nicvf_queues.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688
  1. /*
  2. * Copyright (C) 2015 Cavium, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of version 2 of the GNU General Public License
  6. * as published by the Free Software Foundation.
  7. */
  8. #include <linux/pci.h>
  9. #include <linux/netdevice.h>
  10. #include <linux/ip.h>
  11. #include <linux/etherdevice.h>
  12. #include <linux/iommu.h>
  13. #include <net/ip.h>
  14. #include <net/tso.h>
  15. #include "nic_reg.h"
  16. #include "nic.h"
  17. #include "q_struct.h"
  18. #include "nicvf_queues.h"
  19. #define NICVF_PAGE_ORDER ((PAGE_SIZE <= 4096) ? PAGE_ALLOC_COSTLY_ORDER : 0)
  20. static inline u64 nicvf_iova_to_phys(struct nicvf *nic, dma_addr_t dma_addr)
  21. {
  22. /* Translation is installed only when IOMMU is present */
  23. if (nic->iommu_domain)
  24. return iommu_iova_to_phys(nic->iommu_domain, dma_addr);
  25. return dma_addr;
  26. }
  27. static void nicvf_get_page(struct nicvf *nic)
  28. {
  29. if (!nic->rb_pageref || !nic->rb_page)
  30. return;
  31. page_ref_add(nic->rb_page, nic->rb_pageref);
  32. nic->rb_pageref = 0;
  33. }
  34. /* Poll a register for a specific value */
  35. static int nicvf_poll_reg(struct nicvf *nic, int qidx,
  36. u64 reg, int bit_pos, int bits, int val)
  37. {
  38. u64 bit_mask;
  39. u64 reg_val;
  40. int timeout = 10;
  41. bit_mask = (1ULL << bits) - 1;
  42. bit_mask = (bit_mask << bit_pos);
  43. while (timeout) {
  44. reg_val = nicvf_queue_reg_read(nic, reg, qidx);
  45. if (((reg_val & bit_mask) >> bit_pos) == val)
  46. return 0;
  47. usleep_range(1000, 2000);
  48. timeout--;
  49. }
  50. netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
  51. return 1;
  52. }
  53. /* Allocate memory for a queue's descriptors */
  54. static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
  55. int q_len, int desc_size, int align_bytes)
  56. {
  57. dmem->q_len = q_len;
  58. dmem->size = (desc_size * q_len) + align_bytes;
  59. /* Save address, need it while freeing */
  60. dmem->unalign_base = dma_zalloc_coherent(&nic->pdev->dev, dmem->size,
  61. &dmem->dma, GFP_KERNEL);
  62. if (!dmem->unalign_base)
  63. return -ENOMEM;
  64. /* Align memory address for 'align_bytes' */
  65. dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
  66. dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
  67. return 0;
  68. }
  69. /* Free queue's descriptor memory */
  70. static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
  71. {
  72. if (!dmem)
  73. return;
  74. dma_free_coherent(&nic->pdev->dev, dmem->size,
  75. dmem->unalign_base, dmem->dma);
  76. dmem->unalign_base = NULL;
  77. dmem->base = NULL;
  78. }
  79. /* Allocate buffer for packet reception
  80. * HW returns memory address where packet is DMA'ed but not a pointer
  81. * into RBDR ring, so save buffer address at the start of fragment and
  82. * align the start address to a cache aligned address
  83. */
  84. static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, gfp_t gfp,
  85. u32 buf_len, u64 **rbuf)
  86. {
  87. int order = NICVF_PAGE_ORDER;
  88. /* Check if request can be accomodated in previous allocated page */
  89. if (nic->rb_page &&
  90. ((nic->rb_page_offset + buf_len) < (PAGE_SIZE << order))) {
  91. nic->rb_pageref++;
  92. goto ret;
  93. }
  94. nicvf_get_page(nic);
  95. /* Allocate a new page */
  96. nic->rb_page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
  97. order);
  98. if (!nic->rb_page) {
  99. this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures);
  100. return -ENOMEM;
  101. }
  102. nic->rb_page_offset = 0;
  103. ret:
  104. /* HW will ensure data coherency, CPU sync not required */
  105. *rbuf = (u64 *)((u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page,
  106. nic->rb_page_offset, buf_len,
  107. DMA_FROM_DEVICE,
  108. DMA_ATTR_SKIP_CPU_SYNC));
  109. if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) {
  110. if (!nic->rb_page_offset)
  111. __free_pages(nic->rb_page, order);
  112. nic->rb_page = NULL;
  113. return -ENOMEM;
  114. }
  115. nic->rb_page_offset += buf_len;
  116. return 0;
  117. }
  118. /* Build skb around receive buffer */
  119. static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
  120. u64 rb_ptr, int len)
  121. {
  122. void *data;
  123. struct sk_buff *skb;
  124. data = phys_to_virt(rb_ptr);
  125. /* Now build an skb to give to stack */
  126. skb = build_skb(data, RCV_FRAG_LEN);
  127. if (!skb) {
  128. put_page(virt_to_page(data));
  129. return NULL;
  130. }
  131. prefetch(skb->data);
  132. return skb;
  133. }
  134. /* Allocate RBDR ring and populate receive buffers */
  135. static int nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
  136. int ring_len, int buf_size)
  137. {
  138. int idx;
  139. u64 *rbuf;
  140. struct rbdr_entry_t *desc;
  141. int err;
  142. err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
  143. sizeof(struct rbdr_entry_t),
  144. NICVF_RCV_BUF_ALIGN_BYTES);
  145. if (err)
  146. return err;
  147. rbdr->desc = rbdr->dmem.base;
  148. /* Buffer size has to be in multiples of 128 bytes */
  149. rbdr->dma_size = buf_size;
  150. rbdr->enable = true;
  151. rbdr->thresh = RBDR_THRESH;
  152. rbdr->head = 0;
  153. rbdr->tail = 0;
  154. nic->rb_page = NULL;
  155. for (idx = 0; idx < ring_len; idx++) {
  156. err = nicvf_alloc_rcv_buffer(nic, GFP_KERNEL, RCV_FRAG_LEN,
  157. &rbuf);
  158. if (err) {
  159. /* To free already allocated and mapped ones */
  160. rbdr->tail = idx - 1;
  161. return err;
  162. }
  163. desc = GET_RBDR_DESC(rbdr, idx);
  164. desc->buf_addr = (u64)rbuf >> NICVF_RCV_BUF_ALIGN;
  165. }
  166. nicvf_get_page(nic);
  167. return 0;
  168. }
  169. /* Free RBDR ring and its receive buffers */
  170. static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
  171. {
  172. int head, tail;
  173. u64 buf_addr, phys_addr;
  174. struct rbdr_entry_t *desc;
  175. if (!rbdr)
  176. return;
  177. rbdr->enable = false;
  178. if (!rbdr->dmem.base)
  179. return;
  180. head = rbdr->head;
  181. tail = rbdr->tail;
  182. /* Release page references */
  183. while (head != tail) {
  184. desc = GET_RBDR_DESC(rbdr, head);
  185. buf_addr = ((u64)desc->buf_addr) << NICVF_RCV_BUF_ALIGN;
  186. phys_addr = nicvf_iova_to_phys(nic, buf_addr);
  187. dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
  188. DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
  189. if (phys_addr)
  190. put_page(virt_to_page(phys_to_virt(phys_addr)));
  191. head++;
  192. head &= (rbdr->dmem.q_len - 1);
  193. }
  194. /* Release buffer of tail desc */
  195. desc = GET_RBDR_DESC(rbdr, tail);
  196. buf_addr = ((u64)desc->buf_addr) << NICVF_RCV_BUF_ALIGN;
  197. phys_addr = nicvf_iova_to_phys(nic, buf_addr);
  198. dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
  199. DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
  200. if (phys_addr)
  201. put_page(virt_to_page(phys_to_virt(phys_addr)));
  202. /* Free RBDR ring */
  203. nicvf_free_q_desc_mem(nic, &rbdr->dmem);
  204. }
  205. /* Refill receive buffer descriptors with new buffers.
