core.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327
  1. /*
  2. * Copyright (C) 2015 IT University of Copenhagen. All rights reserved.
  3. * Initial release: Matias Bjorling <m@bjorling.me>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License version
  7. * 2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; see the file COPYING. If not, write to
  16. * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
  17. * USA.
  18. *
  19. */
  20. #include <linux/list.h>
  21. #include <linux/types.h>
  22. #include <linux/sem.h>
  23. #include <linux/bitmap.h>
  24. #include <linux/moduleparam.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/lightnvm.h>
  27. #include <linux/sched/sysctl.h>
  28. static LIST_HEAD(nvm_tgt_types);
  29. static DECLARE_RWSEM(nvm_tgtt_lock);
  30. static LIST_HEAD(nvm_devices);
  31. static DECLARE_RWSEM(nvm_lock);
  32. /* Map between virtual and physical channel and lun */
  33. struct nvm_ch_map {
  34. int ch_off;
  35. int nr_luns;
  36. int *lun_offs;
  37. };
  38. struct nvm_dev_map {
  39. struct nvm_ch_map *chnls;
  40. int nr_chnls;
  41. };
  42. struct nvm_area {
  43. struct list_head list;
  44. sector_t begin;
  45. sector_t end; /* end is excluded */
  46. };
  47. static struct nvm_target *nvm_find_target(struct nvm_dev *dev, const char *name)
  48. {
  49. struct nvm_target *tgt;
  50. list_for_each_entry(tgt, &dev->targets, list)
  51. if (!strcmp(name, tgt->disk->disk_name))
  52. return tgt;
  53. return NULL;
  54. }
  55. static int nvm_reserve_luns(struct nvm_dev *dev, int lun_begin, int lun_end)
  56. {
  57. int i;
  58. for (i = lun_begin; i <= lun_end; i++) {
  59. if (test_and_set_bit(i, dev->lun_map)) {
  60. pr_err("nvm: lun %d already allocated\n", i);
  61. goto err;
  62. }
  63. }
  64. return 0;
  65. err:
  66. while (--i > lun_begin)
  67. clear_bit(i, dev->lun_map);
  68. return -EBUSY;
  69. }
  70. static void nvm_release_luns_err(struct nvm_dev *dev, int lun_begin,
  71. int lun_end)
  72. {
  73. int i;
  74. for (i = lun_begin; i <= lun_end; i++)
  75. WARN_ON(!test_and_clear_bit(i, dev->lun_map));
  76. }
  77. static void nvm_remove_tgt_dev(struct nvm_tgt_dev *tgt_dev)
  78. {
  79. struct nvm_dev *dev = tgt_dev->parent;
  80. struct nvm_dev_map *dev_map = tgt_dev->map;
  81. int i, j;
  82. for (i = 0; i < dev_map->nr_chnls; i++) {
  83. struct nvm_ch_map *ch_map = &dev_map->chnls[i];
  84. int *lun_offs = ch_map->lun_offs;
  85. int ch = i + ch_map->ch_off;
  86. for (j = 0; j < ch_map->nr_luns; j++) {
  87. int lun = j + lun_offs[j];
  88. int lunid = (ch * dev->geo.luns_per_chnl) + lun;
  89. WARN_ON(!test_and_clear_bit(lunid, dev->lun_map));
  90. }
  91. kfree(ch_map->lun_offs);
  92. }
  93. kfree(dev_map->chnls);
  94. kfree(dev_map);
  95. kfree(tgt_dev->luns);
  96. kfree(tgt_dev);
  97. }
  98. static struct nvm_tgt_dev *nvm_create_tgt_dev(struct nvm_dev *dev,
  99. int lun_begin, int lun_end)
  100. {
  101. struct nvm_tgt_dev *tgt_dev = NULL;
  102. struct nvm_dev_map *dev_rmap = dev->rmap;
  103. struct nvm_dev_map *dev_map;
  104. struct ppa_addr *luns;
  105. int nr_luns = lun_end - lun_begin + 1;
  106. int luns_left = nr_luns;
  107. int nr_chnls = nr_luns / dev->geo.luns_per_chnl;
  108. int nr_chnls_mod = nr_luns % dev->geo.luns_per_chnl;
  109. int bch = lun_begin / dev->geo.luns_per_chnl;
  110. int blun = lun_begin % dev->geo.luns_per_chnl;
  111. int lunid = 0;
  112. int lun_balanced = 1;
  113. int prev_nr_luns;
  114. int i, j;
  115. nr_chnls = nr_luns / dev->geo.luns_per_chnl;
  116. nr_chnls = (nr_chnls_mod == 0) ? nr_chnls : nr_chnls + 1;
  117. dev_map = kmalloc(sizeof(struct nvm_dev_map), GFP_KERNEL);
  118. if (!dev_map)
  119. goto err_dev;
  120. dev_map->chnls = kcalloc(nr_chnls, sizeof(struct nvm_ch_map),
  121. GFP_KERNEL);
  122. if (!dev_map->chnls)
  123. goto err_chnls;
  124. luns = kcalloc(nr_luns, sizeof(struct ppa_addr), GFP_KERNEL);
  125. if (!luns)
  126. goto err_luns;
  127. prev_nr_luns = (luns_left > dev->geo.luns_per_chnl) ?
  128. dev->geo.luns_per_chnl : luns_left;
  129. for (i = 0; i < nr_chnls; i++) {
  130. struct nvm_ch_map *ch_rmap = &dev_rmap->chnls[i + bch];
  131. int *lun_roffs = ch_rmap->lun_offs;
  132. struct nvm_ch_map *ch_map = &dev_map->chnls[i];
  133. int *lun_offs;
  134. int luns_in_chnl = (luns_left > dev->geo.luns_per_chnl) ?
