 con;
  358. if (bits_per_word != spi->bits_per_word ||
  359. speed_hz != spi->speed_hz) {
  360. hw_enter_config_mode(spi);
  361. hw_setup_speed_hz(spi, speed_hz);
  362. hw_setup_bits_per_word(spi, bits_per_word);
  363. hw_enter_active_mode(spi);
  364. spi->speed_hz = speed_hz;
  365. spi->bits_per_word = bits_per_word;
  366. }
  367. /* Configure transmitter and receiver */
  368. con = lantiq_ssc_readl(spi, SPI_CON);
  369. if (t->tx_buf)
  370. con &= ~SPI_CON_TXOFF;
  371. else
  372. con |= SPI_CON_TXOFF;
  373. if (t->rx_buf)
  374. con &= ~SPI_CON_RXOFF;
  375. else
  376. con |= SPI_CON_RXOFF;
  377. lantiq_ssc_writel(spi, con, SPI_CON);
  378. }
  379. static int lantiq_ssc_unprepare_message(struct spi_master *master,
  380. struct spi_message *message)
  381. {
  382. struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
  383. flush_workqueue(spi->wq);
  384. /* Disable transmitter and receiver while idle */
  385. lantiq_ssc_maskl(spi, 0, SPI_CON_TXOFF | SPI_CON_RXOFF, SPI_CON);
  386. return 0;
  387. }
  388. static void tx_fifo_write(struct lantiq_ssc_spi *spi)
  389. {
  390. const u8 *tx8;
  391. const u16 *tx16;
  392. const u32 *tx32;
  393. u32 data;
  394. unsigned int tx_free = tx_fifo_free(spi);
  395. while (spi->tx_todo && tx_free) {
  396. switch (spi->bits_per_word) {
  397. case 2 ... 8:
  398. tx8 = spi->tx;
  399. data = *tx8;
  400. spi->tx_todo--;
  401. spi->tx++;
  402. break;
  403. case 16:
  404. tx16 = (u16 *) spi->tx;
  405. data = *tx16;
  406. spi->tx_todo -= 2;
  407. spi->tx += 2;
  408. break;
  409. case 32:
  410. tx32 = (u32 *) spi->tx;
  411. data = *tx32;
  412. spi->tx_todo -= 4;
  413. spi->tx += 4;
  414. break;
  415. default:
  416. WARN_ON(1);
  417. data = 0;
  418. break;
  419. }
  420. lantiq_ssc_writel(spi, data, SPI_TB);
  421. tx_free--;
  422. }
  423. }
  424. static void rx_fifo_read_full_duplex(struct lantiq_ssc_spi *spi)
  425. {
  426. u8 *rx8;
  427. u16 *rx16;
  428. u32 *rx32;
  429. u32 data;
  430. unsigned int rx_fill = rx_fifo_level(spi);
  431. while (rx_fill) {
  432. data = lantiq_ssc_readl(spi, SPI_RB);
  433. switch (spi->bits_per_word) {
  434. case 2 ... 8:
  435. rx8 = spi->rx;
  436. *rx8 = data;
  437. spi->rx_todo--;
  438. spi->rx++;
  439. break;
  440. case 16:
  441. rx16 = (u16 *) spi->rx;
  442. *rx16 = data;
  443. spi->rx_todo -= 2;
  444. spi->rx += 2;
  445. break;
  446. case 32:
  447. rx32 = (u32 *) spi->rx;
  448. *rx32 = data;
  449. spi->rx_todo -= 4;
  450. spi->rx += 4;
  451. break;
  452. default:
  453. WARN_ON(1);
  454. break;
  455. }
  456. rx_fill--;
  457. }
  458. }
  459. static void rx_fifo_read_half_duplex(struct lantiq_ssc_spi *spi)
  460. {
  461. u32 data, *rx32;
  462. u8 *rx8;
  463. unsigned int rxbv, shift;
  464. unsigned int rx_fill = rx_fifo_level(spi);
  465. /*
  466. * In RX-only mode the bits per word value is ignored by HW. A value
  467. * of 32 is used instead. Thus all 4 bytes per FIFO must be read.