  206. */
  207. static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
  208. {
  209. struct queue_set *qs = nic->qs;
  210. int rbdr_idx = qs->rbdr_cnt;
  211. int tail, qcount;
  212. int refill_rb_cnt;
  213. struct rbdr *rbdr;
  214. struct rbdr_entry_t *desc;
  215. u64 *rbuf;
  216. int new_rb = 0;
  217. refill:
  218. if (!rbdr_idx)
  219. return;
  220. rbdr_idx--;
  221. rbdr = &qs->rbdr[rbdr_idx];
  222. /* Check if it's enabled */
  223. if (!rbdr->enable)
  224. goto next_rbdr;
  225. /* Get no of desc's to be refilled */
  226. qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
  227. qcount &= 0x7FFFF;
  228. /* Doorbell can be ringed with a max of ring size minus 1 */
  229. if (qcount >= (qs->rbdr_len - 1))
  230. goto next_rbdr;
  231. else
  232. refill_rb_cnt = qs->rbdr_len - qcount - 1;
  233. /* Start filling descs from tail */
  234. tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
  235. while (refill_rb_cnt) {
  236. tail++;
  237. tail &= (rbdr->dmem.q_len - 1);
  238. if (nicvf_alloc_rcv_buffer(nic, gfp, RCV_FRAG_LEN, &rbuf))
  239. break;
  240. desc = GET_RBDR_DESC(rbdr, tail);
  241. desc->buf_addr = (u64)rbuf >> NICVF_RCV_BUF_ALIGN;
  242. refill_rb_cnt--;
  243. new_rb++;
  244. }
  245. nicvf_get_page(nic);
  246. /* make sure all memory stores are done before ringing doorbell */
  247. smp_wmb();
  248. /* Check if buffer allocation failed */
  249. if (refill_rb_cnt)
  250. nic->rb_alloc_fail = true;
  251. else
  252. nic->rb_alloc_fail = false;
  253. /* Notify HW */
  254. nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
  255. rbdr_idx, new_rb);
  256. next_rbdr:
  257. /* Re-enable RBDR interrupts only if buffer allocation is success */
  258. if (!nic->rb_alloc_fail && rbdr->enable &&
  259. netif_running(nic->pnicvf->netdev))
  260. nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
  261. if (rbdr_idx)
  262. goto refill;
  263. }
  264. /* Alloc rcv buffers in non-atomic mode for better success */
  265. void nicvf_rbdr_work(struct work_struct *work)
  266. {
  267. struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
  268. nicvf_refill_rbdr(nic, GFP_KERNEL);
  269. if (nic->rb_alloc_fail)
  270. schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
  271. else
  272. nic->rb_work_scheduled = false;
  273. }
  274. /* In Softirq context, alloc rcv buffers in atomic mode */
  275. void nicvf_rbdr_task(unsigned long data)
  276. {
  277. struct nicvf *nic = (struct nicvf *)data;
  278. nicvf_refill_rbdr(nic, GFP_ATOMIC);
  279. if (nic->rb_alloc_fail) {
  280. nic->rb_work_scheduled = true;
  281. schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
  282. }
  283. }
  284. /* Initialize completion queue */
  285. static int nicvf_init_cmp_queue(struct nicvf *nic,
  286. struct cmp_queue *cq, int q_len)
  287. {
  288. int err;
  289. err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
  290. NICVF_CQ_BASE_ALIGN_BYTES);
  291. if (err)
  292. return err;
  293. cq->desc = cq->dmem.base;
  294. cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH;
  295. nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
  296. return 0;
  297. }
  298. static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
  299. {
  300. if (!cq)
  301. return;
  302. if (!cq->dmem.base)
  303. return;
  304. nicvf_free_q_desc_mem(nic, &cq->dmem);
  305. }
  306. /* Initialize transmit queue */
  307. static int nicvf_init_snd_queue(struct nicvf *nic,
  308. struct snd_queue *sq, int q_len)
  309. {
  310. int err;
  311. err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
  312. NICVF_SQ_BASE_ALIGN_BYTES);
  313. if (err)
  314. return err;
  315. sq->desc = sq->dmem.base;
  316. sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
  317. if (!sq->skbuff)
  318. return -ENOMEM;
  319. sq->head = 0;
  320. sq->tail = 0;
  321. atomic_set(&sq->free_cnt, q_len - 1);
  322. sq->thresh = SND_QUEUE_THRESH;
  323. /* Preallocate memory for TSO segment's header */
  324. sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
  325. q_len * TSO_HEADER_SIZE,
  326. &sq->tso_hdrs_phys, GFP_KERNEL);
  327. if (!sq->tso_hdrs)
  328. return -ENOMEM;
  329. return 0;
  330. }
  331. void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq,
  332. int hdr_sqe, u8 subdesc_cnt)
  333. {
  334. u8 idx;
  335. struct sq_gather_subdesc *gather;
  336. /* Unmap DMA mapped skb data buffers */
  337. for (idx = 0; idx < subdesc_cnt; idx++) {
  338. hdr_sqe++;
  339. hdr_sqe &= (sq->dmem.q_len - 1);
  340. gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe);
  341. /* HW will ensure data coherency, CPU sync not required */
  342. dma_unmap_page_attrs(&nic->pdev->dev, gather->addr,
  343. gather->size, DMA_TO_DEVICE,
  344. DMA_ATTR_SKIP_CPU_SYNC);
  345. }
  346. }
  347. static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
  348. {
  349. struct sk_buff *skb;
  350. struct sq_hdr_subdesc *hdr;
  351. struct sq_hdr_subdesc *tso_sqe;
  352. if (!sq)
  353. return;
  354. if (!sq->dmem.base)
  355. return;
  356. if (sq->tso_hdrs)
  357. dma_free_coherent(&nic->pdev->dev,
  358. sq->dmem.q_len * TSO_HEADER_SIZE,
  359. sq->tso_hdrs, sq->tso_hdrs_phys);
  360. /* Free pending skbs in the queue */
  361. smp_rmb();
  362. while (sq->head != sq->tail) {
  363. skb = (struct sk_buff *)sq->skbuff[sq->head];
  364. if (!skb)
  365. goto next;
  366. hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
  367. /* Check for dummy descriptor used for HW TSO offload on 88xx */
  368. if (hdr->dont_send) {
  369. /* Get actual TSO descriptors and unmap them */
  370. tso_sqe =
  371. (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
  372. nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
  373. tso_sqe->subdesc_cnt);
  374. } else {
  375. nicvf_unmap_sndq_buffers(nic, sq, sq->head,
  376. hdr->subdesc_cnt);
  377. }
  378. dev_kfree_skb_any(skb);
  379. next:
  380. sq->head++;
  381. sq->head &= (sq->dmem.q_len - 1);
  382. }
  383. kfree(sq->skbuff);