  135. dev->geo.luns_per_chnl : luns_left;
  136. if (lun_balanced && prev_nr_luns != luns_in_chnl)
  137. lun_balanced = 0;
  138. ch_map->ch_off = ch_rmap->ch_off = bch;
  139. ch_map->nr_luns = luns_in_chnl;
  140. lun_offs = kcalloc(luns_in_chnl, sizeof(int), GFP_KERNEL);
  141. if (!lun_offs)
  142. goto err_ch;
  143. for (j = 0; j < luns_in_chnl; j++) {
  144. luns[lunid].ppa = 0;
  145. luns[lunid].g.ch = i;
  146. luns[lunid++].g.lun = j;
  147. lun_offs[j] = blun;
  148. lun_roffs[j + blun] = blun;
  149. }
  150. ch_map->lun_offs = lun_offs;
  151. /* when starting a new channel, lun offset is reset */
  152. blun = 0;
  153. luns_left -= luns_in_chnl;
  154. }
  155. dev_map->nr_chnls = nr_chnls;
  156. tgt_dev = kmalloc(sizeof(struct nvm_tgt_dev), GFP_KERNEL);
  157. if (!tgt_dev)
  158. goto err_ch;
  159. memcpy(&tgt_dev->geo, &dev->geo, sizeof(struct nvm_geo));
  160. /* Target device only owns a portion of the physical device */
  161. tgt_dev->geo.nr_chnls = nr_chnls;
  162. tgt_dev->geo.nr_luns = nr_luns;
  163. tgt_dev->geo.luns_per_chnl = (lun_balanced) ? prev_nr_luns : -1;
  164. tgt_dev->total_secs = nr_luns * tgt_dev->geo.sec_per_lun;
  165. tgt_dev->q = dev->q;
  166. tgt_dev->map = dev_map;
  167. tgt_dev->luns = luns;
  168. memcpy(&tgt_dev->identity, &dev->identity, sizeof(struct nvm_id));
  169. tgt_dev->parent = dev;
  170. return tgt_dev;
  171. err_ch:
  172. while (--i > 0)
  173. kfree(dev_map->chnls[i].lun_offs);
  174. kfree(luns);
  175. err_luns:
  176. kfree(dev_map->chnls);
  177. err_chnls:
  178. kfree(dev_map);
  179. err_dev:
  180. return tgt_dev;
  181. }
  182. static const struct block_device_operations nvm_fops = {
  183. .owner = THIS_MODULE,
  184. };
  185. static int nvm_create_tgt(struct nvm_dev *dev, struct nvm_ioctl_create *create)
  186. {
  187. struct nvm_ioctl_create_simple *s = &create->conf.s;
  188. struct request_queue *tqueue;
  189. struct gendisk *tdisk;
  190. struct nvm_tgt_type *tt;
  191. struct nvm_target *t;
  192. struct nvm_tgt_dev *tgt_dev;
  193. void *targetdata;
  194. tt = nvm_find_target_type(create->tgttype, 1);
  195. if (!tt) {
  196. pr_err("nvm: target type %s not found\n", create->tgttype);
  197. return -EINVAL;
  198. }
  199. mutex_lock(&dev->mlock);
  200. t = nvm_find_target(dev, create->tgtname);
  201. if (t) {
  202. pr_err("nvm: target name already exists.\n");
  203. mutex_unlock(&dev->mlock);
  204. return -EINVAL;
  205. }
  206. mutex_unlock(&dev->mlock);
  207. if (nvm_reserve_luns(dev, s->lun_begin, s->lun_end))
  208. return -ENOMEM;
  209. t = kmalloc(sizeof(struct nvm_target), GFP_KERNEL);
  210. if (!t)
  211. goto err_reserve;
  212. tgt_dev = nvm_create_tgt_dev(dev, s->lun_begin, s->lun_end);
  213. if (!tgt_dev) {
  214. pr_err("nvm: could not create target device\n");
  215. goto err_t;
  216. }
  217. tqueue = blk_alloc_queue_node(GFP_KERNEL, dev->q->node);
  218. if (!tqueue)
  219. goto err_dev;
  220. blk_queue_make_request(tqueue, tt->make_rq);
  221. tdisk = alloc_disk(0);
  222. if (!tdisk)
  223. goto err_queue;
  224. sprintf(tdisk->disk_name, "%s", create->tgtname);
  225. tdisk->flags = GENHD_FL_EXT_DEVT;
  226. tdisk->major = 0;
  227. tdisk->first_minor = 0;
  228. tdisk->fops = &nvm_fops;
  229. tdisk->queue = tqueue;
  230. targetdata = tt->init(tgt_dev, tdisk);
  231. if (IS_ERR(targetdata))
  232. goto err_init;
  233. tdisk->private_data = targetdata;
  234. tqueue->queuedata = targetdata;
  235. blk_queue_max_hw_sectors(tqueue, 8 * dev->ops->max_phys_sect);
  236. set_capacity(tdisk, tt->capacity(targetdata));
  237. add_disk(tdisk);
  238. if (tt->sysfs_init && tt->sysfs_init(tdisk))
  239. goto err_sysfs;
  240. t->type = tt;
  241. t->disk = tdisk;
  242. t->dev = tgt_dev;
  243. mutex_lock(&dev->mlock);
  244. list_add_tail(&t->list, &dev->targets);
  245. mutex_unlock(&dev->mlock);
  246. return 0;
  247. err_sysfs:
  248. if (tt->exit)
  249. tt->exit(targetdata);
  250. err_init:
  251. put_disk(tdisk);
  252. err_queue:
  253. blk_cleanup_queue(tqueue);
  254. err_dev:
  255. nvm_remove_tgt_dev(tgt_dev);
  256. err_t:
  257. kfree(t);
  258. err_reserve:
  259. nvm_release_luns_err(dev, s->lun_begin, s->lun_end);
  260. return -ENOMEM;
  261. }
  262. static void __nvm_remove_target(struct nvm_target *t)
  263. {
  264. struct nvm_tgt_type *tt = t->type;
  265. struct gendisk *tdisk = t->disk;
  266. struct request_queue *q = tdisk->queue;
  267. del_gendisk(tdisk);
  268. blk_cleanup_queue(q);
  269. if (tt->sysfs_exit)
  270. tt->sysfs_exit(tdisk);
  271. if (tt->exit)
  272. tt->exit(tdisk->private_data);
  273. nvm_remove_tgt_dev(t->dev);
  274. put_disk(tdisk);
  275. list_del(&t->list);
  276. kfree(t);
  277. }
  278. /**
  279. * nvm_remove_tgt - Removes a target from the media manager
  280. * @dev: device
  281. * @remove: ioctl structure with target name to remove.