  468. * If remaining RX bytes are less than 4, the FIFO must be read
  469. * differently. The amount of received and valid bytes is indicated
  470. * by STAT.RXBV register value.
  471. */
  472. while (rx_fill) {
  473. if (spi->rx_todo < 4) {
  474. rxbv = (lantiq_ssc_readl(spi, SPI_STAT) &
  475. SPI_STAT_RXBV_M) >> SPI_STAT_RXBV_S;
  476. data = lantiq_ssc_readl(spi, SPI_RB);
  477. shift = (rxbv - 1) * 8;
  478. rx8 = spi->rx;
  479. while (rxbv) {
  480. *rx8++ = (data >> shift) & 0xFF;
  481. rxbv--;
  482. shift -= 8;
  483. spi->rx_todo--;
  484. spi->rx++;
  485. }
  486. } else {
  487. data = lantiq_ssc_readl(spi, SPI_RB);
  488. rx32 = (u32 *) spi->rx;
  489. *rx32++ = data;
  490. spi->rx_todo -= 4;
  491. spi->rx += 4;
  492. }
  493. rx_fill--;
  494. }
  495. }
  496. static void rx_request(struct lantiq_ssc_spi *spi)
  497. {
  498. unsigned int rxreq, rxreq_max;
  499. /*
  500. * To avoid receive overflows at high clocks it is better to request
  501. * only the amount of bytes that fits into all FIFOs. This value
  502. * depends on the FIFO size implemented in hardware.
  503. */
  504. rxreq = spi->rx_todo;
  505. rxreq_max = spi->rx_fifo_size * 4;
  506. if (rxreq > rxreq_max)
  507. rxreq = rxreq_max;
  508. lantiq_ssc_writel(spi, rxreq, SPI_RXREQ);
  509. }
  510. static irqreturn_t lantiq_ssc_xmit_interrupt(int irq, void *data)
  511. {
  512. struct lantiq_ssc_spi *spi = data;
  513. if (spi->tx) {
  514. if (spi->rx && spi->rx_todo)
  515. rx_fifo_read_full_duplex(spi);
  516. if (spi->tx_todo)
  517. tx_fifo_write(spi);
  518. else if (!tx_fifo_level(spi))
  519. goto completed;
  520. } else if (spi->rx) {
  521. if (spi->rx_todo) {
  522. rx_fifo_read_half_duplex(spi);
  523. if (spi->rx_todo)
  524. rx_request(spi);
  525. else
  526. goto completed;
  527. } else {
  528. goto completed;
  529. }
  530. }
  531. return IRQ_HANDLED;
  532. completed:
  533. queue_work(spi->wq, &spi->work);
  534. return IRQ_HANDLED;
  535. }
  536. static irqreturn_t lantiq_ssc_err_interrupt(int irq, void *data)
  537. {
  538. struct lantiq_ssc_spi *spi = data;
  539. u32 stat = lantiq_ssc_readl(spi, SPI_STAT);
  540. if (!(stat & SPI_STAT_ERRORS))
  541. return IRQ_NONE;
  542. if (stat & SPI_STAT_RUE)
  543. dev_err(spi->dev, "receive underflow error\n");
  544. if (stat & SPI_STAT_TUE)
  545. dev_err(spi->dev, "transmit underflow error\n");
  546. if (stat & SPI_STAT_AE)
  547. dev_err(spi->dev, "abort error\n");
  548. if (stat & SPI_STAT_RE)
  549. dev_err(spi->dev, "receive overflow error\n");
  550. if (stat & SPI_STAT_TE)
  551. dev_err(spi->dev, "transmit overflow error\n");
  552. if (stat & SPI_STAT_ME)
  553. dev_err(spi->dev, "mode error\n");
  554. /* Clear error flags */
  555. lantiq_ssc_maskl(spi, 0, SPI_WHBSTATE_CLR_ERRORS, SPI_WHBSTATE);
  556. /* set bad status so it can be retried */
  557. if (spi->master->cur_msg)
  558. spi->master->cur_msg->status = -EIO;
  559. queue_work(spi->wq, &spi->work);
