pci.c 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011-2014, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/aer.h>
  15. #include <linux/bitops.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/blk-mq.h>
  18. #include <linux/blk-mq-pci.h>
  19. #include <linux/cpu.h>
  20. #include <linux/delay.h>
  21. #include <linux/errno.h>
  22. #include <linux/fs.h>
  23. #include <linux/genhd.h>
  24. #include <linux/hdreg.h>
  25. #include <linux/idr.h>
  26. #include <linux/init.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/io.h>
  29. #include <linux/kdev_t.h>
  30. #include <linux/kernel.h>
  31. #include <linux/mm.h>
  32. #include <linux/module.h>
  33. #include <linux/moduleparam.h>
  34. #include <linux/mutex.h>
  35. #include <linux/pci.h>
  36. #include <linux/poison.h>
  37. #include <linux/ptrace.h>
  38. #include <linux/sched.h>
  39. #include <linux/slab.h>
  40. #include <linux/t10-pi.h>
  41. #include <linux/timer.h>
  42. #include <linux/types.h>
  43. #include <linux/io-64-nonatomic-lo-hi.h>
  44. #include <asm/unaligned.h>
  45. #include <linux/sed-opal.h>
  46. #include "nvme.h"
  47. #define NVME_Q_DEPTH 1024
  48. #define NVME_AQ_DEPTH 256
  49. #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
  50. #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
  51. /*
  52. * We handle AEN commands ourselves and don't even let the
  53. * block layer know about them.
  54. */
  55. #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
  56. static int use_threaded_interrupts;
  57. module_param(use_threaded_interrupts, int, 0);
  58. static bool use_cmb_sqes = true;
  59. module_param(use_cmb_sqes, bool, 0644);
  60. MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  61. static struct workqueue_struct *nvme_workq;
  62. struct nvme_dev;
  63. struct nvme_queue;
  64. static int nvme_reset(struct nvme_dev *dev);
  65. static void nvme_process_cq(struct nvme_queue *nvmeq);
  66. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  67. /*
  68. * Represents an NVM Express device. Each nvme_dev is a PCI function.
  69. */
  70. struct nvme_dev {
  71. struct nvme_queue **queues;
  72. struct blk_mq_tag_set tagset;
  73. struct blk_mq_tag_set admin_tagset;
  74. u32 __iomem *dbs;
  75. struct device *dev;
  76. struct dma_pool *prp_page_pool;
  77. struct dma_pool *prp_small_pool;
  78. unsigned queue_count;
  79. unsigned online_queues;
  80. unsigned max_qid;
  81. int q_depth;
  82. u32 db_stride;
  83. void __iomem *bar;
  84. struct work_struct reset_work;
  85. struct work_struct remove_work;
  86. struct timer_list watchdog_timer;
  87. struct mutex shutdown_lock;
  88. bool subsystem;
  89. void __iomem *cmb;
  90. dma_addr_t cmb_dma_addr;
  91. u64 cmb_size;
  92. u32 cmbsz;
  93. u32 cmbloc;
  94. struct nvme_ctrl ctrl;
  95. struct completion ioq_wait;
  96. };
  97. static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
  98. {
  99. return container_of(ctrl, struct nvme_dev, ctrl);
  100. }
  101. /*
  102. * An NVM Express queue. Each device has at least two (one for admin
  103. * commands and one for I/O commands).
  104. */
  105. struct nvme_queue {
  106. struct device *q_dmadev;
  107. struct nvme_dev *dev;
  108. char irqname[24]; /* nvme4294967295-65535\0 */
  109. spinlock_t q_lock;
  110. struct nvme_command *sq_cmds;
  111. struct nvme_command __iomem *sq_cmds_io;
  112. volatile struct nvme_completion *cqes;
  113. struct blk_mq_tags **tags;
  114. dma_addr_t sq_dma_addr;
  115. dma_addr_t cq_dma_addr;
  116. u32 __iomem *q_db;
  117. u16 q_depth;
  118. s16 cq_vector;
  119. u16 sq_tail;
  120. u16 cq_head;
  121. u16 qid;
  122. u8 cq_phase;
  123. u8 cqe_seen;
  124. };
  125. /*
  126. * The nvme_iod describes the data in an I/O, including the list of PRP
  127. * entries. You can't see it in this data structure because C doesn't let
  128. * me express that. Use nvme_init_iod to ensure there's enough space
  129. * allocated to store the PRP list.
  130. */
  131. struct nvme_iod {
  132. struct nvme_request req;
  133. struct nvme_queue *nvmeq;
  134. int aborted;
  135. int npages; /* In the PRP list. 0 means small pool in use */
  136. int nents; /* Used in scatterlist */
  137. int length; /* Of data, in bytes */
  138. dma_addr_t first_dma;
  139. struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
  140. struct scatterlist *sg;
  141. struct scatterlist inline_sg[0];
  142. };
  143. /*
  144. * Check we didin't inadvertently grow the command struct
  145. */
  146. static inline void _nvme_check_size(void)
  147. {
  148. BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  149. BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  150. BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  151. BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  152. BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  153. BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
  154. BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
  155. BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  156. BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
  157. BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
  158. BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
  159. BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
  160. }
  161. /*
  162. * Max size of iod being embedded in the request payload
  163. */
  164. #define NVME_INT_PAGES 2
  165. #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
  166. /*
  167. * Will slightly overestimate the number of pages needed. This is OK
  168. * as it only leads to a small amount of wasted memory for the lifetime of
  169. * the I/O.
  170. */
  171. static int nvme_npages(unsigned size, struct nvme_dev *dev)
  172. {
  173. unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
  174. dev->ctrl.page_size);
  175. return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
  176. }
  177. static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
  178. unsigned int size, unsigned int nseg)
  179. {
  180. return sizeof(__le64 *) * nvme_npages(size, dev) +
  181. sizeof(struct scatterlist) * nseg;
  182. }
  183. static unsigned int nvme_cmd_size(struct nvme_dev *dev)
  184. {
  185. return sizeof(struct nvme_iod) +
  186. nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
  187. }
  188. static int nvmeq_irq(struct nvme_queue *nvmeq)
  189. {
  190. return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
  191. }
  192. static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  193. unsigned int hctx_idx)
  194. {
  195. struct nvme_dev *dev = data;
  196. struct nvme_queue *nvmeq = dev->queues[0];
  197. WARN_ON(hctx_idx != 0);
  198. WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
  199. WARN_ON(nvmeq->tags);
  200. hctx->driver_data = nvmeq;
  201. nvmeq->tags = &dev->admin_tagset.tags[0];
  202. return 0;
  203. }
  204. static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
  205. {
  206. struct nvme_queue *nvmeq = hctx->driver_data;
  207. nvmeq->tags = NULL;
  208. }
  209. static int nvme_admin_init_request(void *data, struct request *req,
  210. unsigned int hctx_idx, unsigned int rq_idx,
  211. unsigned int numa_node)
  212. {
  213. struct nvme_dev *dev = data;
  214. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  215. struct nvme_queue *nvmeq = dev->queues[0];
  216. BUG_ON(!nvmeq);
  217. iod->nvmeq = nvmeq;
  218. return 0;
  219. }
  220. static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  221. unsigned int hctx_idx)
  222. {
  223. struct nvme_dev *dev = data;
  224. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  225. if (!nvmeq->tags)
  226. nvmeq->tags = &dev->tagset.tags[hctx_idx];
  227. WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
  228. hctx->driver_data = nvmeq;
  229. return 0;
  230. }
  231. static int nvme_init_request(void *data, struct request *req,
  232. unsigned int hctx_idx, unsigned int rq_idx,
  233. unsigned int numa_node)
  234. {
  235. struct nvme_dev *dev = data;
  236. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  237. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  238. BUG_ON(!nvmeq);
  239. iod->nvmeq = nvmeq;
  240. return 0;
  241. }
  242. static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
  243. {
  244. struct nvme_dev *dev = set->driver_data;
  245. return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
  246. }
  247. /**
  248. * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
  249. * @nvmeq: The queue to use
  250. * @cmd: The command to send
  251. *
  252. * Safe to use from interrupt context
  253. */
  254. static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
  255. struct nvme_command *cmd)
  256. {
  257. u16 tail = nvmeq->sq_tail;
  258. if (nvmeq->sq_cmds_io)
  259. memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
  260. else
  261. memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
  262. if (++tail == nvmeq->q_depth)
  263. tail = 0;
  264. writel(tail, nvmeq->q_db);
  265. nvmeq->sq_tail = tail;
  266. }
  267. static __le64 **iod_list(struct request *req)
  268. {
  269. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  270. return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
  271. }
  272. static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
  273. {
  274. struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
  275. int nseg = blk_rq_nr_phys_segments(rq);
  276. unsigned int size = blk_rq_payload_bytes(rq);
  277. if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
  278. iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
  279. if (!iod->sg)
  280. return BLK_MQ_RQ_QUEUE_BUSY;
  281. } else {
  282. iod->sg = iod->inline_sg;
  283. }
  284. iod->aborted = 0;
  285. iod->npages = -1;
  286. iod->nents = 0;
  287. iod->length = size;
  288. if (!(rq->rq_flags & RQF_DONTPREP)) {
  289. rq->retries = 0;
  290. rq->rq_flags |= RQF_DONTPREP;
  291. }
  292. return BLK_MQ_RQ_QUEUE_OK;
  293. }
  294. static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
  295. {
  296. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  297. const int last_prp = dev->ctrl.page_size / 8 - 1;
  298. int i;
  299. __le64 **list = iod_list(req);
  300. dma_addr_t prp_dma = iod->first_dma;
  301. if (iod->npages == 0)
  302. dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
  303. for (i = 0; i < iod->npages; i++) {
  304. __le64 *prp_list = list[i];
  305. dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
  306. dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
  307. prp_dma = next_prp_dma;
  308. }
  309. if (iod->sg != iod->inline_sg)
  310. kfree(iod->sg);
  311. }
  312. #ifdef CONFIG_BLK_DEV_INTEGRITY
  313. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  314. {
  315. if (be32_to_cpu(pi->ref_tag) == v)
  316. pi->ref_tag = cpu_to_be32(p);
  317. }
  318. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  319. {
  320. if (be32_to_cpu(pi->ref_tag) == p)
  321. pi->ref_tag = cpu_to_be32(v);
  322. }
  323. /**
  324. * nvme_dif_remap - remaps ref tags to bip seed and physical lba
  325. *
  326. * The virtual start sector is the one that was originally submitted by the
  327. * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
  328. * start sector may be different. Remap protection information to match the
  329. * physical LBA on writes, and back to the original seed on reads.