  282. *
  283. * Returns:
  284. * 0: on success
  285. * 1: on not found
  286. * <0: on error
  287. */
  288. static int nvm_remove_tgt(struct nvm_dev *dev, struct nvm_ioctl_remove *remove)
  289. {
  290. struct nvm_target *t;
  291. mutex_lock(&dev->mlock);
  292. t = nvm_find_target(dev, remove->tgtname);
  293. if (!t) {
  294. mutex_unlock(&dev->mlock);
  295. return 1;
  296. }
  297. __nvm_remove_target(t);
  298. mutex_unlock(&dev->mlock);
  299. return 0;
  300. }
  301. static int nvm_register_map(struct nvm_dev *dev)
  302. {
  303. struct nvm_dev_map *rmap;
  304. int i, j;
  305. rmap = kmalloc(sizeof(struct nvm_dev_map), GFP_KERNEL);
  306. if (!rmap)
  307. goto err_rmap;
  308. rmap->chnls = kcalloc(dev->geo.nr_chnls, sizeof(struct nvm_ch_map),
  309. GFP_KERNEL);
  310. if (!rmap->chnls)
  311. goto err_chnls;
  312. for (i = 0; i < dev->geo.nr_chnls; i++) {
  313. struct nvm_ch_map *ch_rmap;
  314. int *lun_roffs;
  315. int luns_in_chnl = dev->geo.luns_per_chnl;
  316. ch_rmap = &rmap->chnls[i];
  317. ch_rmap->ch_off = -1;
  318. ch_rmap->nr_luns = luns_in_chnl;
  319. lun_roffs = kcalloc(luns_in_chnl, sizeof(int), GFP_KERNEL);
  320. if (!lun_roffs)
  321. goto err_ch;
  322. for (j = 0; j < luns_in_chnl; j++)
  323. lun_roffs[j] = -1;
  324. ch_rmap->lun_offs = lun_roffs;
  325. }
  326. dev->rmap = rmap;
  327. return 0;
  328. err_ch:
  329. while (--i >= 0)
  330. kfree(rmap->chnls[i].lun_offs);
  331. err_chnls:
  332. kfree(rmap);
  333. err_rmap:
  334. return -ENOMEM;
  335. }
  336. static void nvm_map_to_dev(struct nvm_tgt_dev *tgt_dev, struct ppa_addr *p)
  337. {
  338. struct nvm_dev_map *dev_map = tgt_dev->map;
  339. struct nvm_ch_map *ch_map = &dev_map->chnls[p->g.ch];
  340. int lun_off = ch_map->lun_offs[p->g.lun];
  341. p->g.ch += ch_map->ch_off;
  342. p->g.lun += lun_off;
  343. }
  344. static void nvm_map_to_tgt(struct nvm_tgt_dev *tgt_dev, struct ppa_addr *p)
  345. {
  346. struct nvm_dev *dev = tgt_dev->parent;
  347. struct nvm_dev_map *dev_rmap = dev->rmap;
  348. struct nvm_ch_map *ch_rmap = &dev_rmap->chnls[p->g.ch];
  349. int lun_roff = ch_rmap->lun_offs[p->g.lun];
  350. p->g.ch -= ch_rmap->ch_off;
  351. p->g.lun -= lun_roff;
  352. }
  353. static void nvm_ppa_tgt_to_dev(struct nvm_tgt_dev *tgt_dev,
  354. struct ppa_addr *ppa_list, int nr_ppas)
  355. {
  356. int i;
  357. for (i = 0; i < nr_ppas; i++) {
  358. nvm_map_to_dev(tgt_dev, &ppa_list[i]);
  359. ppa_list[i] = generic_to_dev_addr(tgt_dev, ppa_list[i]);
  360. }
  361. }
  362. static void nvm_ppa_dev_to_tgt(struct nvm_tgt_dev *tgt_dev,
  363. struct ppa_addr *ppa_list, int nr_ppas)
  364. {
  365. int i;
  366. for (i = 0; i < nr_ppas; i++) {
  367. ppa_list[i] = dev_to_generic_addr(tgt_dev, ppa_list[i]);
  368. nvm_map_to_tgt(tgt_dev, &ppa_list[i]);
  369. }
  370. }
  371. static void nvm_rq_tgt_to_dev(struct nvm_tgt_dev *tgt_dev, struct nvm_rq *rqd)
  372. {
  373. if (rqd->nr_ppas == 1) {
  374. nvm_ppa_tgt_to_dev(tgt_dev, &rqd->ppa_addr, 1);
  375. return;
  376. }
  377. nvm_ppa_tgt_to_dev(tgt_dev, rqd->ppa_list, rqd->nr_ppas);
  378. }
  379. static void nvm_rq_dev_to_tgt(struct nvm_tgt_dev *tgt_dev, struct nvm_rq *rqd)
  380. {
  381. if (rqd->nr_ppas == 1) {
  382. nvm_ppa_dev_to_tgt(tgt_dev, &rqd->ppa_addr, 1);
  383. return;
  384. }
  385. nvm_ppa_dev_to_tgt(tgt_dev, rqd->ppa_list, rqd->nr_ppas);
  386. }
  387. void nvm_part_to_tgt(struct nvm_dev *dev, sector_t *entries,
  388. int len)
  389. {
  390. struct nvm_geo *geo = &dev->geo;
  391. struct nvm_dev_map *dev_rmap = dev->rmap;
  392. u64 i;
  393. for (i = 0; i < len; i++) {
  394. struct nvm_ch_map *ch_rmap;
  395. int *lun_roffs;
  396. struct ppa_addr gaddr;
  397. u64 pba = le64_to_cpu(entries[i]);
  398. int off;
  399. u64 diff;
  400. if (!pba)
  401. continue;
  402. gaddr = linear_to_generic_addr(geo, pba);
  403. ch_rmap = &dev_rmap->chnls[gaddr.g.ch];
  404. lun_roffs = ch_rmap->lun_offs;