  560. return IRQ_HANDLED;
  561. }
  562. static int transfer_start(struct lantiq_ssc_spi *spi, struct spi_device *spidev,
  563. struct spi_transfer *t)
  564. {
  565. unsigned long flags;
  566. spin_lock_irqsave(&spi->lock, flags);
  567. spi->tx = t->tx_buf;
  568. spi->rx = t->rx_buf;
  569. if (t->tx_buf) {
  570. spi->tx_todo = t->len;
  571. /* initially fill TX FIFO */
  572. tx_fifo_write(spi);
  573. }
  574. if (spi->rx) {
  575. spi->rx_todo = t->len;
  576. /* start shift clock in RX-only mode */
  577. if (!spi->tx)
  578. rx_request(spi);
  579. }
  580. spin_unlock_irqrestore(&spi->lock, flags);
  581. return t->len;
  582. }
  583. /*
  584. * The driver only gets an interrupt when the FIFO is empty, but there
  585. * is an additional shift register from which the data is written to
  586. * the wire. We get the last interrupt when the controller starts to
  587. * write the last word to the wire, not when it is finished. Do busy
  588. * waiting till it finishes.
  589. */
  590. static void lantiq_ssc_bussy_work(struct work_struct *work)
  591. {
  592. struct lantiq_ssc_spi *spi;
  593. unsigned long long timeout = 8LL * 1000LL;
  594. unsigned long end;
  595. spi = container_of(work, typeof(*spi), work);
  596. do_div(timeout, spi->speed_hz);
  597. timeout += timeout + 100; /* some tolerance */
  598. end = jiffies + msecs_to_jiffies(timeout);
  599. do {
  600. u32 stat = lantiq_ssc_readl(spi, SPI_STAT);
  601. if (!(stat & SPI_STAT_BSY)) {
  602. spi_finalize_current_transfer(spi->master);
  603. return;
  604. }
  605. cond_resched();
  606. } while (!time_after_eq(jiffies, end));
  607. if (spi->master->cur_msg)
  608. spi->master->cur_msg->status = -EIO;
  609. spi_finalize_current_transfer(spi->master);
  610. }
  611. static void lantiq_ssc_handle_err(struct spi_master *master,
  612. struct spi_message *message)
  613. {
  614. struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
  615. /* flush FIFOs on timeout */
  616. rx_fifo_flush(spi);
  617. tx_fifo_flush(spi);
  618. }
  619. static void lantiq_ssc_set_cs(struct spi_device *spidev, bool enable)
  620. {
  621. struct lantiq_ssc_spi *spi = spi_master_get_devdata(spidev->master);
  622. unsigned int cs = spidev->chip_select;
  623. u32 fgpo;
  624. if (!!(spidev->mode & SPI_CS_HIGH) == enable)
  625. fgpo = (1 << (cs - spi->base_cs));
  626. else
  627. fgpo = (1 << (cs - spi->base_cs + SPI_FGPO_SETOUTN_S));
  628. lantiq_ssc_writel(spi, fgpo, SPI_FPGO);
  629. }
  630. static int lantiq_ssc_transfer_one(struct spi_master *master,
  631. struct spi_device *spidev,
  632. struct spi_transfer *t)
  633. {
  634. struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
  635. hw_setup_transfer(spi, spidev, t);
  636. return transfer_start(spi, spidev, t);
  637. }
  638. static const struct lantiq_ssc_hwcfg lantiq_ssc_xway = {
  639. .irnen_r = SPI_IRNEN_R_XWAY,
  640. .irnen_t = SPI_IRNEN_T_XWAY,
  641. };