  330. *
  331. * Type 0 and 3 do not have a ref tag, so no remapping required.
  332. */
  333. static void nvme_dif_remap(struct request *req,
  334. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  335. {
  336. struct nvme_ns *ns = req->rq_disk->private_data;
  337. struct bio_integrity_payload *bip;
  338. struct t10_pi_tuple *pi;
  339. void *p, *pmap;
  340. u32 i, nlb, ts, phys, virt;
  341. if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
  342. return;
  343. bip = bio_integrity(req->bio);
  344. if (!bip)
  345. return;
  346. pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
  347. p = pmap;
  348. virt = bip_get_seed(bip);
  349. phys = nvme_block_nr(ns, blk_rq_pos(req));
  350. nlb = (blk_rq_bytes(req) >> ns->lba_shift);
  351. ts = ns->disk->queue->integrity.tuple_size;
  352. for (i = 0; i < nlb; i++, virt++, phys++) {
  353. pi = (struct t10_pi_tuple *)p;
  354. dif_swap(phys, virt, pi);
  355. p += ts;
  356. }
  357. kunmap_atomic(pmap);
  358. }
  359. #else /* CONFIG_BLK_DEV_INTEGRITY */
  360. static void nvme_dif_remap(struct request *req,
  361. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  362. {
  363. }
  364. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  365. {
  366. }
  367. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  368. {
  369. }
  370. #endif
  371. static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
  372. {
  373. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  374. struct dma_pool *pool;
  375. int length = blk_rq_payload_bytes(req);
  376. struct scatterlist *sg = iod->sg;
  377. int dma_len = sg_dma_len(sg);
  378. u64 dma_addr = sg_dma_address(sg);
  379. u32 page_size = dev->ctrl.page_size;
  380. int offset = dma_addr & (page_size - 1);
  381. __le64 *prp_list;
  382. __le64 **list = iod_list(req);
  383. dma_addr_t prp_dma;
  384. int nprps, i;
  385. length -= (page_size - offset);
  386. if (length <= 0)
  387. return true;
  388. dma_len -= (page_size - offset);
  389. if (dma_len) {
  390. dma_addr += (page_size - offset);
  391. } else {
  392. sg = sg_next(sg);
  393. dma_addr = sg_dma_address(sg);
  394. dma_len = sg_dma_len(sg);
  395. }
  396. if (length <= page_size) {
  397. iod->first_dma = dma_addr;
  398. return true;
  399. }
  400. nprps = DIV_ROUND_UP(length, page_size);
  401. if (nprps <= (256 / 8)) {
  402. pool = dev->prp_small_pool;
  403. iod->npages = 0;
  404. } else {
  405. pool = dev->prp_page_pool;
  406. iod->npages = 1;
  407. }
  408. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  409. if (!prp_list) {
  410. iod->first_dma = dma_addr;
  411. iod->npages = -1;
  412. return false;
  413. }
  414. list[0] = prp_list;
  415. iod->first_dma = prp_dma;
  416. i = 0;
  417. for (;;) {
  418. if (i == page_size >> 3) {
  419. __le64 *old_prp_list = prp_list;
  420. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  421. if (!prp_list)
  422. return false;
  423. list[iod->npages++] = prp_list;
  424. prp_list[0] = old_prp_list[i - 1];
  425. old_prp_list[i - 1] = cpu_to_le64(prp_dma);
  426. i = 1;
  427. }
  428. prp_list[i++] = cpu_to_le64(dma_addr);
  429. dma_len -= page_size;
  430. dma_addr += page_size;
  431. length -= page_size;
  432. if (length <= 0)
  433. break;
  434. if (dma_len > 0)
  435. continue;
  436. BUG_ON(dma_len < 0);
  437. sg = sg_next(sg);
  438. dma_addr = sg_dma_address(sg);
  439. dma_len = sg_dma_len(sg);
  440. }
  441. return true;
  442. }
  443. static int nvme_map_data(struct nvme_dev *dev, struct request *req,
  444. struct nvme_command *cmnd)
  445. {
  446. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  447. struct request_queue *q = req->q;
  448. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  449. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  450. int ret = BLK_MQ_RQ_QUEUE_ERROR;
  451. sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
  452. iod->nents = blk_rq_map_sg(q, req, iod->sg);
  453. if (!iod->nents)
  454. goto out;
  455. ret = BLK_MQ_RQ_QUEUE_BUSY;
  456. if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
  457. DMA_ATTR_NO_WARN))
  458. goto out;
  459. if (!nvme_setup_prps(dev, req))
  460. goto out_unmap;
  461. ret = BLK_MQ_RQ_QUEUE_ERROR;
  462. if (blk_integrity_rq(req)) {
  463. if (blk_rq_count_integrity_sg(q, req->bio) != 1)
  464. goto out_unmap;
  465. sg_init_table(&iod->meta_sg, 1);
  466. if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
  467. goto out_unmap;
  468. if (rq_data_dir(req))
  469. nvme_dif_remap(req, nvme_dif_prep);
  470. if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
  471. goto out_unmap;
  472. }
  473. cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
  474. cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
  475. if (blk_integrity_rq(req))
  476. cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
  477. return BLK_MQ_RQ_QUEUE_OK;
  478. out_unmap:
  479. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  480. out:
  481. return ret;
  482. }
  483. static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
  484. {
  485. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  486. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  487. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  488. if (iod->nents) {
  489. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  490. if (blk_integrity_rq(req)) {
  491. if (!rq_data_dir(req))
  492. nvme_dif_remap(req, nvme_dif_complete);
  493. dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
  494. }
  495. }
  496. nvme_cleanup_cmd(req);
  497. nvme_free_iod(dev, req);
  498. }
  499. /*
  500. * NOTE: ns is NULL when called on the admin queue.
