htt_tx.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093
  1. /*
  2. * Copyright (c) 2005-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include <linux/etherdevice.h>
  18. #include "htt.h"
  19. #include "mac.h"
  20. #include "hif.h"
  21. #include "txrx.h"
  22. #include "debug.h"
  23. static u8 ath10k_htt_tx_txq_calc_size(size_t count)
  24. {
  25. int exp;
  26. int factor;
  27. exp = 0;
  28. factor = count >> 7;
  29. while (factor >= 64 && exp < 4) {
  30. factor >>= 3;
  31. exp++;
  32. }
  33. if (exp == 4)
  34. return 0xff;
  35. if (count > 0)
  36. factor = max(1, factor);
  37. return SM(exp, HTT_TX_Q_STATE_ENTRY_EXP) |
  38. SM(factor, HTT_TX_Q_STATE_ENTRY_FACTOR);
  39. }
  40. static void __ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
  41. struct ieee80211_txq *txq)
  42. {
  43. struct ath10k *ar = hw->priv;
  44. struct ath10k_sta *arsta;
  45. struct ath10k_vif *arvif = (void *)txq->vif->drv_priv;
  46. unsigned long frame_cnt;
  47. unsigned long byte_cnt;
  48. int idx;
  49. u32 bit;
  50. u16 peer_id;
  51. u8 tid;
  52. u8 count;
  53. lockdep_assert_held(&ar->htt.tx_lock);
  54. if (!ar->htt.tx_q_state.enabled)
  55. return;
  56. if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
  57. return;
  58. if (txq->sta) {
  59. arsta = (void *)txq->sta->drv_priv;
  60. peer_id = arsta->peer_id;
  61. } else {
  62. peer_id = arvif->peer_id;
  63. }
  64. tid = txq->tid;
  65. bit = BIT(peer_id % 32);
  66. idx = peer_id / 32;
  67. ieee80211_txq_get_depth(txq, &frame_cnt, &byte_cnt);
  68. count = ath10k_htt_tx_txq_calc_size(byte_cnt);
  69. if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
  70. unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
  71. ath10k_warn(ar, "refusing to update txq for peer_id %hu tid %hhu due to out of bounds\n",
  72. peer_id, tid);
  73. return;
  74. }
  75. ar->htt.tx_q_state.vaddr->count[tid][peer_id] = count;
  76. ar->htt.tx_q_state.vaddr->map[tid][idx] &= ~bit;
  77. ar->htt.tx_q_state.vaddr->map[tid][idx] |= count ? bit : 0;
  78. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update peer_id %hu tid %hhu count %hhu\n",
  79. peer_id, tid, count);
  80. }
  81. static void __ath10k_htt_tx_txq_sync(struct ath10k *ar)
  82. {
  83. u32 seq;
  84. size_t size;
  85. lockdep_assert_held(&ar->htt.tx_lock);
  86. if (!ar->htt.tx_q_state.enabled)
  87. return;
  88. if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
  89. return;
  90. seq = le32_to_cpu(ar->htt.tx_q_state.vaddr->seq);
  91. seq++;
  92. ar->htt.tx_q_state.vaddr->seq = cpu_to_le32(seq);
  93. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update commit seq %u\n",
  94. seq);
  95. size = sizeof(*ar->htt.tx_q_state.vaddr);
  96. dma_sync_single_for_device(ar->dev,
  97. ar->htt.tx_q_state.paddr,
  98. size,
  99. DMA_TO_DEVICE);
  100. }
  101. void ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
  102. struct ieee80211_txq *txq)
  103. {
  104. struct ath10k *ar = hw->priv;
  105. spin_lock_bh(&ar->htt.tx_lock);
  106. __ath10k_htt_tx_txq_recalc(hw, txq);
  107. spin_unlock_bh(&ar->htt.tx_lock);
  108. }
  109. void ath10k_htt_tx_txq_sync(struct ath10k *ar)
  110. {
  111. spin_lock_bh(&ar->htt.tx_lock);
  112. __ath10k_htt_tx_txq_sync(ar);
  113. spin_unlock_bh(&ar->htt.tx_lock);
  114. }
  115. void ath10k_htt_tx_txq_update(struct ieee80211_hw *hw,
  116. struct ieee80211_txq *txq)
  117. {
  118. struct ath10k *ar = hw->priv;
  119. spin_lock_bh(&ar->htt.tx_lock);
  120. __ath10k_htt_tx_txq_recalc(hw, txq);
  121. __ath10k_htt_tx_txq_sync(ar);
  122. spin_unlock_bh(&ar->htt.tx_lock);
  123. }
  124. void ath10k_htt_tx_dec_pending(struct ath10k_htt *htt)
  125. {
  126. lockdep_assert_held(&htt->tx_lock);
  127. htt->num_pending_tx--;
  128. if (htt->num_pending_tx == htt->max_num_pending_tx - 1)
  129. ath10k_mac_tx_unlock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
  130. }
  131. int ath10k_htt_tx_inc_pending(struct ath10k_htt *htt)
  132. {
  133. lockdep_assert_held(&htt->tx_lock);
  134. if (htt->num_pending_tx >= htt->max_num_pending_tx)
  135. return -EBUSY;
  136. htt->num_pending_tx++;
  137. if (htt->num_pending_tx == htt->max_num_pending_tx)