  384. nicvf_free_q_desc_mem(nic, &sq->dmem);
  385. }
  386. static void nicvf_reclaim_snd_queue(struct nicvf *nic,
  387. struct queue_set *qs, int qidx)
  388. {
  389. /* Disable send queue */
  390. nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
  391. /* Check if SQ is stopped */
  392. if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
  393. return;
  394. /* Reset send queue */
  395. nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
  396. }
  397. static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
  398. struct queue_set *qs, int qidx)
  399. {
  400. union nic_mbx mbx = {};
  401. /* Make sure all packets in the pipeline are written back into mem */
  402. mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
  403. nicvf_send_msg_to_pf(nic, &mbx);
  404. }
  405. static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
  406. struct queue_set *qs, int qidx)
  407. {
  408. /* Disable timer threshold (doesn't get reset upon CQ reset */
  409. nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
  410. /* Disable completion queue */
  411. nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
  412. /* Reset completion queue */
  413. nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
  414. }
  415. static void nicvf_reclaim_rbdr(struct nicvf *nic,
  416. struct rbdr *rbdr, int qidx)
  417. {
  418. u64 tmp, fifo_state;
  419. int timeout = 10;
  420. /* Save head and tail pointers for feeing up buffers */
  421. rbdr->head = nicvf_queue_reg_read(nic,
  422. NIC_QSET_RBDR_0_1_HEAD,
  423. qidx) >> 3;
  424. rbdr->tail = nicvf_queue_reg_read(nic,
  425. NIC_QSET_RBDR_0_1_TAIL,
  426. qidx) >> 3;
  427. /* If RBDR FIFO is in 'FAIL' state then do a reset first
  428. * before relaiming.
  429. */
  430. fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
  431. if (((fifo_state >> 62) & 0x03) == 0x3)
  432. nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
  433. qidx, NICVF_RBDR_RESET);
  434. /* Disable RBDR */
  435. nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
  436. if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
  437. return;
  438. while (1) {
  439. tmp = nicvf_queue_reg_read(nic,
  440. NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
  441. qidx);
  442. if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
  443. break;
  444. usleep_range(1000, 2000);
  445. timeout--;
  446. if (!timeout) {
  447. netdev_err(nic->netdev,
  448. "Failed polling on prefetch status\n");
  449. return;
  450. }
  451. }
  452. nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
  453. qidx, NICVF_RBDR_RESET);
  454. if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
  455. return;
  456. nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
  457. if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
  458. return;
  459. }
  460. void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
  461. {
  462. u64 rq_cfg;
  463. int sqs;
  464. rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);
  465. /* Enable first VLAN stripping */
  466. if (features & NETIF_F_HW_VLAN_CTAG_RX)
  467. rq_cfg |= (1ULL << 25);
  468. else
  469. rq_cfg &= ~(1ULL << 25);
  470. nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
  471. /* Configure Secondary Qsets, if any */
  472. for (sqs = 0; sqs < nic->sqs_count; sqs++)
  473. if (nic->snicvf[sqs])
  474. nicvf_queue_reg_write(nic->snicvf[sqs],
  475. NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
  476. }
  477. static void nicvf_reset_rcv_queue_stats(struct nicvf *nic)
  478. {
  479. union nic_mbx mbx = {};
  480. /* Reset all RQ/SQ and VF stats */
  481. mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER;
  482. mbx.reset_stat.rx_stat_mask = 0x3FFF;
  483. mbx.reset_stat.tx_stat_mask = 0x1F;
  484. mbx.reset_stat.rq_stat_mask = 0xFFFF;
  485. mbx.reset_stat.sq_stat_mask = 0xFFFF;
  486. nicvf_send_msg_to_pf(nic, &mbx);
  487. }
  488. /* Configures receive queue */
  489. static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
  490. int qidx, bool enable)
  491. {
  492. union nic_mbx mbx = {};
  493. struct rcv_queue *rq;
  494. struct rq_cfg rq_cfg;
  495. rq = &qs->rq[qidx];
  496. rq->enable = enable;
  497. /* Disable receive queue */
  498. nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
  499. if (!rq->enable) {
  500. nicvf_reclaim_rcv_queue(nic, qs, qidx);
  501. return;
  502. }
  503. rq->cq_qs = qs->vnic_id;
  504. rq->cq_idx = qidx;
  505. rq->start_rbdr_qs = qs->vnic_id;
  506. rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
  507. rq->cont_rbdr_qs = qs->vnic_id;
  508. rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
  509. /* all writes of RBDR data to be loaded into L2 Cache as well*/
  510. rq->caching = 1;
  511. /* Send a mailbox msg to PF to config RQ */
  512. mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
  513. mbx.rq.qs_num = qs->vnic_id;
  514. mbx.rq.rq_num = qidx;
  515. mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
  516. (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
  517. (rq->cont_qs_rbdr_idx << 8) |
  518. (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
  519. nicvf_send_msg_to_pf(nic, &mbx);
  520. mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
  521. mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
  522. (RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) |
  523. (qs->vnic_id << 0);
  524. nicvf_send_msg_to_pf(nic, &mbx);
  525. /* RQ drop config
  526. * Enable CQ drop to reserve sufficient CQEs for all tx packets
  527. */
  528. mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
  529. mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
  530. (RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) |
  531. (RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8);
  532. nicvf_send_msg_to_pf(nic, &mbx);
  533. if (!nic->sqs_mode && (qidx == 0)) {
  534. /* Enable checking L3/L4 length and TCP/UDP checksums
  535. * Also allow IPv6 pkts with zero UDP checksum.
