rrpc.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632
  1. /*
  2. * Copyright (C) 2015 IT University of Copenhagen
  3. * Initial release: Matias Bjorling <m@bjorling.me>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License version
  7. * 2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
  15. */
  16. #include "rrpc.h"
  17. static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
  18. static DECLARE_RWSEM(rrpc_lock);
  19. static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
  20. struct nvm_rq *rqd, unsigned long flags);
  21. #define rrpc_for_each_lun(rrpc, rlun, i) \
  22. for ((i) = 0, rlun = &(rrpc)->luns[0]; \
  23. (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
  24. static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
  25. {
  26. struct nvm_tgt_dev *dev = rrpc->dev;
  27. struct rrpc_block *rblk = a->rblk;
  28. unsigned int pg_offset;
  29. lockdep_assert_held(&rrpc->rev_lock);
  30. if (a->addr == ADDR_EMPTY || !rblk)
  31. return;
  32. spin_lock(&rblk->lock);
  33. div_u64_rem(a->addr, dev->geo.sec_per_blk, &pg_offset);
  34. WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
  35. rblk->nr_invalid_pages++;
  36. spin_unlock(&rblk->lock);
  37. rrpc->rev_trans_map[a->addr].addr = ADDR_EMPTY;
  38. }
  39. static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
  40. unsigned int len)
  41. {
  42. sector_t i;
  43. spin_lock(&rrpc->rev_lock);
  44. for (i = slba; i < slba + len; i++) {
  45. struct rrpc_addr *gp = &rrpc->trans_map[i];
  46. rrpc_page_invalidate(rrpc, gp);
  47. gp->rblk = NULL;
  48. }
  49. spin_unlock(&rrpc->rev_lock);
  50. }
  51. static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
  52. sector_t laddr, unsigned int pages)
  53. {
  54. struct nvm_rq *rqd;
  55. struct rrpc_inflight_rq *inf;
  56. rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
  57. if (!rqd)
  58. return ERR_PTR(-ENOMEM);
  59. inf = rrpc_get_inflight_rq(rqd);
  60. if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
  61. mempool_free(rqd, rrpc->rq_pool);
  62. return NULL;
  63. }
  64. return rqd;
  65. }
  66. static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
  67. {
  68. struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
  69. rrpc_unlock_laddr(rrpc, inf);
  70. mempool_free(rqd, rrpc->rq_pool);
  71. }
  72. static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
  73. {
  74. sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
  75. sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
  76. struct nvm_rq *rqd;
  77. while (1) {
  78. rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
  79. if (rqd)
  80. break;
  81. schedule();
  82. }
  83. if (IS_ERR(rqd)) {
  84. pr_err("rrpc: unable to acquire inflight IO\n");
  85. bio_io_error(bio);
  86. return;
  87. }
  88. rrpc_invalidate_range(rrpc, slba, len);
  89. rrpc_inflight_laddr_release(rrpc, rqd);
  90. }
  91. static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
  92. {
  93. struct nvm_tgt_dev *dev = rrpc->dev;
  94. return (rblk->next_page == dev->geo.sec_per_blk);
  95. }
  96. /* Calculate relative addr for the given block, considering instantiated LUNs */
  97. static u64 block_to_rel_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
  98. {
  99. struct nvm_tgt_dev *dev = rrpc->dev;
  100. struct rrpc_lun *rlun = rblk->rlun;
  101. return rlun->id * dev->geo.sec_per_blk;
  102. }
  103. static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_tgt_dev *dev,
  104. struct rrpc_addr *gp)
  105. {
  106. struct rrpc_block *rblk = gp->rblk;
  107. struct rrpc_lun *rlun = rblk->rlun;
  108. u64 addr = gp->addr;
  109. struct ppa_addr paddr;
  110. paddr.ppa = addr;
  111. paddr = rrpc_linear_to_generic_addr(&dev->geo, paddr);
  112. paddr.g.ch = rlun->bppa.g.ch;
  113. paddr.g.lun = rlun->bppa.g.lun;
  114. paddr.g.blk = rblk->id;
  115. return paddr;
  116. }
  117. /* requires lun->lock taken */
  118. static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *new_rblk,
  119. struct rrpc_block **cur_rblk)
  120. {
  121. struct rrpc *rrpc = rlun->rrpc;
  122. if (*cur_rblk) {
  123. spin_lock(&(*cur_rblk)->lock);
  124. WARN_ON(!block_is_full(rrpc, *cur_rblk));
  125. spin_unlock(&(*cur_rblk)->lock);
  126. }
  127. *cur_rblk = new_rblk;
  128. }
  129. static struct rrpc_block *__rrpc_get_blk(struct rrpc *rrpc,
  130. struct rrpc_lun *rlun)
  131. {
  132. struct rrpc_block *rblk = NULL;
  133. if (list_empty(&rlun->free_list))
  134. goto out;
  135. rblk = list_first_entry(&rlun->free_list, struct rrpc_block, list);
  136. list_move_tail(&rblk->list, &rlun->used_list);
  137. rblk->state = NVM_BLK_ST_TGT;
  138. rlun->nr_free_blocks--;
  139. out:
  140. return rblk;
  141. }
  142. static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
  143. unsigned long flags)
  144. {
  145. struct nvm_tgt_dev *dev = rrpc->dev;
  146. struct rrpc_block *rblk;
  147. int is_gc = flags & NVM_IOTYPE_GC;
  148. spin_lock(&rlun->lock);
  149. if (!is_gc && rlun->nr_free_blocks < rlun->reserved_blocks) {
  150. pr_err("nvm: rrpc: cannot give block to non GC request\n");
  151. spin_unlock(&rlun->lock);
  152. return NULL;
  153. }
  154. rblk = __rrpc_get_blk(rrpc, rlun);
  155. if (!rblk) {
  156. pr_err("nvm: rrpc: cannot get new block\n");
  157. spin_unlock(&rlun->lock);
  158. return NULL;
  159. }
  160. spin_unlock(&rlun->lock);
  161. bitmap_zero(rblk->invalid_pages, dev->geo.sec_per_blk);
  162. rblk->next_page = 0;
  163. rblk->nr_invalid_pages = 0;
  164. atomic_set(&rblk->data_cmnt_size, 0);
  165. return rblk;
  166. }
  167. static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
  168. {
  169. struct rrpc_lun *rlun = rblk->rlun;
  170. spin_lock(&rlun->lock);
  171. if (rblk->state & NVM_BLK_ST_TGT) {
  172. list_move_tail(&rblk->list, &rlun->free_list);
  173. rlun->nr_free_blocks++;
  174. rblk->state = NVM_BLK_ST_FREE;
  175. } else if (rblk->state & NVM_BLK_ST_BAD) {
  176. list_move_tail(&rblk->list, &rlun->bb_list);
  177. rblk->state = NVM_BLK_ST_BAD;
  178. } else {
  179. WARN_ON_ONCE(1);
  180. pr_err("rrpc: erroneous type (ch:%d,lun:%d,blk%d-> %u)\n",
  181. rlun->bppa.g.ch, rlun->bppa.g.lun,
  182. rblk->id, rblk->state);
  183. list_move_tail(&rblk->list, &rlun->bb_list);
  184. }
  185. spin_unlock(&rlun->lock);
  186. }
  187. static void rrpc_put_blks(struct rrpc *rrpc)
  188. {
  189. struct rrpc_lun *rlun;
  190. int i;
  191. for (i = 0; i < rrpc->nr_luns; i++) {
  192. rlun = &rrpc->luns[i];
  193. if (rlun->cur)
  194. rrpc_put_blk(rrpc, rlun->cur);
  195. if (rlun->gc_cur)
  196. rrpc_put_blk(rrpc, rlun->gc_cur);
  197. }
  198. }
  199. static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
  200. {
  201. int next = atomic_inc_return(&rrpc->next_lun);
  202. return &rrpc->luns[next % rrpc->nr_luns];
  203. }
  204. static void rrpc_gc_kick(struct rrpc *rrpc)
  205. {
  206. struct rrpc_lun *rlun;
  207. unsigned int i;
  208. for (i = 0; i < rrpc->nr_luns; i++) {
  209. rlun = &rrpc->luns[i];
  210. queue_work(rrpc->krqd_wq, &rlun->ws_gc);
  211. }
  212. }
  213. /*
  214. * timed GC every interval.