  138. ath10k_mac_tx_lock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
  139. return 0;
  140. }
  141. int ath10k_htt_tx_mgmt_inc_pending(struct ath10k_htt *htt, bool is_mgmt,
  142. bool is_presp)
  143. {
  144. struct ath10k *ar = htt->ar;
  145. lockdep_assert_held(&htt->tx_lock);
  146. if (!is_mgmt || !ar->hw_params.max_probe_resp_desc_thres)
  147. return 0;
  148. if (is_presp &&
  149. ar->hw_params.max_probe_resp_desc_thres < htt->num_pending_mgmt_tx)
  150. return -EBUSY;
  151. htt->num_pending_mgmt_tx++;
  152. return 0;
  153. }
  154. void ath10k_htt_tx_mgmt_dec_pending(struct ath10k_htt *htt)
  155. {
  156. lockdep_assert_held(&htt->tx_lock);
  157. if (!htt->ar->hw_params.max_probe_resp_desc_thres)
  158. return;
  159. htt->num_pending_mgmt_tx--;
  160. }
  161. int ath10k_htt_tx_alloc_msdu_id(struct ath10k_htt *htt, struct sk_buff *skb)
  162. {
  163. struct ath10k *ar = htt->ar;
  164. int ret;
  165. lockdep_assert_held(&htt->tx_lock);
  166. ret = idr_alloc(&htt->pending_tx, skb, 0,
  167. htt->max_num_pending_tx, GFP_ATOMIC);
  168. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx alloc msdu_id %d\n", ret);
  169. return ret;
  170. }
  171. void ath10k_htt_tx_free_msdu_id(struct ath10k_htt *htt, u16 msdu_id)
  172. {
  173. struct ath10k *ar = htt->ar;
  174. lockdep_assert_held(&htt->tx_lock);
  175. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx free msdu_id %hu\n", msdu_id);
  176. idr_remove(&htt->pending_tx, msdu_id);
  177. }
  178. static void ath10k_htt_tx_free_cont_txbuf(struct ath10k_htt *htt)
  179. {
  180. struct ath10k *ar = htt->ar;
  181. size_t size;
  182. if (!htt->txbuf.vaddr)
  183. return;
  184. size = htt->max_num_pending_tx * sizeof(struct ath10k_htt_txbuf);
  185. dma_free_coherent(ar->dev, size, htt->txbuf.vaddr, htt->txbuf.paddr);
  186. htt->txbuf.vaddr = NULL;
  187. }
  188. static int ath10k_htt_tx_alloc_cont_txbuf(struct ath10k_htt *htt)
  189. {
  190. struct ath10k *ar = htt->ar;
  191. size_t size;
  192. size = htt->max_num_pending_tx * sizeof(struct ath10k_htt_txbuf);
  193. htt->txbuf.vaddr = dma_alloc_coherent(ar->dev, size, &htt->txbuf.paddr,
  194. GFP_KERNEL);
  195. if (!htt->txbuf.vaddr)
  196. return -ENOMEM;
  197. return 0;
  198. }
  199. static void ath10k_htt_tx_free_cont_frag_desc(struct ath10k_htt *htt)
  200. {
  201. size_t size;
  202. if (!htt->frag_desc.vaddr)
  203. return;
  204. size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
  205. dma_free_coherent(htt->ar->dev,
  206. size,
  207. htt->frag_desc.vaddr,
  208. htt->frag_desc.paddr);
  209. htt->frag_desc.vaddr = NULL;
  210. }
  211. static int ath10k_htt_tx_alloc_cont_frag_desc(struct ath10k_htt *htt)
  212. {
  213. struct ath10k *ar = htt->ar;
  214. size_t size;
  215. if (!ar->hw_params.continuous_frag_desc)
  216. return 0;
  217. size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
  218. htt->frag_desc.vaddr = dma_alloc_coherent(ar->dev, size,
  219. &htt->frag_desc.paddr,
  220. GFP_KERNEL);
  221. if (!htt->frag_desc.vaddr)
  222. return -ENOMEM;
  223. return 0;
  224. }
  225. static void ath10k_htt_tx_free_txq(struct ath10k_htt *htt)
  226. {
  227. struct ath10k *ar = htt->ar;
  228. size_t size;
  229. if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  230. ar->running_fw->fw_file.fw_features))
  231. return;
  232. size = sizeof(*htt->tx_q_state.vaddr);
  233. dma_unmap_single(ar->dev, htt->tx_q_state.paddr, size, DMA_TO_DEVICE);
  234. kfree(htt->tx_q_state.vaddr);
  235. }
  236. static int ath10k_htt_tx_alloc_txq(struct ath10k_htt *htt)
  237. {
  238. struct ath10k *ar = htt->ar;
  239. size_t size;
  240. int ret;
  241. if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  242. ar->running_fw->fw_file.fw_features))
  243. return 0;
  244. htt->tx_q_state.num_peers = HTT_TX_Q_STATE_NUM_PEERS;
  245. htt->tx_q_state.num_tids = HTT_TX_Q_STATE_NUM_TIDS;
  246. htt->tx_q_state.type = HTT_Q_DEPTH_TYPE_BYTES;
  247. size = sizeof(*htt->tx_q_state.vaddr);
  248. htt->tx_q_state.vaddr = kzalloc(size, GFP_KERNEL);
  249. if (!htt->tx_q_state.vaddr)
  250. return -ENOMEM;
  251. htt->tx_q_state.paddr = dma_map_single(ar->dev, htt->tx_q_state.vaddr,