  405. off = gaddr.g.ch * geo->luns_per_chnl + gaddr.g.lun;
  406. diff = ((ch_rmap->ch_off * geo->luns_per_chnl) +
  407. (lun_roffs[gaddr.g.lun])) * geo->sec_per_lun;
  408. entries[i] -= cpu_to_le64(diff);
  409. }
  410. }
  411. EXPORT_SYMBOL(nvm_part_to_tgt);
  412. struct nvm_tgt_type *nvm_find_target_type(const char *name, int lock)
  413. {
  414. struct nvm_tgt_type *tmp, *tt = NULL;
  415. if (lock)
  416. down_write(&nvm_tgtt_lock);
  417. list_for_each_entry(tmp, &nvm_tgt_types, list)
  418. if (!strcmp(name, tmp->name)) {
  419. tt = tmp;
  420. break;
  421. }
  422. if (lock)
  423. up_write(&nvm_tgtt_lock);
  424. return tt;
  425. }
  426. EXPORT_SYMBOL(nvm_find_target_type);
  427. int nvm_register_tgt_type(struct nvm_tgt_type *tt)
  428. {
  429. int ret = 0;
  430. down_write(&nvm_tgtt_lock);
  431. if (nvm_find_target_type(tt->name, 0))
  432. ret = -EEXIST;
  433. else
  434. list_add(&tt->list, &nvm_tgt_types);
  435. up_write(&nvm_tgtt_lock);
  436. return ret;
  437. }
  438. EXPORT_SYMBOL(nvm_register_tgt_type);
  439. void nvm_unregister_tgt_type(struct nvm_tgt_type *tt)
  440. {
  441. if (!tt)
  442. return;
  443. down_write(&nvm_lock);
  444. list_del(&tt->list);
  445. up_write(&nvm_lock);
  446. }
  447. EXPORT_SYMBOL(nvm_unregister_tgt_type);
  448. void *nvm_dev_dma_alloc(struct nvm_dev *dev, gfp_t mem_flags,
  449. dma_addr_t *dma_handler)
  450. {
  451. return dev->ops->dev_dma_alloc(dev, dev->dma_pool, mem_flags,
  452. dma_handler);
  453. }
  454. EXPORT_SYMBOL(nvm_dev_dma_alloc);
  455. void nvm_dev_dma_free(struct nvm_dev *dev, void *addr, dma_addr_t dma_handler)
  456. {
  457. dev->ops->dev_dma_free(dev->dma_pool, addr, dma_handler);
  458. }
  459. EXPORT_SYMBOL(nvm_dev_dma_free);
  460. static struct nvm_dev *nvm_find_nvm_dev(const char *name)
  461. {
  462. struct nvm_dev *dev;
  463. list_for_each_entry(dev, &nvm_devices, devices)
  464. if (!strcmp(name, dev->name))
  465. return dev;
  466. return NULL;
  467. }
  468. int nvm_set_tgt_bb_tbl(struct nvm_tgt_dev *tgt_dev, struct ppa_addr *ppas,
  469. int nr_ppas, int type)
  470. {
  471. struct nvm_dev *dev = tgt_dev->parent;
  472. struct nvm_rq rqd;
  473. int ret;
  474. if (nr_ppas > dev->ops->max_phys_sect) {
  475. pr_err("nvm: unable to update all blocks atomically\n");
  476. return -EINVAL;
  477. }
  478. memset(&rqd, 0, sizeof(struct nvm_rq));
  479. nvm_set_rqd_ppalist(dev, &rqd, ppas, nr_ppas, 1);
  480. nvm_rq_tgt_to_dev(tgt_dev, &rqd);
  481. ret = dev->ops->set_bb_tbl(dev, &rqd.ppa_addr, rqd.nr_ppas, type);
  482. nvm_free_rqd_ppalist(dev, &rqd);
  483. if (ret) {
  484. pr_err("nvm: failed bb mark\n");
  485. return -EINVAL;
  486. }
  487. return 0;
  488. }
  489. EXPORT_SYMBOL(nvm_set_tgt_bb_tbl);
  490. int nvm_max_phys_sects(struct nvm_tgt_dev *tgt_dev)
  491. {
  492. struct nvm_dev *dev = tgt_dev->parent;
  493. return dev->ops->max_phys_sect;
  494. }
  495. EXPORT_SYMBOL(nvm_max_phys_sects);
  496. int nvm_submit_io(struct nvm_tgt_dev *tgt_dev, struct nvm_rq *rqd)
  497. {
  498. struct nvm_dev *dev = tgt_dev->parent;
  499. if (!dev->ops->submit_io)
  500. return -ENODEV;
  501. nvm_rq_tgt_to_dev(tgt_dev, rqd);
  502. rqd->dev = tgt_dev;
  503. return dev->ops->submit_io(dev, rqd);
  504. }
  505. EXPORT_SYMBOL(nvm_submit_io);
  506. int nvm_erase_blk(struct nvm_tgt_dev *tgt_dev, struct ppa_addr *ppas, int flags)
  507. {
  508. struct nvm_dev *dev = tgt_dev->parent;
  509. struct nvm_rq rqd;
  510. int ret;
  511. if (!dev->ops->erase_block)
  512. return 0;
  513. nvm_map_to_dev(tgt_dev, ppas);
  514. memset(&rqd, 0, sizeof(struct nvm_rq));
  515. ret = nvm_set_rqd_ppalist(dev, &rqd, ppas, 1, 1);
  516. if (ret)
  517. return ret;
  518. nvm_rq_tgt_to_dev(tgt_dev, &rqd);
  519. rqd.flags = flags;
  520. ret = dev->ops->erase_block(dev, &rqd);
  521. nvm_free_rqd_ppalist(dev, &rqd);
  522. return ret;
  523. }
  524. EXPORT_SYMBOL(nvm_erase_blk);