  501. */
  502. static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
  503. const struct blk_mq_queue_data *bd)
  504. {
  505. struct nvme_ns *ns = hctx->queue->queuedata;
  506. struct nvme_queue *nvmeq = hctx->driver_data;
  507. struct nvme_dev *dev = nvmeq->dev;
  508. struct request *req = bd->rq;
  509. struct nvme_command cmnd;
  510. int ret = BLK_MQ_RQ_QUEUE_OK;
  511. /*
  512. * If formated with metadata, require the block layer provide a buffer
  513. * unless this namespace is formated such that the metadata can be
  514. * stripped/generated by the controller with PRACT=1.
  515. */
  516. if (ns && ns->ms && !blk_integrity_rq(req)) {
  517. if (!(ns->pi_type && ns->ms == 8) &&
  518. !blk_rq_is_passthrough(req)) {
  519. blk_mq_end_request(req, -EFAULT);
  520. return BLK_MQ_RQ_QUEUE_OK;
  521. }
  522. }
  523. ret = nvme_setup_cmd(ns, req, &cmnd);
  524. if (ret != BLK_MQ_RQ_QUEUE_OK)
  525. return ret;
  526. ret = nvme_init_iod(req, dev);
  527. if (ret != BLK_MQ_RQ_QUEUE_OK)
  528. goto out_free_cmd;
  529. if (blk_rq_nr_phys_segments(req))
  530. ret = nvme_map_data(dev, req, &cmnd);
  531. if (ret != BLK_MQ_RQ_QUEUE_OK)
  532. goto out_cleanup_iod;
  533. blk_mq_start_request(req);
  534. spin_lock_irq(&nvmeq->q_lock);
  535. if (unlikely(nvmeq->cq_vector < 0)) {
  536. ret = BLK_MQ_RQ_QUEUE_ERROR;
  537. spin_unlock_irq(&nvmeq->q_lock);
  538. goto out_cleanup_iod;
  539. }
  540. __nvme_submit_cmd(nvmeq, &cmnd);
  541. nvme_process_cq(nvmeq);
  542. spin_unlock_irq(&nvmeq->q_lock);
  543. return BLK_MQ_RQ_QUEUE_OK;
  544. out_cleanup_iod:
  545. nvme_free_iod(dev, req);
  546. out_free_cmd:
  547. nvme_cleanup_cmd(req);
  548. return ret;
  549. }
  550. static void nvme_complete_rq(struct request *req)
  551. {
  552. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  553. struct nvme_dev *dev = iod->nvmeq->dev;
  554. int error = 0;
  555. nvme_unmap_data(dev, req);
  556. if (unlikely(req->errors)) {
  557. if (nvme_req_needs_retry(req, req->errors)) {
  558. req->retries++;
  559. nvme_requeue_req(req);
  560. return;
  561. }
  562. if (blk_rq_is_passthrough(req))
  563. error = req->errors;
  564. else
  565. error = nvme_error_status(req->errors);
  566. }
  567. if (unlikely(iod->aborted)) {
  568. dev_warn(dev->ctrl.device,
  569. "completing aborted command with status: %04x\n",
  570. req->errors);
  571. }
  572. blk_mq_end_request(req, error);
  573. }
  574. /* We read the CQE phase first to check if the rest of the entry is valid */
  575. static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
  576. u16 phase)
  577. {
  578. return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
  579. }
  580. static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
  581. {
  582. u16 head, phase;
  583. head = nvmeq->cq_head;
  584. phase = nvmeq->cq_phase;
  585. while (nvme_cqe_valid(nvmeq, head, phase)) {
  586. struct nvme_completion cqe = nvmeq->cqes[head];
  587. struct request *req;
  588. if (++head == nvmeq->q_depth) {
  589. head = 0;
  590. phase = !phase;
  591. }
  592. if (tag && *tag == cqe.command_id)
  593. *tag = -1;
  594. if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
  595. dev_warn(nvmeq->dev->ctrl.device,
  596. "invalid id %d completed on queue %d\n",
  597. cqe.command_id, le16_to_cpu(cqe.sq_id));
  598. continue;
  599. }
  600. /*
  601. * AEN requests are special as they don't time out and can
  602. * survive any kind of queue freeze and often don't respond to
  603. * aborts. We don't even bother to allocate a struct request
  604. * for them but rather special case them here.
  605. */
  606. if (unlikely(nvmeq->qid == 0 &&
  607. cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
  608. nvme_complete_async_event(&nvmeq->dev->ctrl,
  609. cqe.status, &cqe.result);
  610. continue;
  611. }
  612. req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
  613. nvme_req(req)->result = cqe.result;
  614. blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
  615. }
  616. if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
  617. return;
  618. if (likely(nvmeq->cq_vector >= 0))
  619. writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
  620. nvmeq->cq_head = head;
  621. nvmeq->cq_phase = phase;
  622. nvmeq->cqe_seen = 1;
  623. }
  624. static void nvme_process_cq(struct nvme_queue *nvmeq)
  625. {
  626. __nvme_process_cq(nvmeq, NULL);
  627. }
  628. static irqreturn_t nvme_irq(int irq, void *data)
  629. {
  630. irqreturn_t result;
  631. struct nvme_queue *nvmeq = data;
  632. spin_lock(&nvmeq->q_lock);
  633. nvme_process_cq(nvmeq);
  634. result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
  635. nvmeq->cqe_seen = 0;
  636. spin_unlock(&nvmeq->q_lock);
  637. return result;
  638. }
  639. static irqreturn_t nvme_irq_check(int irq, void *data)
  640. {
  641. struct nvme_queue *nvmeq = data;
  642. if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
  643. return IRQ_WAKE_THREAD;
  644. return IRQ_NONE;
  645. }
  646. static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  647. {
  648. struct nvme_queue *nvmeq = hctx->driver_data;
  649. if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
  650. spin_lock_irq(&nvmeq->q_lock);
  651. __nvme_process_cq(nvmeq, &tag);
  652. spin_unlock_irq(&nvmeq->q_lock);
  653. if (tag == -1)
  654. return 1;
  655. }
  656. return 0;
  657. }
  658. static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
  659. {
  660. struct nvme_dev *dev = to_nvme_dev(ctrl);
  661. struct nvme_queue *nvmeq = dev->queues[0];
  662. struct nvme_command c;
  663. memset(&c, 0, sizeof(c));
  664. c.common.opcode = nvme_admin_async_event;
  665. c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
  666. spin_lock_irq(&nvmeq->q_lock);
  667. __nvme_submit_cmd(nvmeq, &c);
  668. spin_unlock_irq(&nvmeq->q_lock);
  669. }
  670. static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
  671. {
  672. struct nvme_command c;
  673. memset(&c, 0, sizeof(c));
  674. c.delete_queue.opcode = opcode;
  675. c.delete_queue.qid = cpu_to_le16(id);
  676. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  677. }
  678. static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
  679. struct nvme_queue *nvmeq)
  680. {
  681. struct nvme_command c;
  682. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
  683. /*
  684. * Note: we (ab)use the fact the the prp fields survive if no data
  685. * is attached to the request.
  686. */
  687. memset(&c, 0, sizeof(c));
  688. c.create_cq.opcode = nvme_admin_create_cq;
  689. c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
  690. c.create_cq.cqid = cpu_to_le16(qid);
  691. c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  692. c.create_cq.cq_flags = cpu_to_le16(flags);
  693. c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
  694. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  695. }
  696. static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
  697. struct nvme_queue *nvmeq)
  698. {
  699. struct nvme_command c;
  700. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
  701. /*
  702. * Note: we (ab)use the fact the the prp fields survive if no data
  703. * is attached to the request.
  704. */
  705. memset(&c, 0, sizeof(c));
  706. c.create_sq.opcode = nvme_admin_create_sq;
  707. c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
  708. c.create_sq.sqid = cpu_to_le16(qid);
  709. c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  710. c.create_sq.sq_flags = cpu_to_le16(flags);
  711. c.create_sq.cqid = cpu_to_le16(qid);
  712. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  713. }
  714. static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
  715. {
  716. return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
  717. }
  718. static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
  719. {
  720. return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
  721. }
  722. static void abort_endio(struct request *req, int error)
  723. {
  724. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  725. struct nvme_queue *nvmeq = iod->nvmeq;
  726. u16 status = req->errors;
  727. dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
  728. atomic_inc(&nvmeq->dev->ctrl.abort_limit);
  729. blk_mq_free_request(req);
  730. }
  731. static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
  732. {
  733. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  734. struct nvme_queue *nvmeq = iod->nvmeq;
  735. struct nvme_dev *dev = nvmeq->dev;
  736. struct request *abort_req;
  737. struct nvme_command cmd;
  738. /*
  739. * Shutdown immediately if controller times out while starting. The
  740. * reset work will see the pci device disabled when it gets the forced
  741. * cancellation error. All outstanding requests are completed on
  742. * shutdown, so we return BLK_EH_HANDLED.