  252. size, DMA_TO_DEVICE);
  253. ret = dma_mapping_error(ar->dev, htt->tx_q_state.paddr);
  254. if (ret) {
  255. ath10k_warn(ar, "failed to dma map tx_q_state: %d\n", ret);
  256. kfree(htt->tx_q_state.vaddr);
  257. return -EIO;
  258. }
  259. return 0;
  260. }
  261. static void ath10k_htt_tx_free_txdone_fifo(struct ath10k_htt *htt)
  262. {
  263. WARN_ON(!kfifo_is_empty(&htt->txdone_fifo));
  264. kfifo_free(&htt->txdone_fifo);
  265. }
  266. static int ath10k_htt_tx_alloc_txdone_fifo(struct ath10k_htt *htt)
  267. {
  268. int ret;
  269. size_t size;
  270. size = roundup_pow_of_two(htt->max_num_pending_tx);
  271. ret = kfifo_alloc(&htt->txdone_fifo, size, GFP_KERNEL);
  272. return ret;
  273. }
  274. static int ath10k_htt_tx_alloc_buf(struct ath10k_htt *htt)
  275. {
  276. struct ath10k *ar = htt->ar;
  277. int ret;
  278. ret = ath10k_htt_tx_alloc_cont_txbuf(htt);
  279. if (ret) {
  280. ath10k_err(ar, "failed to alloc cont tx buffer: %d\n", ret);
  281. return ret;
  282. }
  283. ret = ath10k_htt_tx_alloc_cont_frag_desc(htt);
  284. if (ret) {
  285. ath10k_err(ar, "failed to alloc cont frag desc: %d\n", ret);
  286. goto free_txbuf;
  287. }
  288. ret = ath10k_htt_tx_alloc_txq(htt);
  289. if (ret) {
  290. ath10k_err(ar, "failed to alloc txq: %d\n", ret);
  291. goto free_frag_desc;
  292. }
  293. ret = ath10k_htt_tx_alloc_txdone_fifo(htt);
  294. if (ret) {
  295. ath10k_err(ar, "failed to alloc txdone fifo: %d\n", ret);
  296. goto free_txq;
  297. }
  298. return 0;
  299. free_txq:
  300. ath10k_htt_tx_free_txq(htt);
  301. free_frag_desc:
  302. ath10k_htt_tx_free_cont_frag_desc(htt);
  303. free_txbuf:
  304. ath10k_htt_tx_free_cont_txbuf(htt);
  305. return ret;
  306. }
  307. int ath10k_htt_tx_start(struct ath10k_htt *htt)
  308. {
  309. struct ath10k *ar = htt->ar;
  310. int ret;
  311. ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt tx max num pending tx %d\n",
  312. htt->max_num_pending_tx);
  313. spin_lock_init(&htt->tx_lock);
  314. idr_init(&htt->pending_tx);
  315. if (htt->tx_mem_allocated)
  316. return 0;
  317. ret = ath10k_htt_tx_alloc_buf(htt);
  318. if (ret)
  319. goto free_idr_pending_tx;
  320. htt->tx_mem_allocated = true;
  321. return 0;
  322. free_idr_pending_tx:
  323. idr_destroy(&htt->pending_tx);
  324. return ret;
  325. }
  326. static int ath10k_htt_tx_clean_up_pending(int msdu_id, void *skb, void *ctx)
  327. {
  328. struct ath10k *ar = ctx;
  329. struct ath10k_htt *htt = &ar->htt;
  330. struct htt_tx_done tx_done = {0};
  331. ath10k_dbg(ar, ATH10K_DBG_HTT, "force cleanup msdu_id %hu\n", msdu_id);
  332. tx_done.msdu_id = msdu_id;
  333. tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
  334. ath10k_txrx_tx_unref(htt, &tx_done);
  335. return 0;
  336. }
  337. void ath10k_htt_tx_destroy(struct ath10k_htt *htt)
  338. {
  339. if (!htt->tx_mem_allocated)
  340. return;
  341. ath10k_htt_tx_free_cont_txbuf(htt);
  342. ath10k_htt_tx_free_txq(htt);
  343. ath10k_htt_tx_free_cont_frag_desc(htt);
  344. ath10k_htt_tx_free_txdone_fifo(htt);
  345. htt->tx_mem_allocated = false;
  346. }
  347. void ath10k_htt_tx_stop(struct ath10k_htt *htt)
  348. {
  349. idr_for_each(&htt->pending_tx, ath10k_htt_tx_clean_up_pending, htt->ar);
  350. idr_destroy(&htt->pending_tx);
  351. }
  352. void ath10k_htt_tx_free(struct ath10k_htt *htt)
  353. {
  354. ath10k_htt_tx_stop(htt);
  355. ath10k_htt_tx_destroy(htt);
  356. }
  357. void ath10k_htt_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  358. {
  359. dev_kfree_skb_any(skb);
  360. }
  361. void ath10k_htt_hif_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  362. {
  363. dev_kfree_skb_any(skb);
  364. }
  365. EXPORT_SYMBOL(ath10k_htt_hif_tx_complete);
  366. int ath10k_htt_h2t_ver_req_msg(struct ath10k_htt *htt)
  367. {
  368. struct ath10k *ar = htt->ar;
  369. struct sk_buff *skb;
  370. struct htt_cmd *cmd;
  371. int len = 0;
  372. int ret;
  373. len += sizeof(cmd->hdr);
  374. len += sizeof(cmd->ver_req);
  375. skb = ath10k_htc_alloc_skb(ar, len);
  376. if (!skb)
  377. return -ENOMEM;
  378. skb_put(skb, len);
  379. cmd = (struct htt_cmd *)skb->data;
  380. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_VERSION_REQ;