  525. int nvm_get_l2p_tbl(struct nvm_tgt_dev *tgt_dev, u64 slba, u32 nlb,
  526. nvm_l2p_update_fn *update_l2p, void *priv)
  527. {
  528. struct nvm_dev *dev = tgt_dev->parent;
  529. if (!dev->ops->get_l2p_tbl)
  530. return 0;
  531. return dev->ops->get_l2p_tbl(dev, slba, nlb, update_l2p, priv);
  532. }
  533. EXPORT_SYMBOL(nvm_get_l2p_tbl);
  534. int nvm_get_area(struct nvm_tgt_dev *tgt_dev, sector_t *lba, sector_t len)
  535. {
  536. struct nvm_dev *dev = tgt_dev->parent;
  537. struct nvm_geo *geo = &dev->geo;
  538. struct nvm_area *area, *prev, *next;
  539. sector_t begin = 0;
  540. sector_t max_sectors = (geo->sec_size * dev->total_secs) >> 9;
  541. if (len > max_sectors)
  542. return -EINVAL;
  543. area = kmalloc(sizeof(struct nvm_area), GFP_KERNEL);
  544. if (!area)
  545. return -ENOMEM;
  546. prev = NULL;
  547. spin_lock(&dev->lock);
  548. list_for_each_entry(next, &dev->area_list, list) {
  549. if (begin + len > next->begin) {
  550. begin = next->end;
  551. prev = next;
  552. continue;
  553. }
  554. break;
  555. }
  556. if ((begin + len) > max_sectors) {
  557. spin_unlock(&dev->lock);
  558. kfree(area);
  559. return -EINVAL;
  560. }
  561. area->begin = *lba = begin;
  562. area->end = begin + len;
  563. if (prev) /* insert into sorted order */
  564. list_add(&area->list, &prev->list);
  565. else
  566. list_add(&area->list, &dev->area_list);
  567. spin_unlock(&dev->lock);
  568. return 0;
  569. }
  570. EXPORT_SYMBOL(nvm_get_area);
  571. void nvm_put_area(struct nvm_tgt_dev *tgt_dev, sector_t begin)
  572. {
  573. struct nvm_dev *dev = tgt_dev->parent;
  574. struct nvm_area *area;
  575. spin_lock(&dev->lock);
  576. list_for_each_entry(area, &dev->area_list, list) {
  577. if (area->begin != begin)
  578. continue;
  579. list_del(&area->list);
  580. spin_unlock(&dev->lock);
  581. kfree(area);
  582. return;
  583. }
  584. spin_unlock(&dev->lock);
  585. }
  586. EXPORT_SYMBOL(nvm_put_area);
  587. int nvm_set_rqd_ppalist(struct nvm_dev *dev, struct nvm_rq *rqd,
  588. const struct ppa_addr *ppas, int nr_ppas, int vblk)
  589. {
  590. struct nvm_geo *geo = &dev->geo;
  591. int i, plane_cnt, pl_idx;
  592. struct ppa_addr ppa;
  593. if ((!vblk || geo->plane_mode == NVM_PLANE_SINGLE) && nr_ppas == 1) {
  594. rqd->nr_ppas = nr_ppas;
  595. rqd->ppa_addr = ppas[0];
  596. return 0;
  597. }
  598. rqd->nr_ppas = nr_ppas;
  599. rqd->ppa_list = nvm_dev_dma_alloc(dev, GFP_KERNEL, &rqd->dma_ppa_list);
  600. if (!rqd->ppa_list) {
  601. pr_err("nvm: failed to allocate dma memory\n");
  602. return -ENOMEM;
  603. }
  604. if (!vblk) {
  605. for (i = 0; i < nr_ppas; i++)
  606. rqd->ppa_list[i] = ppas[i];
  607. } else {
  608. plane_cnt = geo->plane_mode;
  609. rqd->nr_ppas *= plane_cnt;
  610. for (i = 0; i < nr_ppas; i++) {
  611. for (pl_idx = 0; pl_idx < plane_cnt; pl_idx++) {
  612. ppa = ppas[i];
  613. ppa.g.pl = pl_idx;
  614. rqd->ppa_list[(pl_idx * nr_ppas) + i] = ppa;
  615. }
  616. }
  617. }
  618. return 0;
  619. }
  620. EXPORT_SYMBOL(nvm_set_rqd_ppalist);
  621. void nvm_free_rqd_ppalist(struct nvm_dev *dev, struct nvm_rq *rqd)
  622. {
  623. if (!rqd->ppa_list)
  624. return;
  625. nvm_dev_dma_free(dev, rqd->ppa_list, rqd->dma_ppa_list);
  626. }
  627. EXPORT_SYMBOL(nvm_free_rqd_ppalist);
  628. void nvm_end_io(struct nvm_rq *rqd)
  629. {
  630. struct nvm_tgt_dev *tgt_dev = rqd->dev;
  631. /* Convert address space */
  632. if (tgt_dev)
  633. nvm_rq_dev_to_tgt(tgt_dev, rqd);
  634. if (rqd->end_io)
  635. rqd->end_io(rqd);
  636. }
  637. EXPORT_SYMBOL(nvm_end_io);
  638. /*
  639. * folds a bad block list from its plane representation to its virtual
  640. * block representation. The fold is done in place and reduced size is
  641. * returned.
  642. *
  643. * If any of the planes status are bad or grown bad block, the virtual block
  644. * is marked bad. If not bad, the first plane state acts as the block state.
