gs_usb.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050
  1. /* CAN driver for Geschwister Schneider USB/CAN devices
  2. * and bytewerk.org candleLight USB CAN interfaces.
  3. *
  4. * Copyright (C) 2013-2016 Geschwister Schneider Technologie-,
  5. * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt).
  6. * Copyright (C) 2016 Hubert Denkmair
  7. *
  8. * Many thanks to all socketcan devs!
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License as published
  12. * by the Free Software Foundation; version 2 of the License.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/signal.h>
  21. #include <linux/module.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/usb.h>
  24. #include <linux/can.h>
  25. #include <linux/can/dev.h>
  26. #include <linux/can/error.h>
  27. /* Device specific constants */
  28. #define USB_GSUSB_1_VENDOR_ID 0x1d50
  29. #define USB_GSUSB_1_PRODUCT_ID 0x606f
  30. #define USB_CANDLELIGHT_VENDOR_ID 0x1209
  31. #define USB_CANDLELIGHT_PRODUCT_ID 0x2323
  32. #define GSUSB_ENDPOINT_IN 1
  33. #define GSUSB_ENDPOINT_OUT 2
  34. /* Device specific constants */
  35. enum gs_usb_breq {
  36. GS_USB_BREQ_HOST_FORMAT = 0,
  37. GS_USB_BREQ_BITTIMING,
  38. GS_USB_BREQ_MODE,
  39. GS_USB_BREQ_BERR,
  40. GS_USB_BREQ_BT_CONST,
  41. GS_USB_BREQ_DEVICE_CONFIG,
  42. GS_USB_BREQ_TIMESTAMP,
  43. GS_USB_BREQ_IDENTIFY,
  44. };
  45. enum gs_can_mode {
  46. /* reset a channel. turns it off */
  47. GS_CAN_MODE_RESET = 0,
  48. /* starts a channel */
  49. GS_CAN_MODE_START
  50. };
  51. enum gs_can_state {
  52. GS_CAN_STATE_ERROR_ACTIVE = 0,
  53. GS_CAN_STATE_ERROR_WARNING,
  54. GS_CAN_STATE_ERROR_PASSIVE,
  55. GS_CAN_STATE_BUS_OFF,
  56. GS_CAN_STATE_STOPPED,
  57. GS_CAN_STATE_SLEEPING
  58. };
  59. enum gs_can_identify_mode {
  60. GS_CAN_IDENTIFY_OFF = 0,
  61. GS_CAN_IDENTIFY_ON
  62. };
  63. /* data types passed between host and device */
  64. struct gs_host_config {
  65. u32 byte_order;
  66. } __packed;
  67. /* All data exchanged between host and device is exchanged in host byte order,
  68. * thanks to the struct gs_host_config byte_order member, which is sent first
  69. * to indicate the desired byte order.
  70. */
  71. struct gs_device_config {
  72. u8 reserved1;
  73. u8 reserved2;
  74. u8 reserved3;
  75. u8 icount;
  76. u32 sw_version;
  77. u32 hw_version;
  78. } __packed;
  79. #define GS_CAN_MODE_NORMAL 0
  80. #define GS_CAN_MODE_LISTEN_ONLY BIT(0)
  81. #define GS_CAN_MODE_LOOP_BACK BIT(1)
  82. #define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2)
  83. #define GS_CAN_MODE_ONE_SHOT BIT(3)
  84. struct gs_device_mode {
  85. u32 mode;
  86. u32 flags;
  87. } __packed;
  88. struct gs_device_state {
  89. u32 state;
  90. u32 rxerr;
  91. u32 txerr;
  92. } __packed;
  93. struct gs_device_bittiming {
  94. u32 prop_seg;
  95. u32 phase_seg1;
  96. u32 phase_seg2;
  97. u32 sjw;
  98. u32 brp;
  99. } __packed;
  100. struct gs_identify_mode {
  101. u32 mode;
  102. } __packed;
  103. #define GS_CAN_FEATURE_LISTEN_ONLY BIT(0)
  104. #define GS_CAN_FEATURE_LOOP_BACK BIT(1)
  105. #define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2)
  106. #define GS_CAN_FEATURE_ONE_SHOT BIT(3)
  107. #define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4)
  108. #define GS_CAN_FEATURE_IDENTIFY BIT(5)
  109. struct gs_device_bt_const {
  110. u32 feature;
  111. u32 fclk_can;
  112. u32 tseg1_min;
  113. u32 tseg1_max;
  114. u32 tseg2_min;
  115. u32 tseg2_max;
  116. u32 sjw_max;
  117. u32 brp_min;
  118. u32 brp_max;
  119. u32 brp_inc;
  120. } __packed;
  121. #define GS_CAN_FLAG_OVERFLOW 1
  122. struct gs_host_frame {
  123. u32 echo_id;
  124. u32 can_id;
  125. u8 can_dlc;
  126. u8 channel;
  127. u8 flags;
  128. u8 reserved;
  129. u8 data[8];
  130. } __packed;
  131. /* The GS USB devices make use of the same flags and masks as in
  132. * linux/can.h and linux/can/error.h, and no additional mapping is necessary.