  381. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  382. if (ret) {
  383. dev_kfree_skb_any(skb);
  384. return ret;
  385. }
  386. return 0;
  387. }
  388. int ath10k_htt_h2t_stats_req(struct ath10k_htt *htt, u8 mask, u64 cookie)
  389. {
  390. struct ath10k *ar = htt->ar;
  391. struct htt_stats_req *req;
  392. struct sk_buff *skb;
  393. struct htt_cmd *cmd;
  394. int len = 0, ret;
  395. len += sizeof(cmd->hdr);
  396. len += sizeof(cmd->stats_req);
  397. skb = ath10k_htc_alloc_skb(ar, len);
  398. if (!skb)
  399. return -ENOMEM;
  400. skb_put(skb, len);
  401. cmd = (struct htt_cmd *)skb->data;
  402. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_STATS_REQ;
  403. req = &cmd->stats_req;
  404. memset(req, 0, sizeof(*req));
  405. /* currently we support only max 8 bit masks so no need to worry
  406. * about endian support */
  407. req->upload_types[0] = mask;
  408. req->reset_types[0] = mask;
  409. req->stat_type = HTT_STATS_REQ_CFG_STAT_TYPE_INVALID;
  410. req->cookie_lsb = cpu_to_le32(cookie & 0xffffffff);
  411. req->cookie_msb = cpu_to_le32((cookie & 0xffffffff00000000ULL) >> 32);
  412. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  413. if (ret) {
  414. ath10k_warn(ar, "failed to send htt type stats request: %d",
  415. ret);
  416. dev_kfree_skb_any(skb);
  417. return ret;
  418. }
  419. return 0;
  420. }
  421. int ath10k_htt_send_frag_desc_bank_cfg(struct ath10k_htt *htt)
  422. {
  423. struct ath10k *ar = htt->ar;
  424. struct sk_buff *skb;
  425. struct htt_cmd *cmd;
  426. struct htt_frag_desc_bank_cfg *cfg;
  427. int ret, size;
  428. u8 info;
  429. if (!ar->hw_params.continuous_frag_desc)
  430. return 0;
  431. if (!htt->frag_desc.paddr) {
  432. ath10k_warn(ar, "invalid frag desc memory\n");
  433. return -EINVAL;
  434. }
  435. size = sizeof(cmd->hdr) + sizeof(cmd->frag_desc_bank_cfg);
  436. skb = ath10k_htc_alloc_skb(ar, size);
  437. if (!skb)
  438. return -ENOMEM;
  439. skb_put(skb, size);
  440. cmd = (struct htt_cmd *)skb->data;
  441. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_FRAG_DESC_BANK_CFG;
  442. info = 0;
  443. info |= SM(htt->tx_q_state.type,
  444. HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_DEPTH_TYPE);
  445. if (test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  446. ar->running_fw->fw_file.fw_features))
  447. info |= HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_VALID;
  448. cfg = &cmd->frag_desc_bank_cfg;
  449. cfg->info = info;
  450. cfg->num_banks = 1;
  451. cfg->desc_size = sizeof(struct htt_msdu_ext_desc);
  452. cfg->bank_base_addrs[0] = __cpu_to_le32(htt->frag_desc.paddr);
  453. cfg->bank_id[0].bank_min_id = 0;
  454. cfg->bank_id[0].bank_max_id = __cpu_to_le16(htt->max_num_pending_tx -
  455. 1);
  456. cfg->q_state.paddr = cpu_to_le32(htt->tx_q_state.paddr);
  457. cfg->q_state.num_peers = cpu_to_le16(htt->tx_q_state.num_peers);
  458. cfg->q_state.num_tids = cpu_to_le16(htt->tx_q_state.num_tids);
  459. cfg->q_state.record_size = HTT_TX_Q_STATE_ENTRY_SIZE;
  460. cfg->q_state.record_multiplier = HTT_TX_Q_STATE_ENTRY_MULTIPLIER;
  461. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt frag desc bank cmd\n");
  462. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  463. if (ret) {
  464. ath10k_warn(ar, "failed to send frag desc bank cfg request: %d\n",
  465. ret);
  466. dev_kfree_skb_any(skb);
  467. return ret;
  468. }
  469. return 0;
  470. }
  471. int ath10k_htt_send_rx_ring_cfg_ll(struct ath10k_htt *htt)
  472. {
  473. struct ath10k *ar = htt->ar;
  474. struct sk_buff *skb;
  475. struct htt_cmd *cmd;
  476. struct htt_rx_ring_setup_ring *ring;
  477. const int num_rx_ring = 1;
  478. u16 flags;
  479. u32 fw_idx;
  480. int len;
  481. int ret;
  482. /*
  483. * the HW expects the buffer to be an integral number of 4-byte
  484. * "words"
  485. */
  486. BUILD_BUG_ON(!IS_ALIGNED(HTT_RX_BUF_SIZE, 4));
  487. BUILD_BUG_ON((HTT_RX_BUF_SIZE & HTT_MAX_CACHE_LINE_SIZE_MASK) != 0);
  488. len = sizeof(cmd->hdr) + sizeof(cmd->rx_setup.hdr)
  489. + (sizeof(*ring) * num_rx_ring);
  490. skb = ath10k_htc_alloc_skb(ar, len);
  491. if (!skb)
  492. return -ENOMEM;