  743. */
  744. if (dev->ctrl.state == NVME_CTRL_RESETTING) {
  745. dev_warn(dev->ctrl.device,
  746. "I/O %d QID %d timeout, disable controller\n",
  747. req->tag, nvmeq->qid);
  748. nvme_dev_disable(dev, false);
  749. req->errors = NVME_SC_CANCELLED;
  750. return BLK_EH_HANDLED;
  751. }
  752. /*
  753. * Shutdown the controller immediately and schedule a reset if the
  754. * command was already aborted once before and still hasn't been
  755. * returned to the driver, or if this is the admin queue.
  756. */
  757. if (!nvmeq->qid || iod->aborted) {
  758. dev_warn(dev->ctrl.device,
  759. "I/O %d QID %d timeout, reset controller\n",
  760. req->tag, nvmeq->qid);
  761. nvme_dev_disable(dev, false);
  762. nvme_reset(dev);
  763. /*
  764. * Mark the request as handled, since the inline shutdown
  765. * forces all outstanding requests to complete.
  766. */
  767. req->errors = NVME_SC_CANCELLED;
  768. return BLK_EH_HANDLED;
  769. }
  770. if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
  771. atomic_inc(&dev->ctrl.abort_limit);
  772. return BLK_EH_RESET_TIMER;
  773. }
  774. iod->aborted = 1;
  775. memset(&cmd, 0, sizeof(cmd));
  776. cmd.abort.opcode = nvme_admin_abort_cmd;
  777. cmd.abort.cid = req->tag;
  778. cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
  779. dev_warn(nvmeq->dev->ctrl.device,
  780. "I/O %d QID %d timeout, aborting\n",
  781. req->tag, nvmeq->qid);
  782. abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
  783. BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
  784. if (IS_ERR(abort_req)) {
  785. atomic_inc(&dev->ctrl.abort_limit);
  786. return BLK_EH_RESET_TIMER;
  787. }
  788. abort_req->timeout = ADMIN_TIMEOUT;
  789. abort_req->end_io_data = NULL;
  790. blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
  791. /*
  792. * The aborted req will be completed on receiving the abort req.
  793. * We enable the timer again. If hit twice, it'll cause a device reset,
  794. * as the device then is in a faulty state.
  795. */
  796. return BLK_EH_RESET_TIMER;
  797. }
  798. static void nvme_free_queue(struct nvme_queue *nvmeq)
  799. {
  800. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  801. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  802. if (nvmeq->sq_cmds)
  803. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  804. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  805. kfree(nvmeq);
  806. }
  807. static void nvme_free_queues(struct nvme_dev *dev, int lowest)
  808. {
  809. int i;
  810. for (i = dev->queue_count - 1; i >= lowest; i--) {
  811. struct nvme_queue *nvmeq = dev->queues[i];
  812. dev->queue_count--;
  813. dev->queues[i] = NULL;
  814. nvme_free_queue(nvmeq);
  815. }
  816. }
  817. /**
  818. * nvme_suspend_queue - put queue into suspended state
  819. * @nvmeq - queue to suspend
  820. */
  821. static int nvme_suspend_queue(struct nvme_queue *nvmeq)
  822. {
  823. int vector;
  824. spin_lock_irq(&nvmeq->q_lock);
  825. if (nvmeq->cq_vector == -1) {
  826. spin_unlock_irq(&nvmeq->q_lock);
  827. return 1;
  828. }
  829. vector = nvmeq_irq(nvmeq);
  830. nvmeq->dev->online_queues--;
  831. nvmeq->cq_vector = -1;
  832. spin_unlock_irq(&nvmeq->q_lock);
  833. if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
  834. blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
  835. free_irq(vector, nvmeq);
  836. return 0;
  837. }
  838. static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
  839. {
  840. struct nvme_queue *nvmeq = dev->queues[0];
  841. if (!nvmeq)
  842. return;
  843. if (nvme_suspend_queue(nvmeq))
  844. return;
  845. if (shutdown)
  846. nvme_shutdown_ctrl(&dev->ctrl);
  847. else
  848. nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
  849. dev->bar + NVME_REG_CAP));
  850. spin_lock_irq(&nvmeq->q_lock);
  851. nvme_process_cq(nvmeq);
  852. spin_unlock_irq(&nvmeq->q_lock);
  853. }
  854. static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
  855. int entry_size)
  856. {
  857. int q_depth = dev->q_depth;
  858. unsigned q_size_aligned = roundup(q_depth * entry_size,
  859. dev->ctrl.page_size);
  860. if (q_size_aligned * nr_io_queues > dev->cmb_size) {
  861. u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
  862. mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
  863. q_depth = div_u64(mem_per_q, entry_size);
  864. /*
  865. * Ensure the reduced q_depth is above some threshold where it
  866. * would be better to map queues in system memory with the
  867. * original depth
  868. */
  869. if (q_depth < 64)
  870. return -ENOMEM;
  871. }
  872. return q_depth;
  873. }
  874. static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  875. int qid, int depth)
  876. {
  877. if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
  878. unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
  879. dev->ctrl.page_size);
  880. nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
  881. nvmeq->sq_cmds_io = dev->cmb + offset;
  882. } else {
  883. nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
  884. &nvmeq->sq_dma_addr, GFP_KERNEL);
  885. if (!nvmeq->sq_cmds)
  886. return -ENOMEM;
  887. }
  888. return 0;
  889. }
  890. static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
  891. int depth, int node)
  892. {
  893. struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
  894. node);
  895. if (!nvmeq)
  896. return NULL;
  897. nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
  898. &nvmeq->cq_dma_addr, GFP_KERNEL);
  899. if (!nvmeq->cqes)
  900. goto free_nvmeq;
  901. if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
  902. goto free_cqdma;
  903. nvmeq->q_dmadev = dev->dev;
  904. nvmeq->dev = dev;
  905. snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
  906. dev->ctrl.instance, qid);
  907. spin_lock_init(&nvmeq->q_lock);
  908. nvmeq->cq_head = 0;
  909. nvmeq->cq_phase = 1;
  910. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  911. nvmeq->q_depth = depth;
  912. nvmeq->qid = qid;
  913. nvmeq->cq_vector = -1;
  914. dev->queues[qid] = nvmeq;
  915. dev->queue_count++;
  916. return nvmeq;
  917. free_cqdma:
  918. dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
  919. nvmeq->cq_dma_addr);
  920. free_nvmeq:
  921. kfree(nvmeq);
  922. return NULL;
  923. }
  924. static int queue_request_irq(struct nvme_queue *nvmeq)
  925. {
  926. if (use_threaded_interrupts)
  927. return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
  928. nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
  929. else
  930. return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
  931. nvmeq->irqname, nvmeq);
  932. }
  933. static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
  934. {
  935. struct nvme_dev *dev = nvmeq->dev;
  936. spin_lock_irq(&nvmeq->q_lock);
  937. nvmeq->sq_tail = 0;
  938. nvmeq->cq_head = 0;
  939. nvmeq->cq_phase = 1;
  940. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  941. memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
  942. dev->online_queues++;
  943. spin_unlock_irq(&nvmeq->q_lock);
  944. }
  945. static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
  946. {
  947. struct nvme_dev *dev = nvmeq->dev;
  948. int result;
  949. nvmeq->cq_vector = qid - 1;
  950. result = adapter_alloc_cq(dev, qid, nvmeq);
  951. if (result < 0)
  952. return result;
  953. result = adapter_alloc_sq(dev, qid, nvmeq);
  954. if (result < 0)
  955. goto release_cq;
  956. result = queue_request_irq(nvmeq);
  957. if (result < 0)
  958. goto release_sq;
  959. nvme_init_queue(nvmeq, qid);
  960. return result;
  961. release_sq:
  962. adapter_delete_sq(dev, qid);
  963. release_cq:
  964. adapter_delete_cq(dev, qid);
  965. return result;
  966. }
  967. static struct blk_mq_ops nvme_mq_admin_ops = {
  968. .queue_rq = nvme_queue_rq,
  969. .complete = nvme_complete_rq,
  970. .init_hctx = nvme_admin_init_hctx,
  971. .exit_hctx = nvme_admin_exit_hctx,
  972. .init_request = nvme_admin_init_request,
  973. .timeout = nvme_timeout,
  974. };
  975. static struct blk_mq_ops nvme_mq_ops = {
  976. .queue_rq = nvme_queue_rq,
  977. .complete = nvme_complete_rq,
  978. .init_hctx = nvme_init_hctx,
  979. .init_request = nvme_init_request,
  980. .map_queues = nvme_pci_map_queues,
  981. .timeout = nvme_timeout,
  982. .poll = nvme_poll,
  983. };
  984. static void nvme_dev_remove_admin(struct nvme_dev *dev)
  985. {
  986. if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
  987. /*
  988. * If the controller was reset during removal, it's possible
  989. * user requests may be waiting on a stopped queue. Start the
  990. * queue to flush these to completion.