  133. */
  134. /* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */
  135. #define GS_MAX_TX_URBS 10
  136. /* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */
  137. #define GS_MAX_RX_URBS 30
  138. /* Maximum number of interfaces the driver supports per device.
  139. * Current hardware only supports 2 interfaces. The future may vary.
  140. */
  141. #define GS_MAX_INTF 2
  142. struct gs_tx_context {
  143. struct gs_can *dev;
  144. unsigned int echo_id;
  145. };
  146. struct gs_can {
  147. struct can_priv can; /* must be the first member */
  148. struct gs_usb *parent;
  149. struct net_device *netdev;
  150. struct usb_device *udev;
  151. struct usb_interface *iface;
  152. struct can_bittiming_const bt_const;
  153. unsigned int channel; /* channel number */
  154. /* This lock prevents a race condition between xmit and receive. */
  155. spinlock_t tx_ctx_lock;
  156. struct gs_tx_context tx_context[GS_MAX_TX_URBS];
  157. struct usb_anchor tx_submitted;
  158. atomic_t active_tx_urbs;
  159. };
  160. /* usb interface struct */
  161. struct gs_usb {
  162. struct gs_can *canch[GS_MAX_INTF];
  163. struct usb_anchor rx_submitted;
  164. atomic_t active_channels;
  165. struct usb_device *udev;
  166. };
  167. /* 'allocate' a tx context.
  168. * returns a valid tx context or NULL if there is no space.
  169. */
  170. static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev)
  171. {
  172. int i = 0;
  173. unsigned long flags;
  174. spin_lock_irqsave(&dev->tx_ctx_lock, flags);
  175. for (; i < GS_MAX_TX_URBS; i++) {
  176. if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) {
  177. dev->tx_context[i].echo_id = i;
  178. spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
  179. return &dev->tx_context[i];
  180. }
  181. }
  182. spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
  183. return NULL;
  184. }
  185. /* releases a tx context
  186. */
  187. static void gs_free_tx_context(struct gs_tx_context *txc)
  188. {
  189. txc->echo_id = GS_MAX_TX_URBS;
  190. }
  191. /* Get a tx context by id.
  192. */
  193. static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev,
  194. unsigned int id)
  195. {
  196. unsigned long flags;
  197. if (id < GS_MAX_TX_URBS) {
  198. spin_lock_irqsave(&dev->tx_ctx_lock, flags);
  199. if (dev->tx_context[id].echo_id == id) {
  200. spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
  201. return &dev->tx_context[id];
  202. }
  203. spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
  204. }
  205. return NULL;
  206. }
  207. static int gs_cmd_reset(struct gs_usb *gsusb, struct gs_can *gsdev)
  208. {
  209. struct gs_device_mode *dm;
  210. struct usb_interface *intf = gsdev->iface;
  211. int rc;
  212. dm = kzalloc(sizeof(*dm), GFP_KERNEL);
  213. if (!dm)
  214. return -ENOMEM;
  215. dm->mode = GS_CAN_MODE_RESET;
  216. rc = usb_control_msg(interface_to_usbdev(intf),
  217. usb_sndctrlpipe(interface_to_usbdev(intf), 0),
  218. GS_USB_BREQ_MODE,
  219. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
  220. gsdev->channel,
  221. 0,
  222. dm,
  223. sizeof(*dm),
  224. 1000);
  225. return rc;
  226. }
  227. static void gs_update_state(struct gs_can *dev, struct can_frame *cf)
  228. {
  229. struct can_device_stats *can_stats = &dev->can.can_stats;
  230. if (cf->can_id & CAN_ERR_RESTARTED) {
  231. dev->can.state = CAN_STATE_ERROR_ACTIVE;
  232. can_stats->restarts++;
  233. } else if (cf->can_id & CAN_ERR_BUSOFF) {