  536. */
  537. nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0,
  538. (BIT(24) | BIT(23) | BIT(21) | BIT(20)));
  539. nicvf_config_vlan_stripping(nic, nic->netdev->features);
  540. }
  541. /* Enable Receive queue */
  542. memset(&rq_cfg, 0, sizeof(struct rq_cfg));
  543. rq_cfg.ena = 1;
  544. rq_cfg.tcp_ena = 0;
  545. nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
  546. }
  547. /* Configures completion queue */
  548. void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
  549. int qidx, bool enable)
  550. {
  551. struct cmp_queue *cq;
  552. struct cq_cfg cq_cfg;
  553. cq = &qs->cq[qidx];
  554. cq->enable = enable;
  555. if (!cq->enable) {
  556. nicvf_reclaim_cmp_queue(nic, qs, qidx);
  557. return;
  558. }
  559. /* Reset completion queue */
  560. nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
  561. if (!cq->enable)
  562. return;
  563. spin_lock_init(&cq->lock);
  564. /* Set completion queue base address */
  565. nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
  566. qidx, (u64)(cq->dmem.phys_base));
  567. /* Enable Completion queue */
  568. memset(&cq_cfg, 0, sizeof(struct cq_cfg));
  569. cq_cfg.ena = 1;
  570. cq_cfg.reset = 0;
  571. cq_cfg.caching = 0;
  572. cq_cfg.qsize = ilog2(qs->cq_len >> 10);
  573. cq_cfg.avg_con = 0;
  574. nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
  575. /* Set threshold value for interrupt generation */
  576. nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
  577. nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
  578. qidx, CMP_QUEUE_TIMER_THRESH);
  579. }
  580. /* Configures transmit queue */
  581. static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
  582. int qidx, bool enable)
  583. {
  584. union nic_mbx mbx = {};
  585. struct snd_queue *sq;
  586. struct sq_cfg sq_cfg;
  587. sq = &qs->sq[qidx];
  588. sq->enable = enable;
  589. if (!sq->enable) {
  590. nicvf_reclaim_snd_queue(nic, qs, qidx);
  591. return;
  592. }
  593. /* Reset send queue */
  594. nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
  595. sq->cq_qs = qs->vnic_id;
  596. sq->cq_idx = qidx;
  597. /* Send a mailbox msg to PF to config SQ */
  598. mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
  599. mbx.sq.qs_num = qs->vnic_id;
  600. mbx.sq.sq_num = qidx;
  601. mbx.sq.sqs_mode = nic->sqs_mode;
  602. mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
  603. nicvf_send_msg_to_pf(nic, &mbx);
  604. /* Set queue base address */
  605. nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
  606. qidx, (u64)(sq->dmem.phys_base));
  607. /* Enable send queue & set queue size */
  608. memset(&sq_cfg, 0, sizeof(struct sq_cfg));
  609. sq_cfg.ena = 1;
  610. sq_cfg.reset = 0;
  611. sq_cfg.ldwb = 0;
  612. sq_cfg.qsize = ilog2(qs->sq_len >> 10);
  613. sq_cfg.tstmp_bgx_intf = 0;
  614. /* CQ's level at which HW will stop processing SQEs to avoid
  615. * transmitting a pkt with no space in CQ to post CQE_TX.
  616. */
  617. sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len;
  618. nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
  619. /* Set threshold value for interrupt generation */
  620. nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
  621. /* Set queue:cpu affinity for better load distribution */
  622. if (cpu_online(qidx)) {
  623. cpumask_set_cpu(qidx, &sq->affinity_mask);
  624. netif_set_xps_queue(nic->netdev,
  625. &sq->affinity_mask, qidx);
  626. }
  627. }
  628. /* Configures receive buffer descriptor ring */
  629. static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
  630. int qidx, bool enable)
  631. {
  632. struct rbdr *rbdr;
  633. struct rbdr_cfg rbdr_cfg;
  634. rbdr = &qs->rbdr[qidx];
  635. nicvf_reclaim_rbdr(nic, rbdr, qidx);
  636. if (!enable)
  637. return;
  638. /* Set descriptor base address */
  639. nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
  640. qidx, (u64)(rbdr->dmem.phys_base));
  641. /* Enable RBDR & set queue size */
  642. /* Buffer size should be in multiples of 128 bytes */
  643. memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg));
  644. rbdr_cfg.ena = 1;
  645. rbdr_cfg.reset = 0;
  646. rbdr_cfg.ldwb = 0;
  647. rbdr_cfg.qsize = RBDR_SIZE;
  648. rbdr_cfg.avg_con = 0;
  649. rbdr_cfg.lines = rbdr->dma_size / 128;
  650. nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
  651. qidx, *(u64 *)&rbdr_cfg);
  652. /* Notify HW */
  653. nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
  654. qidx, qs->rbdr_len - 1);
  655. /* Set threshold value for interrupt generation */
  656. nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
  657. qidx, rbdr->thresh - 1);
  658. }
  659. /* Requests PF to assign and enable Qset */
  660. void nicvf_qset_config(struct nicvf *nic, bool enable)
  661. {
  662. union nic_mbx mbx = {};
  663. struct queue_set *qs = nic->qs;
  664. struct qs_cfg *qs_cfg;
  665. if (!qs) {
  666. netdev_warn(nic->netdev,
  667. "Qset is still not allocated, don't init queues\n");
  668. return;
  669. }
  670. qs->enable = enable;
  671. qs->vnic_id = nic->vf_id;
  672. /* Send a mailbox msg to PF to config Qset */
  673. mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
  674. mbx.qs.num = qs->vnic_id;
  675. mbx.qs.sqs_count = nic->sqs_count;
  676. mbx.qs.cfg = 0;
  677. qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
  678. if (qs->enable) {
  679. qs_cfg->ena = 1;
  680. #ifdef __BIG_ENDIAN
  681. qs_cfg->be = 1;
  682. #endif
  683. qs_cfg->vnic = qs->vnic_id;
  684. }
  685. nicvf_send_msg_to_pf(nic, &mbx);
  686. }
  687. static void nicvf_free_resources(struct nicvf *nic)
  688. {
  689. int qidx;
  690. struct queue_set *qs = nic->qs;
  691. /* Free receive buffer descriptor ring */
  692. for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
  693. nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
  694. /* Free completion queue */
  695. for (qidx = 0; qidx < qs->cq_cnt; qidx++)
  696. nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
  697. /* Free send queue */
  698. for (qidx = 0; qidx < qs->sq_cnt; qidx++)
  699. nicvf_free_snd_queue(nic, &qs->sq[qidx]);
  700. }
  701. static int nicvf_alloc_resources(struct nicvf *nic)
  702. {
  703. int qidx;
  704. struct queue_set *qs = nic->qs;
  705. /* Alloc receive buffer descriptor ring */
  706. for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
  707. if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
  708. DMA_BUFFER_LEN))
  709. goto alloc_fail;
  710. }
  711. /* Alloc send queue */
  712. for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
  713. if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len))
  714. goto alloc_fail;
  715. }
  716. /* Alloc completion queue */
  717. for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
  718. if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
  719. goto alloc_fail;
  720. }
  721. return 0;
  722. alloc_fail:
  723. nicvf_free_resources(nic);
  724. return -ENOMEM;
  725. }
  726. int nicvf_set_qset_resources(struct nicvf *nic)
  727. {
  728. struct queue_set *qs;
  729. qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
  730. if (!qs)
  731. return -ENOMEM;
  732. nic->qs = qs;
  733. /* Set count of each queue */
  734. qs->rbdr_cnt = DEFAULT_RBDR_CNT;
  735. qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus());
  736. qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus());
  737. qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt);
  738. /* Set queue lengths */
  739. qs->rbdr_len = RCV_BUF_COUNT;
  740. qs->sq_len = SND_QUEUE_LEN;
  741. qs->cq_len = CMP_QUEUE_LEN;
  742. nic->rx_queues = qs->rq_cnt;
  743. nic->tx_queues = qs->sq_cnt;
  744. return 0;
  745. }
  746. int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
  747. {
  748. bool disable = false;
  749. struct queue_set *qs = nic->qs;
  750. struct queue_set *pqs = nic->pnicvf->qs;
  751. int qidx;
  752. if (!qs)
  753. return 0;
  754. /* Take primary VF's queue lengths.