  645. */
  646. int nvm_bb_tbl_fold(struct nvm_dev *dev, u8 *blks, int nr_blks)
  647. {
  648. struct nvm_geo *geo = &dev->geo;
  649. int blk, offset, pl, blktype;
  650. if (nr_blks != geo->blks_per_lun * geo->plane_mode)
  651. return -EINVAL;
  652. for (blk = 0; blk < geo->blks_per_lun; blk++) {
  653. offset = blk * geo->plane_mode;
  654. blktype = blks[offset];
  655. /* Bad blocks on any planes take precedence over other types */
  656. for (pl = 0; pl < geo->plane_mode; pl++) {
  657. if (blks[offset + pl] &
  658. (NVM_BLK_T_BAD|NVM_BLK_T_GRWN_BAD)) {
  659. blktype = blks[offset + pl];
  660. break;
  661. }
  662. }
  663. blks[blk] = blktype;
  664. }
  665. return geo->blks_per_lun;
  666. }
  667. EXPORT_SYMBOL(nvm_bb_tbl_fold);
  668. int nvm_get_tgt_bb_tbl(struct nvm_tgt_dev *tgt_dev, struct ppa_addr ppa,
  669. u8 *blks)
  670. {
  671. struct nvm_dev *dev = tgt_dev->parent;
  672. nvm_ppa_tgt_to_dev(tgt_dev, &ppa, 1);
  673. return dev->ops->get_bb_tbl(dev, ppa, blks);
  674. }
  675. EXPORT_SYMBOL(nvm_get_tgt_bb_tbl);
  676. static int nvm_init_slc_tbl(struct nvm_dev *dev, struct nvm_id_group *grp)
  677. {
  678. struct nvm_geo *geo = &dev->geo;
  679. int i;
  680. dev->lps_per_blk = geo->pgs_per_blk;
  681. dev->lptbl = kcalloc(dev->lps_per_blk, sizeof(int), GFP_KERNEL);
  682. if (!dev->lptbl)
  683. return -ENOMEM;
  684. /* Just a linear array */
  685. for (i = 0; i < dev->lps_per_blk; i++)
  686. dev->lptbl[i] = i;
  687. return 0;
  688. }
  689. static int nvm_init_mlc_tbl(struct nvm_dev *dev, struct nvm_id_group *grp)
  690. {
  691. int i, p;
  692. struct nvm_id_lp_mlc *mlc = &grp->lptbl.mlc;
  693. if (!mlc->num_pairs)
  694. return 0;
  695. dev->lps_per_blk = mlc->num_pairs;
  696. dev->lptbl = kcalloc(dev->lps_per_blk, sizeof(int), GFP_KERNEL);
  697. if (!dev->lptbl)
  698. return -ENOMEM;
  699. /* The lower page table encoding consists of a list of bytes, where each
  700. * has a lower and an upper half. The first half byte maintains the
  701. * increment value and every value after is an offset added to the
  702. * previous incrementation value
  703. */
  704. dev->lptbl[0] = mlc->pairs[0] & 0xF;
  705. for (i = 1; i < dev->lps_per_blk; i++) {
  706. p = mlc->pairs[i >> 1];
  707. if (i & 0x1) /* upper */
  708. dev->lptbl[i] = dev->lptbl[i - 1] + ((p & 0xF0) >> 4);
  709. else /* lower */
  710. dev->lptbl[i] = dev->lptbl[i - 1] + (p & 0xF);
  711. }
  712. return 0;
  713. }
  714. static int nvm_core_init(struct nvm_dev *dev)
  715. {
  716. struct nvm_id *id = &dev->identity;
  717. struct nvm_id_group *grp = &id->grp;
  718. struct nvm_geo *geo = &dev->geo;
  719. int ret;
  720. /* Whole device values */
  721. geo->nr_chnls = grp->num_ch;
  722. geo->luns_per_chnl = grp->num_lun;
  723. /* Generic device values */
  724. geo->pgs_per_blk = grp->num_pg;
  725. geo->blks_per_lun = grp->num_blk;
  726. geo->nr_planes = grp->num_pln;
  727. geo->fpg_size = grp->fpg_sz;
  728. geo->pfpg_size = grp->fpg_sz * grp->num_pln;
  729. geo->sec_size = grp->csecs;
  730. geo->oob_size = grp->sos;
  731. geo->sec_per_pg = grp->fpg_sz / grp->csecs;
  732. geo->mccap = grp->mccap;
  733. memcpy(&geo->ppaf, &id->ppaf, sizeof(struct nvm_addr_format));
  734. geo->plane_mode = NVM_PLANE_SINGLE;
  735. geo->max_rq_size = dev->ops->max_phys_sect * geo->sec_size;
  736. if (grp->mpos & 0x020202)
  737. geo->plane_mode = NVM_PLANE_DOUBLE;
  738. if (grp->mpos & 0x040404)
  739. geo->plane_mode = NVM_PLANE_QUAD;
  740. if (grp->mtype != 0) {
  741. pr_err("nvm: memory type not supported\n");
  742. return -EINVAL;
  743. }
  744. /* calculated values */
  745. geo->sec_per_pl = geo->sec_per_pg * geo->nr_planes;
  746. geo->sec_per_blk = geo->sec_per_pl * geo->pgs_per_blk;
  747. geo->sec_per_lun = geo->sec_per_blk * geo->blks_per_lun;
  748. geo->nr_luns = geo->luns_per_chnl * geo->nr_chnls;
  749. dev->total_secs = geo->nr_luns * geo->sec_per_lun;
  750. dev->lun_map = kcalloc(BITS_TO_LONGS(geo->nr_luns),
  751. sizeof(unsigned long), GFP_KERNEL);
  752. if (!dev->lun_map)
  753. return -ENOMEM;
  754. switch (grp->fmtype) {
  755. case NVM_ID_FMTYPE_SLC:
  756. if (nvm_init_slc_tbl(dev, grp)) {
  757. ret = -ENOMEM;
  758. goto err_fmtype;
  759. }
  760. break;
  761. case NVM_ID_FMTYPE_MLC:
  762. if (nvm_init_mlc_tbl(dev, grp)) {
  763. ret = -ENOMEM;
  764. goto err_fmtype;
  765. }
  766. break;
  767. default:
  768. pr_err("nvm: flash type not supported\n");
  769. ret = -EINVAL;
  770. goto err_fmtype;
  771. }
  772. INIT_LIST_HEAD(&dev->area_list);
  773. INIT_LIST_HEAD(&dev->targets);
  774. mutex_init(&dev->mlock);