  234. dev->can.state = CAN_STATE_BUS_OFF;
  235. can_stats->bus_off++;
  236. } else if (cf->can_id & CAN_ERR_CRTL) {
  237. if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) ||
  238. (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) {
  239. dev->can.state = CAN_STATE_ERROR_WARNING;
  240. can_stats->error_warning++;
  241. } else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) ||
  242. (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) {
  243. dev->can.state = CAN_STATE_ERROR_PASSIVE;
  244. can_stats->error_passive++;
  245. } else {
  246. dev->can.state = CAN_STATE_ERROR_ACTIVE;
  247. }
  248. }
  249. }
  250. static void gs_usb_receive_bulk_callback(struct urb *urb)
  251. {
  252. struct gs_usb *usbcan = urb->context;
  253. struct gs_can *dev;
  254. struct net_device *netdev;
  255. int rc;
  256. struct net_device_stats *stats;
  257. struct gs_host_frame *hf = urb->transfer_buffer;
  258. struct gs_tx_context *txc;
  259. struct can_frame *cf;
  260. struct sk_buff *skb;
  261. BUG_ON(!usbcan);
  262. switch (urb->status) {
  263. case 0: /* success */
  264. break;
  265. case -ENOENT:
  266. case -ESHUTDOWN:
  267. return;
  268. default:
  269. /* do not resubmit aborted urbs. eg: when device goes down */
  270. return;
  271. }
  272. /* device reports out of range channel id */
  273. if (hf->channel >= GS_MAX_INTF)
  274. goto resubmit_urb;
  275. dev = usbcan->canch[hf->channel];
  276. netdev = dev->netdev;
  277. stats = &netdev->stats;
  278. if (!netif_device_present(netdev))
  279. return;
  280. if (hf->echo_id == -1) { /* normal rx */
  281. skb = alloc_can_skb(dev->netdev, &cf);
  282. if (!skb)
  283. return;
  284. cf->can_id = hf->can_id;
  285. cf->can_dlc = get_can_dlc(hf->can_dlc);
  286. memcpy(cf->data, hf->data, 8);
  287. /* ERROR frames tell us information about the controller */
  288. if (hf->can_id & CAN_ERR_FLAG)
  289. gs_update_state(dev, cf);
  290. netdev->stats.rx_packets++;
  291. netdev->stats.rx_bytes += hf->can_dlc;
  292. netif_rx(skb);
  293. } else { /* echo_id == hf->echo_id */
  294. if (hf->echo_id >= GS_MAX_TX_URBS) {
  295. netdev_err(netdev,
  296. "Unexpected out of range echo id %d\n",
  297. hf->echo_id);
  298. goto resubmit_urb;
  299. }
  300. netdev->stats.tx_packets++;
  301. netdev->stats.tx_bytes += hf->can_dlc;
  302. txc = gs_get_tx_context(dev, hf->echo_id);
  303. /* bad devices send bad echo_ids. */
  304. if (!txc) {
  305. netdev_err(netdev,
  306. "Unexpected unused echo id %d\n",
  307. hf->echo_id);
  308. goto resubmit_urb;
  309. }
  310. can_get_echo_skb(netdev, hf->echo_id);
  311. gs_free_tx_context(txc);
  312. netif_wake_queue(netdev);
  313. }
  314. if (hf->flags & GS_CAN_FLAG_OVERFLOW) {
  315. skb = alloc_can_err_skb(netdev, &cf);
  316. if (!skb)
  317. goto resubmit_urb;
  318. cf->can_id |= CAN_ERR_CRTL;
  319. cf->can_dlc = CAN_ERR_DLC;
  320. cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  321. stats->rx_over_errors++;
  322. stats->rx_errors++;
  323. netif_rx(skb);
  324. }
  325. resubmit_urb:
  326. usb_fill_bulk_urb(urb,
  327. usbcan->udev,
  328. usb_rcvbulkpipe(usbcan->udev, GSUSB_ENDPOINT_IN),
  329. hf,
  330. sizeof(struct gs_host_frame),
  331. gs_usb_receive_bulk_callback,
  332. usbcan
  333. );
  334. rc = usb_submit_urb(urb, GFP_ATOMIC);
  335. /* USB failure take down all interfaces */
  336. if (rc == -ENODEV) {
  337. for (rc = 0; rc < GS_MAX_INTF; rc++) {