  215. */
  216. static void rrpc_gc_timer(unsigned long data)
  217. {
  218. struct rrpc *rrpc = (struct rrpc *)data;
  219. rrpc_gc_kick(rrpc);
  220. mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
  221. }
  222. static void rrpc_end_sync_bio(struct bio *bio)
  223. {
  224. struct completion *waiting = bio->bi_private;
  225. if (bio->bi_error)
  226. pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
  227. complete(waiting);
  228. }
  229. /*
  230. * rrpc_move_valid_pages -- migrate live data off the block
  231. * @rrpc: the 'rrpc' structure
  232. * @block: the block from which to migrate live pages
  233. *
  234. * Description:
  235. * GC algorithms may call this function to migrate remaining live
  236. * pages off the block prior to erasing it. This function blocks
  237. * further execution until the operation is complete.
  238. */
  239. static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
  240. {
  241. struct nvm_tgt_dev *dev = rrpc->dev;
  242. struct request_queue *q = dev->q;
  243. struct rrpc_rev_addr *rev;
  244. struct nvm_rq *rqd;
  245. struct bio *bio;
  246. struct page *page;
  247. int slot;
  248. int nr_sec_per_blk = dev->geo.sec_per_blk;
  249. u64 phys_addr;
  250. DECLARE_COMPLETION_ONSTACK(wait);
  251. if (bitmap_full(rblk->invalid_pages, nr_sec_per_blk))
  252. return 0;
  253. bio = bio_alloc(GFP_NOIO, 1);
  254. if (!bio) {
  255. pr_err("nvm: could not alloc bio to gc\n");
  256. return -ENOMEM;
  257. }
  258. page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
  259. if (!page) {
  260. bio_put(bio);
  261. return -ENOMEM;
  262. }
  263. while ((slot = find_first_zero_bit(rblk->invalid_pages,
  264. nr_sec_per_blk)) < nr_sec_per_blk) {
  265. /* Lock laddr */
  266. phys_addr = rrpc_blk_to_ppa(rrpc, rblk) + slot;
  267. try:
  268. spin_lock(&rrpc->rev_lock);
  269. /* Get logical address from physical to logical table */
  270. rev = &rrpc->rev_trans_map[phys_addr];
  271. /* already updated by previous regular write */
  272. if (rev->addr == ADDR_EMPTY) {
  273. spin_unlock(&rrpc->rev_lock);
  274. continue;
  275. }
  276. rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
  277. if (IS_ERR_OR_NULL(rqd)) {
  278. spin_unlock(&rrpc->rev_lock);
  279. schedule();
  280. goto try;
  281. }
  282. spin_unlock(&rrpc->rev_lock);
  283. /* Perform read to do GC */
  284. bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
  285. bio_set_op_attrs(bio, REQ_OP_READ, 0);
  286. bio->bi_private = &wait;
  287. bio->bi_end_io = rrpc_end_sync_bio;
  288. /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
  289. bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
  290. if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
  291. pr_err("rrpc: gc read failed.\n");
  292. rrpc_inflight_laddr_release(rrpc, rqd);
  293. goto finished;
  294. }
  295. wait_for_completion_io(&wait);
  296. if (bio->bi_error) {
  297. rrpc_inflight_laddr_release(rrpc, rqd);
  298. goto finished;
  299. }
  300. bio_reset(bio);
  301. reinit_completion(&wait);
  302. bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
  303. bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
  304. bio->bi_private = &wait;
  305. bio->bi_end_io = rrpc_end_sync_bio;
  306. bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
  307. /* turn the command around and write the data back to a new
  308. * address
  309. */
  310. if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
  311. pr_err("rrpc: gc write failed.\n");
  312. rrpc_inflight_laddr_release(rrpc, rqd);
  313. goto finished;
  314. }
  315. wait_for_completion_io(&wait);
  316. rrpc_inflight_laddr_release(rrpc, rqd);
  317. if (bio->bi_error)
  318. goto finished;
  319. bio_reset(bio);
  320. }
  321. finished:
  322. mempool_free(page, rrpc->page_pool);
  323. bio_put(bio);
  324. if (!bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) {
  325. pr_err("nvm: failed to garbage collect block\n");
  326. return -EIO;
  327. }
  328. return 0;
  329. }
  330. static void rrpc_block_gc(struct work_struct *work)
  331. {
  332. struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
  333. ws_gc);
  334. struct rrpc *rrpc = gcb->rrpc;
  335. struct rrpc_block *rblk = gcb->rblk;
  336. struct rrpc_lun *rlun = rblk->rlun;
  337. struct nvm_tgt_dev *dev = rrpc->dev;
  338. struct ppa_addr ppa;
  339. mempool_free(gcb, rrpc->gcb_pool);
  340. pr_debug("nvm: block 'ch:%d,lun:%d,blk:%d' being reclaimed\n",
  341. rlun->bppa.g.ch, rlun->bppa.g.lun,
  342. rblk->id);
  343. if (rrpc_move_valid_pages(rrpc, rblk))
  344. goto put_back;
  345. ppa.ppa = 0;
  346. ppa.g.ch = rlun->bppa.g.ch;
  347. ppa.g.lun = rlun->bppa.g.lun;
  348. ppa.g.blk = rblk->id;
  349. if (nvm_erase_blk(dev, &ppa, 0))
  350. goto put_back;
  351. rrpc_put_blk(rrpc, rblk);
  352. return;
  353. put_back:
  354. spin_lock(&rlun->lock);
  355. list_add_tail(&rblk->prio, &rlun->prio_list);
  356. spin_unlock(&rlun->lock);
  357. }
  358. /* the block with highest number of invalid pages, will be in the beginning
  359. * of the list
  360. */
  361. static struct rrpc_block *rblk_max_invalid(struct rrpc_block *ra,
  362. struct rrpc_block *rb)
  363. {
  364. if (ra->nr_invalid_pages == rb->nr_invalid_pages)
  365. return ra;