  493. skb_put(skb, len);
  494. cmd = (struct htt_cmd *)skb->data;
  495. ring = &cmd->rx_setup.rings[0];
  496. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_RX_RING_CFG;
  497. cmd->rx_setup.hdr.num_rings = 1;
  498. /* FIXME: do we need all of this? */
  499. flags = 0;
  500. flags |= HTT_RX_RING_FLAGS_MAC80211_HDR;
  501. flags |= HTT_RX_RING_FLAGS_MSDU_PAYLOAD;
  502. flags |= HTT_RX_RING_FLAGS_PPDU_START;
  503. flags |= HTT_RX_RING_FLAGS_PPDU_END;
  504. flags |= HTT_RX_RING_FLAGS_MPDU_START;
  505. flags |= HTT_RX_RING_FLAGS_MPDU_END;
  506. flags |= HTT_RX_RING_FLAGS_MSDU_START;
  507. flags |= HTT_RX_RING_FLAGS_MSDU_END;
  508. flags |= HTT_RX_RING_FLAGS_RX_ATTENTION;
  509. flags |= HTT_RX_RING_FLAGS_FRAG_INFO;
  510. flags |= HTT_RX_RING_FLAGS_UNICAST_RX;
  511. flags |= HTT_RX_RING_FLAGS_MULTICAST_RX;
  512. flags |= HTT_RX_RING_FLAGS_CTRL_RX;
  513. flags |= HTT_RX_RING_FLAGS_MGMT_RX;
  514. flags |= HTT_RX_RING_FLAGS_NULL_RX;
  515. flags |= HTT_RX_RING_FLAGS_PHY_DATA_RX;
  516. fw_idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
  517. ring->fw_idx_shadow_reg_paddr =
  518. __cpu_to_le32(htt->rx_ring.alloc_idx.paddr);
  519. ring->rx_ring_base_paddr = __cpu_to_le32(htt->rx_ring.base_paddr);
  520. ring->rx_ring_len = __cpu_to_le16(htt->rx_ring.size);
  521. ring->rx_ring_bufsize = __cpu_to_le16(HTT_RX_BUF_SIZE);
  522. ring->flags = __cpu_to_le16(flags);
  523. ring->fw_idx_init_val = __cpu_to_le16(fw_idx);
  524. #define desc_offset(x) (offsetof(struct htt_rx_desc, x) / 4)
  525. ring->mac80211_hdr_offset = __cpu_to_le16(desc_offset(rx_hdr_status));
  526. ring->msdu_payload_offset = __cpu_to_le16(desc_offset(msdu_payload));
  527. ring->ppdu_start_offset = __cpu_to_le16(desc_offset(ppdu_start));
  528. ring->ppdu_end_offset = __cpu_to_le16(desc_offset(ppdu_end));
  529. ring->mpdu_start_offset = __cpu_to_le16(desc_offset(mpdu_start));
  530. ring->mpdu_end_offset = __cpu_to_le16(desc_offset(mpdu_end));
  531. ring->msdu_start_offset = __cpu_to_le16(desc_offset(msdu_start));
  532. ring->msdu_end_offset = __cpu_to_le16(desc_offset(msdu_end));
  533. ring->rx_attention_offset = __cpu_to_le16(desc_offset(attention));
  534. ring->frag_info_offset = __cpu_to_le16(desc_offset(frag_info));
  535. #undef desc_offset
  536. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  537. if (ret) {
  538. dev_kfree_skb_any(skb);
  539. return ret;
  540. }
  541. return 0;
  542. }
  543. int ath10k_htt_h2t_aggr_cfg_msg(struct ath10k_htt *htt,
  544. u8 max_subfrms_ampdu,
  545. u8 max_subfrms_amsdu)
  546. {
  547. struct ath10k *ar = htt->ar;
  548. struct htt_aggr_conf *aggr_conf;
  549. struct sk_buff *skb;
  550. struct htt_cmd *cmd;
  551. int len;
  552. int ret;
  553. /* Firmware defaults are: amsdu = 3 and ampdu = 64 */
  554. if (max_subfrms_ampdu == 0 || max_subfrms_ampdu > 64)
  555. return -EINVAL;
  556. if (max_subfrms_amsdu == 0 || max_subfrms_amsdu > 31)
  557. return -EINVAL;
  558. len = sizeof(cmd->hdr);
  559. len += sizeof(cmd->aggr_conf);
  560. skb = ath10k_htc_alloc_skb(ar, len);
  561. if (!skb)
  562. return -ENOMEM;
  563. skb_put(skb, len);
  564. cmd = (struct htt_cmd *)skb->data;
  565. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_AGGR_CFG;
  566. aggr_conf = &cmd->aggr_conf;
  567. aggr_conf->max_num_ampdu_subframes = max_subfrms_ampdu;
  568. aggr_conf->max_num_amsdu_subframes = max_subfrms_amsdu;
  569. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt h2t aggr cfg msg amsdu %d ampdu %d",
  570. aggr_conf->max_num_amsdu_subframes,
  571. aggr_conf->max_num_ampdu_subframes);
  572. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  573. if (ret) {
  574. dev_kfree_skb_any(skb);
  575. return ret;
  576. }
  577. return 0;
  578. }
  579. int ath10k_htt_tx_fetch_resp(struct ath10k *ar,
  580. __le32 token,
  581. __le16 fetch_seq_num,
  582. struct htt_tx_fetch_record *records,
  583. size_t num_records)
  584. {
  585. struct sk_buff *skb;
  586. struct htt_cmd *cmd;
  587. const u16 resp_id = 0;
  588. int len = 0;
  589. int ret;
  590. /* Response IDs are echo-ed back only for host driver convienence
  591. * purposes. They aren't used for anything in the driver yet so use 0.