  991. */
  992. blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
  993. blk_cleanup_queue(dev->ctrl.admin_q);
  994. blk_mq_free_tag_set(&dev->admin_tagset);
  995. }
  996. }
  997. static int nvme_alloc_admin_tags(struct nvme_dev *dev)
  998. {
  999. if (!dev->ctrl.admin_q) {
  1000. dev->admin_tagset.ops = &nvme_mq_admin_ops;
  1001. dev->admin_tagset.nr_hw_queues = 1;
  1002. /*
  1003. * Subtract one to leave an empty queue entry for 'Full Queue'
  1004. * condition. See NVM-Express 1.2 specification, section 4.1.2.
  1005. */
  1006. dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
  1007. dev->admin_tagset.timeout = ADMIN_TIMEOUT;
  1008. dev->admin_tagset.numa_node = dev_to_node(dev->dev);
  1009. dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
  1010. dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
  1011. dev->admin_tagset.driver_data = dev;
  1012. if (blk_mq_alloc_tag_set(&dev->admin_tagset))
  1013. return -ENOMEM;
  1014. dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
  1015. if (IS_ERR(dev->ctrl.admin_q)) {
  1016. blk_mq_free_tag_set(&dev->admin_tagset);
  1017. return -ENOMEM;
  1018. }
  1019. if (!blk_get_queue(dev->ctrl.admin_q)) {
  1020. nvme_dev_remove_admin(dev);
  1021. dev->ctrl.admin_q = NULL;
  1022. return -ENODEV;
  1023. }
  1024. } else
  1025. blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
  1026. return 0;
  1027. }
  1028. static int nvme_configure_admin_queue(struct nvme_dev *dev)
  1029. {
  1030. int result;
  1031. u32 aqa;
  1032. u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1033. struct nvme_queue *nvmeq;
  1034. dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
  1035. NVME_CAP_NSSRC(cap) : 0;
  1036. if (dev->subsystem &&
  1037. (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
  1038. writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
  1039. result = nvme_disable_ctrl(&dev->ctrl, cap);
  1040. if (result < 0)
  1041. return result;
  1042. nvmeq = dev->queues[0];
  1043. if (!nvmeq) {
  1044. nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
  1045. dev_to_node(dev->dev));
  1046. if (!nvmeq)
  1047. return -ENOMEM;
  1048. }
  1049. aqa = nvmeq->q_depth - 1;
  1050. aqa |= aqa << 16;
  1051. writel(aqa, dev->bar + NVME_REG_AQA);
  1052. lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
  1053. lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
  1054. result = nvme_enable_ctrl(&dev->ctrl, cap);
  1055. if (result)
  1056. return result;
  1057. nvmeq->cq_vector = 0;
  1058. result = queue_request_irq(nvmeq);
  1059. if (result) {
  1060. nvmeq->cq_vector = -1;
  1061. return result;
  1062. }
  1063. return result;
  1064. }
  1065. static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
  1066. {
  1067. /* If true, indicates loss of adapter communication, possibly by a
  1068. * NVMe Subsystem reset.
  1069. */
  1070. bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
  1071. /* If there is a reset ongoing, we shouldn't reset again. */
  1072. if (work_busy(&dev->reset_work))
  1073. return false;
  1074. /* We shouldn't reset unless the controller is on fatal error state
  1075. * _or_ if we lost the communication with it.
  1076. */
  1077. if (!(csts & NVME_CSTS_CFS) && !nssro)
  1078. return false;
  1079. /* If PCI error recovery process is happening, we cannot reset or
  1080. * the recovery mechanism will surely fail.
  1081. */
  1082. if (pci_channel_offline(to_pci_dev(dev->dev)))
  1083. return false;
  1084. return true;
  1085. }
  1086. static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
  1087. {
  1088. /* Read a config register to help see what died. */
  1089. u16 pci_status;
  1090. int result;
  1091. result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
  1092. &pci_status);
  1093. if (result == PCIBIOS_SUCCESSFUL)
  1094. dev_warn(dev->dev,
  1095. "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
  1096. csts, pci_status);
  1097. else
  1098. dev_warn(dev->dev,
  1099. "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
  1100. csts, result);
  1101. }
  1102. static void nvme_watchdog_timer(unsigned long data)
  1103. {
  1104. struct nvme_dev *dev = (struct nvme_dev *)data;
  1105. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  1106. /* Skip controllers under certain specific conditions. */
  1107. if (nvme_should_reset(dev, csts)) {
  1108. if (!nvme_reset(dev))
  1109. nvme_warn_reset(dev, csts);
  1110. return;
  1111. }
  1112. mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
  1113. }
  1114. static int nvme_create_io_queues(struct nvme_dev *dev)
  1115. {
  1116. unsigned i, max;
  1117. int ret = 0;
  1118. for (i = dev->queue_count; i <= dev->max_qid; i++) {
  1119. /* vector == qid - 1, match nvme_create_queue */
  1120. if (!nvme_alloc_queue(dev, i, dev->q_depth,
  1121. pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
  1122. ret = -ENOMEM;
  1123. break;
  1124. }
  1125. }
  1126. max = min(dev->max_qid, dev->queue_count - 1);
  1127. for (i = dev->online_queues; i <= max; i++) {
  1128. ret = nvme_create_queue(dev->queues[i], i);
  1129. if (ret)
  1130. break;
  1131. }
  1132. /*
  1133. * Ignore failing Create SQ/CQ commands, we can continue with less
  1134. * than the desired aount of queues, and even a controller without
  1135. * I/O queues an still be used to issue admin commands. This might
  1136. * be useful to upgrade a buggy firmware for example.
  1137. */
  1138. return ret >= 0 ? 0 : ret;
  1139. }
  1140. static ssize_t nvme_cmb_show(struct device *dev,
  1141. struct device_attribute *attr,
  1142. char *buf)
  1143. {
  1144. struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
  1145. return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
  1146. ndev->cmbloc, ndev->cmbsz);
  1147. }
  1148. static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
  1149. static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
  1150. {
  1151. u64 szu, size, offset;
  1152. resource_size_t bar_size;
  1153. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1154. void __iomem *cmb;
  1155. dma_addr_t dma_addr;
  1156. dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
  1157. if (!(NVME_CMB_SZ(dev->cmbsz)))
  1158. return NULL;
  1159. dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
  1160. if (!use_cmb_sqes)
  1161. return NULL;
  1162. szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
  1163. size = szu * NVME_CMB_SZ(dev->cmbsz);
  1164. offset = szu * NVME_CMB_OFST(dev->cmbloc);
  1165. bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
  1166. if (offset > bar_size)
  1167. return NULL;
  1168. /*
  1169. * Controllers may support a CMB size larger than their BAR,
  1170. * for example, due to being behind a bridge. Reduce the CMB to
  1171. * the reported size of the BAR
  1172. */
  1173. if (size > bar_size - offset)
  1174. size = bar_size - offset;
  1175. dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
  1176. cmb = ioremap_wc(dma_addr, size);
  1177. if (!cmb)
  1178. return NULL;
  1179. dev->cmb_dma_addr = dma_addr;
  1180. dev->cmb_size = size;
  1181. return cmb;
  1182. }
  1183. static inline void nvme_release_cmb(struct nvme_dev *dev)
  1184. {
  1185. if (dev->cmb) {
  1186. iounmap(dev->cmb);
  1187. dev->cmb = NULL;
  1188. }
  1189. }
  1190. static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
  1191. {
  1192. return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
  1193. }
  1194. static int nvme_setup_io_queues(struct nvme_dev *dev)
  1195. {
  1196. struct nvme_queue *adminq = dev->queues[0];
  1197. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1198. int result, nr_io_queues, size;
  1199. nr_io_queues = num_online_cpus();
  1200. result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
  1201. if (result < 0)
  1202. return result;
  1203. if (nr_io_queues == 0)
  1204. return 0;
  1205. if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
  1206. result = nvme_cmb_qdepth(dev, nr_io_queues,
  1207. sizeof(struct nvme_command));
  1208. if (result > 0)
  1209. dev->q_depth = result;
  1210. else
  1211. nvme_release_cmb(dev);
  1212. }
  1213. size = db_bar_size(dev, nr_io_queues);
  1214. if (size > 8192) {
  1215. iounmap(dev->bar);
  1216. do {
  1217. dev->bar = ioremap(pci_resource_start(pdev, 0), size);
  1218. if (dev->bar)
  1219. break;
  1220. if (!--nr_io_queues)
  1221. return -ENOMEM;
  1222. size = db_bar_size(dev, nr_io_queues);
  1223. } while (1);
  1224. dev->dbs = dev->bar + 4096;
  1225. adminq->q_db = dev->dbs;
  1226. }
  1227. /* Deregister the admin queue's interrupt */
  1228. free_irq(pci_irq_vector(pdev, 0), adminq);
  1229. /*
  1230. * If we enable msix early due to not intx, disable it again before
  1231. * setting up the full range we need.