  366. return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
  367. }
  368. /* linearly find the block with highest number of invalid pages
  369. * requires lun->lock
  370. */
  371. static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
  372. {
  373. struct list_head *prio_list = &rlun->prio_list;
  374. struct rrpc_block *rblk, *max;
  375. BUG_ON(list_empty(prio_list));
  376. max = list_first_entry(prio_list, struct rrpc_block, prio);
  377. list_for_each_entry(rblk, prio_list, prio)
  378. max = rblk_max_invalid(max, rblk);
  379. return max;
  380. }
  381. static void rrpc_lun_gc(struct work_struct *work)
  382. {
  383. struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
  384. struct rrpc *rrpc = rlun->rrpc;
  385. struct nvm_tgt_dev *dev = rrpc->dev;
  386. struct rrpc_block_gc *gcb;
  387. unsigned int nr_blocks_need;
  388. nr_blocks_need = dev->geo.blks_per_lun / GC_LIMIT_INVERSE;
  389. if (nr_blocks_need < rrpc->nr_luns)
  390. nr_blocks_need = rrpc->nr_luns;
  391. spin_lock(&rlun->lock);
  392. while (nr_blocks_need > rlun->nr_free_blocks &&
  393. !list_empty(&rlun->prio_list)) {
  394. struct rrpc_block *rblk = block_prio_find_max(rlun);
  395. if (!rblk->nr_invalid_pages)
  396. break;
  397. gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
  398. if (!gcb)
  399. break;
  400. list_del_init(&rblk->prio);
  401. WARN_ON(!block_is_full(rrpc, rblk));
  402. pr_debug("rrpc: selected block 'ch:%d,lun:%d,blk:%d' for GC\n",
  403. rlun->bppa.g.ch, rlun->bppa.g.lun,
  404. rblk->id);
  405. gcb->rrpc = rrpc;
  406. gcb->rblk = rblk;
  407. INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
  408. queue_work(rrpc->kgc_wq, &gcb->ws_gc);
  409. nr_blocks_need--;
  410. }
  411. spin_unlock(&rlun->lock);
  412. /* TODO: Hint that request queue can be started again */
  413. }
  414. static void rrpc_gc_queue(struct work_struct *work)
  415. {
  416. struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
  417. ws_gc);
  418. struct rrpc *rrpc = gcb->rrpc;
  419. struct rrpc_block *rblk = gcb->rblk;
  420. struct rrpc_lun *rlun = rblk->rlun;
  421. spin_lock(&rlun->lock);
  422. list_add_tail(&rblk->prio, &rlun->prio_list);
  423. spin_unlock(&rlun->lock);
  424. mempool_free(gcb, rrpc->gcb_pool);
  425. pr_debug("nvm: block 'ch:%d,lun:%d,blk:%d' full, allow GC (sched)\n",
  426. rlun->bppa.g.ch, rlun->bppa.g.lun,
  427. rblk->id);
  428. }
  429. static const struct block_device_operations rrpc_fops = {
  430. .owner = THIS_MODULE,
  431. };
  432. static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
  433. {
  434. unsigned int i;
  435. struct rrpc_lun *rlun, *max_free;
  436. if (!is_gc)
  437. return get_next_lun(rrpc);
  438. /* during GC, we don't care about RR, instead we want to make
  439. * sure that we maintain evenness between the block luns.
  440. */
  441. max_free = &rrpc->luns[0];
  442. /* prevent GC-ing lun from devouring pages of a lun with
  443. * little free blocks. We don't take the lock as we only need an
  444. * estimate.
  445. */
  446. rrpc_for_each_lun(rrpc, rlun, i) {
  447. if (rlun->nr_free_blocks > max_free->nr_free_blocks)
  448. max_free = rlun;
  449. }
  450. return max_free;
  451. }
  452. static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
  453. struct rrpc_block *rblk, u64 paddr)
  454. {
  455. struct rrpc_addr *gp;
  456. struct rrpc_rev_addr *rev;
  457. BUG_ON(laddr >= rrpc->nr_sects);
  458. gp = &rrpc->trans_map[laddr];
  459. spin_lock(&rrpc->rev_lock);
  460. if (gp->rblk)
  461. rrpc_page_invalidate(rrpc, gp);
  462. gp->addr = paddr;
  463. gp->rblk = rblk;
  464. rev = &rrpc->rev_trans_map[gp->addr];
  465. rev->addr = laddr;
  466. spin_unlock(&rrpc->rev_lock);
  467. return gp;
  468. }
  469. static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
  470. {
  471. u64 addr = ADDR_EMPTY;
  472. spin_lock(&rblk->lock);
  473. if (block_is_full(rrpc, rblk))
  474. goto out;
  475. addr = rblk->next_page;
  476. rblk->next_page++;
  477. out:
  478. spin_unlock(&rblk->lock);
  479. return addr;
  480. }
  481. /* Map logical address to a physical page. The mapping implements a round robin
  482. * approach and allocates a page from the next lun available.
  483. *
  484. * Returns rrpc_addr with the physical address and block. Returns NULL if no
  485. * blocks in the next rlun are available.
  486. */
  487. static struct ppa_addr rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
  488. int is_gc)
  489. {
  490. struct nvm_tgt_dev *tgt_dev = rrpc->dev;
  491. struct rrpc_lun *rlun;
  492. struct rrpc_block *rblk, **cur_rblk;
  493. struct rrpc_addr *p;
  494. struct ppa_addr ppa;
  495. u64 paddr;
  496. int gc_force = 0;
  497. ppa.ppa = ADDR_EMPTY;
  498. rlun = rrpc_get_lun_rr(rrpc, is_gc);
  499. if (!is_gc && rlun->nr_free_blocks < rrpc->nr_luns * 4)
  500. return ppa;
  501. /*
  502. * page allocation steps:
  503. * 1. Try to allocate new page from current rblk
  504. * 2a. If succeed, proceed to map it in and return
  505. * 2b. If fail, first try to allocate a new block from media manger,
  506. * and then retry step 1. Retry until the normal block pool is
  507. * exhausted.
  508. * 3. If exhausted, and garbage collector is requesting the block,
  509. * go to the reserved block and retry step 1.