  338. if (usbcan->canch[rc])
  339. netif_device_detach(usbcan->canch[rc]->netdev);
  340. }
  341. }
  342. }
  343. static int gs_usb_set_bittiming(struct net_device *netdev)
  344. {
  345. struct gs_can *dev = netdev_priv(netdev);
  346. struct can_bittiming *bt = &dev->can.bittiming;
  347. struct usb_interface *intf = dev->iface;
  348. int rc;
  349. struct gs_device_bittiming *dbt;
  350. dbt = kmalloc(sizeof(*dbt), GFP_KERNEL);
  351. if (!dbt)
  352. return -ENOMEM;
  353. dbt->prop_seg = bt->prop_seg;
  354. dbt->phase_seg1 = bt->phase_seg1;
  355. dbt->phase_seg2 = bt->phase_seg2;
  356. dbt->sjw = bt->sjw;
  357. dbt->brp = bt->brp;
  358. /* request bit timings */
  359. rc = usb_control_msg(interface_to_usbdev(intf),
  360. usb_sndctrlpipe(interface_to_usbdev(intf), 0),
  361. GS_USB_BREQ_BITTIMING,
  362. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
  363. dev->channel,
  364. 0,
  365. dbt,
  366. sizeof(*dbt),
  367. 1000);
  368. kfree(dbt);
  369. if (rc < 0)
  370. dev_err(netdev->dev.parent, "Couldn't set bittimings (err=%d)",
  371. rc);
  372. return rc;
  373. }
  374. static void gs_usb_xmit_callback(struct urb *urb)
  375. {
  376. struct gs_tx_context *txc = urb->context;
  377. struct gs_can *dev = txc->dev;
  378. struct net_device *netdev = dev->netdev;
  379. if (urb->status)
  380. netdev_info(netdev, "usb xmit fail %d\n", txc->echo_id);
  381. usb_free_coherent(urb->dev,
  382. urb->transfer_buffer_length,
  383. urb->transfer_buffer,
  384. urb->transfer_dma);
  385. atomic_dec(&dev->active_tx_urbs);
  386. if (!netif_device_present(netdev))
  387. return;
  388. if (netif_queue_stopped(netdev))
  389. netif_wake_queue(netdev);
  390. }
  391. static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb,
  392. struct net_device *netdev)
  393. {
  394. struct gs_can *dev = netdev_priv(netdev);
  395. struct net_device_stats *stats = &dev->netdev->stats;
  396. struct urb *urb;
  397. struct gs_host_frame *hf;
  398. struct can_frame *cf;
  399. int rc;
  400. unsigned int idx;
  401. struct gs_tx_context *txc;
  402. if (can_dropped_invalid_skb(netdev, skb))
  403. return NETDEV_TX_OK;
  404. /* find an empty context to keep track of transmission */
  405. txc = gs_alloc_tx_context(dev);
  406. if (!txc)
  407. return NETDEV_TX_BUSY;
  408. /* create a URB, and a buffer for it */
  409. urb = usb_alloc_urb(0, GFP_ATOMIC);
  410. if (!urb)
  411. goto nomem_urb;
  412. hf = usb_alloc_coherent(dev->udev, sizeof(*hf), GFP_ATOMIC,
  413. &urb->transfer_dma);
  414. if (!hf) {
  415. netdev_err(netdev, "No memory left for USB buffer\n");
  416. goto nomem_hf;
  417. }
  418. idx = txc->echo_id;
  419. if (idx >= GS_MAX_TX_URBS) {
  420. netdev_err(netdev, "Invalid tx context %d\n", idx);
  421. goto badidx;
  422. }
  423. hf->echo_id = idx;
  424. hf->channel = dev->channel;
  425. cf = (struct can_frame *)skb->data;
  426. hf->can_id = cf->can_id;
  427. hf->can_dlc = cf->can_dlc;
  428. memcpy(hf->data, cf->data, cf->can_dlc);
  429. usb_fill_bulk_urb(urb, dev->udev,
  430. usb_sndbulkpipe(dev->udev, GSUSB_ENDPOINT_OUT),
  431. hf,
  432. sizeof(*hf),
  433. gs_usb_xmit_callback,
  434. txc);
  435. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  436. usb_anchor_urb(urb, &dev->tx_submitted);
  437. can_put_echo_skb(skb, netdev, idx);
  438. atomic_inc(&dev->active_tx_urbs);
  439. rc = usb_submit_urb(urb, GFP_ATOMIC);
  440. if (unlikely(rc)) { /* usb send failed */