  592. */
  593. len += sizeof(cmd->hdr);
  594. len += sizeof(cmd->tx_fetch_resp);
  595. len += sizeof(cmd->tx_fetch_resp.records[0]) * num_records;
  596. skb = ath10k_htc_alloc_skb(ar, len);
  597. if (!skb)
  598. return -ENOMEM;
  599. skb_put(skb, len);
  600. cmd = (struct htt_cmd *)skb->data;
  601. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FETCH_RESP;
  602. cmd->tx_fetch_resp.resp_id = cpu_to_le16(resp_id);
  603. cmd->tx_fetch_resp.fetch_seq_num = fetch_seq_num;
  604. cmd->tx_fetch_resp.num_records = cpu_to_le16(num_records);
  605. cmd->tx_fetch_resp.token = token;
  606. memcpy(cmd->tx_fetch_resp.records, records,
  607. sizeof(records[0]) * num_records);
  608. ret = ath10k_htc_send(&ar->htc, ar->htt.eid, skb);
  609. if (ret) {
  610. ath10k_warn(ar, "failed to submit htc command: %d\n", ret);
  611. goto err_free_skb;
  612. }
  613. return 0;
  614. err_free_skb:
  615. dev_kfree_skb_any(skb);
  616. return ret;
  617. }
  618. static u8 ath10k_htt_tx_get_vdev_id(struct ath10k *ar, struct sk_buff *skb)
  619. {
  620. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  621. struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
  622. struct ath10k_vif *arvif;
  623. if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) {
  624. return ar->scan.vdev_id;
  625. } else if (cb->vif) {
  626. arvif = (void *)cb->vif->drv_priv;
  627. return arvif->vdev_id;
  628. } else if (ar->monitor_started) {
  629. return ar->monitor_vdev_id;
  630. } else {
  631. return 0;
  632. }
  633. }
  634. static u8 ath10k_htt_tx_get_tid(struct sk_buff *skb, bool is_eth)
  635. {
  636. struct ieee80211_hdr *hdr = (void *)skb->data;
  637. struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
  638. if (!is_eth && ieee80211_is_mgmt(hdr->frame_control))
  639. return HTT_DATA_TX_EXT_TID_MGMT;
  640. else if (cb->flags & ATH10K_SKB_F_QOS)
  641. return skb->priority % IEEE80211_QOS_CTL_TID_MASK;
  642. else
  643. return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
  644. }
  645. int ath10k_htt_mgmt_tx(struct ath10k_htt *htt, struct sk_buff *msdu)
  646. {
  647. struct ath10k *ar = htt->ar;
  648. struct device *dev = ar->dev;
  649. struct sk_buff *txdesc = NULL;
  650. struct htt_cmd *cmd;
  651. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  652. u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
  653. int len = 0;
  654. int msdu_id = -1;
  655. int res;
  656. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
  657. len += sizeof(cmd->hdr);
  658. len += sizeof(cmd->mgmt_tx);
  659. spin_lock_bh(&htt->tx_lock);
  660. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  661. spin_unlock_bh(&htt->tx_lock);
  662. if (res < 0)
  663. goto err;
  664. msdu_id = res;
  665. if ((ieee80211_is_action(hdr->frame_control) ||
  666. ieee80211_is_deauth(hdr->frame_control) ||
  667. ieee80211_is_disassoc(hdr->frame_control)) &&
  668. ieee80211_has_protected(hdr->frame_control)) {
  669. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  670. }
  671. txdesc = ath10k_htc_alloc_skb(ar, len);
  672. if (!txdesc) {
  673. res = -ENOMEM;
  674. goto err_free_msdu_id;
  675. }
  676. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  677. DMA_TO_DEVICE);
  678. res = dma_mapping_error(dev, skb_cb->paddr);
  679. if (res) {
  680. res = -EIO;
  681. goto err_free_txdesc;
  682. }
  683. skb_put(txdesc, len);
  684. cmd = (struct htt_cmd *)txdesc->data;
  685. memset(cmd, 0, len);
  686. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_MGMT_TX;
  687. cmd->mgmt_tx.msdu_paddr = __cpu_to_le32(ATH10K_SKB_CB(msdu)->paddr);
  688. cmd->mgmt_tx.len = __cpu_to_le32(msdu->len);
  689. cmd->mgmt_tx.desc_id = __cpu_to_le32(msdu_id);
  690. cmd->mgmt_tx.vdev_id = __cpu_to_le32(vdev_id);
  691. memcpy(cmd->mgmt_tx.hdr, msdu->data,
  692. min_t(int, msdu->len, HTT_MGMT_FRM_HDR_DOWNLOAD_LEN));
  693. res = ath10k_htc_send(&htt->ar->htc, htt->eid, txdesc);
  694. if (res)
  695. goto err_unmap_msdu;
  696. return 0;
  697. err_unmap_msdu:
  698. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  699. err_free_txdesc:
  700. dev_kfree_skb_any(txdesc);
  701. err_free_msdu_id:
  702. spin_lock_bh(&htt->tx_lock);
  703. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  704. spin_unlock_bh(&htt->tx_lock);
  705. err:
  706. return res;
  707. }
  708. int ath10k_htt_tx(struct ath10k_htt *htt, enum ath10k_hw_txrx_mode txmode,
  709. struct sk_buff *msdu)
  710. {
  711. struct ath10k *ar = htt->ar;
  712. struct device *dev = ar->dev;
  713. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
  714. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(msdu);
  715. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  716. struct ath10k_hif_sg_item sg_items[2];
  717. struct ath10k_htt_txbuf *txbuf;
  718. struct htt_data_tx_desc_frag *frags;
  719. bool is_eth = (txmode == ATH10K_HW_TXRX_ETHERNET);
  720. u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
  721. u8 tid = ath10k_htt_tx_get_tid(msdu, is_eth);
  722. int prefetch_len;
  723. int res;
  724. u8 flags0 = 0;
  725. u16 msdu_id, flags1 = 0;
  726. u16 freq = 0;
  727. u32 frags_paddr = 0;
  728. u32 txbuf_paddr;
  729. struct htt_msdu_ext_desc *ext_desc = NULL;
  730. spin_lock_bh(&htt->tx_lock);
  731. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  732. spin_unlock_bh(&htt->tx_lock);
  733. if (res < 0)
  734. goto err;
  735. msdu_id = res;
  736. prefetch_len = min(htt->prefetch_len, msdu->len);
  737. prefetch_len = roundup(prefetch_len, 4);
  738. txbuf = &htt->txbuf.vaddr[msdu_id];
  739. txbuf_paddr = htt->txbuf.paddr +
  740. (sizeof(struct ath10k_htt_txbuf) * msdu_id);
  741. if ((ieee80211_is_action(hdr->frame_control) ||
  742. ieee80211_is_deauth(hdr->frame_control) ||
  743. ieee80211_is_disassoc(hdr->frame_control)) &&
  744. ieee80211_has_protected(hdr->frame_control)) {
  745. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  746. } else if (!(skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT) &&
  747. txmode == ATH10K_HW_TXRX_RAW &&
  748. ieee80211_has_protected(hdr->frame_control)) {
  749. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  750. }
  751. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  752. DMA_TO_DEVICE);
  753. res = dma_mapping_error(dev, skb_cb->paddr);
  754. if (res) {
  755. res = -EIO;
  756. goto err_free_msdu_id;
  757. }
  758. if (unlikely(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN))
  759. freq = ar->scan.roc_freq;
  760. switch (txmode) {
  761. case ATH10K_HW_TXRX_RAW:
  762. case ATH10K_HW_TXRX_NATIVE_WIFI:
  763. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  764. /* pass through */
  765. case ATH10K_HW_TXRX_ETHERNET:
  766. if (ar->hw_params.continuous_frag_desc) {
  767. memset(&htt->frag_desc.vaddr[msdu_id], 0,
  768. sizeof(struct htt_msdu_ext_desc));
  769. frags = (struct htt_data_tx_desc_frag *)
  770. &htt->frag_desc.vaddr[msdu_id].frags;
  771. ext_desc = &htt->frag_desc.vaddr[msdu_id];
  772. frags[0].tword_addr.paddr_lo =
  773. __cpu_to_le32(skb_cb->paddr);
  774. frags[0].tword_addr.paddr_hi = 0;
  775. frags[0].tword_addr.len_16 = __cpu_to_le16(msdu->len);
  776. frags_paddr = htt->frag_desc.paddr +
  777. (sizeof(struct htt_msdu_ext_desc) * msdu_id);
  778. } else {
  779. frags = txbuf->frags;
  780. frags[0].dword_addr.paddr =
  781. __cpu_to_le32(skb_cb->paddr);
  782. frags[0].dword_addr.len = __cpu_to_le32(msdu->len);
  783. frags[1].dword_addr.paddr = 0;
  784. frags[1].dword_addr.len = 0;
  785. frags_paddr = txbuf_paddr;
  786. }
  787. flags0 |= SM(txmode, HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  788. break;
  789. case ATH10K_HW_TXRX_MGMT:
  790. flags0 |= SM(ATH10K_HW_TXRX_MGMT,
  791. HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  792. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  793. frags_paddr = skb_cb->paddr;
  794. break;
  795. }
  796. /* Normally all commands go through HTC which manages tx credits for
  797. * each endpoint and notifies when tx is completed.