  775. spin_lock_init(&dev->lock);
  776. ret = nvm_register_map(dev);
  777. if (ret)
  778. goto err_fmtype;
  779. blk_queue_logical_block_size(dev->q, geo->sec_size);
  780. return 0;
  781. err_fmtype:
  782. kfree(dev->lun_map);
  783. return ret;
  784. }
  785. void nvm_free(struct nvm_dev *dev)
  786. {
  787. if (!dev)
  788. return;
  789. if (dev->dma_pool)
  790. dev->ops->destroy_dma_pool(dev->dma_pool);
  791. kfree(dev->rmap);
  792. kfree(dev->lptbl);
  793. kfree(dev->lun_map);
  794. kfree(dev);
  795. }
  796. static int nvm_init(struct nvm_dev *dev)
  797. {
  798. struct nvm_geo *geo = &dev->geo;
  799. int ret = -EINVAL;
  800. if (dev->ops->identity(dev, &dev->identity)) {
  801. pr_err("nvm: device could not be identified\n");
  802. goto err;
  803. }
  804. pr_debug("nvm: ver:%x nvm_vendor:%x\n",
  805. dev->identity.ver_id, dev->identity.vmnt);
  806. if (dev->identity.ver_id != 1) {
  807. pr_err("nvm: device not supported by kernel.");
  808. goto err;
  809. }
  810. ret = nvm_core_init(dev);
  811. if (ret) {
  812. pr_err("nvm: could not initialize core structures.\n");
  813. goto err;
  814. }
  815. pr_info("nvm: registered %s [%u/%u/%u/%u/%u/%u]\n",
  816. dev->name, geo->sec_per_pg, geo->nr_planes,
  817. geo->pgs_per_blk, geo->blks_per_lun,
  818. geo->nr_luns, geo->nr_chnls);
  819. return 0;
  820. err:
  821. pr_err("nvm: failed to initialize nvm\n");
  822. return ret;
  823. }
  824. struct nvm_dev *nvm_alloc_dev(int node)
  825. {
  826. return kzalloc_node(sizeof(struct nvm_dev), GFP_KERNEL, node);
  827. }
  828. EXPORT_SYMBOL(nvm_alloc_dev);
  829. int nvm_register(struct nvm_dev *dev)
  830. {
  831. int ret;
  832. if (!dev->q || !dev->ops)
  833. return -EINVAL;
  834. if (dev->ops->max_phys_sect > 256) {
  835. pr_info("nvm: max sectors supported is 256.\n");
  836. return -EINVAL;
  837. }
  838. if (dev->ops->max_phys_sect > 1) {
  839. dev->dma_pool = dev->ops->create_dma_pool(dev, "ppalist");
  840. if (!dev->dma_pool) {
  841. pr_err("nvm: could not create dma pool\n");
  842. return -ENOMEM;
  843. }
  844. }
  845. ret = nvm_init(dev);
  846. if (ret)
  847. goto err_init;
  848. /* register device with a supported media manager */
  849. down_write(&nvm_lock);
  850. list_add(&dev->devices, &nvm_devices);
  851. up_write(&nvm_lock);
  852. return 0;
  853. err_init:
  854. dev->ops->destroy_dma_pool(dev->dma_pool);
  855. return ret;
  856. }
  857. EXPORT_SYMBOL(nvm_register);
  858. void nvm_unregister(struct nvm_dev *dev)
  859. {
  860. struct nvm_target *t, *tmp;
  861. mutex_lock(&dev->mlock);
  862. list_for_each_entry_safe(t, tmp, &dev->targets, list) {
  863. if (t->dev->parent != dev)
  864. continue;
  865. __nvm_remove_target(t);
  866. }
  867. mutex_unlock(&dev->mlock);
  868. down_write(&nvm_lock);
  869. list_del(&dev->devices);
  870. up_write(&nvm_lock);
  871. nvm_free(dev);
  872. }
  873. EXPORT_SYMBOL(nvm_unregister);
  874. static int __nvm_configure_create(struct nvm_ioctl_create *create)
  875. {
  876. struct nvm_dev *dev;
  877. struct nvm_ioctl_create_simple *s;
  878. down_write(&nvm_lock);
  879. dev = nvm_find_nvm_dev(create->dev);
  880. up_write(&nvm_lock);
  881. if (!dev) {
  882. pr_err("nvm: device not found\n");
  883. return -EINVAL;
  884. }
  885. if (create->conf.type != NVM_CONFIG_TYPE_SIMPLE) {
  886. pr_err("nvm: config type not valid\n");
  887. return -EINVAL;
  888. }
  889. s = &create->conf.s;
  890. if (s->lun_begin == -1 && s->lun_end == -1) {
  891. s->lun_begin = 0;
  892. s->lun_end = dev->geo.nr_luns - 1;
  893. }
  894. if (s->lun_begin > s->lun_end || s->lun_end >= dev->geo.nr_luns) {
  895. pr_err("nvm: lun out of bound (%u:%u > %u)\n",
  896. s->lun_begin, s->lun_end, dev->geo.nr_luns - 1);
  897. return -EINVAL;
  898. }
  899. return nvm_create_tgt(dev, create);
  900. }
  901. static long nvm_ioctl_info(struct file *file, void __user *arg)
  902. {
  903. struct nvm_ioctl_info *info;
  904. struct nvm_tgt_type *tt;
  905. int tgt_iter = 0;
  906. if (!capable(CAP_SYS_ADMIN))
  907. return -EPERM;
  908. info = memdup_user(arg, sizeof(struct nvm_ioctl_info));
  909. if (IS_ERR(info))
  910. return -EFAULT;
  911. info->version[0] = NVM_VERSION_MAJOR;
  912. info->version[1] = NVM_VERSION_MINOR;
  913. info->version[2] = NVM_VERSION_PATCH;
  914. down_write(&nvm_lock);
  915. list_for_each_entry(tt, &nvm_tgt_types, list) {
  916. struct nvm_ioctl_info_tgt *tgt = &info->tgts[tgt_iter];
  917. tgt->version[0] = tt->version[0];
  918. tgt->version[1] = tt->version[1];
  919. tgt->version[2] = tt->version[2];
  920. strncpy(tgt->tgtname, tt->name, NVM_TTYPE_NAME_MAX);