  441. atomic_dec(&dev->active_tx_urbs);
  442. can_free_echo_skb(netdev, idx);
  443. gs_free_tx_context(txc);
  444. usb_unanchor_urb(urb);
  445. usb_free_coherent(dev->udev,
  446. sizeof(*hf),
  447. hf,
  448. urb->transfer_dma);
  449. if (rc == -ENODEV) {
  450. netif_device_detach(netdev);
  451. } else {
  452. netdev_err(netdev, "usb_submit failed (err=%d)\n", rc);
  453. stats->tx_dropped++;
  454. }
  455. } else {
  456. /* Slow down tx path */
  457. if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS)
  458. netif_stop_queue(netdev);
  459. }
  460. /* let usb core take care of this urb */
  461. usb_free_urb(urb);
  462. return NETDEV_TX_OK;
  463. badidx:
  464. usb_free_coherent(dev->udev,
  465. sizeof(*hf),
  466. hf,
  467. urb->transfer_dma);
  468. nomem_hf:
  469. usb_free_urb(urb);
  470. nomem_urb:
  471. gs_free_tx_context(txc);
  472. dev_kfree_skb(skb);
  473. stats->tx_dropped++;
  474. return NETDEV_TX_OK;
  475. }
  476. static int gs_can_open(struct net_device *netdev)
  477. {
  478. struct gs_can *dev = netdev_priv(netdev);
  479. struct gs_usb *parent = dev->parent;
  480. int rc, i;
  481. struct gs_device_mode *dm;
  482. u32 ctrlmode;
  483. rc = open_candev(netdev);
  484. if (rc)
  485. return rc;
  486. if (atomic_add_return(1, &parent->active_channels) == 1) {
  487. for (i = 0; i < GS_MAX_RX_URBS; i++) {
  488. struct urb *urb;
  489. u8 *buf;
  490. /* alloc rx urb */
  491. urb = usb_alloc_urb(0, GFP_KERNEL);
  492. if (!urb)
  493. return -ENOMEM;
  494. /* alloc rx buffer */
  495. buf = usb_alloc_coherent(dev->udev,
  496. sizeof(struct gs_host_frame),
  497. GFP_KERNEL,
  498. &urb->transfer_dma);
  499. if (!buf) {
  500. netdev_err(netdev,
  501. "No memory left for USB buffer\n");
  502. usb_free_urb(urb);
  503. return -ENOMEM;
  504. }
  505. /* fill, anchor, and submit rx urb */
  506. usb_fill_bulk_urb(urb,
  507. dev->udev,
  508. usb_rcvbulkpipe(dev->udev,
  509. GSUSB_ENDPOINT_IN),
  510. buf,
  511. sizeof(struct gs_host_frame),
  512. gs_usb_receive_bulk_callback,
  513. parent);
  514. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  515. usb_anchor_urb(urb, &parent->rx_submitted);
  516. rc = usb_submit_urb(urb, GFP_KERNEL);
  517. if (rc) {
  518. if (rc == -ENODEV)
  519. netif_device_detach(dev->netdev);
  520. netdev_err(netdev,
  521. "usb_submit failed (err=%d)\n",
  522. rc);
  523. usb_unanchor_urb(urb);
  524. break;
  525. }
  526. /* Drop reference,
  527. * USB core will take care of freeing it
  528. */
  529. usb_free_urb(urb);
  530. }
  531. }
  532. dm = kmalloc(sizeof(*dm), GFP_KERNEL);
  533. if (!dm)
  534. return -ENOMEM;
  535. /* flags */
  536. ctrlmode = dev->can.ctrlmode;
  537. dm->flags = 0;
  538. if (ctrlmode & CAN_CTRLMODE_LOOPBACK)
  539. dm->flags |= GS_CAN_MODE_LOOP_BACK;
  540. else if (ctrlmode & CAN_CTRLMODE_LISTENONLY)
  541. dm->flags |= GS_CAN_MODE_LISTEN_ONLY;
  542. /* Controller is not allowed to retry TX
  543. * this mode is unavailable on atmels uc3c hardware
  544. */
  545. if (ctrlmode & CAN_CTRLMODE_ONE_SHOT)
  546. dm->flags |= GS_CAN_MODE_ONE_SHOT;
  547. if (ctrlmode & CAN_CTRLMODE_3_SAMPLES)
  548. dm->flags |= GS_CAN_MODE_TRIPLE_SAMPLE;
  549. /* finally start device */
  550. dm->mode = GS_CAN_MODE_START;
  551. rc = usb_control_msg(interface_to_usbdev(dev->iface),
  552. usb_sndctrlpipe(interface_to_usbdev(dev->iface), 0),
  553. GS_USB_BREQ_MODE,
  554. USB_DIR_OUT | USB_TYPE_VENDOR |