  798. *
  799. * HTT endpoint is creditless so there's no need to care about HTC
  800. * flags. In that case it is trivial to fill the HTC header here.
  801. *
  802. * MSDU transmission is considered completed upon HTT event. This
  803. * implies no relevant resources can be freed until after the event is
  804. * received. That's why HTC tx completion handler itself is ignored by
  805. * setting NULL to transfer_context for all sg items.
  806. *
  807. * There is simply no point in pushing HTT TX_FRM through HTC tx path
  808. * as it's a waste of resources. By bypassing HTC it is possible to
  809. * avoid extra memory allocations, compress data structures and thus
  810. * improve performance. */
  811. txbuf->htc_hdr.eid = htt->eid;
  812. txbuf->htc_hdr.len = __cpu_to_le16(sizeof(txbuf->cmd_hdr) +
  813. sizeof(txbuf->cmd_tx) +
  814. prefetch_len);
  815. txbuf->htc_hdr.flags = 0;
  816. if (skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT)
  817. flags0 |= HTT_DATA_TX_DESC_FLAGS0_NO_ENCRYPT;
  818. flags1 |= SM((u16)vdev_id, HTT_DATA_TX_DESC_FLAGS1_VDEV_ID);
  819. flags1 |= SM((u16)tid, HTT_DATA_TX_DESC_FLAGS1_EXT_TID);
  820. if (msdu->ip_summed == CHECKSUM_PARTIAL &&
  821. !test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
  822. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L3_OFFLOAD;
  823. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L4_OFFLOAD;
  824. if (ar->hw_params.continuous_frag_desc)
  825. ext_desc->flags |= HTT_MSDU_CHECKSUM_ENABLE;
  826. }
  827. /* Prevent firmware from sending up tx inspection requests. There's
  828. * nothing ath10k can do with frames requested for inspection so force
  829. * it to simply rely a regular tx completion with discard status.
  830. */
  831. flags1 |= HTT_DATA_TX_DESC_FLAGS1_POSTPONED;
  832. txbuf->cmd_hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FRM;
  833. txbuf->cmd_tx.flags0 = flags0;
  834. txbuf->cmd_tx.flags1 = __cpu_to_le16(flags1);
  835. txbuf->cmd_tx.len = __cpu_to_le16(msdu->len);
  836. txbuf->cmd_tx.id = __cpu_to_le16(msdu_id);
  837. txbuf->cmd_tx.frags_paddr = __cpu_to_le32(frags_paddr);
  838. if (ath10k_mac_tx_frm_has_freq(ar)) {
  839. txbuf->cmd_tx.offchan_tx.peerid =
  840. __cpu_to_le16(HTT_INVALID_PEERID);
  841. txbuf->cmd_tx.offchan_tx.freq =
  842. __cpu_to_le16(freq);
  843. } else {
  844. txbuf->cmd_tx.peerid =
  845. __cpu_to_le32(HTT_INVALID_PEERID);
  846. }
  847. trace_ath10k_htt_tx(ar, msdu_id, msdu->len, vdev_id, tid);
  848. ath10k_dbg(ar, ATH10K_DBG_HTT,
  849. "htt tx flags0 %hhu flags1 %hu len %d id %hu frags_paddr %08x, msdu_paddr %08x vdev %hhu tid %hhu freq %hu\n",
  850. flags0, flags1, msdu->len, msdu_id, frags_paddr,
  851. (u32)skb_cb->paddr, vdev_id, tid, freq);
  852. ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt tx msdu: ",
  853. msdu->data, msdu->len);
  854. trace_ath10k_tx_hdr(ar, msdu->data, msdu->len);
  855. trace_ath10k_tx_payload(ar, msdu->data, msdu->len);
  856. sg_items[0].transfer_id = 0;
  857. sg_items[0].transfer_context = NULL;
  858. sg_items[0].vaddr = &txbuf->htc_hdr;
  859. sg_items[0].paddr = txbuf_paddr +
  860. sizeof(txbuf->frags);
  861. sg_items[0].len = sizeof(txbuf->htc_hdr) +
  862. sizeof(txbuf->cmd_hdr) +
  863. sizeof(txbuf->cmd_tx);
  864. sg_items[1].transfer_id = 0;
  865. sg_items[1].transfer_context = NULL;
  866. sg_items[1].vaddr = msdu->data;
  867. sg_items[1].paddr = skb_cb->paddr;
  868. sg_items[1].len = prefetch_len;
  869. res = ath10k_hif_tx_sg(htt->ar,
  870. htt->ar->htc.endpoint[htt->eid].ul_pipe_id,
  871. sg_items, ARRAY_SIZE(sg_items));
  872. if (res)
  873. goto err_unmap_msdu;
  874. return 0;
  875. err_unmap_msdu:
  876. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  877. err_free_msdu_id:
  878. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  879. err:
  880. return res;
  881. }