  642. static const struct lantiq_ssc_hwcfg lantiq_ssc_xrx = {
  643. .irnen_r = SPI_IRNEN_R_XRX,
  644. .irnen_t = SPI_IRNEN_T_XRX,
  645. };
  646. static const struct of_device_id lantiq_ssc_match[] = {
  647. { .compatible = "lantiq,ase-spi", .data = &lantiq_ssc_xway, },
  648. { .compatible = "lantiq,falcon-spi", .data = &lantiq_ssc_xrx, },
  649. { .compatible = "lantiq,xrx100-spi", .data = &lantiq_ssc_xrx, },
  650. {},
  651. };
  652. MODULE_DEVICE_TABLE(of, lantiq_ssc_match);
  653. static int lantiq_ssc_probe(struct platform_device *pdev)
  654. {
  655. struct device *dev = &pdev->dev;
  656. struct spi_master *master;
  657. struct resource *res;
  658. struct lantiq_ssc_spi *spi;
  659. const struct lantiq_ssc_hwcfg *hwcfg;
  660. const struct of_device_id *match;
  661. int err, rx_irq, tx_irq, err_irq;
  662. u32 id, supports_dma, revision;
  663. unsigned int num_cs;
  664. match = of_match_device(lantiq_ssc_match, dev);
  665. if (!match) {
  666. dev_err(dev, "no device match\n");
  667. return -EINVAL;
  668. }
  669. hwcfg = match->data;
  670. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  671. if (!res) {
  672. dev_err(dev, "failed to get resources\n");
  673. return -ENXIO;
  674. }
  675. rx_irq = platform_get_irq_byname(pdev, SPI_RX_IRQ_NAME);
  676. if (rx_irq < 0) {
  677. dev_err(dev, "failed to get %s\n", SPI_RX_IRQ_NAME);
  678. return -ENXIO;
  679. }
  680. tx_irq = platform_get_irq_byname(pdev, SPI_TX_IRQ_NAME);
  681. if (tx_irq < 0) {
  682. dev_err(dev, "failed to get %s\n", SPI_TX_IRQ_NAME);
  683. return -ENXIO;
  684. }
  685. err_irq = platform_get_irq_byname(pdev, SPI_ERR_IRQ_NAME);
  686. if (err_irq < 0) {
  687. dev_err(dev, "failed to get %s\n", SPI_ERR_IRQ_NAME);
  688. return -ENXIO;
  689. }
  690. master = spi_alloc_master(dev, sizeof(struct lantiq_ssc_spi));
  691. if (!master)
  692. return -ENOMEM;
  693. spi = spi_master_get_devdata(master);
  694. spi->master = master;
  695. spi->dev = dev;
  696. spi->hwcfg = hwcfg;
  697. platform_set_drvdata(pdev, spi);
  698. spi->regbase = devm_ioremap_resource(dev, res);
  699. if (IS_ERR(spi->regbase)) {
  700. err = PTR_ERR(spi->regbase);
  701. goto err_master_put;
  702. }
  703. err = devm_request_irq(dev, rx_irq, lantiq_ssc_xmit_interrupt,
  704. 0, SPI_RX_IRQ_NAME, spi);
  705. if (err)
  706. goto err_master_put;
  707. err = devm_request_irq(dev, tx_irq, lantiq_ssc_xmit_interrupt,
  708. 0, SPI_TX_IRQ_NAME, spi);
  709. if (err)
  710. goto err_master_put;
  711. err = devm_request_irq(dev, err_irq, lantiq_ssc_err_interrupt,
  712. 0, SPI_ERR_IRQ_NAME, spi);
  713. if (err)
  714. goto err_master_put;
  715. spi->spi_clk = devm_clk_get(dev, "gate");
  716. if (IS_ERR(spi->spi_clk)) {
  717. err = PTR_ERR(spi->spi_clk);
  718. goto err_master_put;
  719. }
  720. err = clk_prepare_enable(spi->spi_clk);
  721. if (err)
  722. goto err_master_put;
  723. /*
  724. * Use the old clk_get_fpi() function on Lantiq platform, till it
  725. * supports common clk.