  510. * In the case that this fails as well, or it is not GC
  511. * requesting, report not able to retrieve a block and let the
  512. * caller handle further processing.
  513. */
  514. spin_lock(&rlun->lock);
  515. cur_rblk = &rlun->cur;
  516. rblk = rlun->cur;
  517. retry:
  518. paddr = rrpc_alloc_addr(rrpc, rblk);
  519. if (paddr != ADDR_EMPTY)
  520. goto done;
  521. if (!list_empty(&rlun->wblk_list)) {
  522. new_blk:
  523. rblk = list_first_entry(&rlun->wblk_list, struct rrpc_block,
  524. prio);
  525. rrpc_set_lun_cur(rlun, rblk, cur_rblk);
  526. list_del(&rblk->prio);
  527. goto retry;
  528. }
  529. spin_unlock(&rlun->lock);
  530. rblk = rrpc_get_blk(rrpc, rlun, gc_force);
  531. if (rblk) {
  532. spin_lock(&rlun->lock);
  533. list_add_tail(&rblk->prio, &rlun->wblk_list);
  534. /*
  535. * another thread might already have added a new block,
  536. * Therefore, make sure that one is used, instead of the
  537. * one just added.
  538. */
  539. goto new_blk;
  540. }
  541. if (unlikely(is_gc) && !gc_force) {
  542. /* retry from emergency gc block */
  543. cur_rblk = &rlun->gc_cur;
  544. rblk = rlun->gc_cur;
  545. gc_force = 1;
  546. spin_lock(&rlun->lock);
  547. goto retry;
  548. }
  549. pr_err("rrpc: failed to allocate new block\n");
  550. return ppa;
  551. done:
  552. spin_unlock(&rlun->lock);
  553. p = rrpc_update_map(rrpc, laddr, rblk, paddr);
  554. if (!p)
  555. return ppa;
  556. /* return global address */
  557. return rrpc_ppa_to_gaddr(tgt_dev, p);
  558. }
  559. static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
  560. {
  561. struct rrpc_block_gc *gcb;
  562. gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
  563. if (!gcb) {
  564. pr_err("rrpc: unable to queue block for gc.");
  565. return;
  566. }
  567. gcb->rrpc = rrpc;
  568. gcb->rblk = rblk;
  569. INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
  570. queue_work(rrpc->kgc_wq, &gcb->ws_gc);
  571. }
  572. static struct rrpc_lun *rrpc_ppa_to_lun(struct rrpc *rrpc, struct ppa_addr p)
  573. {
  574. struct rrpc_lun *rlun = NULL;
  575. int i;
  576. for (i = 0; i < rrpc->nr_luns; i++) {
  577. if (rrpc->luns[i].bppa.g.ch == p.g.ch &&
  578. rrpc->luns[i].bppa.g.lun == p.g.lun) {
  579. rlun = &rrpc->luns[i];
  580. break;
  581. }
  582. }
  583. return rlun;
  584. }
  585. static void __rrpc_mark_bad_block(struct rrpc *rrpc, struct ppa_addr ppa)
  586. {
  587. struct nvm_tgt_dev *dev = rrpc->dev;
  588. struct rrpc_lun *rlun;
  589. struct rrpc_block *rblk;
  590. rlun = rrpc_ppa_to_lun(rrpc, ppa);
  591. rblk = &rlun->blocks[ppa.g.blk];
  592. rblk->state = NVM_BLK_ST_BAD;
  593. nvm_set_tgt_bb_tbl(dev, &ppa, 1, NVM_BLK_T_GRWN_BAD);
  594. }
  595. static void rrpc_mark_bad_block(struct rrpc *rrpc, struct nvm_rq *rqd)
  596. {
  597. void *comp_bits = &rqd->ppa_status;
  598. struct ppa_addr ppa, prev_ppa;
  599. int nr_ppas = rqd->nr_ppas;
  600. int bit;
  601. if (rqd->nr_ppas == 1)
  602. __rrpc_mark_bad_block(rrpc, rqd->ppa_addr);
  603. ppa_set_empty(&prev_ppa);
  604. bit = -1;
  605. while ((bit = find_next_bit(comp_bits, nr_ppas, bit + 1)) < nr_ppas) {
  606. ppa = rqd->ppa_list[bit];
  607. if (ppa_cmp_blk(ppa, prev_ppa))
  608. continue;
  609. __rrpc_mark_bad_block(rrpc, ppa);
  610. }
  611. }
  612. static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
  613. sector_t laddr, uint8_t npages)
  614. {
  615. struct nvm_tgt_dev *dev = rrpc->dev;
  616. struct rrpc_addr *p;
  617. struct rrpc_block *rblk;
  618. int cmnt_size, i;
  619. for (i = 0; i < npages; i++) {
  620. p = &rrpc->trans_map[laddr + i];
  621. rblk = p->rblk;
  622. cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
  623. if (unlikely(cmnt_size == dev->geo.sec_per_blk))
  624. rrpc_run_gc(rrpc, rblk);
  625. }
  626. }
  627. static void rrpc_end_io(struct nvm_rq *rqd)
  628. {
  629. struct rrpc *rrpc = rqd->private;
  630. struct nvm_tgt_dev *dev = rrpc->dev;
  631. struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
  632. uint8_t npages = rqd->nr_ppas;
  633. sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
  634. if (bio_data_dir(rqd->bio) == WRITE) {
  635. if (rqd->error == NVM_RSP_ERR_FAILWRITE)
  636. rrpc_mark_bad_block(rrpc, rqd);
  637. rrpc_end_io_write(rrpc, rrqd, laddr, npages);
  638. }
  639. bio_put(rqd->bio);
  640. if (rrqd->flags & NVM_IOTYPE_GC)
  641. return;
  642. rrpc_unlock_rq(rrpc, rqd);
  643. if (npages > 1)
  644. nvm_dev_dma_free(dev->parent, rqd->ppa_list, rqd->dma_ppa_list);
  645. mempool_free(rqd, rrpc->rq_pool);
  646. }
  647. static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
  648. struct nvm_rq *rqd, unsigned long flags, int npages)
  649. {
  650. struct nvm_tgt_dev *dev = rrpc->dev;
  651. struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
  652. struct rrpc_addr *gp;
  653. sector_t laddr = rrpc_get_laddr(bio);
  654. int is_gc = flags & NVM_IOTYPE_GC;
  655. int i;
  656. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
  657. nvm_dev_dma_free(dev->parent, rqd->ppa_list, rqd->dma_ppa_list);
  658. return NVM_IO_REQUEUE;
  659. }
  660. for (i = 0; i < npages; i++) {
  661. /* We assume that mapping occurs at 4KB granularity */
  662. BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects));
  663. gp = &rrpc->trans_map[laddr + i];
  664. if (gp->rblk) {
  665. rqd->ppa_list[i] = rrpc_ppa_to_gaddr(dev, gp);
  666. } else {
  667. BUG_ON(is_gc);