  755. * This is needed to take queue lengths set from ethtool
  756. * into consideration.
  757. */
  758. if (nic->sqs_mode && pqs) {
  759. qs->cq_len = pqs->cq_len;
  760. qs->sq_len = pqs->sq_len;
  761. }
  762. if (enable) {
  763. if (nicvf_alloc_resources(nic))
  764. return -ENOMEM;
  765. for (qidx = 0; qidx < qs->sq_cnt; qidx++)
  766. nicvf_snd_queue_config(nic, qs, qidx, enable);
  767. for (qidx = 0; qidx < qs->cq_cnt; qidx++)
  768. nicvf_cmp_queue_config(nic, qs, qidx, enable);
  769. for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
  770. nicvf_rbdr_config(nic, qs, qidx, enable);
  771. for (qidx = 0; qidx < qs->rq_cnt; qidx++)
  772. nicvf_rcv_queue_config(nic, qs, qidx, enable);
  773. } else {
  774. for (qidx = 0; qidx < qs->rq_cnt; qidx++)
  775. nicvf_rcv_queue_config(nic, qs, qidx, disable);
  776. for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
  777. nicvf_rbdr_config(nic, qs, qidx, disable);
  778. for (qidx = 0; qidx < qs->sq_cnt; qidx++)
  779. nicvf_snd_queue_config(nic, qs, qidx, disable);
  780. for (qidx = 0; qidx < qs->cq_cnt; qidx++)
  781. nicvf_cmp_queue_config(nic, qs, qidx, disable);
  782. nicvf_free_resources(nic);
  783. }
  784. /* Reset RXQ's stats.
  785. * SQ's stats will get reset automatically once SQ is reset.
  786. */
  787. nicvf_reset_rcv_queue_stats(nic);
  788. return 0;
  789. }
  790. /* Get a free desc from SQ
  791. * returns descriptor ponter & descriptor number
  792. */
  793. static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
  794. {
  795. int qentry;
  796. qentry = sq->tail;
  797. atomic_sub(desc_cnt, &sq->free_cnt);
  798. sq->tail += desc_cnt;
  799. sq->tail &= (sq->dmem.q_len - 1);
  800. return qentry;
  801. }
  802. /* Rollback to previous tail pointer when descriptors not used */
  803. static inline void nicvf_rollback_sq_desc(struct snd_queue *sq,
  804. int qentry, int desc_cnt)
  805. {
  806. sq->tail = qentry;
  807. atomic_add(desc_cnt, &sq->free_cnt);
  808. }
  809. /* Free descriptor back to SQ for future use */
  810. void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
  811. {
  812. atomic_add(desc_cnt, &sq->free_cnt);
  813. sq->head += desc_cnt;
  814. sq->head &= (sq->dmem.q_len - 1);
  815. }
  816. static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
  817. {
  818. qentry++;
  819. qentry &= (sq->dmem.q_len - 1);
  820. return qentry;
  821. }
  822. void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
  823. {
  824. u64 sq_cfg;
  825. sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
  826. sq_cfg |= NICVF_SQ_EN;
  827. nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
  828. /* Ring doorbell so that H/W restarts processing SQEs */
  829. nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
  830. }
  831. void nicvf_sq_disable(struct nicvf *nic, int qidx)
  832. {
  833. u64 sq_cfg;
  834. sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
  835. sq_cfg &= ~NICVF_SQ_EN;
  836. nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
  837. }
  838. void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
  839. int qidx)
  840. {
  841. u64 head, tail;
  842. struct sk_buff *skb;
  843. struct nicvf *nic = netdev_priv(netdev);
  844. struct sq_hdr_subdesc *hdr;
  845. head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
  846. tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
  847. while (sq->head != head) {
  848. hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
  849. if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
  850. nicvf_put_sq_desc(sq, 1);
  851. continue;
  852. }
  853. skb = (struct sk_buff *)sq->skbuff[sq->head];
  854. if (skb)
  855. dev_kfree_skb_any(skb);
  856. atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
  857. atomic64_add(hdr->tot_len,
  858. (atomic64_t *)&netdev->stats.tx_bytes);
  859. nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
  860. }
  861. }
  862. /* Calculate no of SQ subdescriptors needed to transmit all
  863. * segments of this TSO packet.
  864. * Taken from 'Tilera network driver' with a minor modification.
  865. */
  866. static int nicvf_tso_count_subdescs(struct sk_buff *skb)
  867. {
  868. struct skb_shared_info *sh = skb_shinfo(skb);
  869. unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
  870. unsigned int data_len = skb->len - sh_len;
  871. unsigned int p_len = sh->gso_size;
  872. long f_id = -1; /* id of the current fragment */
  873. long f_size = skb_headlen(skb) - sh_len; /* current fragment size */
  874. long f_used = 0; /* bytes used from the current fragment */
  875. long n; /* size of the current piece of payload */
  876. int num_edescs = 0;
  877. int segment;
  878. for (segment = 0; segment < sh->gso_segs; segment++) {
  879. unsigned int p_used = 0;
  880. /* One edesc for header and for each piece of the payload. */
  881. for (num_edescs++; p_used < p_len; num_edescs++) {
  882. /* Advance as needed. */
  883. while (f_used >= f_size) {
  884. f_id++;
  885. f_size = skb_frag_size(&sh->frags[f_id]);
  886. f_used = 0;
  887. }
  888. /* Use bytes from the current fragment. */
  889. n = p_len - p_used;
  890. if (n > f_size - f_used)
  891. n = f_size - f_used;
  892. f_used += n;
  893. p_used += n;
  894. }
  895. /* The last segment may be less than gso_size. */
  896. data_len -= p_len;
  897. if (data_len < p_len)
  898. p_len = data_len;
  899. }
  900. /* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
  901. return num_edescs + sh->gso_segs;
  902. }
  903. #define POST_CQE_DESC_COUNT 2
  904. /* Get the number of SQ descriptors needed to xmit this skb */
  905. static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
  906. {
  907. int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
  908. if (skb_shinfo(skb)->gso_size && !nic->hw_tso) {
  909. subdesc_cnt = nicvf_tso_count_subdescs(skb);
  910. return subdesc_cnt;
  911. }
  912. /* Dummy descriptors to get TSO pkt completion notification */
  913. if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size)
  914. subdesc_cnt += POST_CQE_DESC_COUNT;
  915. if (skb_shinfo(skb)->nr_frags)
  916. subdesc_cnt += skb_shinfo(skb)->nr_frags;
  917. return subdesc_cnt;
  918. }
  919. /* Add SQ HEADER subdescriptor.
  920. * First subdescriptor for every send descriptor.