  555. USB_RECIP_INTERFACE,
  556. dev->channel,
  557. 0,
  558. dm,
  559. sizeof(*dm),
  560. 1000);
  561. if (rc < 0) {
  562. netdev_err(netdev, "Couldn't start device (err=%d)\n", rc);
  563. kfree(dm);
  564. return rc;
  565. }
  566. kfree(dm);
  567. dev->can.state = CAN_STATE_ERROR_ACTIVE;
  568. if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY))
  569. netif_start_queue(netdev);
  570. return 0;
  571. }
  572. static int gs_can_close(struct net_device *netdev)
  573. {
  574. int rc;
  575. struct gs_can *dev = netdev_priv(netdev);
  576. struct gs_usb *parent = dev->parent;
  577. netif_stop_queue(netdev);
  578. /* Stop polling */
  579. if (atomic_dec_and_test(&parent->active_channels))
  580. usb_kill_anchored_urbs(&parent->rx_submitted);
  581. /* Stop sending URBs */
  582. usb_kill_anchored_urbs(&dev->tx_submitted);
  583. atomic_set(&dev->active_tx_urbs, 0);
  584. /* reset the device */
  585. rc = gs_cmd_reset(parent, dev);
  586. if (rc < 0)
  587. netdev_warn(netdev, "Couldn't shutdown device (err=%d)", rc);
  588. /* reset tx contexts */
  589. for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
  590. dev->tx_context[rc].dev = dev;
  591. dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
  592. }
  593. /* close the netdev */
  594. close_candev(netdev);
  595. return 0;
  596. }
  597. static const struct net_device_ops gs_usb_netdev_ops = {
  598. .ndo_open = gs_can_open,
  599. .ndo_stop = gs_can_close,
  600. .ndo_start_xmit = gs_can_start_xmit,
  601. .ndo_change_mtu = can_change_mtu,
  602. };
  603. static int gs_usb_set_identify(struct net_device *netdev, bool do_identify)
  604. {
  605. struct gs_can *dev = netdev_priv(netdev);
  606. struct gs_identify_mode imode;
  607. int rc;
  608. if (do_identify)
  609. imode.mode = GS_CAN_IDENTIFY_ON;
  610. else
  611. imode.mode = GS_CAN_IDENTIFY_OFF;
  612. rc = usb_control_msg(interface_to_usbdev(dev->iface),
  613. usb_sndctrlpipe(interface_to_usbdev(dev->iface),
  614. 0),
  615. GS_USB_BREQ_IDENTIFY,
  616. USB_DIR_OUT | USB_TYPE_VENDOR |
  617. USB_RECIP_INTERFACE,
  618. dev->channel,
  619. 0,
  620. &imode,
  621. sizeof(imode),
  622. 100);
  623. return (rc > 0) ? 0 : rc;
  624. }
  625. /* blink LED's for finding the this interface */
  626. static int gs_usb_set_phys_id(struct net_device *dev,
  627. enum ethtool_phys_id_state state)
  628. {
  629. int rc = 0;
  630. switch (state) {
  631. case ETHTOOL_ID_ACTIVE:
  632. rc = gs_usb_set_identify(dev, GS_CAN_IDENTIFY_ON);
  633. break;
  634. case ETHTOOL_ID_INACTIVE:
  635. rc = gs_usb_set_identify(dev, GS_CAN_IDENTIFY_OFF);
  636. break;
  637. default:
  638. break;
  639. }
  640. return rc;
  641. }
  642. static const struct ethtool_ops gs_usb_ethtool_ops = {
  643. .set_phys_id = gs_usb_set_phys_id,
  644. };
  645. static struct gs_can *gs_make_candev(unsigned int channel,
  646. struct usb_interface *intf,
  647. struct gs_device_config *dconf)
  648. {
  649. struct gs_can *dev;
  650. struct net_device *netdev;
  651. int rc;
  652. struct gs_device_bt_const *bt_const;
  653. bt_const = kmalloc(sizeof(*bt_const), GFP_KERNEL);
  654. if (!bt_const)
  655. return ERR_PTR(-ENOMEM);
  656. /* fetch bit timing constants */
  657. rc = usb_control_msg(interface_to_usbdev(intf),
  658. usb_rcvctrlpipe(interface_to_usbdev(intf), 0),
  659. GS_USB_BREQ_BT_CONST,
  660. USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
  661. channel,