  668. rrpc_unlock_laddr(rrpc, r);
  669. nvm_dev_dma_free(dev->parent, rqd->ppa_list,
  670. rqd->dma_ppa_list);
  671. return NVM_IO_DONE;
  672. }
  673. }
  674. rqd->opcode = NVM_OP_HBREAD;
  675. return NVM_IO_OK;
  676. }
  677. static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
  678. unsigned long flags)
  679. {
  680. int is_gc = flags & NVM_IOTYPE_GC;
  681. sector_t laddr = rrpc_get_laddr(bio);
  682. struct rrpc_addr *gp;
  683. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
  684. return NVM_IO_REQUEUE;
  685. BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects));
  686. gp = &rrpc->trans_map[laddr];
  687. if (gp->rblk) {
  688. rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp);
  689. } else {
  690. BUG_ON(is_gc);
  691. rrpc_unlock_rq(rrpc, rqd);
  692. return NVM_IO_DONE;
  693. }
  694. rqd->opcode = NVM_OP_HBREAD;
  695. return NVM_IO_OK;
  696. }
  697. static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
  698. struct nvm_rq *rqd, unsigned long flags, int npages)
  699. {
  700. struct nvm_tgt_dev *dev = rrpc->dev;
  701. struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
  702. struct ppa_addr p;
  703. sector_t laddr = rrpc_get_laddr(bio);
  704. int is_gc = flags & NVM_IOTYPE_GC;
  705. int i;
  706. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
  707. nvm_dev_dma_free(dev->parent, rqd->ppa_list, rqd->dma_ppa_list);
  708. return NVM_IO_REQUEUE;
  709. }
  710. for (i = 0; i < npages; i++) {
  711. /* We assume that mapping occurs at 4KB granularity */
  712. p = rrpc_map_page(rrpc, laddr + i, is_gc);
  713. if (p.ppa == ADDR_EMPTY) {
  714. BUG_ON(is_gc);
  715. rrpc_unlock_laddr(rrpc, r);
  716. nvm_dev_dma_free(dev->parent, rqd->ppa_list,
  717. rqd->dma_ppa_list);
  718. rrpc_gc_kick(rrpc);
  719. return NVM_IO_REQUEUE;
  720. }
  721. rqd->ppa_list[i] = p;
  722. }
  723. rqd->opcode = NVM_OP_HBWRITE;
  724. return NVM_IO_OK;
  725. }
  726. static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
  727. struct nvm_rq *rqd, unsigned long flags)
  728. {
  729. struct ppa_addr p;
  730. int is_gc = flags & NVM_IOTYPE_GC;
  731. sector_t laddr = rrpc_get_laddr(bio);
  732. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
  733. return NVM_IO_REQUEUE;
  734. p = rrpc_map_page(rrpc, laddr, is_gc);
  735. if (p.ppa == ADDR_EMPTY) {
  736. BUG_ON(is_gc);
  737. rrpc_unlock_rq(rrpc, rqd);
  738. rrpc_gc_kick(rrpc);
  739. return NVM_IO_REQUEUE;
  740. }
  741. rqd->ppa_addr = p;
  742. rqd->opcode = NVM_OP_HBWRITE;
  743. return NVM_IO_OK;
  744. }
  745. static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
  746. struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
  747. {
  748. struct nvm_tgt_dev *dev = rrpc->dev;
  749. if (npages > 1) {
  750. rqd->ppa_list = nvm_dev_dma_alloc(dev->parent, GFP_KERNEL,
  751. &rqd->dma_ppa_list);
  752. if (!rqd->ppa_list) {
  753. pr_err("rrpc: not able to allocate ppa list\n");
  754. return NVM_IO_ERR;
  755. }
  756. if (bio_op(bio) == REQ_OP_WRITE)
  757. return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
  758. npages);
  759. return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
  760. }
  761. if (bio_op(bio) == REQ_OP_WRITE)
  762. return rrpc_write_rq(rrpc, bio, rqd, flags);
  763. return rrpc_read_rq(rrpc, bio, rqd, flags);
  764. }
  765. static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
  766. struct nvm_rq *rqd, unsigned long flags)
  767. {
  768. struct nvm_tgt_dev *dev = rrpc->dev;
  769. struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
  770. uint8_t nr_pages = rrpc_get_pages(bio);
  771. int bio_size = bio_sectors(bio) << 9;
  772. int err;
  773. if (bio_size < dev->geo.sec_size)
  774. return NVM_IO_ERR;
  775. else if (bio_size > dev->geo.max_rq_size)
  776. return NVM_IO_ERR;
  777. err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
  778. if (err)
  779. return err;
  780. bio_get(bio);
  781. rqd->bio = bio;
  782. rqd->private = rrpc;
  783. rqd->nr_ppas = nr_pages;
  784. rqd->end_io = rrpc_end_io;
  785. rrq->flags = flags;
  786. err = nvm_submit_io(dev, rqd);
  787. if (err) {
  788. pr_err("rrpc: I/O submission failed: %d\n", err);
  789. bio_put(bio);
  790. if (!(flags & NVM_IOTYPE_GC)) {
  791. rrpc_unlock_rq(rrpc, rqd);
  792. if (rqd->nr_ppas > 1)
  793. nvm_dev_dma_free(dev->parent, rqd->ppa_list,
  794. rqd->dma_ppa_list);
  795. }
  796. return NVM_IO_ERR;
  797. }
  798. return NVM_IO_OK;
  799. }
  800. static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
  801. {
  802. struct rrpc *rrpc = q->queuedata;
  803. struct nvm_rq *rqd;
  804. int err;
  805. blk_queue_split(q, &bio, q->bio_split);
  806. if (bio_op(bio) == REQ_OP_DISCARD) {
  807. rrpc_discard(rrpc, bio);
  808. return BLK_QC_T_NONE;
  809. }
  810. rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
  811. if (!rqd) {
  812. pr_err_ratelimited("rrpc: not able to queue bio.");
  813. bio_io_error(bio);
  814. return BLK_QC_T_NONE;
  815. }
  816. memset(rqd, 0, sizeof(struct nvm_rq));
  817. err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
  818. switch (err) {
  819. case NVM_IO_OK:
  820. return BLK_QC_T_NONE;
  821. case NVM_IO_ERR:
  822. bio_io_error(bio);
  823. break;
  824. case NVM_IO_DONE:
  825. bio_endio(bio);
  826. break;
  827. case NVM_IO_REQUEUE:
  828. spin_lock(&rrpc->bio_lock);
  829. bio_list_add(&rrpc->requeue_bios, bio);
  830. spin_unlock(&rrpc->bio_lock);