  726. */
  727. #if defined(CONFIG_LANTIQ) && !defined(CONFIG_COMMON_CLK)
  728. spi->fpi_clk = clk_get_fpi();
  729. #else
  730. spi->fpi_clk = clk_get(dev, "freq");
  731. #endif
  732. if (IS_ERR(spi->fpi_clk)) {
  733. err = PTR_ERR(spi->fpi_clk);
  734. goto err_clk_disable;
  735. }
  736. num_cs = 8;
  737. of_property_read_u32(pdev->dev.of_node, "num-cs", &num_cs);
  738. spi->base_cs = 1;
  739. of_property_read_u32(pdev->dev.of_node, "base-cs", &spi->base_cs);
  740. spin_lock_init(&spi->lock);
  741. spi->bits_per_word = 8;
  742. spi->speed_hz = 0;
  743. master->dev.of_node = pdev->dev.of_node;
  744. master->num_chipselect = num_cs;
  745. master->setup = lantiq_ssc_setup;
  746. master->set_cs = lantiq_ssc_set_cs;
  747. master->handle_err = lantiq_ssc_handle_err;
  748. master->prepare_message = lantiq_ssc_prepare_message;
  749. master->unprepare_message = lantiq_ssc_unprepare_message;
  750. master->transfer_one = lantiq_ssc_transfer_one;
  751. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH |
  752. SPI_LOOP;
  753. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 8) |
  754. SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
  755. spi->wq = alloc_ordered_workqueue(dev_name(dev), 0);
  756. if (!spi->wq) {
  757. err = -ENOMEM;
  758. goto err_clk_put;
  759. }
  760. INIT_WORK(&spi->work, lantiq_ssc_bussy_work);
  761. id = lantiq_ssc_readl(spi, SPI_ID);
  762. spi->tx_fifo_size = (id & SPI_ID_TXFS_M) >> SPI_ID_TXFS_S;
  763. spi->rx_fifo_size = (id & SPI_ID_RXFS_M) >> SPI_ID_RXFS_S;
  764. supports_dma = (id & SPI_ID_CFG_M) >> SPI_ID_CFG_S;
  765. revision = id & SPI_ID_REV_M;
  766. lantiq_ssc_hw_init(spi);
  767. dev_info(dev,
  768. "Lantiq SSC SPI controller (Rev %i, TXFS %u, RXFS %u, DMA %u)\n",
  769. revision, spi->tx_fifo_size, spi->rx_fifo_size, supports_dma);
  770. err = devm_spi_register_master(dev, master);
  771. if (err) {
  772. dev_err(dev, "failed to register spi_master\n");
  773. goto err_wq_destroy;
  774. }
  775. return 0;
  776. err_wq_destroy:
  777. destroy_workqueue(spi->wq);
  778. err_clk_put:
  779. clk_put(spi->fpi_clk);
  780. err_clk_disable:
  781. clk_disable_unprepare(spi->spi_clk);
  782. err_master_put:
  783. spi_master_put(master);
  784. return err;
  785. }
  786. static int lantiq_ssc_remove(struct platform_device *pdev)
  787. {
  788. struct lantiq_ssc_spi *spi = platform_get_drvdata(pdev);
  789. lantiq_ssc_writel(spi, 0, SPI_IRNEN);
  790. lantiq_ssc_writel(spi, 0, SPI_CLC);
  791. rx_fifo_flush(spi);
  792. tx_fifo_flush(spi);
  793. hw_enter_config_mode(spi);
  794. destroy_workqueue(spi->wq);
  795. clk_disable_unprepare(spi->spi_clk);
  796. clk_put(spi->fpi_clk);
  797. return 0;
  798. }
  799. static struct platform_driver lantiq_ssc_driver = {
  800. .probe = lantiq_ssc_probe,
  801. .remove = lantiq_ssc_remove,
  802. .driver = {
  803. .name = "spi-lantiq-ssc",
  804. .owner = THIS_MODULE,
  805. .of_match_table = lantiq_ssc_match,
  806. },
  807. };
  808. module_platform_driver(lantiq_ssc_driver);
  809. MODULE_DESCRIPTION("Lantiq SSC SPI controller driver");
  810. MODULE_AUTHOR("Daniel Schwierzeck <daniel.schwierzeck@gmail.com>");
  811. MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
  812. MODULE_LICENSE("GPL");
  813. MODULE_ALIAS("platform:spi-lantiq-ssc");