  921. */
  922. static inline void
  923. nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
  924. int subdesc_cnt, struct sk_buff *skb, int len)
  925. {
  926. int proto;
  927. struct sq_hdr_subdesc *hdr;
  928. hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
  929. memset(hdr, 0, SND_QUEUE_DESC_SIZE);
  930. hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
  931. if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) {
  932. /* post_cqe = 0, to avoid HW posting a CQE for every TSO
  933. * segment transmitted on 88xx.
  934. */
  935. hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT;
  936. } else {
  937. sq->skbuff[qentry] = (u64)skb;
  938. /* Enable notification via CQE after processing SQE */
  939. hdr->post_cqe = 1;
  940. /* No of subdescriptors following this */
  941. hdr->subdesc_cnt = subdesc_cnt;
  942. }
  943. hdr->tot_len = len;
  944. /* Offload checksum calculation to HW */
  945. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  946. hdr->csum_l3 = 1; /* Enable IP csum calculation */
  947. hdr->l3_offset = skb_network_offset(skb);
  948. hdr->l4_offset = skb_transport_offset(skb);
  949. proto = ip_hdr(skb)->protocol;
  950. switch (proto) {
  951. case IPPROTO_TCP:
  952. hdr->csum_l4 = SEND_L4_CSUM_TCP;
  953. break;
  954. case IPPROTO_UDP:
  955. hdr->csum_l4 = SEND_L4_CSUM_UDP;
  956. break;
  957. case IPPROTO_SCTP:
  958. hdr->csum_l4 = SEND_L4_CSUM_SCTP;
  959. break;
  960. }
  961. }
  962. if (nic->hw_tso && skb_shinfo(skb)->gso_size) {
  963. hdr->tso = 1;
  964. hdr->tso_start = skb_transport_offset(skb) + tcp_hdrlen(skb);
  965. hdr->tso_max_paysize = skb_shinfo(skb)->gso_size;
  966. /* For non-tunneled pkts, point this to L2 ethertype */
  967. hdr->inner_l3_offset = skb_network_offset(skb) - 2;
  968. this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
  969. }
  970. }
  971. /* SQ GATHER subdescriptor
  972. * Must follow HDR descriptor
  973. */
  974. static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
  975. int size, u64 data)
  976. {
  977. struct sq_gather_subdesc *gather;
  978. qentry &= (sq->dmem.q_len - 1);
  979. gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
  980. memset(gather, 0, SND_QUEUE_DESC_SIZE);
  981. gather->subdesc_type = SQ_DESC_TYPE_GATHER;
  982. gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
  983. gather->size = size;
  984. gather->addr = data;
  985. }
  986. /* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO
  987. * packet so that a CQE is posted as a notifation for transmission of
  988. * TSO packet.
  989. */
  990. static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry,
  991. int tso_sqe, struct sk_buff *skb)
  992. {
  993. struct sq_imm_subdesc *imm;
  994. struct sq_hdr_subdesc *hdr;
  995. sq->skbuff[qentry] = (u64)skb;
  996. hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
  997. memset(hdr, 0, SND_QUEUE_DESC_SIZE);
  998. hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
  999. /* Enable notification via CQE after processing SQE */
  1000. hdr->post_cqe = 1;
  1001. /* There is no packet to transmit here */
  1002. hdr->dont_send = 1;
  1003. hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1;
  1004. hdr->tot_len = 1;
  1005. /* Actual TSO header SQE index, needed for cleanup */
  1006. hdr->rsvd2 = tso_sqe;
  1007. qentry = nicvf_get_nxt_sqentry(sq, qentry);
  1008. imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry);
  1009. memset(imm, 0, SND_QUEUE_DESC_SIZE);
  1010. imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE;
  1011. imm->len = 1;
  1012. }
  1013. static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb,
  1014. int sq_num, int desc_cnt)
  1015. {
  1016. struct netdev_queue *txq;
  1017. txq = netdev_get_tx_queue(nic->pnicvf->netdev,
  1018. skb_get_queue_mapping(skb));
  1019. netdev_tx_sent_queue(txq, skb->len);
  1020. /* make sure all memory stores are done before ringing doorbell */
  1021. smp_wmb();
  1022. /* Inform HW to xmit all TSO segments */
  1023. nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
  1024. sq_num, desc_cnt);
  1025. }
  1026. /* Segment a TSO packet into 'gso_size' segments and append
  1027. * them to SQ for transfer
  1028. */
  1029. static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
  1030. int sq_num, int qentry, struct sk_buff *skb)
  1031. {
  1032. struct tso_t tso;
  1033. int seg_subdescs = 0, desc_cnt = 0;
  1034. int seg_len, total_len, data_left;
  1035. int hdr_qentry = qentry;
  1036. int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
  1037. tso_start(skb, &tso);
  1038. total_len = skb->len - hdr_len;
  1039. while (total_len > 0) {
  1040. char *hdr;
  1041. /* Save Qentry for adding HDR_SUBDESC at the end */
  1042. hdr_qentry = qentry;
  1043. data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
  1044. total_len -= data_left;
  1045. /* Add segment's header */
  1046. qentry = nicvf_get_nxt_sqentry(sq, qentry);
  1047. hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
  1048. tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
  1049. nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
  1050. sq->tso_hdrs_phys +
  1051. qentry * TSO_HEADER_SIZE);
  1052. /* HDR_SUDESC + GATHER */
  1053. seg_subdescs = 2;
  1054. seg_len = hdr_len;
  1055. /* Add segment's payload fragments */
  1056. while (data_left > 0) {
  1057. int size;
  1058. size = min_t(int, tso.size, data_left);
  1059. qentry = nicvf_get_nxt_sqentry(sq, qentry);
  1060. nicvf_sq_add_gather_subdesc(sq, qentry, size,
  1061. virt_to_phys(tso.data));
  1062. seg_subdescs++;
  1063. seg_len += size;
  1064. data_left -= size;
  1065. tso_build_data(skb, &tso, size);
  1066. }
  1067. nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry,
  1068. seg_subdescs - 1, skb, seg_len);
  1069. sq->skbuff[hdr_qentry] = (u64)NULL;
  1070. qentry = nicvf_get_nxt_sqentry(sq, qentry);
  1071. desc_cnt += seg_subdescs;
  1072. }
  1073. /* Save SKB in the last segment for freeing */
  1074. sq->skbuff[hdr_qentry] = (u64)skb;
  1075. nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt);
  1076. this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
  1077. return 1;
  1078. }
  1079. /* Append an skb to a SQ for packet transfer. */
  1080. int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq,
  1081. struct sk_buff *skb, u8 sq_num)
  1082. {
  1083. int i, size;
  1084. int subdesc_cnt, hdr_sqe = 0;
  1085. int qentry;
  1086. u64 dma_addr;
  1087. subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