  831. queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
  832. break;
  833. }
  834. mempool_free(rqd, rrpc->rq_pool);
  835. return BLK_QC_T_NONE;
  836. }
  837. static void rrpc_requeue(struct work_struct *work)
  838. {
  839. struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
  840. struct bio_list bios;
  841. struct bio *bio;
  842. bio_list_init(&bios);
  843. spin_lock(&rrpc->bio_lock);
  844. bio_list_merge(&bios, &rrpc->requeue_bios);
  845. bio_list_init(&rrpc->requeue_bios);
  846. spin_unlock(&rrpc->bio_lock);
  847. while ((bio = bio_list_pop(&bios)))
  848. rrpc_make_rq(rrpc->disk->queue, bio);
  849. }
  850. static void rrpc_gc_free(struct rrpc *rrpc)
  851. {
  852. if (rrpc->krqd_wq)
  853. destroy_workqueue(rrpc->krqd_wq);
  854. if (rrpc->kgc_wq)
  855. destroy_workqueue(rrpc->kgc_wq);
  856. }
  857. static int rrpc_gc_init(struct rrpc *rrpc)
  858. {
  859. rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
  860. rrpc->nr_luns);
  861. if (!rrpc->krqd_wq)
  862. return -ENOMEM;
  863. rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
  864. if (!rrpc->kgc_wq)
  865. return -ENOMEM;
  866. setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
  867. return 0;
  868. }
  869. static void rrpc_map_free(struct rrpc *rrpc)
  870. {
  871. vfree(rrpc->rev_trans_map);
  872. vfree(rrpc->trans_map);
  873. }
  874. static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
  875. {
  876. struct rrpc *rrpc = (struct rrpc *)private;
  877. struct nvm_tgt_dev *dev = rrpc->dev;
  878. struct rrpc_addr *addr = rrpc->trans_map + slba;
  879. struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
  880. struct rrpc_lun *rlun;
  881. struct rrpc_block *rblk;
  882. u64 i;
  883. for (i = 0; i < nlb; i++) {
  884. struct ppa_addr gaddr;
  885. u64 pba = le64_to_cpu(entries[i]);
  886. unsigned int mod;
  887. /* LNVM treats address-spaces as silos, LBA and PBA are
  888. * equally large and zero-indexed.
  889. */
  890. if (unlikely(pba >= dev->total_secs && pba != U64_MAX)) {
  891. pr_err("nvm: L2P data entry is out of bounds!\n");
  892. pr_err("nvm: Maybe loaded an old target L2P\n");
  893. return -EINVAL;
  894. }
  895. /* Address zero is a special one. The first page on a disk is
  896. * protected. As it often holds internal device boot
  897. * information.
  898. */
  899. if (!pba)
  900. continue;
  901. div_u64_rem(pba, rrpc->nr_sects, &mod);
  902. gaddr = rrpc_recov_addr(dev, pba);
  903. rlun = rrpc_ppa_to_lun(rrpc, gaddr);
  904. if (!rlun) {
  905. pr_err("rrpc: l2p corruption on lba %llu\n",
  906. slba + i);
  907. return -EINVAL;
  908. }
  909. rblk = &rlun->blocks[gaddr.g.blk];
  910. if (!rblk->state) {
  911. /* at this point, we don't know anything about the
  912. * block. It's up to the FTL on top to re-etablish the
  913. * block state. The block is assumed to be open.
  914. */
  915. list_move_tail(&rblk->list, &rlun->used_list);
  916. rblk->state = NVM_BLK_ST_TGT;
  917. rlun->nr_free_blocks--;
  918. }
  919. addr[i].addr = pba;
  920. addr[i].rblk = rblk;
  921. raddr[mod].addr = slba + i;
  922. }
  923. return 0;
  924. }
  925. static int rrpc_map_init(struct rrpc *rrpc)
  926. {
  927. struct nvm_tgt_dev *dev = rrpc->dev;
  928. sector_t i;
  929. int ret;
  930. rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_sects);
  931. if (!rrpc->trans_map)
  932. return -ENOMEM;
  933. rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
  934. * rrpc->nr_sects);
  935. if (!rrpc->rev_trans_map)
  936. return -ENOMEM;
  937. for (i = 0; i < rrpc->nr_sects; i++) {
  938. struct rrpc_addr *p = &rrpc->trans_map[i];
  939. struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
  940. p->addr = ADDR_EMPTY;
  941. r->addr = ADDR_EMPTY;
  942. }
  943. /* Bring up the mapping table from device */
  944. ret = nvm_get_l2p_tbl(dev, rrpc->soffset, rrpc->nr_sects,
  945. rrpc_l2p_update, rrpc);
  946. if (ret) {
  947. pr_err("nvm: rrpc: could not read L2P table.\n");
  948. return -EINVAL;
  949. }
  950. return 0;
  951. }
  952. /* Minimum pages needed within a lun */
  953. #define PAGE_POOL_SIZE 16
  954. #define ADDR_POOL_SIZE 64
  955. static int rrpc_core_init(struct rrpc *rrpc)
  956. {
  957. down_write(&rrpc_lock);
  958. if (!rrpc_gcb_cache) {
  959. rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
  960. sizeof(struct rrpc_block_gc), 0, 0, NULL);
  961. if (!rrpc_gcb_cache) {
  962. up_write(&rrpc_lock);
  963. return -ENOMEM;
  964. }
  965. rrpc_rq_cache = kmem_cache_create("rrpc_rq",
  966. sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
  967. 0, 0, NULL);
  968. if (!rrpc_rq_cache) {
  969. kmem_cache_destroy(rrpc_gcb_cache);
  970. up_write(&rrpc_lock);
  971. return -ENOMEM;
  972. }
  973. }
  974. up_write(&rrpc_lock);
  975. rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
  976. if (!rrpc->page_pool)
  977. return -ENOMEM;
  978. rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->geo.nr_luns,
  979. rrpc_gcb_cache);
  980. if (!rrpc->gcb_pool)
  981. return -ENOMEM;
  982. rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
  983. if (!rrpc->rq_pool)
  984. return -ENOMEM;
  985. spin_lock_init(&rrpc->inflights.lock);
  986. INIT_LIST_HEAD(&rrpc->inflights.reqs);
  987. return 0;
  988. }
  989. static void rrpc_core_free(struct rrpc *rrpc)
  990. {
  991. mempool_destroy(rrpc->page_pool);
  992. mempool_destroy(rrpc->gcb_pool);