  1232. */
  1233. pci_free_irq_vectors(pdev);
  1234. nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
  1235. PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
  1236. if (nr_io_queues <= 0)
  1237. return -EIO;
  1238. dev->max_qid = nr_io_queues;
  1239. /*
  1240. * Should investigate if there's a performance win from allocating
  1241. * more queues than interrupt vectors; it might allow the submission
  1242. * path to scale better, even if the receive path is limited by the
  1243. * number of interrupts.
  1244. */
  1245. result = queue_request_irq(adminq);
  1246. if (result) {
  1247. adminq->cq_vector = -1;
  1248. return result;
  1249. }
  1250. return nvme_create_io_queues(dev);
  1251. }
  1252. static void nvme_del_queue_end(struct request *req, int error)
  1253. {
  1254. struct nvme_queue *nvmeq = req->end_io_data;
  1255. blk_mq_free_request(req);
  1256. complete(&nvmeq->dev->ioq_wait);
  1257. }
  1258. static void nvme_del_cq_end(struct request *req, int error)
  1259. {
  1260. struct nvme_queue *nvmeq = req->end_io_data;
  1261. if (!error) {
  1262. unsigned long flags;
  1263. /*
  1264. * We might be called with the AQ q_lock held
  1265. * and the I/O queue q_lock should always
  1266. * nest inside the AQ one.
  1267. */
  1268. spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
  1269. SINGLE_DEPTH_NESTING);
  1270. nvme_process_cq(nvmeq);
  1271. spin_unlock_irqrestore(&nvmeq->q_lock, flags);
  1272. }
  1273. nvme_del_queue_end(req, error);
  1274. }
  1275. static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
  1276. {
  1277. struct request_queue *q = nvmeq->dev->ctrl.admin_q;
  1278. struct request *req;
  1279. struct nvme_command cmd;
  1280. memset(&cmd, 0, sizeof(cmd));
  1281. cmd.delete_queue.opcode = opcode;
  1282. cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
  1283. req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
  1284. if (IS_ERR(req))
  1285. return PTR_ERR(req);
  1286. req->timeout = ADMIN_TIMEOUT;
  1287. req->end_io_data = nvmeq;
  1288. blk_execute_rq_nowait(q, NULL, req, false,
  1289. opcode == nvme_admin_delete_cq ?
  1290. nvme_del_cq_end : nvme_del_queue_end);
  1291. return 0;
  1292. }
  1293. static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
  1294. {
  1295. int pass;
  1296. unsigned long timeout;
  1297. u8 opcode = nvme_admin_delete_sq;
  1298. for (pass = 0; pass < 2; pass++) {
  1299. int sent = 0, i = queues;
  1300. reinit_completion(&dev->ioq_wait);
  1301. retry:
  1302. timeout = ADMIN_TIMEOUT;
  1303. for (; i > 0; i--, sent++)
  1304. if (nvme_delete_queue(dev->queues[i], opcode))
  1305. break;
  1306. while (sent--) {
  1307. timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
  1308. if (timeout == 0)
  1309. return;
  1310. if (i)
  1311. goto retry;
  1312. }
  1313. opcode = nvme_admin_delete_cq;
  1314. }
  1315. }
  1316. /*
  1317. * Return: error value if an error occurred setting up the queues or calling
  1318. * Identify Device. 0 if these succeeded, even if adding some of the
  1319. * namespaces failed. At the moment, these failures are silent. TBD which
  1320. * failures should be reported.
  1321. */
  1322. static int nvme_dev_add(struct nvme_dev *dev)
  1323. {
  1324. if (!dev->ctrl.tagset) {
  1325. dev->tagset.ops = &nvme_mq_ops;
  1326. dev->tagset.nr_hw_queues = dev->online_queues - 1;
  1327. dev->tagset.timeout = NVME_IO_TIMEOUT;
  1328. dev->tagset.numa_node = dev_to_node(dev->dev);
  1329. dev->tagset.queue_depth =
  1330. min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
  1331. dev->tagset.cmd_size = nvme_cmd_size(dev);
  1332. dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
  1333. dev->tagset.driver_data = dev;
  1334. if (blk_mq_alloc_tag_set(&dev->tagset))
  1335. return 0;
  1336. dev->ctrl.tagset = &dev->tagset;
  1337. } else {
  1338. blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
  1339. /* Free previously allocated queues that are no longer usable */
  1340. nvme_free_queues(dev, dev->online_queues);
  1341. }
  1342. return 0;
  1343. }
  1344. static int nvme_pci_enable(struct nvme_dev *dev)
  1345. {
  1346. u64 cap;
  1347. int result = -ENOMEM;
  1348. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1349. if (pci_enable_device_mem(pdev))
  1350. return result;
  1351. pci_set_master(pdev);
  1352. if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
  1353. dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
  1354. goto disable;
  1355. if (readl(dev->bar + NVME_REG_CSTS) == -1) {
  1356. result = -ENODEV;
  1357. goto disable;
  1358. }
  1359. /*
  1360. * Some devices and/or platforms don't advertise or work with INTx
  1361. * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
  1362. * adjust this later.
  1363. */
  1364. result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
  1365. if (result < 0)
  1366. return result;
  1367. cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1368. dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
  1369. dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
  1370. dev->dbs = dev->bar + 4096;
  1371. /*
  1372. * Temporary fix for the Apple controller found in the MacBook8,1 and
  1373. * some MacBook7,1 to avoid controller resets and data loss.
  1374. */
  1375. if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
  1376. dev->q_depth = 2;
  1377. dev_warn(dev->dev, "detected Apple NVMe controller, set "
  1378. "queue depth=%u to work around controller resets\n",
  1379. dev->q_depth);
  1380. }
  1381. /*
  1382. * CMBs can currently only exist on >=1.2 PCIe devices. We only
  1383. * populate sysfs if a CMB is implemented. Note that we add the
  1384. * CMB attribute to the nvme_ctrl kobj which removes the need to remove
  1385. * it on exit. Since nvme_dev_attrs_group has no name we can pass
  1386. * NULL as final argument to sysfs_add_file_to_group.