  662. 0,
  663. bt_const,
  664. sizeof(*bt_const),
  665. 1000);
  666. if (rc < 0) {
  667. dev_err(&intf->dev,
  668. "Couldn't get bit timing const for channel (err=%d)\n",
  669. rc);
  670. kfree(bt_const);
  671. return ERR_PTR(rc);
  672. }
  673. /* create netdev */
  674. netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS);
  675. if (!netdev) {
  676. dev_err(&intf->dev, "Couldn't allocate candev\n");
  677. kfree(bt_const);
  678. return ERR_PTR(-ENOMEM);
  679. }
  680. dev = netdev_priv(netdev);
  681. netdev->netdev_ops = &gs_usb_netdev_ops;
  682. netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */
  683. /* dev settup */
  684. strcpy(dev->bt_const.name, "gs_usb");
  685. dev->bt_const.tseg1_min = bt_const->tseg1_min;
  686. dev->bt_const.tseg1_max = bt_const->tseg1_max;
  687. dev->bt_const.tseg2_min = bt_const->tseg2_min;
  688. dev->bt_const.tseg2_max = bt_const->tseg2_max;
  689. dev->bt_const.sjw_max = bt_const->sjw_max;
  690. dev->bt_const.brp_min = bt_const->brp_min;
  691. dev->bt_const.brp_max = bt_const->brp_max;
  692. dev->bt_const.brp_inc = bt_const->brp_inc;
  693. dev->udev = interface_to_usbdev(intf);
  694. dev->iface = intf;
  695. dev->netdev = netdev;
  696. dev->channel = channel;
  697. init_usb_anchor(&dev->tx_submitted);
  698. atomic_set(&dev->active_tx_urbs, 0);
  699. spin_lock_init(&dev->tx_ctx_lock);
  700. for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
  701. dev->tx_context[rc].dev = dev;
  702. dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
  703. }
  704. /* can settup */
  705. dev->can.state = CAN_STATE_STOPPED;
  706. dev->can.clock.freq = bt_const->fclk_can;
  707. dev->can.bittiming_const = &dev->bt_const;
  708. dev->can.do_set_bittiming = gs_usb_set_bittiming;
  709. dev->can.ctrlmode_supported = 0;
  710. if (bt_const->feature & GS_CAN_FEATURE_LISTEN_ONLY)
  711. dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
  712. if (bt_const->feature & GS_CAN_FEATURE_LOOP_BACK)
  713. dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
  714. if (bt_const->feature & GS_CAN_FEATURE_TRIPLE_SAMPLE)
  715. dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
  716. if (bt_const->feature & GS_CAN_FEATURE_ONE_SHOT)
  717. dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
  718. SET_NETDEV_DEV(netdev, &intf->dev);
  719. if (dconf->sw_version > 1)
  720. if (bt_const->feature & GS_CAN_FEATURE_IDENTIFY)
  721. netdev->ethtool_ops = &gs_usb_ethtool_ops;
  722. kfree(bt_const);
  723. rc = register_candev(dev->netdev);
  724. if (rc) {
  725. free_candev(dev->netdev);
  726. dev_err(&intf->dev, "Couldn't register candev (err=%d)\n", rc);
  727. return ERR_PTR(rc);
  728. }
  729. return dev;
  730. }
  731. static void gs_destroy_candev(struct gs_can *dev)
  732. {
  733. unregister_candev(dev->netdev);
  734. usb_kill_anchored_urbs(&dev->tx_submitted);
  735. free_candev(dev->netdev);
  736. }
  737. static int gs_usb_probe(struct usb_interface *intf,
  738. const struct usb_device_id *id)
  739. {
  740. struct gs_usb *dev;
  741. int rc = -ENOMEM;
  742. unsigned int icount, i;
  743. struct gs_host_config *hconf;
  744. struct gs_device_config *dconf;
  745. hconf = kmalloc(sizeof(*hconf), GFP_KERNEL);
  746. if (!hconf)
  747. return -ENOMEM;
  748. hconf->byte_order = 0x0000beef;
  749. /* send host config */
  750. rc = usb_control_msg(interface_to_usbdev(intf),
  751. usb_sndctrlpipe(interface_to_usbdev(intf), 0),