  993. mempool_destroy(rrpc->rq_pool);
  994. }
  995. static void rrpc_luns_free(struct rrpc *rrpc)
  996. {
  997. struct rrpc_lun *rlun;
  998. int i;
  999. if (!rrpc->luns)
  1000. return;
  1001. for (i = 0; i < rrpc->nr_luns; i++) {
  1002. rlun = &rrpc->luns[i];
  1003. vfree(rlun->blocks);
  1004. }
  1005. kfree(rrpc->luns);
  1006. }
  1007. static int rrpc_bb_discovery(struct nvm_tgt_dev *dev, struct rrpc_lun *rlun)
  1008. {
  1009. struct nvm_geo *geo = &dev->geo;
  1010. struct rrpc_block *rblk;
  1011. struct ppa_addr ppa;
  1012. u8 *blks;
  1013. int nr_blks;
  1014. int i;
  1015. int ret;
  1016. if (!dev->parent->ops->get_bb_tbl)
  1017. return 0;
  1018. nr_blks = geo->blks_per_lun * geo->plane_mode;
  1019. blks = kmalloc(nr_blks, GFP_KERNEL);
  1020. if (!blks)
  1021. return -ENOMEM;
  1022. ppa.ppa = 0;
  1023. ppa.g.ch = rlun->bppa.g.ch;
  1024. ppa.g.lun = rlun->bppa.g.lun;
  1025. ret = nvm_get_tgt_bb_tbl(dev, ppa, blks);
  1026. if (ret) {
  1027. pr_err("rrpc: could not get BB table\n");
  1028. goto out;
  1029. }
  1030. nr_blks = nvm_bb_tbl_fold(dev->parent, blks, nr_blks);
  1031. if (nr_blks < 0)
  1032. return nr_blks;
  1033. for (i = 0; i < nr_blks; i++) {
  1034. if (blks[i] == NVM_BLK_T_FREE)
  1035. continue;
  1036. rblk = &rlun->blocks[i];
  1037. list_move_tail(&rblk->list, &rlun->bb_list);
  1038. rblk->state = NVM_BLK_ST_BAD;
  1039. rlun->nr_free_blocks--;
  1040. }
  1041. out:
  1042. kfree(blks);
  1043. return ret;
  1044. }
  1045. static void rrpc_set_lun_ppa(struct rrpc_lun *rlun, struct ppa_addr ppa)
  1046. {
  1047. rlun->bppa.ppa = 0;
  1048. rlun->bppa.g.ch = ppa.g.ch;
  1049. rlun->bppa.g.lun = ppa.g.lun;
  1050. }
  1051. static int rrpc_luns_init(struct rrpc *rrpc, struct ppa_addr *luns)
  1052. {
  1053. struct nvm_tgt_dev *dev = rrpc->dev;
  1054. struct nvm_geo *geo = &dev->geo;
  1055. struct rrpc_lun *rlun;
  1056. int i, j, ret = -EINVAL;
  1057. if (geo->sec_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
  1058. pr_err("rrpc: number of pages per block too high.");
  1059. return -EINVAL;
  1060. }
  1061. spin_lock_init(&rrpc->rev_lock);
  1062. rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
  1063. GFP_KERNEL);
  1064. if (!rrpc->luns)
  1065. return -ENOMEM;
  1066. /* 1:1 mapping */
  1067. for (i = 0; i < rrpc->nr_luns; i++) {
  1068. rlun = &rrpc->luns[i];
  1069. rlun->id = i;
  1070. rrpc_set_lun_ppa(rlun, luns[i]);
  1071. rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
  1072. geo->blks_per_lun);
  1073. if (!rlun->blocks) {
  1074. ret = -ENOMEM;
  1075. goto err;
  1076. }
  1077. INIT_LIST_HEAD(&rlun->free_list);
  1078. INIT_LIST_HEAD(&rlun->used_list);
  1079. INIT_LIST_HEAD(&rlun->bb_list);
  1080. for (j = 0; j < geo->blks_per_lun; j++) {
  1081. struct rrpc_block *rblk = &rlun->blocks[j];
  1082. rblk->id = j;
  1083. rblk->rlun = rlun;
  1084. rblk->state = NVM_BLK_T_FREE;
  1085. INIT_LIST_HEAD(&rblk->prio);
  1086. INIT_LIST_HEAD(&rblk->list);
  1087. spin_lock_init(&rblk->lock);
  1088. list_add_tail(&rblk->list, &rlun->free_list);
  1089. }
  1090. rlun->rrpc = rrpc;
  1091. rlun->nr_free_blocks = geo->blks_per_lun;
  1092. rlun->reserved_blocks = 2; /* for GC only */
  1093. INIT_LIST_HEAD(&rlun->prio_list);
  1094. INIT_LIST_HEAD(&rlun->wblk_list);
  1095. INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
  1096. spin_lock_init(&rlun->lock);
  1097. if (rrpc_bb_discovery(dev, rlun))
  1098. goto err;
  1099. }
  1100. return 0;
  1101. err:
  1102. return ret;
  1103. }
  1104. /* returns 0 on success and stores the beginning address in *begin */
  1105. static int rrpc_area_init(struct rrpc *rrpc, sector_t *begin)
  1106. {
  1107. struct nvm_tgt_dev *dev = rrpc->dev;
  1108. sector_t size = rrpc->nr_sects * dev->geo.sec_size;
  1109. int ret;
  1110. size >>= 9;
  1111. ret = nvm_get_area(dev, begin, size);
  1112. if (!ret)
  1113. *begin >>= (ilog2(dev->geo.sec_size) - 9);
  1114. return ret;
  1115. }
  1116. static void rrpc_area_free(struct rrpc *rrpc)
  1117. {
  1118. struct nvm_tgt_dev *dev = rrpc->dev;
  1119. sector_t begin = rrpc->soffset << (ilog2(dev->geo.sec_size) - 9);
  1120. nvm_put_area(dev, begin);
  1121. }
  1122. static void rrpc_free(struct rrpc *rrpc)
  1123. {
  1124. rrpc_gc_free(rrpc);
  1125. rrpc_map_free(rrpc);
  1126. rrpc_core_free(rrpc);
  1127. rrpc_luns_free(rrpc);
  1128. rrpc_area_free(rrpc);
  1129. kfree(rrpc);
  1130. }
  1131. static void rrpc_exit(void *private)
  1132. {
  1133. struct rrpc *rrpc = private;
  1134. del_timer(&rrpc->gc_timer);
  1135. flush_workqueue(rrpc->krqd_wq);
  1136. flush_workqueue(rrpc->kgc_wq);
  1137. rrpc_free(rrpc);
  1138. }
  1139. static sector_t rrpc_capacity(void *private)
  1140. {
  1141. struct rrpc *rrpc = private;
  1142. struct nvm_tgt_dev *dev = rrpc->dev;
  1143. sector_t reserved, provisioned;
  1144. /* cur, gc, and two emergency blocks for each lun */
  1145. reserved = rrpc->nr_luns * dev->geo.sec_per_blk * 4;
  1146. provisioned = rrpc->nr_sects - reserved;
  1147. if (reserved > rrpc->nr_sects) {
  1148. pr_err("rrpc: not enough space available to expose storage.\n");
  1149. return 0;
  1150. }
  1151. sector_div(provisioned, 10);
  1152. return provisioned * 9 * NR_PHY_IN_LOG;
  1153. }
  1154. /*
  1155. * Looks up the logical address from reverse trans map and check if its valid by
  1156. * comparing the logical to physical address with the physical address.