  1088. if (subdesc_cnt > atomic_read(&sq->free_cnt))
  1089. goto append_fail;
  1090. qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
  1091. /* Check if its a TSO packet */
  1092. if (skb_shinfo(skb)->gso_size && !nic->hw_tso)
  1093. return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
  1094. /* Add SQ header subdesc */
  1095. nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
  1096. skb, skb->len);
  1097. hdr_sqe = qentry;
  1098. /* Add SQ gather subdescs */
  1099. qentry = nicvf_get_nxt_sqentry(sq, qentry);
  1100. size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
  1101. /* HW will ensure data coherency, CPU sync not required */
  1102. dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data),
  1103. offset_in_page(skb->data), size,
  1104. DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
  1105. if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
  1106. nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
  1107. return 0;
  1108. }
  1109. nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
  1110. /* Check for scattered buffer */
  1111. if (!skb_is_nonlinear(skb))
  1112. goto doorbell;
  1113. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1114. const struct skb_frag_struct *frag;
  1115. frag = &skb_shinfo(skb)->frags[i];
  1116. qentry = nicvf_get_nxt_sqentry(sq, qentry);
  1117. size = skb_frag_size(frag);
  1118. dma_addr = dma_map_page_attrs(&nic->pdev->dev,
  1119. skb_frag_page(frag),
  1120. frag->page_offset, size,
  1121. DMA_TO_DEVICE,
  1122. DMA_ATTR_SKIP_CPU_SYNC);
  1123. if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
  1124. /* Free entire chain of mapped buffers
  1125. * here 'i' = frags mapped + above mapped skb->data
  1126. */
  1127. nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i);
  1128. nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
  1129. return 0;
  1130. }
  1131. nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
  1132. }
  1133. doorbell:
  1134. if (nic->t88 && skb_shinfo(skb)->gso_size) {
  1135. qentry = nicvf_get_nxt_sqentry(sq, qentry);
  1136. nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb);
  1137. }
  1138. nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt);
  1139. return 1;
  1140. append_fail:
  1141. /* Use original PCI dev for debug log */
  1142. nic = nic->pnicvf;
  1143. netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
  1144. return 0;
  1145. }
  1146. static inline unsigned frag_num(unsigned i)
  1147. {
  1148. #ifdef __BIG_ENDIAN
  1149. return (i & ~3) + 3 - (i & 3);
  1150. #else
  1151. return i;
  1152. #endif
  1153. }
  1154. /* Returns SKB for a received packet */
  1155. struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
  1156. {
  1157. int frag;
  1158. int payload_len = 0;
  1159. struct sk_buff *skb = NULL;
  1160. struct page *page;
  1161. int offset;
  1162. u16 *rb_lens = NULL;
  1163. u64 *rb_ptrs = NULL;
  1164. u64 phys_addr;
  1165. rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
  1166. /* Except 88xx pass1 on all other chips CQE_RX2_S is added to
  1167. * CQE_RX at word6, hence buffer pointers move by word
  1168. *
  1169. * Use existing 'hw_tso' flag which will be set for all chips
  1170. * except 88xx pass1 instead of a additional cache line
  1171. * access (or miss) by using pci dev's revision.
  1172. */
  1173. if (!nic->hw_tso)
  1174. rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
  1175. else
  1176. rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64));
  1177. for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
  1178. payload_len = rb_lens[frag_num(frag)];
  1179. phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs);
  1180. if (!phys_addr) {
  1181. if (skb)
  1182. dev_kfree_skb_any(skb);
  1183. return NULL;
  1184. }
  1185. if (!frag) {
  1186. /* First fragment */
  1187. dma_unmap_page_attrs(&nic->pdev->dev,
  1188. *rb_ptrs - cqe_rx->align_pad,
  1189. RCV_FRAG_LEN, DMA_FROM_DEVICE,
  1190. DMA_ATTR_SKIP_CPU_SYNC);
  1191. skb = nicvf_rb_ptr_to_skb(nic,
  1192. phys_addr - cqe_rx->align_pad,
  1193. payload_len);
  1194. if (!skb)
  1195. return NULL;
  1196. skb_reserve(skb, cqe_rx->align_pad);
  1197. skb_put(skb, payload_len);
  1198. } else {
  1199. /* Add fragments */
  1200. dma_unmap_page_attrs(&nic->pdev->dev, *rb_ptrs,
  1201. RCV_FRAG_LEN, DMA_FROM_DEVICE,
  1202. DMA_ATTR_SKIP_CPU_SYNC);
  1203. page = virt_to_page(phys_to_virt(phys_addr));
  1204. offset = phys_to_virt(phys_addr) - page_address(page);
  1205. skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
  1206. offset, payload_len, RCV_FRAG_LEN);
  1207. }
  1208. /* Next buffer pointer */
  1209. rb_ptrs++;
  1210. }
  1211. return skb;
  1212. }
  1213. static u64 nicvf_int_type_to_mask(int int_type, int q_idx)
  1214. {
  1215. u64 reg_val;
  1216. switch (int_type) {
  1217. case NICVF_INTR_CQ:
  1218. reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
  1219. break;
  1220. case NICVF_INTR_SQ:
  1221. reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
  1222. break;
  1223. case NICVF_INTR_RBDR:
  1224. reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
  1225. break;
  1226. case NICVF_INTR_PKT_DROP:
  1227. reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
  1228. break;
  1229. case NICVF_INTR_TCP_TIMER:
  1230. reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
  1231. break;
  1232. case NICVF_INTR_MBOX:
  1233. reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
  1234. break;
  1235. case NICVF_INTR_QS_ERR:
  1236. reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT);
  1237. break;
  1238. default:
  1239. reg_val = 0;
  1240. }
  1241. return reg_val;
  1242. }
  1243. /* Enable interrupt */
  1244. void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
  1245. {
  1246. u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
  1247. if (!mask) {
  1248. netdev_dbg(nic->netdev,
  1249. "Failed to enable interrupt: unknown type\n");
  1250. return;
  1251. }
  1252. nicvf_reg_write(nic, NIC_VF_ENA_W1S,
  1253. nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask);
  1254. }
  1255. /* Disable interrupt */
  1256. void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
  1257. {
  1258. u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
  1259. if (!mask) {
  1260. netdev_dbg(nic->netdev,
  1261. "Failed to disable interrupt: unknown type\n");
  1262. return;
  1263. }
  1264. nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask);
  1265. }
  1266. /* Clear interrupt */