  752. GS_USB_BREQ_HOST_FORMAT,
  753. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
  754. 1,
  755. intf->altsetting[0].desc.bInterfaceNumber,
  756. hconf,
  757. sizeof(*hconf),
  758. 1000);
  759. kfree(hconf);
  760. if (rc < 0) {
  761. dev_err(&intf->dev, "Couldn't send data format (err=%d)\n",
  762. rc);
  763. return rc;
  764. }
  765. dconf = kmalloc(sizeof(*dconf), GFP_KERNEL);
  766. if (!dconf)
  767. return -ENOMEM;
  768. /* read device config */
  769. rc = usb_control_msg(interface_to_usbdev(intf),
  770. usb_rcvctrlpipe(interface_to_usbdev(intf), 0),
  771. GS_USB_BREQ_DEVICE_CONFIG,
  772. USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
  773. 1,
  774. intf->altsetting[0].desc.bInterfaceNumber,
  775. dconf,
  776. sizeof(*dconf),
  777. 1000);
  778. if (rc < 0) {
  779. dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n",
  780. rc);
  781. kfree(dconf);
  782. return rc;
  783. }
  784. icount = dconf->icount + 1;
  785. dev_info(&intf->dev, "Configuring for %d interfaces\n", icount);
  786. if (icount > GS_MAX_INTF) {
  787. dev_err(&intf->dev,
  788. "Driver cannot handle more that %d CAN interfaces\n",
  789. GS_MAX_INTF);
  790. kfree(dconf);
  791. return -EINVAL;
  792. }
  793. dev = kzalloc(sizeof(*dev), GFP_KERNEL);
  794. if (!dev) {
  795. kfree(dconf);
  796. return -ENOMEM;
  797. }
  798. init_usb_anchor(&dev->rx_submitted);
  799. atomic_set(&dev->active_channels, 0);
  800. usb_set_intfdata(intf, dev);
  801. dev->udev = interface_to_usbdev(intf);
  802. for (i = 0; i < icount; i++) {
  803. dev->canch[i] = gs_make_candev(i, intf, dconf);
  804. if (IS_ERR_OR_NULL(dev->canch[i])) {
  805. /* save error code to return later */
  806. rc = PTR_ERR(dev->canch[i]);
  807. /* on failure destroy previously created candevs */
  808. icount = i;
  809. for (i = 0; i < icount; i++)
  810. gs_destroy_candev(dev->canch[i]);
  811. usb_kill_anchored_urbs(&dev->rx_submitted);
  812. kfree(dconf);
  813. kfree(dev);
  814. return rc;
  815. }
  816. dev->canch[i]->parent = dev;
  817. }
  818. kfree(dconf);
  819. return 0;
  820. }
  821. static void gs_usb_disconnect(struct usb_interface *intf)
  822. {
  823. unsigned i;
  824. struct gs_usb *dev = usb_get_intfdata(intf);
  825. usb_set_intfdata(intf, NULL);
  826. if (!dev) {
  827. dev_err(&intf->dev, "Disconnect (nodata)\n");
  828. return;
  829. }
  830. for (i = 0; i < GS_MAX_INTF; i++)
  831. if (dev->canch[i])
  832. gs_destroy_candev(dev->canch[i]);
  833. usb_kill_anchored_urbs(&dev->rx_submitted);
  834. kfree(dev);
  835. }
  836. static const struct usb_device_id gs_usb_table[] = {
  837. { USB_DEVICE_INTERFACE_NUMBER(USB_GSUSB_1_VENDOR_ID,
  838. USB_GSUSB_1_PRODUCT_ID, 0) },
  839. { USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID,
  840. USB_CANDLELIGHT_PRODUCT_ID, 0) },
  841. {} /* Terminating entry */
  842. };
  843. MODULE_DEVICE_TABLE(usb, gs_usb_table);
  844. static struct usb_driver gs_usb_driver = {
  845. .name = "gs_usb",
  846. .probe = gs_usb_probe,
  847. .disconnect = gs_usb_disconnect,
  848. .id_table = gs_usb_table,
  849. };
  850. module_usb_driver(gs_usb_driver);
  851. MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>");
  852. MODULE_DESCRIPTION(
  853. "Socket CAN device driver for Geschwister Schneider Technologie-, "
  854. "Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n"
  855. "and bytewerk.org candleLight USB CAN interfaces.");
  856. MODULE_LICENSE("GPL v2");