  921. tgt_iter++;
  922. }
  923. info->tgtsize = tgt_iter;
  924. up_write(&nvm_lock);
  925. if (copy_to_user(arg, info, sizeof(struct nvm_ioctl_info))) {
  926. kfree(info);
  927. return -EFAULT;
  928. }
  929. kfree(info);
  930. return 0;
  931. }
  932. static long nvm_ioctl_get_devices(struct file *file, void __user *arg)
  933. {
  934. struct nvm_ioctl_get_devices *devices;
  935. struct nvm_dev *dev;
  936. int i = 0;
  937. if (!capable(CAP_SYS_ADMIN))
  938. return -EPERM;
  939. devices = kzalloc(sizeof(struct nvm_ioctl_get_devices), GFP_KERNEL);
  940. if (!devices)
  941. return -ENOMEM;
  942. down_write(&nvm_lock);
  943. list_for_each_entry(dev, &nvm_devices, devices) {
  944. struct nvm_ioctl_device_info *info = &devices->info[i];
  945. sprintf(info->devname, "%s", dev->name);
  946. /* kept for compatibility */
  947. info->bmversion[0] = 1;
  948. info->bmversion[1] = 0;
  949. info->bmversion[2] = 0;
  950. sprintf(info->bmname, "%s", "gennvm");
  951. i++;
  952. if (i > 31) {
  953. pr_err("nvm: max 31 devices can be reported.\n");
  954. break;
  955. }
  956. }
  957. up_write(&nvm_lock);
  958. devices->nr_devices = i;
  959. if (copy_to_user(arg, devices,
  960. sizeof(struct nvm_ioctl_get_devices))) {
  961. kfree(devices);
  962. return -EFAULT;
  963. }
  964. kfree(devices);
  965. return 0;
  966. }
  967. static long nvm_ioctl_dev_create(struct file *file, void __user *arg)
  968. {
  969. struct nvm_ioctl_create create;
  970. if (!capable(CAP_SYS_ADMIN))
  971. return -EPERM;
  972. if (copy_from_user(&create, arg, sizeof(struct nvm_ioctl_create)))
  973. return -EFAULT;
  974. create.dev[DISK_NAME_LEN - 1] = '\0';
  975. create.tgttype[NVM_TTYPE_NAME_MAX - 1] = '\0';
  976. create.tgtname[DISK_NAME_LEN - 1] = '\0';
  977. if (create.flags != 0) {
  978. pr_err("nvm: no flags supported\n");
  979. return -EINVAL;
  980. }
  981. return __nvm_configure_create(&create);
  982. }
  983. static long nvm_ioctl_dev_remove(struct file *file, void __user *arg)
  984. {
  985. struct nvm_ioctl_remove remove;
  986. struct nvm_dev *dev;
  987. int ret = 0;
  988. if (!capable(CAP_SYS_ADMIN))
  989. return -EPERM;
  990. if (copy_from_user(&remove, arg, sizeof(struct nvm_ioctl_remove)))
  991. return -EFAULT;
  992. remove.tgtname[DISK_NAME_LEN - 1] = '\0';
  993. if (remove.flags != 0) {
  994. pr_err("nvm: no flags supported\n");
  995. return -EINVAL;
  996. }
  997. list_for_each_entry(dev, &nvm_devices, devices) {
  998. ret = nvm_remove_tgt(dev, &remove);
  999. if (!ret)
  1000. break;
  1001. }
  1002. return ret;
  1003. }
  1004. /* kept for compatibility reasons */
  1005. static long nvm_ioctl_dev_init(struct file *file, void __user *arg)
  1006. {
  1007. struct nvm_ioctl_dev_init init;
  1008. if (!capable(CAP_SYS_ADMIN))
  1009. return -EPERM;
  1010. if (copy_from_user(&init, arg, sizeof(struct nvm_ioctl_dev_init)))
  1011. return -EFAULT;
  1012. if (init.flags != 0) {
  1013. pr_err("nvm: no flags supported\n");
  1014. return -EINVAL;
  1015. }
  1016. return 0;
  1017. }
  1018. /* Kept for compatibility reasons */
  1019. static long nvm_ioctl_dev_factory(struct file *file, void __user *arg)
  1020. {
  1021. struct nvm_ioctl_dev_factory fact;
  1022. if (!capable(CAP_SYS_ADMIN))
  1023. return -EPERM;
  1024. if (copy_from_user(&fact, arg, sizeof(struct nvm_ioctl_dev_factory)))
  1025. return -EFAULT;
  1026. fact.dev[DISK_NAME_LEN - 1] = '\0';
  1027. if (fact.flags & ~(NVM_FACTORY_NR_BITS - 1))
  1028. return -EINVAL;
  1029. return 0;
  1030. }
  1031. static long nvm_ctl_ioctl(struct file *file, uint cmd, unsigned long arg)
  1032. {
  1033. void __user *argp = (void __user *)arg;
  1034. switch (cmd) {
  1035. case NVM_INFO:
  1036. return nvm_ioctl_info(file, argp);
  1037. case NVM_GET_DEVICES:
  1038. return nvm_ioctl_get_devices(file, argp);
  1039. case NVM_DEV_CREATE:
  1040. return nvm_ioctl_dev_create(file, argp);
  1041. case NVM_DEV_REMOVE:
  1042. return nvm_ioctl_dev_remove(file, argp);
  1043. case NVM_DEV_INIT:
  1044. return nvm_ioctl_dev_init(file, argp);
  1045. case NVM_DEV_FACTORY:
  1046. return nvm_ioctl_dev_factory(file, argp);
  1047. }
  1048. return 0;
  1049. }
  1050. static const struct file_operations _ctl_fops = {
  1051. .open = nonseekable_open,
  1052. .unlocked_ioctl = nvm_ctl_ioctl,
  1053. .owner = THIS_MODULE,
  1054. .llseek = noop_llseek,
  1055. };
  1056. static struct miscdevice _nvm_misc = {
  1057. .minor = MISC_DYNAMIC_MINOR,
  1058. .name = "lightnvm",
  1059. .nodename = "lightnvm/control",
  1060. .fops = &_ctl_fops,
  1061. };
  1062. builtin_misc_device(_nvm_misc);