  1267. void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
  1268. {
  1269. u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
  1270. if (!mask) {
  1271. netdev_dbg(nic->netdev,
  1272. "Failed to clear interrupt: unknown type\n");
  1273. return;
  1274. }
  1275. nicvf_reg_write(nic, NIC_VF_INT, mask);
  1276. }
  1277. /* Check if interrupt is enabled */
  1278. int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
  1279. {
  1280. u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
  1281. /* If interrupt type is unknown, we treat it disabled. */
  1282. if (!mask) {
  1283. netdev_dbg(nic->netdev,
  1284. "Failed to check interrupt enable: unknown type\n");
  1285. return 0;
  1286. }
  1287. return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S);
  1288. }
  1289. void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
  1290. {
  1291. struct rcv_queue *rq;
  1292. #define GET_RQ_STATS(reg) \
  1293. nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
  1294. (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
  1295. rq = &nic->qs->rq[rq_idx];
  1296. rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
  1297. rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
  1298. }
  1299. void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
  1300. {
  1301. struct snd_queue *sq;
  1302. #define GET_SQ_STATS(reg) \
  1303. nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
  1304. (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
  1305. sq = &nic->qs->sq[sq_idx];
  1306. sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
  1307. sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
  1308. }
  1309. /* Check for errors in the receive cmp.queue entry */
  1310. int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
  1311. {
  1312. if (!cqe_rx->err_level && !cqe_rx->err_opcode)
  1313. return 0;
  1314. if (netif_msg_rx_err(nic))
  1315. netdev_err(nic->netdev,
  1316. "%s: RX error CQE err_level 0x%x err_opcode 0x%x\n",
  1317. nic->netdev->name,
  1318. cqe_rx->err_level, cqe_rx->err_opcode);
  1319. switch (cqe_rx->err_opcode) {
  1320. case CQ_RX_ERROP_RE_PARTIAL:
  1321. this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts);
  1322. break;
  1323. case CQ_RX_ERROP_RE_JABBER:
  1324. this_cpu_inc(nic->drv_stats->rx_jabber_errs);
  1325. break;
  1326. case CQ_RX_ERROP_RE_FCS:
  1327. this_cpu_inc(nic->drv_stats->rx_fcs_errs);
  1328. break;
  1329. case CQ_RX_ERROP_RE_RX_CTL:
  1330. this_cpu_inc(nic->drv_stats->rx_bgx_errs);
  1331. break;
  1332. case CQ_RX_ERROP_PREL2_ERR:
  1333. this_cpu_inc(nic->drv_stats->rx_prel2_errs);
  1334. break;
  1335. case CQ_RX_ERROP_L2_MAL:
  1336. this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed);
  1337. break;
  1338. case CQ_RX_ERROP_L2_OVERSIZE:
  1339. this_cpu_inc(nic->drv_stats->rx_oversize);
  1340. break;
  1341. case CQ_RX_ERROP_L2_UNDERSIZE:
  1342. this_cpu_inc(nic->drv_stats->rx_undersize);
  1343. break;
  1344. case CQ_RX_ERROP_L2_LENMISM:
  1345. this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch);
  1346. break;
  1347. case CQ_RX_ERROP_L2_PCLP:
  1348. this_cpu_inc(nic->drv_stats->rx_l2_pclp);
  1349. break;
  1350. case CQ_RX_ERROP_IP_NOT:
  1351. this_cpu_inc(nic->drv_stats->rx_ip_ver_errs);
  1352. break;
  1353. case CQ_RX_ERROP_IP_CSUM_ERR:
  1354. this_cpu_inc(nic->drv_stats->rx_ip_csum_errs);
  1355. break;
  1356. case CQ_RX_ERROP_IP_MAL:
  1357. this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed);
  1358. break;
  1359. case CQ_RX_ERROP_IP_MALD:
  1360. this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed);
  1361. break;
  1362. case CQ_RX_ERROP_IP_HOP:
  1363. this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs);
  1364. break;
  1365. case CQ_RX_ERROP_L3_PCLP:
  1366. this_cpu_inc(nic->drv_stats->rx_l3_pclp);
  1367. break;
  1368. case CQ_RX_ERROP_L4_MAL:
  1369. this_cpu_inc(nic->drv_stats->rx_l4_malformed);
  1370. break;
  1371. case CQ_RX_ERROP_L4_CHK:
  1372. this_cpu_inc(nic->drv_stats->rx_l4_csum_errs);
  1373. break;
  1374. case CQ_RX_ERROP_UDP_LEN:
  1375. this_cpu_inc(nic->drv_stats->rx_udp_len_errs);
  1376. break;
  1377. case CQ_RX_ERROP_L4_PORT:
  1378. this_cpu_inc(nic->drv_stats->rx_l4_port_errs);
  1379. break;
  1380. case CQ_RX_ERROP_TCP_FLAG:
  1381. this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs);
  1382. break;
  1383. case CQ_RX_ERROP_TCP_OFFSET:
  1384. this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs);
  1385. break;
  1386. case CQ_RX_ERROP_L4_PCLP:
  1387. this_cpu_inc(nic->drv_stats->rx_l4_pclp);
  1388. break;
  1389. case CQ_RX_ERROP_RBDR_TRUNC:
  1390. this_cpu_inc(nic->drv_stats->rx_truncated_pkts);
  1391. break;
  1392. }
  1393. return 1;
  1394. }
  1395. /* Check for errors in the send cmp.queue entry */
  1396. int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx)
  1397. {
  1398. switch (cqe_tx->send_status) {
  1399. case CQ_TX_ERROP_GOOD:
  1400. return 0;
  1401. case CQ_TX_ERROP_DESC_FAULT:
  1402. this_cpu_inc(nic->drv_stats->tx_desc_fault);
  1403. break;
  1404. case CQ_TX_ERROP_HDR_CONS_ERR:
  1405. this_cpu_inc(nic->drv_stats->tx_hdr_cons_err);
  1406. break;
  1407. case CQ_TX_ERROP_SUBDC_ERR:
  1408. this_cpu_inc(nic->drv_stats->tx_subdesc_err);
  1409. break;
  1410. case CQ_TX_ERROP_MAX_SIZE_VIOL:
  1411. this_cpu_inc(nic->drv_stats->tx_max_size_exceeded);
  1412. break;
  1413. case CQ_TX_ERROP_IMM_SIZE_OFLOW:
  1414. this_cpu_inc(nic->drv_stats->tx_imm_size_oflow);
  1415. break;
  1416. case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
  1417. this_cpu_inc(nic->drv_stats->tx_data_seq_err);
  1418. break;
  1419. case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
  1420. this_cpu_inc(nic->drv_stats->tx_mem_seq_err);
  1421. break;
  1422. case CQ_TX_ERROP_LOCK_VIOL:
  1423. this_cpu_inc(nic->drv_stats->tx_lock_viol);
  1424. break;
  1425. case CQ_TX_ERROP_DATA_FAULT:
  1426. this_cpu_inc(nic->drv_stats->tx_data_fault);
  1427. break;
  1428. case CQ_TX_ERROP_TSTMP_CONFLICT:
  1429. this_cpu_inc(nic->drv_stats->tx_tstmp_conflict);
  1430. break;
  1431. case CQ_TX_ERROP_TSTMP_TIMEOUT:
  1432. this_cpu_inc(nic->drv_stats->tx_tstmp_timeout);
  1433. break;
  1434. case CQ_TX_ERROP_MEM_FAULT:
  1435. this_cpu_inc(nic->drv_stats->tx_mem_fault);
  1436. break;
  1437. case CQ_TX_ERROP_CK_OVERLAP:
  1438. this_cpu_inc(nic->drv_stats->tx_csum_overlap);
  1439. break;
  1440. case CQ_TX_ERROP_CK_OFLOW:
  1441. this_cpu_inc(nic->drv_stats->tx_csum_overflow);
  1442. break;
  1443. }
  1444. return 1;
  1445. }