  1157. * Returns 0 on free, otherwise 1 if in use
  1158. */
  1159. static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
  1160. {
  1161. struct nvm_tgt_dev *dev = rrpc->dev;
  1162. int offset;
  1163. struct rrpc_addr *laddr;
  1164. u64 bpaddr, paddr, pladdr;
  1165. bpaddr = block_to_rel_addr(rrpc, rblk);
  1166. for (offset = 0; offset < dev->geo.sec_per_blk; offset++) {
  1167. paddr = bpaddr + offset;
  1168. pladdr = rrpc->rev_trans_map[paddr].addr;
  1169. if (pladdr == ADDR_EMPTY)
  1170. continue;
  1171. laddr = &rrpc->trans_map[pladdr];
  1172. if (paddr == laddr->addr) {
  1173. laddr->rblk = rblk;
  1174. } else {
  1175. set_bit(offset, rblk->invalid_pages);
  1176. rblk->nr_invalid_pages++;
  1177. }
  1178. }
  1179. }
  1180. static int rrpc_blocks_init(struct rrpc *rrpc)
  1181. {
  1182. struct nvm_tgt_dev *dev = rrpc->dev;
  1183. struct rrpc_lun *rlun;
  1184. struct rrpc_block *rblk;
  1185. int lun_iter, blk_iter;
  1186. for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
  1187. rlun = &rrpc->luns[lun_iter];
  1188. for (blk_iter = 0; blk_iter < dev->geo.blks_per_lun;
  1189. blk_iter++) {
  1190. rblk = &rlun->blocks[blk_iter];
  1191. rrpc_block_map_update(rrpc, rblk);
  1192. }
  1193. }
  1194. return 0;
  1195. }
  1196. static int rrpc_luns_configure(struct rrpc *rrpc)
  1197. {
  1198. struct rrpc_lun *rlun;
  1199. struct rrpc_block *rblk;
  1200. int i;
  1201. for (i = 0; i < rrpc->nr_luns; i++) {
  1202. rlun = &rrpc->luns[i];
  1203. rblk = rrpc_get_blk(rrpc, rlun, 0);
  1204. if (!rblk)
  1205. goto err;
  1206. rrpc_set_lun_cur(rlun, rblk, &rlun->cur);
  1207. /* Emergency gc block */
  1208. rblk = rrpc_get_blk(rrpc, rlun, 1);
  1209. if (!rblk)
  1210. goto err;
  1211. rrpc_set_lun_cur(rlun, rblk, &rlun->gc_cur);
  1212. }
  1213. return 0;
  1214. err:
  1215. rrpc_put_blks(rrpc);
  1216. return -EINVAL;
  1217. }
  1218. static struct nvm_tgt_type tt_rrpc;
  1219. static void *rrpc_init(struct nvm_tgt_dev *dev, struct gendisk *tdisk)
  1220. {
  1221. struct request_queue *bqueue = dev->q;
  1222. struct request_queue *tqueue = tdisk->queue;
  1223. struct nvm_geo *geo = &dev->geo;
  1224. struct rrpc *rrpc;
  1225. sector_t soffset;
  1226. int ret;
  1227. if (!(dev->identity.dom & NVM_RSP_L2P)) {
  1228. pr_err("nvm: rrpc: device does not support l2p (%x)\n",
  1229. dev->identity.dom);
  1230. return ERR_PTR(-EINVAL);
  1231. }
  1232. rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
  1233. if (!rrpc)
  1234. return ERR_PTR(-ENOMEM);
  1235. rrpc->dev = dev;
  1236. rrpc->disk = tdisk;
  1237. bio_list_init(&rrpc->requeue_bios);
  1238. spin_lock_init(&rrpc->bio_lock);
  1239. INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
  1240. rrpc->nr_luns = geo->nr_luns;
  1241. rrpc->nr_sects = (unsigned long long)geo->sec_per_lun * rrpc->nr_luns;
  1242. /* simple round-robin strategy */
  1243. atomic_set(&rrpc->next_lun, -1);
  1244. ret = rrpc_area_init(rrpc, &soffset);
  1245. if (ret < 0) {
  1246. pr_err("nvm: rrpc: could not initialize area\n");
  1247. return ERR_PTR(ret);
  1248. }
  1249. rrpc->soffset = soffset;
  1250. ret = rrpc_luns_init(rrpc, dev->luns);
  1251. if (ret) {
  1252. pr_err("nvm: rrpc: could not initialize luns\n");
  1253. goto err;
  1254. }
  1255. ret = rrpc_core_init(rrpc);
  1256. if (ret) {
  1257. pr_err("nvm: rrpc: could not initialize core\n");
  1258. goto err;
  1259. }
  1260. ret = rrpc_map_init(rrpc);
  1261. if (ret) {
  1262. pr_err("nvm: rrpc: could not initialize maps\n");
  1263. goto err;
  1264. }
  1265. ret = rrpc_blocks_init(rrpc);
  1266. if (ret) {
  1267. pr_err("nvm: rrpc: could not initialize state for blocks\n");
  1268. goto err;
  1269. }
  1270. ret = rrpc_luns_configure(rrpc);
  1271. if (ret) {
  1272. pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
  1273. goto err;
  1274. }
  1275. ret = rrpc_gc_init(rrpc);
  1276. if (ret) {
  1277. pr_err("nvm: rrpc: could not initialize gc\n");
  1278. goto err;
  1279. }
  1280. /* inherit the size from the underlying device */
  1281. blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
  1282. blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
  1283. pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
  1284. rrpc->nr_luns, (unsigned long long)rrpc->nr_sects);
  1285. mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
  1286. return rrpc;
  1287. err:
  1288. rrpc_free(rrpc);
  1289. return ERR_PTR(ret);
  1290. }
  1291. /* round robin, page-based FTL, and cost-based GC */
  1292. static struct nvm_tgt_type tt_rrpc = {
  1293. .name = "rrpc",
  1294. .version = {1, 0, 0},
  1295. .make_rq = rrpc_make_rq,
  1296. .capacity = rrpc_capacity,
  1297. .init = rrpc_init,
  1298. .exit = rrpc_exit,
  1299. };
  1300. static int __init rrpc_module_init(void)
  1301. {
  1302. return nvm_register_tgt_type(&tt_rrpc);
  1303. }
  1304. static void rrpc_module_exit(void)
  1305. {
  1306. nvm_unregister_tgt_type(&tt_rrpc);
  1307. }
  1308. module_init(rrpc_module_init);
  1309. module_exit(rrpc_module_exit);
  1310. MODULE_LICENSE("GPL v2");
  1311. MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");