  1387. */
  1388. if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
  1389. dev->cmb = nvme_map_cmb(dev);
  1390. if (dev->cmbsz) {
  1391. if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
  1392. &dev_attr_cmb.attr, NULL))
  1393. dev_warn(dev->dev,
  1394. "failed to add sysfs attribute for CMB\n");
  1395. }
  1396. }
  1397. pci_enable_pcie_error_reporting(pdev);
  1398. pci_save_state(pdev);
  1399. return 0;
  1400. disable:
  1401. pci_disable_device(pdev);
  1402. return result;
  1403. }
  1404. static void nvme_dev_unmap(struct nvme_dev *dev)
  1405. {
  1406. if (dev->bar)
  1407. iounmap(dev->bar);
  1408. pci_release_mem_regions(to_pci_dev(dev->dev));
  1409. }
  1410. static void nvme_pci_disable(struct nvme_dev *dev)
  1411. {
  1412. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1413. pci_free_irq_vectors(pdev);
  1414. if (pci_is_enabled(pdev)) {
  1415. pci_disable_pcie_error_reporting(pdev);
  1416. pci_disable_device(pdev);
  1417. }
  1418. }
  1419. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
  1420. {
  1421. int i, queues;
  1422. bool dead = true;
  1423. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1424. del_timer_sync(&dev->watchdog_timer);
  1425. mutex_lock(&dev->shutdown_lock);
  1426. if (pci_is_enabled(pdev)) {
  1427. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  1428. if (dev->ctrl.state == NVME_CTRL_LIVE)
  1429. nvme_start_freeze(&dev->ctrl);
  1430. dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
  1431. pdev->error_state != pci_channel_io_normal);
  1432. }
  1433. /*
  1434. * Give the controller a chance to complete all entered requests if
  1435. * doing a safe shutdown.
  1436. */
  1437. if (!dead && shutdown)
  1438. nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
  1439. nvme_stop_queues(&dev->ctrl);
  1440. queues = dev->online_queues - 1;
  1441. for (i = dev->queue_count - 1; i > 0; i--)
  1442. nvme_suspend_queue(dev->queues[i]);
  1443. if (dead) {
  1444. /* A device might become IO incapable very soon during
  1445. * probe, before the admin queue is configured. Thus,
  1446. * queue_count can be 0 here.
  1447. */
  1448. if (dev->queue_count)
  1449. nvme_suspend_queue(dev->queues[0]);
  1450. } else {
  1451. nvme_disable_io_queues(dev, queues);
  1452. nvme_disable_admin_queue(dev, shutdown);
  1453. }
  1454. nvme_pci_disable(dev);
  1455. blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
  1456. blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
  1457. /*
  1458. * The driver will not be starting up queues again if shutting down so
  1459. * must flush all entered requests to their failed completion to avoid
  1460. * deadlocking blk-mq hot-cpu notifier.
  1461. */
  1462. if (shutdown)
  1463. nvme_start_queues(&dev->ctrl);
  1464. mutex_unlock(&dev->shutdown_lock);
  1465. }
  1466. static int nvme_setup_prp_pools(struct nvme_dev *dev)
  1467. {
  1468. dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
  1469. PAGE_SIZE, PAGE_SIZE, 0);
  1470. if (!dev->prp_page_pool)
  1471. return -ENOMEM;
  1472. /* Optimisation for I/Os between 4k and 128k */
  1473. dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
  1474. 256, 256, 0);
  1475. if (!dev->prp_small_pool) {
  1476. dma_pool_destroy(dev->prp_page_pool);
  1477. return -ENOMEM;
  1478. }
  1479. return 0;
  1480. }
  1481. static void nvme_release_prp_pools(struct nvme_dev *dev)
  1482. {
  1483. dma_pool_destroy(dev->prp_page_pool);
  1484. dma_pool_destroy(dev->prp_small_pool);
  1485. }
  1486. static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
  1487. {
  1488. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1489. put_device(dev->dev);
  1490. if (dev->tagset.tags)
  1491. blk_mq_free_tag_set(&dev->tagset);
  1492. if (dev->ctrl.admin_q)
  1493. blk_put_queue(dev->ctrl.admin_q);
  1494. kfree(dev->queues);
  1495. free_opal_dev(dev->ctrl.opal_dev);
  1496. kfree(dev);
  1497. }
  1498. static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
  1499. {
  1500. dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
  1501. kref_get(&dev->ctrl.kref);
  1502. nvme_dev_disable(dev, false);
  1503. if (!schedule_work(&dev->remove_work))
  1504. nvme_put_ctrl(&dev->ctrl);
  1505. }
  1506. static void nvme_reset_work(struct work_struct *work)
  1507. {
  1508. struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
  1509. bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
  1510. int result = -ENODEV;
  1511. if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
  1512. goto out;
  1513. /*
  1514. * If we're called to reset a live controller first shut it down before
  1515. * moving on.
  1516. */
  1517. if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
  1518. nvme_dev_disable(dev, false);
  1519. if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
  1520. goto out;
  1521. result = nvme_pci_enable(dev);
  1522. if (result)
  1523. goto out;
  1524. result = nvme_configure_admin_queue(dev);
  1525. if (result)
  1526. goto out;
  1527. nvme_init_queue(dev->queues[0], 0);
  1528. result = nvme_alloc_admin_tags(dev);
  1529. if (result)
  1530. goto out;
  1531. result = nvme_init_identify(&dev->ctrl);
  1532. if (result)
  1533. goto out;
  1534. if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
  1535. if (!dev->ctrl.opal_dev)
  1536. dev->ctrl.opal_dev =
  1537. init_opal_dev(&dev->ctrl, &nvme_sec_submit);
  1538. else if (was_suspend)
  1539. opal_unlock_from_suspend(dev->ctrl.opal_dev);
  1540. } else {
  1541. free_opal_dev(dev->ctrl.opal_dev);
  1542. dev->ctrl.opal_dev = NULL;
  1543. }
  1544. result = nvme_setup_io_queues(dev);
  1545. if (result)
  1546. goto out;
  1547. /*
  1548. * A controller that can not execute IO typically requires user
  1549. * intervention to correct. For such degraded controllers, the driver
  1550. * should not submit commands the user did not request, so skip
  1551. * registering for asynchronous event notification on this condition.
  1552. */
  1553. if (dev->online_queues > 1)
  1554. nvme_queue_async_events(&dev->ctrl);
  1555. mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
  1556. /*
  1557. * Keep the controller around but remove all namespaces if we don't have
  1558. * any working I/O queue.
  1559. */
  1560. if (dev->online_queues < 2) {
  1561. dev_warn(dev->ctrl.device, "IO queues not created\n");
  1562. nvme_kill_queues(&dev->ctrl);
  1563. nvme_remove_namespaces(&dev->ctrl);
  1564. } else {
  1565. nvme_start_queues(&dev->ctrl);
  1566. nvme_wait_freeze(&dev->ctrl);
  1567. nvme_dev_add(dev);
  1568. nvme_unfreeze(&dev->ctrl);
  1569. }
  1570. if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
  1571. dev_warn(dev->ctrl.device, "failed to mark controller live\n");
  1572. goto out;
  1573. }
  1574. if (dev->online_queues > 1)
  1575. nvme_queue_scan(&dev->ctrl);
  1576. return;
  1577. out:
  1578. nvme_remove_dead_ctrl(dev, result);
  1579. }
  1580. static void nvme_remove_dead_ctrl_work(struct work_struct *work)
  1581. {
  1582. struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
  1583. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1584. nvme_kill_queues(&dev->ctrl);
  1585. if (pci_get_drvdata(pdev))
  1586. device_release_driver(&pdev->dev);
  1587. nvme_put_ctrl(&dev->ctrl);
  1588. }
  1589. static int nvme_reset(struct nvme_dev *dev)
  1590. {
  1591. if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
  1592. return -ENODEV;
  1593. if (work_busy(&dev->reset_work))
  1594. return -ENODEV;
  1595. if (!queue_work(nvme_workq, &dev->reset_work))
  1596. return -EBUSY;
  1597. return 0;
  1598. }
  1599. static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
  1600. {
  1601. *val = readl(to_nvme_dev(ctrl)->bar + off);
  1602. return 0;
  1603. }
  1604. static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
  1605. {
  1606. writel(val, to_nvme_dev(ctrl)->bar + off);
  1607. return 0;
  1608. }
  1609. static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
  1610. {
  1611. *val = readq(to_nvme_dev(ctrl)->bar + off);
  1612. return 0;
  1613. }
  1614. static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
  1615. {
  1616. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1617. int ret = nvme_reset(dev);
  1618. if (!ret)
  1619. flush_work(&dev->reset_work);
  1620. return ret;
  1621. }
  1622. static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
  1623. .name = "pcie",
  1624. .module = THIS_MODULE,
  1625. .reg_read32 = nvme_pci_reg_read32,
  1626. .reg_write32 = nvme_pci_reg_write32,
  1627. .reg_read64 = nvme_pci_reg_read64,
  1628. .reset_ctrl = nvme_pci_reset_ctrl,
  1629. .free_ctrl = nvme_pci_free_ctrl,
  1630. .submit_async_event = nvme_pci_submit_async_event,
  1631. };
  1632. static int nvme_dev_map(struct nvme_dev *dev)
  1633. {
  1634. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1635. if (pci_request_mem_regions(pdev, "nvme"))
  1636. return -ENODEV;
  1637. dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
  1638. if (!dev->bar)
  1639. goto release;
  1640. return 0;
  1641. release:
  1642. pci_release_mem_regions(pdev);
  1643. return -ENODEV;
  1644. }
  1645. static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1646. {
  1647. int node, result = -ENOMEM;
  1648. struct nvme_dev *dev;
  1649. node = dev_to_node(&pdev->dev);
  1650. if (node == NUMA_NO_NODE)
  1651. set_dev_node(&pdev->dev, first_memory_node);
  1652. dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
  1653. if (!dev)
  1654. return -ENOMEM;
  1655. dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
  1656. GFP_KERNEL, node);
  1657. if (!dev->queues)
  1658. goto free;
  1659. dev->dev = get_device(&pdev->dev);
  1660. pci_set_drvdata(pdev, dev);
  1661. result = nvme_dev_map(dev);
  1662. if (result)
  1663. goto free;
  1664. INIT_WORK(&dev->reset_work, nvme_reset_work);
  1665. INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
  1666. setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
  1667. (unsigned long)dev);
  1668. mutex_init(&dev->shutdown_lock);
  1669. init_completion(&dev->ioq_wait);
  1670. result = nvme_setup_prp_pools(dev);
  1671. if (result)
  1672. goto put_pci;
  1673. result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
  1674. id->driver_data);
  1675. if (result)
  1676. goto release_pools;
  1677. dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
  1678. queue_work(nvme_workq, &dev->reset_work);
  1679. return 0;
  1680. release_pools:
  1681. nvme_release_prp_pools(dev);
  1682. put_pci:
  1683. put_device(dev->dev);
  1684. nvme_dev_unmap(dev);
  1685. free:
  1686. kfree(dev->queues);
  1687. kfree(dev);
  1688. return result;
  1689. }
  1690. static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
  1691. {
  1692. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1693. if (prepare)
  1694. nvme_dev_disable(dev, false);
  1695. else
  1696. nvme_reset(dev);
  1697. }
  1698. static void nvme_shutdown(struct pci_dev *pdev)
  1699. {
  1700. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1701. nvme_dev_disable(dev, true);
  1702. }
  1703. /*
  1704. * The driver's remove may be called on a device in a partially initialized
  1705. * state. This function must not have any dependencies on the device state in
  1706. * order to proceed.
  1707. */
  1708. static void nvme_remove(struct pci_dev *pdev)
  1709. {
  1710. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1711. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
  1712. pci_set_drvdata(pdev, NULL);
  1713. if (!pci_device_is_present(pdev)) {
  1714. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
  1715. nvme_dev_disable(dev, false);
  1716. }
  1717. flush_work(&dev->reset_work);
  1718. nvme_uninit_ctrl(&dev->ctrl);
  1719. nvme_dev_disable(dev, true);
  1720. nvme_dev_remove_admin(dev);
  1721. nvme_free_queues(dev, 0);
  1722. nvme_release_cmb(dev);
  1723. nvme_release_prp_pools(dev);
  1724. nvme_dev_unmap(dev);
  1725. nvme_put_ctrl(&dev->ctrl);
  1726. }
  1727. static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
  1728. {
  1729. int ret = 0;
  1730. if (numvfs == 0) {
  1731. if (pci_vfs_assigned(pdev)) {
  1732. dev_warn(&pdev->dev,
  1733. "Cannot disable SR-IOV VFs while assigned\n");
  1734. return -EPERM;
  1735. }
  1736. pci_disable_sriov(pdev);
  1737. return 0;
  1738. }
  1739. ret = pci_enable_sriov(pdev, numvfs);
  1740. return ret ? ret : numvfs;
  1741. }
  1742. #ifdef CONFIG_PM_SLEEP
  1743. static int nvme_suspend(struct device *dev)
  1744. {
  1745. struct pci_dev *pdev = to_pci_dev(dev);
  1746. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  1747. nvme_dev_disable(ndev, true);
  1748. return 0;
  1749. }
  1750. static int nvme_resume(struct device *dev)
  1751. {
  1752. struct pci_dev *pdev = to_pci_dev(dev);
  1753. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  1754. nvme_reset(ndev);
  1755. return 0;
  1756. }
  1757. #endif
  1758. static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
  1759. static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
  1760. pci_channel_state_t state)
  1761. {
  1762. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1763. /*
  1764. * A frozen channel requires a reset. When detected, this method will
  1765. * shutdown the controller to quiesce. The controller will be restarted
  1766. * after the slot reset through driver's slot_reset callback.
  1767. */
  1768. switch (state) {
  1769. case pci_channel_io_normal:
  1770. return PCI_ERS_RESULT_CAN_RECOVER;
  1771. case pci_channel_io_frozen:
  1772. dev_warn(dev->ctrl.device,
  1773. "frozen state error detected, reset controller\n");
  1774. nvme_dev_disable(dev, false);
  1775. return PCI_ERS_RESULT_NEED_RESET;
  1776. case pci_channel_io_perm_failure:
  1777. dev_warn(dev->ctrl.device,
  1778. "failure state error detected, request disconnect\n");
  1779. return PCI_ERS_RESULT_DISCONNECT;
  1780. }
  1781. return PCI_ERS_RESULT_NEED_RESET;
  1782. }
  1783. static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
  1784. {
  1785. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1786. dev_info(dev->ctrl.device, "restart after slot reset\n");
  1787. pci_restore_state(pdev);
  1788. nvme_reset(dev);
  1789. return PCI_ERS_RESULT_RECOVERED;
  1790. }
  1791. static void nvme_error_resume(struct pci_dev *pdev)
  1792. {
  1793. pci_cleanup_aer_uncorrect_error_status(pdev);
  1794. }
  1795. static const struct pci_error_handlers nvme_err_handler = {
  1796. .error_detected = nvme_error_detected,
  1797. .slot_reset = nvme_slot_reset,
  1798. .resume = nvme_error_resume,
  1799. .reset_notify = nvme_reset_notify,
  1800. };
  1801. static const struct pci_device_id nvme_id_table[] = {
  1802. { PCI_VDEVICE(INTEL, 0x0953),
  1803. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  1804. NVME_QUIRK_DISCARD_ZEROES, },
  1805. { PCI_VDEVICE(INTEL, 0x0a53),
  1806. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  1807. NVME_QUIRK_DISCARD_ZEROES, },
  1808. { PCI_VDEVICE(INTEL, 0x0a54),
  1809. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  1810. NVME_QUIRK_DISCARD_ZEROES, },
  1811. { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
  1812. .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
  1813. { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
  1814. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  1815. { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
  1816. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  1817. { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
  1818. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
  1819. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
  1820. { 0, }
  1821. };
  1822. MODULE_DEVICE_TABLE(pci, nvme_id_table);
  1823. static struct pci_driver nvme_driver = {
  1824. .name = "nvme",
  1825. .id_table = nvme_id_table,
  1826. .probe = nvme_probe,
  1827. .remove = nvme_remove,
  1828. .shutdown = nvme_shutdown,
  1829. .driver = {
  1830. .pm = &nvme_dev_pm_ops,
  1831. },
  1832. .sriov_configure = nvme_pci_sriov_configure,
  1833. .err_handler = &nvme_err_handler,
  1834. };
  1835. static int __init nvme_init(void)
  1836. {
  1837. int result;
  1838. nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
  1839. if (!nvme_workq)
  1840. return -ENOMEM;
  1841. result = pci_register_driver(&nvme_driver);
  1842. if (result)
  1843. destroy_workqueue(nvme_workq);
  1844. return result;
  1845. }
  1846. static void __exit nvme_exit(void)
  1847. {
  1848. pci_unregister_driver(&nvme_driver);
  1849. destroy_workqueue(nvme_workq);
  1850. _nvme_check_size();
  1851. }
  1852. MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
  1853. MODULE_LICENSE("GPL");
  1854. MODULE_VERSION("1.0");
  1855. module_init(nvme_init);
  1856. module_exit(nvme_exit);